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Abstract

The grasshopper genus Caledonula, endemic to New Caledonia, was studied to understand the evolution of species
distributions in relation to climate and soil types. Based on a comprehensive sampling of 80 locations throughout the island,
the genus was represented by five species, four of which are new to science, of which three are described here. All the
species have limited distributions in New Caledonia. Bioclimatic niche modelling shows that all the species were found in
association with a wet climate and reduced seasonality, explaining their restriction to the southern half of the island. The
results suggest that the genus was ancestrally constrained by seasonality. A molecular phylogeny was reconstructed using
two mitochondrial and two nuclear markers. The partially resolved tree showed monophyly of the species found on
metalliferous soils, and molecular dating indicated a rather recent origin for the genus. Adaptation to metalliferous soils is
suggested by both morphological changes and radiation on these soils. The genus Caledonula is therefore a good model to
understand the origin of microendemism in the context of recent and mixed influences of climate and soil type.
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Introduction

New Caledonia, located in the south-west Pacific, is considered

one of the major hotspots of biodiversity [1]. The main island of

the archipelago, Grande Terre, is very old and its geological

basement separated from Australia 80 Ma ago, hence it has often

been considered a Gondwanan refuge [2,3,4,5,6]. However,

recent phylogenetic studies, in concordance with all geological

studies, showed that the diversification of the fauna and flora in

New Caledonia is much more recent than expected [7,8,9] and

started 37 Mya after long episodes of total submergence in the

Palaeocene and in the Eocene [10,11,12,13,14,15].

One major feature of New Caledonian biodiversity is its strong

endemism [8,16,17]. Regional endemism, including relicts, is

extremely high, since many species or even whole groups are only

found on Grande Terre [5]. Local microendemism is even more

striking, with thousands of species of vertebrates, plants, molluscs

and insects that have very narrow distributions limited to just one

mountain or one river (e.g., snails, [18]; plants, [19]; geckos, [20];

cockroaches, [7,21]; crickets, [22]). Recently, microendemism was

found to be a dynamic feature, resulting from very recent

diversification through allopatric speciation and evolving later

towards less restricted distributions [23].

Such repeated speciation events giving rise to microendemism

have often been assumed to be favoured by two environmental

factors (review in [8]): i) the diversity of soils, especially the

presence of metalliferous soils in New Caledonia that might have

led to adaptive speciation [4,24,25,26]; and ii) climatic variation

coupled with orography, which may have determined mountain-

top endemics [27] or more commonly allopatric speciation with

niche conservatism on neighbouring mountains [21]. Both kinds of

events are presumed to be ancient. Adaptive speciation on

metalliferous soils is thought to have occurred widely when these

soils covered most of the island after its emersion [28]. In the case

of endemism and species richness, these are usually seen as being

so important that they could only result from a long accumulation

of events driven by old orogenesis and repeated climatic changes

[10].

Here, we study the respective contributions of these factors on

the origin of species distributions and levels of endemism by

investigating the diversification of the endemic grasshopper genus

Caledonula Uvarov, 1939 (Figure 1). Grasshoppers of this genus

inhabit open herbaceous habitats close to forest edges, which give

them more potential abilities to disperse than in forest habitat, and

they feed on leaves of various Poaceae. They combine several
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features that allow us to test the influence of climate and soil

diversity. The distribution of the genus is restricted to the southern

half of the island, suggesting that environmental factors may play a

constraining role. The different species show contrasting distribu-

tion areas, corresponding to different levels of microendemism:

One species is largely distributed in most of the southern part of

the island, while the others are found only in very limited areas.

Finally, some species only occur on metalliferous soils and some

only on non-metalliferous soils, and these have morphological

differences related to feeding behaviour.

Here we try in particular to determine why present distributions

are highly restricted in this group. Accordingly, we studied the

origin of geographical distributions of Caledonula species in the light

of bioclimatic niche modelling, orography and soil distribution,

with reference to a dated molecular phylogeny.

Materials and Methods

2.1 Sampling
2.1.1. Taxonomic sampling. The study was mostly based

on specimens collected by sight in the field in 2008–2009 (ANR

BIONEOCAL), complemented by specimens from the following

natural history collections: Muséum national d’Histoire naturelle,

Paris, France (MNHN); Institut Agronomique de Nouvelle-

Calédonie, station fruitière de Pocquereux, La Foa, Nouvelle-

Calédonie (IAC); Bernice P. Bishop Museum, Honolulu, Hawaii,

USA (BPBM); and the Natural History Museum, London, UK

(BMNH). Museum specimens from the last three institutions were

loaned to MNHN where the study was performed (see lists of

studied materials for details of specimens per institution). Newly

collected materials were obtained under a permit for field

collection from the Directions de l’Environnement, Province Sud

and Province Nord of New Caledonia. Additional information

came from Kaltenbach [29,30].

Taxonomic sampling was carried out at 80 localities throughout

Grande Terre, Ile des Pins and Loyalty Islands. We gathered 153

specimens, representing 4 species (including 3 new species), at 17

localities from the centre-east (Houailou) to the south-east (Forêt

Nord) (Table 1). Most of the sampled sites were published in

[7,21,22,23,31,32,33,34], but some of them are new. We present

these data in the results section to indicate the distribution pattern

of Caledonula.

2.1.2. Molecular sampling. Only a few molecular phylog-

enies of grasshoppers at the genus level have been published since

1998 [35,36,37,38,39,40,41,42,43,44]. We chose molecular mark-

ers according to these studies and we designed new primers for

nuclear markers following studies on the Ensifera dealing with this

taxonomic level (e.g., [45,46,47]).

Molecular sampling included sequences from 3 fragments of

coding mitochondrial genes (Cytochrome b (Cytb, 346 bp),

Cytochrome c Oxidase 1 (CO1, 670 bp) and Cytochrome c

Oxidase 2 (CO2, 381 bp)) and 4 fragments of nuclear genes

((Elongation factor-1 alpha (EF1a, 367 bp), Histone Class 3 (H3,

331 bp), RNA of large ribosomal subunit (28S, 1100 bp), and

Internal Transcribed Spacer 1 (ITS1, 350 bp)). The CO1

sequences showed full features of pseudogenes (high variability

and many stop codons) and were thus discarded before phyloge-

netic analysis [48]. Two markers (28S and ITS1) were also

discarded because they showed no variation (0% for ,1450 bases,

see Table S1 for GenBank accession numbers). All newly generated

sequences were deposited in GenBank and the molecular samples

used in the analyses are presented in Table 1. The ingroup

consisted of 25 specimens, representing all Caledonula species. Each

species is represented by specimens known from one to four

localities. Three Oxyinae (Oxya chinensis and two Oxya spp.) and a

Cyrtacanthacridinae (Locusta migratoria) were used as outgroups.

DNA was extracted from hind femora using the QIAamp DNA

MicroKit (QIAGEN, Courtaboeuf, France) following the manu-

facturer’s instructions. Molecular work was carried out at the

Muséum national d’Histoire naturelle (MNHN), Service de

Systématique Moléculaire. The oligonucleotide primers used for

polymerase chain reaction (PCR) and sequencing are listed in

Table 2.

