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Distortion Minimization in Multi-Sensor Estimation
With Energy Harvesting
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Abstract—This paper presents a design methodology for opti-
mal energy allocation to estimate a random source using multiple
wireless sensors equipped with energy harvesting technology. In
this framework, multiple sensors observe a random process and
then transmit an amplified uncoded analog version of the observed
signal through Markovian fading wireless channels to a remote
station. The sensors have access to an energy harvesting source,
which is an everlasting but unreliable random energy source
compared to conventional batteries with fixed energy storage. The
remote station or so-called fusion centre estimates the realization
of the random process by using a best linear unbiased estimator.
The objective is to design optimal energy allocation policies at
the sensor transmitters for minimizing total distortion over a
finite-time horizon or a long term average distortion over an
infinite-time horizon subject to energy harvesting constraints. This
problem is formulated as a Markov decision process (MDP) based
stochastic control problem and the optimal energy allocation poli-
cies are obtained by the use of dynamic programming techniques.
Using the concept of submodularity, the structure of the optimal
energy allocation policies is studied, which leads to an optimal
threshold policy for binary energy allocation levels. Motivated
by the excessive communication burden for the optimal control
solutions where each sensor needs to know the channel gains and
harvested energies of all other sensors, suboptimal decentralized
strategies are developed where only statistical information about
all other sensors’ channel gains and harvested energies is required.
Numerical simulation results are presented illustrating the perfor-
mance of the optimal and suboptimal algorithms.

Index Terms—Wireless sensor networks, distributed estimation,
best linear unbiased estimator (BLUE), energy/power control,
energy harvesting, Markov decision processes, dynamic program-
ming (DP), threshold policy.

I. INTRODUCTION

ADVANCES in wireless communications and high-speed
low-power electronics technologies have enabled various

practical applications of inexpensive, compact and versatile
wireless sensor networks (WSNs) in diverse areas such as

Manuscript received April 1, 2014; revised September 15, 2014; accepted
December 16, 2014. Date of publication January 14, 2015; date of current ver-
sion March 19, 2015. This work was carried out under the funding provided by
a Swedish Research Council Grant Dnr: 621 2013 5395. A preliminary version
of this paper was presented at the 14th IEEE SPAWC Darmstadt, Germany,
June 2013.

M. Nourian is with the Department of Electrical and Electronic Engineering,
The University of Melbourne, VIC 3010, Australia (e-mail: mojtaba.nourian@
unimelb.edu.au).

S. Dey and A. Ahlén are with the Department of Engineering Sciences,
Uppsala University, Uppsala 751 21,Sweden (e-mail: subhra.dey@signal.uu.se;
anders.ahlen@signal.uu.se).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2015.2391691

environmental data gathering [1], industrial process monitoring
and controlling [2], mobile robots and autonomous vehicles
[3], and monitoring of smart electricity grids [4], among many
others. In typical single-hop WSNs, each sensor in the network
measures the quantity of interest, creates a local signal and
then conveys it to the remote estimator or so-called the fusion
centre (FC) where the received signals are processed and a
final estimate of the observed quantity computed. One of the
important challenges in the area of WSNs is to design efficient
strategies for each specific sensor to improve the estimation per-
formance under limited energy resources. This paper addresses
the problem of optimal energy allocation to efficiently estimate
a random source using distributed wireless sensors equipped
with energy harvesting technology.

Designing optimal transmit power/energy allocation strate-
gies for WSNs has been an active area of research in recent
years. Two types of sensor transmission strategies are usually
considered—the uncoded analog forwarding strategy (moti-
vated by the seminal work of [5] showing the optimality of
uncoded analog transmission over a coherent multiple access
channel), or using a separate source and channel coding strategy
where the sensors compress their information first before trans-
mission over the fading channels (see [6] for a nice survey).
In our work, we restrict the discussion to the case of uncoded
analog transmission only. Among many papers in this area we
first mention here [7] which considers a WSN with an orthogo-
nal multiple-access scheme from sensors to the FC where a best
linear unbiased estimator (BLUE) is used (see [8] for the theory
of BLUE). For this model, optimal power allocation policies are
derived in a way that the total distortion is minimized subject
to a sum power constraint at the sensors [7]. The work in [9]
considers the same multiple-access scheme as [7] but, instead
of the total distortion, total transmission power is minimized
under distortion constraints when the statistical knowledge of
the source signal is also utilized and more general correlated
sources are considered. Sensing noise uncertainty in BLUE
using multiple sensors has been considered in [10], and optimal
power allocation for linear estimation over coherent multiple
access channels has been considered in [11].

So far, most studies on WSNs focused on sensors equipped
with conventional batteries with fixed energy storages. But,
these batteries are in general hard to replace. In many applica-
tions, e.g., biomedical sensors implanted within the human body,
the battery lifetime can be prolonged by integrating energy har-
vesting techniques that can harvest e.g., solar, magnetic, piezo-
electric or vibrational energy. In the energy harvesting paradigm
the sensors may recharge their batteries by collecting energy from
the environment. However, as most renewable energy sources
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are unreliable, the amount of energy harvested is random which
makes energy harvesting constraints more complicated than
conventional fixed energy constraints.

Recently, a considerable amount of research has been de-
voted to the concept of energy harvesting in the context of
information transmission, with a view to minimizing delay or
maximizing throughput. In [12], throughput optimal and mean
delay optimal energy allocation policies in a single sensor node
are studied, while the optimal energy allocation policies that
maximize the mutual information of a wireless link were de-
rived in [13] under either causal or non-causal side information
available at the transmitters. In [14], the authors investigated
an optimal packet scheduling problem for a single-user energy
harvesting wireless communication system, where data pack-
ets and energy packets arrive at the transmitter in a random
manner. They develop optimal off-line scheduling policies for
minimizing the delivery time for all packets to the destination
in a deterministic setting where the energy harvesting times
and the amounts of energy harvested are all known before
transmission starts. While no finite battery capacity is assumed
in [14], optimal off-line transmission policies with batteries
with limited storage capacities are investigated in [15], where
a short-term (finite horizon) throughput maximization and the
related problem of minimization of the transmission completion
time for a given amount of data are studied. These results
are further generalized in [16] where also fading channels and
optimal online policies are considered. In particular, the authors
in [16] considered optimal power allocation problems over
static and fading channels that (i) maximize the throughput by
a deadline and (ii) minimize transmission completion time of
the communication session. Both off-line and online policies
are considered along with finite and infinite battery capacities.
In the context of estimation, a remote estimation problem with
an energy harvesting sensor was considered in [17] where com-
munication scheduling strategies for the sensor and estimation
strategies for the estimator are jointly minimized, while [18]
focuses on designing novel optimal energy allocation policies at
an energy harvesting sensor for efficient remote state estimation
of linear stochastic dynamical systems. In a related paper [19],
the authors analyze the problem of distortion minimization for
an energy harvesting sensor node communicating over a digital
fading channel. Here the focus is on minimizing distortion over
a finite number of time-slots with total energy, causality and
delay constraints. The readers are also referred to [20] in which
efficient state estimation algorithms with energy harvesting
sensors and fairness control were developed.

In this paper we design optimal energy allocation policies (or
equivalently power allocation policies when each transmission
slot is normalized to be of unity length) to minimize the total
distortion or estimation error of a random Gaussian source mea-
sured