Amplifications were performed in a 25 mL reaction volume with

0.4 mL of each 10 pM primer, 19.2 mL of H20, 2.5 mL of buffer,

1.25 mL of dimethyl sulfoxide (DMSO), 1 mL of MIX, 0.15 mL of

Taq polymerase and 1 mL of DNA. The PCR consisted of an

initial denaturing step at 94uC for 4 min, 40 amplification cycles

(denaturation at 94uC for 30 s, annealing at between 48 and 55uC
(Table 3) for 40 s, and extension at 72uC for 40 s), and a final step

at 72uC for 7 min. PCR products were checked on agarose gels

and sequenced in both directions with the same primers at

Genoscope (Evry, France). Sequences were cleaned, and coding

sequences were translated using the invertebrate mitochondrial

genetic code to check for the absence of stop codons using

Sequencher v. 4.8 (GeneCodes Corporation, Ann Arbor, MI,

USA). All genes were screened for potential contamination using

the BlastX algorithm on GenBank.

2.2. Specimen preparation and terminology for
description

The morphological terminology follows [49] for the phallic

complex and [50] for external morphology. The study of

Figure 1. Caledonula species and habitat. Caledonula fuscovittata
(A-D): male (A), female (B); couple mating in Monts Koghis during day
(C), view of habitat in Col d’Amieu (D); Caledonula amedegnatae (E-F):
male (E), view of habitat in Forêt Nord (F) (photos by T. Robillard).
doi:10.1371/journal.pone.0080811.g001
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morphology was carried out using a Leica MZ16 stereoscopic

microscope with an ocular micrometric. Images of relevant

structures were obtained with a Nikon D90 camera and a Macro

Nikon lens (105 mm, f 28VR). Pictures were treated in post-

production using Combine ZS Software. For drawing and

studying the male genitalia, the terminalia were detached and

cleared in a 10% KOH solution for 4 h, after which they were

stored in glycerine.

2.3. Nomenclatural Acts
The electronic edition of this article conforms to the require-

ments of the amended International Code of Zoological Nomen-

clature, and hence the new names contained herein are available

under that Code from the electronic edition of this article. This

published work and the nomenclatural acts it contains have been

registered in ZooBank, the online registration system for the

ICZN. The ZooBank LSIDs (Life Science Identifiers) can be

resolved and the associated information viewed through any

standard web browser by appending the LSID to the prefix

"http://zoobank.org/". The LSID for this publication is: urn:

lsid:zoobank.org:pub:9FCFC50C-7049-4062-B16A-0573D616845F.

The electronic edition of this work has been published in a

journal with an ISSN, and it has been archived and is available

from the following digital repositories: PubMed Central,

LOCKSS.

2.4. Phylogenetic analysis
DNA sequences were aligned under Muscle 3.8.31 [51] using

default parameters.

Parsimony analyses were performed under TNT [52]. The

search strategy consisted first of 1000 replications of Random

Addition Sequence and Tree Bisection and Reconnection (TBR).

Table 1. Taxonomic information, locality, altitude and number of specimens included in the study.

Species Locality Altitude Number of specimens

C. fuscovittata Mont Mou 22u04’28.5’’S 166u19’50.7’’E 360 m 8

22u04’30’’S 165u19’52’’E 390 m

Basis of Mont Do 21u45’28.71’’S 166u00’00.51’’E 930 m 1

Yahoué 22u12’33,38’’S 166u29’17,02’’E 25 m 3

Mont Rembai 21u35’59,46’’S 165u50’59,70’’E 595 m 6

Bourail 21u35’59,28’’S 165u29’33,05’’E 10 m 1

Sarraméa 21u38’28,00’’S 165u50’45,28’’E 80 m 1

Valley of Saint-Louis 22u13’34,05’’S 166u33’00,25’’E 15 m 3

Near Bouloupari 21u50’00,44’’S 166u03’44,07’’E 30 m 2

Monts Koghis 22u10’44’’S 166u30’31’’E 500 m 44

Houailou 21u09’49,24’’S 165u29’25,79’’E 45 m 3

Canala 21u31’60" S 165u57’0" E 105 m 3

Col d’Amieu 21u35’17’’S 165u47’56’’E 460 m 49

21u34’29’’S 165u47’24’’E

21u36’52’’S 165u47’45’’E 430 m

21u35’26’’S 165u47’45’’E 420 m

21u33’28’’S 165u46’01’’E 690 m

21u34’24’’S 165u47’03’’E 450 m

21u33’52’’S 166u46’07’’E 515 m

21u37S 165u49E 345 m

C. humboldti n. sp. Mont Humboldt 21u52’57.4’’S 166u24’45.3’’E 1343 m 15

21u52’48.6’’S 166u25’14.0’’E 1564 m

21u52’50.4’’S 166u25’08.5’’E 1510 m

S 21.88277 E 166.4125 1350 m

Monts Dzumac 22u03’18.9’’S 166u26’55.7’’E 474 m 3

22u01’09.9’’S 166u27’52.5’’E 878 m

C. grandgousieri n. sp. Haute Rivière Bleue 22u05’13,1"S 166u38’01,3"E 290 m 1

Massif du Kouakoué 21u57’25.69’’S 166u32’17.40’’E 1280 m 1

C. amedegnatae n. sp. Forêt Nord 22u19’03.5’’S 166u54’58.7’’E 335 m 7

22u18’58.7’’S 166u55’13.6’’E 400 m

22u18’59.2’’S 166u55’14.4’’E 438 m

Haute Rivière Bleue 22u05’13,1"S 166u38’01,3"E 290 m 1

Caledonula sp. (juvenile) Mont Mou 22u03’52.5’’S 166u20’34.1’’E 1105 m 1

Caledonula sp. (juvenile) Haute Rivière Bleue 22u05’13.1"S 166u38’01.3"E 270 m 1

doi:10.1371/journal.pone.0080811.t001
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Table 2. Molecular sampling, voucher references and GenBank accession numbers of specimens included in the molecular study.

Voucher specimen GenBank accession number

Species Locality Sample code MNHN collection Cytb CO2 EF1a H3

number

C. fuscovittata Mts Koghis Ko1 MNHN-CAELIF903 KF772354 KF772317 KF772369 KF772391

Ko3 MNHN-CAELIF904 KF772345 KF772318 KF772386 KF772402

Ko6 MNHN-CAELIF905 KF772346 KF772325 KF772370 KF772398

Col d’Amieu 08P121 MNHN-CAELIF908 KF772342 KF772328 KF772366 KF772390

08P162 MNHN-CAELIF910 KF772344 KF772316 - KF772396

08P51 MNHN-CAELIF907 KF772341 KF772338 KF772368 -

08P131 MNHN-CAELIF909 KF772343 KF772324 KF772367 KF772401

08P142 MNHN-CAELIF906 - KF772337 KF772389 KF772397

Mt Mou - bas MMb1 MNHN-CAELIF900 KF772355 KF772329 KF772371 KF772392

MMb2 MNHN-CAELIF901 KF772347 KF772330 KF772387 KF772399

MMb3 MNHN-CAELIF902 KF772348 KF772319 KF772372 KF772400

Base Mont Do BMD MNHN-CAELIF911 KF772362 KF772336 KF772373 KF772403

C. humboldti n. sp. Mts Dzumac MDz1 MNHN-CAELIF924 KF772358 KF772333 KF772381 KF772404

MDz2 MNHN-CAELIF925 KF772352 KF772334 KF772382 KF772405

MDz3 MNHN-CAELIF934 KF772353 KF772322 - -

Mt Humboldt Hu4 MNHN-CAELIF915 KF772357 KF772331 KF772378 KF772394

Hu5 MNHN-CAELIF916 KF772350 KF772332 KF772379 KF772407

Hu6 MNHN-CAELIF919 KF772351 KF772321 KF772380 KF772408

C. amedegnatae n. sp. Foret Nord FN2 MNHN-CAELIF928 KF772360 KF772320 KF772374 KF772393

FN3 MNHN-CAELIF929 KF772361 KF772326 KF772375 KF772406

FN4 MNHN-CAELIF933 KF772349 KF772327 KF772376 -

C. grandgousieri n. sp. Mont Kouakoué GK MNHN-CAELIF913 KF772356 KF772339 KF772377 -

Haute-Rivière bleue HRB2 MNHN-CAELIF912 KF772363 - - -

Caledonula sp. (juvenile) Haut Mt Mou MMh MNHN-CAELIF935 - KF772323 KF772388 KF772409

Caledonula sp. (juvenile) Haute-Rivière bleue RB MNHN-CAELIF936 KF772359 KF772335 KF772383 KF772395

Oxyinae sp1 - Oxsp1 - KF772364 - KF772384 KF772410

Oxyinae sp2 - Oxsp2 - KF772365 KF772340 KF772385 KF772411

Oxya chinensis - - - NC_010219 NC_010219 - -

Locusta migratoria - - - NC_001712 NC_001712 AB583233 AF370817

doi:10.1371/journal.pone.0080811.t002

Table 3. Primers used in this study.

Gene Name Sequencing primer (5’-3’) Reference
Annealing
temperature

CO2 co2a GGTCAAACAATTGAGTCTATTTGAAC Contreras & Chapco (2006) 55uC

co2e CCACAAATTTCTGAACATTGACCA

Cytb 427F YTWGTWCAATGARTMTGAGG Robillard & Desutter-Grandcolas (2006) 48uC

800R CCYARTTTATTAGGAATTGATCG

EF1a M51bF ATTGGAACRGTGCCTGTGG modified from Cho et al. (1995) 54uC

M53bR AACCATTTGCTATTTGTCCTG

H3 HexAF ATGGCTCGTACCAAGCAGACGGC modified from Svenson & Whiting (2004) 58uC

HexAR ATATCCTTGGGCATGATGGTGAC

doi:10.1371/journal.pone.0080811.t003
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Then, to avoid local optima [53], we added 100 iterations of

treefusing [54], each iteration being swapped with TBR and

Subtree Pruning and Regrafting (SPR), and 20 iterations of ratchet

[55], weighting characters with a factor of four. TNT was used to

calculate Bootstrap (BS; [56]) and Jackknife (JS; [57]) support

values with 1000 replicates.

To conduct Bayesian analyses, the substitution model of

evolution was estimated using jMODELTEST v 0.1.1 [58], and

the Akaike information criteria (AIC; [59], [60]) was used to select

the GTR+I+G model. Analyses were performed with MrBayes

3.1.2 [61]. Four Markov chains were run simultaneously for 20

million generations, sampling every 100 generations to ensure

independence of samples. The first 20,000 trees generated were

determined empirically from the log-likelihood values using

TRACER V1.4 and discarded as burn-in. [62]. The remaining

trees were used to construct 50% majority-rule consensus trees.

Two independent runs were performed to check whether

convergence on the same posterior distribution was reached and

whether the final trees converged on the same topology. The

statistical confidence of each node was evaluated by posterior

probabilities.

Since pseudogenes are known to be prevalent in grasshoppers

[48,63,64], we conducted separate analyses for each data set and

for different subsets of data to estimate the informative content of

each kind of data and to check for problematic amplifications.

2.5. Molecular dating analysis
To minimize the effect of increased mutation rates at the

intraspecific level in dating methods [65,66], only one specimen

per species was used for the dating analysis.

Because no calibration points were available (either fossil,

paleogeographic event or secondary calibration point), we chose to

investigate our data using a molecular clock approach to provide a

hypothetical framework for discussion. Prior to estimating

divergence times, we used a likelihood-ratio test (Huelsenbeck &

Crandall 1997) on Cytb and CO2 to assess rate homogeneity

among taxa. This test compares a molecular clock-constrained tree

to an unconstrained tree reconstructed in PAUP* 4.0b10 [67] with

a null hypothesis of a homogeneous rate of evolution among all

branches in the phylogeny. In the present study, the test rejected

the null hypothesis for the CO2 data set (LR = 17.11 .. critical

value 11.07 with p = 0.05), but not for the Cytb data set (LR = 4.75

,, critical value 11.07 with p = 0.05), which indicates that rates

of substitution do not vary significantly among branches and that a

molecular clock model is appropriate for the Cytb data set.

The ‘‘standard’’ mitochondrial DNA (mtDNA) clock is estimat-

ed at 2.3% My21 [68], and has been found empirically to

correspond to independent calibrations in many case studies [69];

Therefore, we used this rate in a first approach. This rate,

however, is problematic because i) it has been defined for the CO1

gene only and despite being often applied to the evolution of other

genes, and ii) it is difficult to apply a rate known in one species to

another species because the variance of evolution rates could be

important. Moreover, LR tests detect only a few cases where these

rates vary. For these reasons, we also use the most extreme rates

found in literature for Cytb in insects, i.e. 1.1% [70] and 4.22%

[71]. The results will be interpreted using both of these extremes

since our main goal is to discriminate between two alternative

hypotheses: Is Caledonula diversification old (around 37–25 Ma) or

relatively recent (, 10Ma)?

To estimate the relative age of divergence of the studied

lineages, we used the Bayesian relaxed phylogenetic approach

implemented in BEAST 1.4.8 [72] using the best-fitting model as

estimated by jModelTest 0.1.1 [58], with the Cytb data set only.

We used a normal distribution for the prior substitution rate,

with a mean substitution rate per lineage per million years of

0.0115 (for a substitution rate of 2.3%), of 0.0055 (for a

substitution rate of 1.1%) and of 0.0211 (for a substitution rate

of 4.22%) and a standard deviation of 0.002. Only the ingroup

(genus Caledonula) was constrained on the topology and all other

relationships were left free to vary so that topological uncertainty

was incorporated into posterior estimates of divergence dates.

We confirmed the results by using two independent analyses

over 10 million generations, and we sampled every 1000

generations to obtain a maximum of 10,000 samples, as

recommended by [72]. The two analyses converged on similar

posterior estimates. We then used Tracer 1.4.1 [62] to assess

convergence, measure the effective sample size of each parameter,

and calculate the mean and 95% highest posterior density (HPD)

interval for divergence times. We determined whether a sample

size greater than 200 was achieved for all parameters after the

analyses. Results of the two runs were combined with LogCombi-

ner 1.4.7 [72], and the consensus tree was compiled with

TreeAnnotator 1.4.7 [72].

2.6. Geographical distribution, soil diversity and niche
modelling

We aimed to test whether certain environmental parameters

(soil, climate) could have influenced the distribution of the genus.

Ecological niche models (ENM) were constructed using the

maximum entropy niche modelling approach implemented in

MAXENT [73,74]. This is one of the best-performing pro-

grammes for species distribution models, which it builds based on

presence only [75]. Data on absences were therefore not used in

the analysis, but we show them to illustrate all the investigated

areas (see results section). Environmental data layers were

constructed for the 19 BIOCLIM variables (at 30 arc-seconds

resolution) in the worldclim dataset. These variables were derived

from the interpolation of monthly readings for precipitation and

minimum, maximum, and mean temperatures for the period

1950–2000 [76].

Results

3.1. Taxonomy (see Appendix 1)
The genus Caledonula is extensively revised here. The type

species C. fuscovittata is redescribed and three new species are

described.

3.2. Geographical distribution and soil diversity
Caledonula fuscovittata has a large distribution with twelve distant

localities, always on non-metalliferous soils (Figure 2). Specimens

of this species collected on Mont Mou and Mont Koghis (ultramafic

massifs) were collected on non-metalliferous soils at the base of

these mountains and the species was not found on the ultramafic

higher elevations. Mont Do has a heterogeneous soil composition: it

is non-metalliferous at the bottom and metalliferous at the top.

Except for one specimen showing contradictory information on the

labels (GPS data indicates the top of Mont Do, whereas it is labelled

as being from the base of Mont Do), all specimens identified as C.

fuscovittata are from non-ultramafic soils only.

All other species were located on ultramafic soils in the South,

and each is known only from one or two close localities (Figure 2),

suggesting that they are highly microendemic.

3.3. Phylogenetic analysis
Our data matrix consisted of 101 DNA sequences (Cytb: 27,

CO2: 27, EF1a: 24, H3: 23) from 29 terminals after discarding
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data for CO1 (due to suspicion of pseudogene amplification) and

for 28S and ITS1 (uninformative) (Table S1). All remaining coding

sequences could be translated into amino acids with no evidence of

pseudogenes.

The Bayesian and parsimony analyses resulted in very similar

relationships amongst taxa (Figure S1 and S2), with slight

differences that did not affect the results of the dating events.

Caledonula fuscovittata appears paraphyletic in parsimony analysis

and polyphyletic (unresolved basal polytomy) with Bayesian

analysis. The other species found on ultramafic soils are grouped

in a well-supported clade (bootstrap = 72%, posterior probabil-

ities = 0.86). Caledonula grandgousieri and C. amedegnatae, are either

the sister group to C. humboldti (parsimony) or form a polytomy

with it (Bayesian). The other species are clearly monophyletic

according to the phylogenetic analyses. The analyses also suggest

that an additional new species may exist on the high summit of

Mont Mou, represented by only a juvenile in our sampling; this

species is sister to the other species of the clade found in ultramafic

soils.

Preliminary separate analyses show that the observed pattern

from the total data set is not biased by the presence of pseudogenes

or other artefacts. The non-monophyly of C. fuscovittata is

confirmed by all the analyses, which split the species into two

well-supported clades: one groups specimens from Col d’Amieu

and from the base of Mont Do, and the other clade groups

specimens from the base of Mont Mou and Monts Koghis. The

clade including all other species was also recovered in separate

analyses (Figure 2).

3.4. Molecular dating
The two combined beast runs yielded high effective sample sizes

(. 200) for all relevant parameters, indicating adequate sampling

of the posterior distribution.

Using a divergence rate of 2.3%, the divergence of Caledonula

took place around 2.4 Ma (95% confidence interval: 1.4–3.6 Ma),

and the divergence of species found on metalliferous soils around

1.1 Ma (95% confidence interval: 0.5–1.8 Ma).

The tentative use of a greater divergence rate (4.22%) led to

more recent ages: 1.3 Ma (0.7–1.9 Ma) for diversification of the

genus and 0.6 Ma (95% confidence interval: 0.3–1 Ma) for species

on metalliferous soils (interval in pale blue on Figure 2). At the

other extreme use of a lower divergence rate (1.1%) led to more

ancient ages: 4.9 Ma (2.9–7.5 Ma) for diversification of the genus

and 2.3 Ma (95% confidence interval: 1.1–3.9 Ma) for diversifi-

cation of the group located on metalliferous soils (interval in violet

on Figure 2).

Taking into account these extreme rates, diversification of the

genus Caledonula is presumed to have occurred around 3.1 Ma

(4.9–1.3 Ma) and that of the clade on metalliferous soil around 1.5

Ma (2.4–0.6 Ma) (Figure 2). This relatively recent diversification

could explain the non-monophyly of C. fuscovittata. There are,

however, no morphological differences between the specimens

from both clades, which could indicate putative cryptic species or

very recent species divergence. However, even if we consider two

species from the C. fuscovittata group, the diversification and the

degree of microendemism is still greater on metalliferous soils.

3.5. Ecological niche models
The Ecological Niche Models (ENM) for the genus Caledonula

and for the species C. fuscovittata are shown in Figure 3. In both

cases MAXENT appeared to perform well. The ENM for all the

species of the genus was based on 26 presence records and had an

AUC (Area under Receiver Operating) of 0.884. The ENM of C.

fuscovittata was based on 19 presence records with an AUC of 0.885

(See [73]).Both ENMs indicated areas with suitable environmental

conditions from East to West coast, on both soil types, from sea

level to mountaintops. But these suitable areas were constrained

from the centre to the south, including Ile des Pins, showing clearly

that climate could be an important factor to explain why Caledonula

distribution is limited to the central-southern part of the island. As

can be seen in Figure 3, the absence of Caledonula in the North is

not a sampling artefact. Indeed, several sites in potentially suitable

habitats were sampled, without Caledonula ever being found.

Different kinds of soils occur in different climatic conditions;

therefore, there is no confounding effect of soil on climatic niche

description or vice versa.

In both cases, the variable that contributed most to the

MAXENT model was BIO 15 (precipitation seasonality) with

51% for the genus and 63% for C. fuscovittata. The response curve

showed that the best predicted environmental conditions were in

areas where precipitation is less seasonal. The response to BIO 9

by C. fuscovittata follows the same pattern, i.e. the probability of

presence is higher in areas where the mean temperature of the

driest quarter is lowest. A jackknife test confirms the importance of

this variable. For the genus Caledonula, BIO 15 is the variable with

highest gain when used in isolation and the one that decreases the

most the gain when it is omitted. For C. fuscovittata alone, BIO 15 is

also the variable with the highest gain when used in isolation, but

the variable that most decreases the gain when omitted is BIO 9

(mean temperature of the driest quarter). All this indicates that

species of Caledonula are probably limited by extreme dryness in

strongly seasonal climates.

Discussion

New Caledonia has recently undergone a change in biogeo-

graphical status, from Gondwanan refuge to old Darwinian island

[8]. The question of the origin of a diversification in New

Caledonia is thus crucial to determining whether a group is as old

or even older than the island. The age of origin of the Caledonula

grasshoppers in New Caledonia has been conservatively estimated

by using extreme rates of molecular evolution, either very slow or

very fast. In either case, the results support a relatively recent

diversification of not much more than six million years ago, and

likely around three million years ago (Figure 2). This inference fits

the new paradigm of New Caledonia biogeography, with

recolonisation of the newly emerged main island later than 37

My ago, either by long or short distance dispersal [8,9]. Although

this dating was obtained without calibration points, in accordance

with [69] or [77], the extreme rates employed here (very slow or

very fast) encompass those obtained with datings performed with

relaxed molecular clocks and more sophisticated calibrations (e.g.,

[9], [23]). Pushing the present dating back to the land emersion (37

My) or to the separation of the geological basement from Australia

Figure 2. 50% majority-rule consensus tree for Caledonula obtained from Bayesian analysis of the combined data set (Cytb, CO2,
EF1a and H3). The Bayesian posterior probabilities are indicated below branches. The geographical distribution is given at the right of the taxon
names. On the topology, pale blue lines represent the dating results obtained with the divergence rate of 4.22%/Ma, and violet lines represent the
dating results obtained with the divergence rate of 1.1%/Ma. On the maps, the distribution of ultramafic rocks and corresponding metalliferous soils
is indicated in grey, and the species distributions are indicated with the same colour as in the phylogeny.
doi:10.1371/journal.pone.0080811.g002
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(80 My) would imply molecular rates never met before, ten times

or more slower than any rate ever carefully estimated with fossils

or paleogeography for any organism. The molecular differences

among Caledonula species and with the outgroups cannot therefore

be consistent with a scenario of an old origin of the genus on the

island.

A relatively recent age is also significant regarding the

environmental factors that are generally considered to explain

the intensity of speciation in New Caledonia. A recent age is at

Figure 3. Predicted distribution of the genus Caledonula (A) and of the species Caledonula fuscovittata (B) constructed from presence
data using MAXENT. Results are presented for logistic probabilities of occurrences ranging continuously from low to high. Warmer colours show
areas with predicted better conditions. Dots show species’ sampling locations; triangles indicate all other sampled sites in New Caledonia, to indicate
those where Caledonula was not found. For each map, a) shows the Regularized Training Gain under 100 Jackknife turns (green: without variable;
blue: with only one variable; and red: with all variables); b) shows the response curves of BIO 15, the variable that contributes most to these models.
doi:10.1371/journal.pone.0080811.g003
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odds with the scenario usually put forward to explain adaptive

radiation on metalliferous soils by an early arrival of organisms on

an island still mainly covered by ophiolithic rocks, before they

were widely eroded by subtropical wet climates [28,78]. In this

scenario, an early arrival, not long after the island emersion 37 My

ago, would imply an ‘‘all or nothing’’ evolutionary scenario like

‘‘adapt or perish’’, on an island where all soils were metalliferous.

It can explain why some old local groups were ancestrally adapted

or preadapted to metalliferous soils [3,26,79]. In the present case,

the grasshoppers diversified more than 20 million years after

emersion, when most of the land was already freed from the cover

of ophiolithic rocks for millions of years [10,28]. Therefore, it

relaxes the assumption that there was a historical constraint for

adaptation to metalliferous soil for Caledonula, which could be

recent and possibly secondary after colonization of the island,

depending on the history of the genus.

Though often expected, diversification in relation to metallif-

erous soils is still poorly documented for New Caledonian

organisms, with the exception of plants [79]. In the case of

Caledonula, this relationship was completely unknown until now,

with only a few old taxonomic mentions of this genus in the

literature, and the only species described in the early twentieth

century was the most common species, C. fuscovittata, found only on

non metalliferous soils [29,30,80,81].The phylogenetic tree

strongly suggests that most of the diversification of Caledonula took

place on metalliferous soils. Four species are known to occur on

metalliferous soils, compared to one occurring on volcano-

sedimentary soils. Speciation seems to have occurred in allopatry,

since sister-groups are distributed on different areas close to each

other. The topology is not conclusive enough to distinguish

between different scenarios of origin because the clades on each

kind of soil, metalliferous or not, are branching on a trichotomy.

Either the clade was ancestrally able to deal with the ecological

constraints of metalliferous soils, or it developed first on non-

metalliferous soils and shifted to metalliferous soils later. In either

case, the most strictly microendemic species are located on

metalliferous soils and they constitute a monophyletic clade.

Morphological evidence also suggests specialization and adapta-

tion for these species, which are more robust and have very large

mandibles, related to feeding behaviour on specifically hard-leaved

Poaceae, compared to the other species of the genus and related

acridids. Such a relationship with soils was expected in grasshop-

pers because they are phytophagous insects that directly depend

on plants, themselves strongly constrained by stressed soils

[79,82,83]). In other insects, a relationship to metalliferous soils

has been found in caddisflies with aquatic larvae that diversified

first and more on such soils [26]. Conversely, such a relationship

was not found in other non-aquatic saprophagous insects [7,21].

In Agnotecous crickets, the relationship is of similar complexity to

that of Caledonula, since the species of the former genus are found

on every kind of soil, but show different distributions and

evolutionary characteristics in each case [23].

Therefore, the diversification of Caledonula appears to be at least

partly related to soil type. However, given the peculiar distribution

of Caledonula, other causes or constraints on diversification have to

be considered. The climate niche model shows that the genus is

constrained to high rainfall areas with low seasonality. The results

remain similar when considering only the most abundant and

widely distributed species, C. fuscovittata, which is not found on

metalliferous soils. More generally than for soils, we can conclude

that the whole genus is restricted to areas where the climate is wet

but not very seasonal. This is an interesting and unexpected result

since many distributions in New Caledonia are limited to northern

versus southern half of the elongated main island (e.g., [20]), a

situation generally interpreted in terms of unknown historical

constraints (P. Bouchet, pers. comm.) or in terms of relationships

with the very large southern area of metalliferous soils. Here we

show that such distributions could also be correlated with a

climatic parameter that is never mapped in atlases or books [84],

since it depends on the combination of different variables, and

whose role was therefore not suspected a priori. Bioclimatic niche

modelling studies have been conducted several times in New

Caledonia and showed that climate plays a role in shaping

distributions, but none of these studies showed such a strong

constraint explaining a clear-cut distributional pattern [85,86].

Concerning the hierarchy or the temporal succession of the

roles for soils versus climate in Caledonula diversification, we can

only remark that climate probably had an earlier influence

because it affects all the species including C. fuscovittata. The genus

would have diversified later, including with the presumptive

adaptation to metalliferous soils. The reasons why adaptation to

metalliferous soils has led to increased speciation in the genus (four

out of five species) remains unclear and will require further studies.

One explanation could involve the complexity of the landscape

covered by ophiolithic rocks giving birth to metalliferous soils.

Ophiolithic rocks actually erode faster than other types, generating

a fast-evolving and dissected landscape [28], which could in turn

generate more possibilities of allopatric speciation, by increasing

the opportunity of population fragmentation according to

orography and climate changes. This hypothesis was already

proposed in the case of the cricket genus Agnotecous [23], where the

recent and more narrowly distributed species mostly occurred on

metalliferous soils. Another explanation could call for the

occurrence of adaptive speciation, considering the visible modifi-

cations of head and mandible morphology in species living on

metalliferous soils. These hypotheses are not, however, mutually

exclusive because speciation could be favoured both by population

fragmentation in complex landscapes and adaptation to different

food plants.

In conclusion, microendemism in Caledonula grasshoppers is

clearly related to both climatic and to soil constraints. The

distributions appear to be restricted by ecological and evolutionary

constraints. Distributions have been, and still are limited by

seasonality, but they also resulted from the fragmentation of

probably larger ancestral distribution areas after allopatric

speciation. In this respect, Caledonula grasshoppers are an

interesting and original model for the study of microendemism

in New Caledonia, quite different from those previously studied, in

which niche conservatism dominates or in which metalliferous soils

are an ancient resource, rather than an opportunity for recent

adaptation.

Appendix 1: Taxonomy of Caledonula

Family Acrididae

Subfamily Cyrtacanthacridinae Kirby, 1910.

Genus Caledonula Uvarov, 1939.

Caledonula Uvarov, 1939: 459.

Synonym. Caledonia Willemse, 1923: 103. Name preoc-

cupied, renamed Caledonula (Uvarov 1939).

Type species. Caledonia fuscovittata Willemse, 1923.

Redescription

Body bicoloured, yellowish-brown dorsally and ventrally, sides

with a wide black longitudinal band. Face and mouthparts

yellowish. Dorsal part of tegmen yellow, lateral part black,
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continuing the black band along the whole body. Leg colouration

variable between species. Body quite robust. Foveola absent;

antennae filiform, as long as head and pronotum. Anterior margin

of pronotum almost straight; posterior margin thickened, with a

median incision; median carina weak; with 2–3 distinct sulci;

lateral carinae weak, slightly divergent posteriorly; dorsal cuticle

with rough patches on anterior and posterior edges, the posterior

rough area longer than the anterior one. Tegmina short in both

sexes, apex rounded, very sclerotised, with faint longitudinal veins.

Prosternum armed with a trilobate tubercle process. Dorsal carina

of hind femora prolonged by a small apical spine; lateral lobes of

knees ending in a small spine. Hind tibiae with bicoloured spines,

their base lighter than apex. First segment of hind tarsomeres twice

as long assecond one.

Caledonula fuscovittata (Willemse, 1923) (Figures
4, 5, 6, 7)

Caledonia fuscovittata Willemse, 1923: 103.

Caledonula fuscovittata – Uvarov, 1939.

Differential diagnosis. Size small for the genus, slender, differing

from other species by vivid green leg colouration in males (Figure

5).

Redescription. Size small, head narrow for the genus, with weak

mandibles. General colour pattern close to other Caledonula species,

but differing in leg colouration (Figures 5, 6).

Male. Fore and median legs vivid green, knees black. Hind

femora mostly vivid green, distal part red and knees black; hind

tibiae purple, their bases dark purple and lighter toward apex

(Figure 5A, B). Green parts in some old specimens including the

HT have turned dark brown or black. Dorsal side of hind tibiae

with 7-8 spines (m = 7.3; n = 38) on outer edge and 7-9 spines

(m = 8; n = 39) on inner edge. Epiproct triangular, apex acute with

an elongated impression (Figure 6C). Male genitalia (Figure 7A):

Epiphallic lophi convergent, flattened, with basal membrane

continuous toward the bridge; ancorae convergent and very acute,

narrowed apically.

Female. Body colour almost uniformly brownish, with a dorsal

light brown band and darker lateral brown bands, except a

yellowish line on metathorax epimeron. Tegmina black with a

dorsal light brown band. Distal part of hind femora red, dorsal

part cream, knees dark brown (Figure 5C, D). Hind tibiae dorsal

side with 7-8 spines (m = 7.3, n = 31) on outer edge and 7-8 spines

(m = 7.8, n = 31) on inner edge. Valves of ovipositor long and

parallel, except for the curved apex (Figure 6D). Basis of epiproct

narrow with an elongated impression, apex rounded (Figure 6D).

Measurements (in mm). 20=, 21R. Body length: 18.5–21.2

(m = 19.9) (=), 24–31.7 (m = 27.7) (R); femur III length: 10.1–

13.6 (m = 12.3) (=), 13.5–18.2 (m = 15.5) (R); tegmina length: 2.7–

4.2 (m = 3.5) (=), 3.7–5 (m = 4.5) (R); pronotum length: 3.5–4.2

(m = 3.9) (=), 4.8–6.5 (m = 5.4) (R).

Type material. Lectotype. = dissected (Montague) (BMNH)

(examined). Paralectotype. R (Montague) (BMNH). Original type

series consisted of 2= and 1R syntypes from Grande Terre, Canala

(Willemse, 1923).

Other material examined. NEW CALEDONIA: 3=, Grande Terre,

Réserve naturelle du Mont Mou (22u04’28.5’’S; 166u19’50.7’’E),

360 m, 26.iv.2009 (R. Nattier) (MNHN-CAELIF900-902), 1=, 2R
same information (MNHN); 1R, Grande Terre, Réserve naturelle

du Mont Mou (22u04’30’’S; 165u19’52’’E), 390 m, 22.v.2008

(T. Robillard & F. Muller) (MNHN); 2=, Grande Terre, Monts

Koghi (22u10’44’’S; 166u30’31’’E), 500 m, 06.v.2008 (T. Robillard

& F. Muller) (MNHN-CAELIF903-904), 13=, 7R, 3 juveniles same

information (MNHN); 1=, Grande Terre, Monts Koghi

(22u10’39’’S; 166u30’29.2’’E), 480 m, 22.iv.2009 (R. Nattier)

(MNHN-CAELIF905), 6=, 3R same information (MNHN); 1=;

Grande Terre, Monts Koghi, 500 m, 11.ii.1994 (L. Desutter-

Grandcolas) (MNHN); 2R, Grande Terre, Monts Koghi, 05.iii.1968

(J. Chazeau) (IRD NOUMEA); 3=, 2R, Grande Terre, Monts

Koghi, 490 m, 09.viii.1979 (Nishida) (BPBM); 1=, Grande Terre,

Col d’Amieu (21u35’17’’S; 165u47’56’’E), 460 m, 11.v.2008

(T. Robillard & F. Muller) (MNHN-CAELIF906), 5=, 3R, 1 juvenile,

same information (MNHN); 1=, Grande Terre, Col d’Amieu

(21u34’29’’S; 165u47’24’’E), 370 m, 09.v.2008 (T. Robillard &

F. Muller) (MNHN-CAELIF907), 1R, 1 juvenile, same information

(MNHN); 1=, Grande Terre, Col d’Amieu (21u36’52’’S;

165u47’45’’E), 430 m, 11.v.2008 (T. Robillard & F. Muller)

(MNHN-CAELIF908); 1=, Grande Terre, Col d’Amieu

Figure 4. Caledonula fuscovittata, male (A) and female (B) habitus. Scale bar: 5 mm. Drawings by Gilbert Hodebert (MNHN).
doi:10.1371/journal.pone.0080811.g004
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(21u35’26’’S; 165u47’45’’E), 420 m, 11.v.2008 (T. Robillard & F.

Muller) (MNHN-CAELIF909), 2 juveniles, same information

(MNHN); 1=, Grande Terre, Col d’Amieu (21u33’28’’S;

165u46’01’’E), 690 m, 11.v.2008 (T. Robillard & F. Muller)

(MNHN-CAELIF910), 1R, same information (MNHN); 1R,

Grande Terre, Col d’Amieu, 450–550 m, 18.ii.1994 (L. Desutter-

Grandcolas) (MNHN); 1=, 1 juvenile, Grande Terre, Col d’Amieu

(21u34’24’’S; 165u47’03’’E), 450 m, 13.v.2008 (T. Robillard & F.

Muller) (MNHN); 5 juveniles, Grande Terre, Col d’Amieu

(21u33’52’’S; 166u46’07’’E), 515 m, 08.v.2008 (T. Robillard & F.

Muller) (MNHN); 1=, 1 juvenile, Grande Terre, Col d’Amieu

(21u34’40.8’’S; 165u47’36.9’’E), 690 m, 28.iv.2009 (R. Nattier)

(MNHN); 2=, 2R, Grande Terre, Col d’Amieu (21u35’47.2’’S;

165u46’37.0’’E), 680 m, 01.v.2009 (R. Nattier) (MNHN); 2=, 1R,

Grande Terre, Col d’Amieu (21u35’’12.5’S; 165u46’25.7’’E),

470 m, 01.v.2009 (R. Nattier) (MNHN); 2=, Grande Terre, Col

d’Amieu (21u35’08.0’’S; 165u47’27.6’’E), 480 m, 27.iv.2009 (R.

Nattier) (MNHN); 1R, Grande Terre, Col d’Amieu (21u33’55.8’’S;

Figure 5. Caledonula species in dorsal and lateral view. C. fuscovittata (A-D), C. amedegnatae n. sp. (E-H), C. humboldti n. sp. (I-L) and C.
grandgousieri n. sp. (M-N). Left: =, right: R. Scale bar: 5 mm.
doi:10.1371/journal.pone.0080811.g005
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165u45’35.2’’E), 460 m, 29.iv.2009 (R. Nattier) (MNHN); 1R,

Grande Terre, Col d’Amieu (21u34’10.8’’S; 165u45’42.0’’E),

440 m, 29.iv.2009 (Nattier) (MNHN); 1 juvenile, Grande Terre,

Col d’Amieu (21u36’01.9’’S; 165u46’29.3’’E), 680 m, 01.v.2009

(R. Nattier) (MNHN); 1R, Grande Terre, Col d’Amieu

(21u34’22.8’’S; 165u46’35.2’’E), 30 m, 02.v.2009 (R. Nattier)

(MNHN); 2=, Grande Terre, Col d’Amieu, 12-13.iii.1986 (J.

Boudinot) (MNHN); 1=, =, Grande Terre, Col d’Amieu, 650 m,

21.iii.1986 (Gressitt & Maa) (BPBM); 2=, Grande Terre, Col

d’Amieu (21u37S; 165u49E), 08.ii.1998 (J. Chiffaud & J. Mestre)

(MNHN-CAELIF***); 2R, Grande Terre, Col d’Amieu (21u37S;

165u49E), 01-15.iii.1998 (J. Chiffaud & J. Mestre) (MNHN); 1=,

Grande Terre, Réserve naturelle du Mont Do (21u45’28.71’’S;

166u00’00.51’’E), 933 m, 08.xi.2007 (S. Cazeres) (MNHN-CAE-

LIF911); 1=, 3R,2 juveniles, Grande Terre, Mont Rembaı̈ (9.2 km

North-East of Col d’Amieu on road 5), 375–675 m, 23.ix.1979

(Nishida) (BPBM); 1R, Grande Terre, Yahoué, 22.ii.1962 (Krauss)

(BPBM); 1R, Grande Terre, Yahoué, 22.i.1963 (Yoshimoto) (BPBM);

1=, Grande Terre, Yahoué, ii.1978 (Krauss) (BPBM); 1=, 1R,

Grande Terre, Saint Louis Valley, 17-22.iii.1945 (Milliron)

(BPBM); 1=, Grande Terre, Saint Louis Valley, iv.1939 (Jaubert)

(MNHN); 1=, 1R, Grande Terre, near Bouloupari, 25.ii.1945

(Milliron) (BPBM); 1R, Grande Terre, Sarraméa, 12.ii.1963

(Yoshimoto) (BPBM); 1R, Grande Terre, Bourail, 1902 (Méray)

(MNHN).

Caledonula grandgousieri Nattier sp. nov.
urn:lsid:zoobank.org:act:26A5EF4F-AC4D-4B83-
9BB4-C45FEB477C5B (Figures 5, 6, 7)

Differential diagnosis (male). Size large, mandibles strong, similar to

Caledonula humboldti, but differing in the form of male genitalia and

by having a more uniform and darker colouration (Figure 5).

Figure 6. Caledonula species: face (upper part) and epiproct in dorsal view (lower part). C. fuscovittata: (=: A, C; R: B, D), C. amedegnatae n.
sp. (=: E, G; R: F, H), C. humboldti n. sp. (=: I, K; R: J, L) and C. grandgousieri n. sp. (=: M, N). Scale bars: 2 mm.
doi:10.1371/journal.pone.0080811.g006
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Description. Size large for the genus, head wide with strong

mandibles. General colour pattern close to other species, but

darker and more uniform (Figure 5, 6).

Male. Fore femora and tibiae black on outer side and yellowish

on inner side; median femora and tibiae yellowish with thin black

bands on outer side and black on inner side; hind femora black on

inner and outer side except proximal and distal parts; knees black;

hind tibiae dark purple (Figure 5K, L). Hind tibiae dorsal side with

9 (n = 4) spines on outer edge and 8-9 (m = 8.5; n = 4) spines on

inner edge. Epiproct triangular, apex rounded with an oval/

rounded impression (Figure 6N). Male genitalia (Figure 7B):

epiphallic bridge little sclerotised; lophi slightly pointed and not

convergent, ancorae straight, with acute and curved apex.

Female. Unknown.

Measurements (in mm). 2=. Body length: 25.5–25.8 (m = 25.7);

femur III length: 14.4–15 (m = 14.7); tegmina length: 4.5–5.1

(m = 4.8); pronotum length: 4.4–4.6 (m = 4.5).

Material examined. Holotype, =, NEW CALEDONIA: Grande

Terre, Parc de la Rivière Bleue, Haute Rivière Bleue, v.iii.1986

(J. Boudinot) (MNHN-CAELIF912). Other material studied, NEW

CALEDONIA: 1=, Grande Terre, Mont Kouakoué

(21u57’25,69’’S, 166u32’17,40’’E), 1280 m, 17.iii.2009 (G. Kergoat)

(MNHN-CAELIF913).

Etymology. The species name refers to the large size and the wide

head of the species.

Distribution. New Caledonia, Grande Terre, Province Sud: Parc

de la Rivière Bleue and Mount Kouakoué.

Caledonula humboldti Nattier sp. nov. urn:lsid:zoo
bank.org:act:5C761942-81F6-4248-99E7-C751C9D9ACBB
(Figures 5, 6, 7)

Differential diagnosis (male). Close to C. grandgousieri by large size

and stocky shape, but differing by the yellow colouration of fore

and median femora, and by the more contrasted colours of hind

legs (Figure 5).

Description. Size large, head wide for the genus with strong

mandibles. General colour pattern close to that of other species,

differing by leg colouration (Figures 5, 6).

Male. Fore femora yellow; tibiae yellow, their external side dark

brown; knees black. Median legs yellow, knees black; hind femora

orange-red ventrally, their dorsal edge yellowish, with a lateral

black band narrowing toward black knees (Figure 5I, J). Hind

tibiae brown, their dorsal side with 7-10 spines (m = 8.4; n = 14) on

outer edge and 8-10 spines (m = 8.9; n = 14) on inner edge.

Epiproct triangular, apex rounded with an oval impression (Figure

6K). Male genitalia (Figure 7C): epiphallic bridge weakly

sclerotised; lophi convergent, conical and wide basally; ancorae

curved, convergent and pointed.

Female. Body almost uniformly brownish, light brown dorsally,

darker laterally, with a yellow line on the metathorax epimeron.

Forewings light brown, except a lighter dorsal brown band (Figure

5K, L). Hind tibiae dorsal side with 7-9 spines (m = 8.2; n = 10) on

outer edge and 9 spines (n = 10) on inner edge. Valves of ovipositor

long, slightly divergent toward the end, apex curved (Figure 6L).

Basis of epiproct wide with an oval impression, apex rounded

(Figure 6L).

Measurements (in mm). 7=, 5R. Body length: 22.2–24 (m = 22.9)

(=), 29.8–32.1 (m = 31) (R); femur III length: 13.2–14.8 (m = 13.7)

(=), 17–18 (m = 17.5) (R); tegmina length: 4.1–5.1 (m = 4.5) (=),

5–6.5 (m = 5.7) (R); pronotum length: 4.3–4.7 (m = 4.5) (=), 5.5–6

(m = 5.8) (R).

Figure 7. Caledonula species, male genitalia in dorsal view. (an: ancorae; br: bridge; lo: lophi). Scale bars: 1 mm.
doi:10.1371/journal.pone.0080811.g007
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Material examined. Holotype, =, NEW CALEDONIA: Grande

Terre, Mont Humboldt (21u52’57,4’’S, 166u24’45,3’’E), 13.x.2009

(P. Grandcolas) (MNHN-CAELIF914). Allotype, R, NEW CALE-

DONIA: Grande Terre, same locality, date and collector as

holotype (MNHN-CAELIF926). Paratypes, NEW CALEDONIA:

3=, 1R, Grande Terre, Mont Humboldt (21u52’57,4’’S,

166u24’45,3’’E), 1343m, 13.x.2009 (P. Grandcolas) (MNHN-

CAELIF915-918); 1 R, Grande Terre, Mont Humboldt

(21u52’48,6’’S, 166u25’14,0’’E), 1564 m, 14.x.2009 (P. Grandcolas)

(MNHN-CAELIF919); 2=, Grande Terre, Mont Humboldt

(21u52’50,4’’S, 166u25’08,5’’E), 1510 m, 14.x.2009 (P. Grandcolas)

(MNHN-CAELIF920-921); 2=, 1R, Grande Terre, Mont Hum-

boldt, 1350 m, 10-11.ii.2005 (S. Cazeres & C. Mille) (IAC). Other

material studied, NEW CALEDONIA: 1R, Grande Terre, Mont

Humboldt, Paı̈ta (21u52’58.01’’S, 166u24’45.01’’E), 1350 m,

15.ii.2006 (S. Cazeres) (IAC); 2 juveniles, Grande Terre, Mont

Humboldt (21u52’48,6’’S, 166u25’14,0’’E), 1564 m, 14.x.2009 (P.

Grandcolas) (MNHN-CAELIF922-923); 2 juveniles, Grande Terre,

Monts Dzumac (22u01’09,9’’S, 166u27’52,5’’E), 878 m, 12.v.2009

(R. Nattier) (MNHN-CAELIF924-925); 1 juvenile, Grande Terre,

Monts Dzumac (22u03’18,9’’S, 166u26’55,7’’E), 474 m, 12.v.2009

(R. Nattier) (MNHN-CAELIF934); 1 juvenile, Grande Terre, Mont

Humboldt, 1350 m, 10-11.ii.2005 (S. Cazeres & C. Mille) (IAC).

Etymology. The species name refers to the type locality.

Distribution. New Caledonia, Grande Terre, Province Sud:

Mount Humboldt and Mount Dzumac.

Caledonula amedegnatae Nattier sp. nov. urn:lsid:
zoobank.org:act:55EAE7A4-6002-4BD6-821F-AFA01AAE7
7D5 (Figures 5, 6, 7)

Differential diagnosis (male). Similar to C. fuscovittata in terms of

small size and shape, but differing in colouration by being more

uniform and darker, except for the distal part of hind femora,

which is red in both species (Figure 5).

Description. Size small, head narrow for the genus, with weak

mandibles. General colour pattern close to other species, differing

by leg colouration (Figures 5, 6).

Male. Fore legs black on external side, brown on internal side.

Median legs mostly yellow on external side and black on internal

side. Hind femora black, their dorsal edge yellowish, ventral edge

and distal region red, knees black; hind tibiae dark purple (Figure

5E, F). Hind tibiae dorsal side with 8-9 spines (m = 8.7; n = 6) on

outer edge and 7-9 spines (m = 8.3; n = 6) on inner edge. Epiproct

triangular, apex rounded with an oval impression (Figure 6G).

Male genitalia (Figure 7D): epiphallic bridge weakly sclerotised;

lophi not convergent; ancorae thin and curved, convergent and

pointed.

Female. Body colour almost uniformly brownish, with a dorsal

light brown band and darker lateral bands except for a yellowish

line on the metathorax epimeron. Internal part of fore and median

tibiae brown, external part dark brown. External part of hind

femora brown, external part red, darker towards the black knees;

hind tibiae black. Forewings black with a dorsal light brown band

(Figure 5G, H). Hind tibiae dorsal side with 9 spines (n = 2) on

outer edge and 10 spines (n = 2) on inner edge. Valves of ovipositor

long and parallel, their apex curved (Figure 6H). Basis of epiproct

narrow with an oval impression, apex rounded (Figure 6H).

Measurements (in mm). 3=, 1R. Body length: 21.1–23.4 (m = 22.2)

(=), 23.2 (R); femur III length: 12.7–13.2 (m = 12.9) (=), 15.6 (R);

tegmina length: 3.7–4.2 (m = 3.8) (=), 5.1 (R); pronotum length:

3.8–3.9 (m = 3.87) (=), 4.8 (R).

Material examined. Holotype, =, NEW CALEDONIA: Grande

Terre, Réserve de la Forêt Nord, Yaté (22u19’03.5’ S,

166u54’58.7’’E), 335 m, 08.v.2009 (R. Nattier) (MNHN-CAE-

LIF927). Allotype, R, NEW CALEDONIA: Grande Terre, same

locality, date and collector as holotype. Paratypes, NEW CALE-

DONIA: 1=, Grande Terre, Réserve de la Forêt Nord, Yaté

(22u18’58.7’’ S, 166u55’13.6’’E), 390 m, 08.v.2009 (R. Nattier)

(MNHN-CAELIF928). Other material studied, NEW CALEDONIA:

3 juveniles, Grande Terre, Réserve de la Forêt Nord, Yaté

(22u19’03.5’ S, 166u54’58.7’’E), 335 m, 08.v.2009 (R. Nattier)

(MNHN-CAELIF929-931); 1 juvenile, Grande Terre, Réserve de

la Forêt Nord, Yaté (22u18’59.2’ S, 166u55’14.4’’E), 438 m,

08.v.2009 (R. Nattier) (MNHN-CAELIF932); 1=, Grande Terre,

Réserve naturelle intégrale de la Rivière Bleue, Haute Rivière

Bleue, 5.iii.1986 (J. Boudinot) (MNHN-CAELIF933).

Etymology. The species is dedicated to the late Christiane

Amédégnato, acridologist at MNHN, for her kind help at the

beginning of this study and in memory of her outstanding

contribution to acridid taxonomy.

Distribution. New Caledonia, Grande Terre, Province Sud:

reserve of Forêt Nord, near the Goro Nickel factory, and Parc

de la Rivière Bleue.
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Mont Kouakoué, and to Gilbert Hodebert for the habitus drawings. We

sincerely thank Christian Mille for loans of specimens from IAC and for

providing valuable help in New Caledonia. We also thank Hannah ter

Hofstede (Dartmouth College, Hanover, USA) and Mark Judson (MNHN)

for their critical reading of the paper and for improving the English.

Finally, we want to remember that this work was initiated under the critical

training in acridid morphology and taxonomy of RN by the late Christiane

Amédégnato,
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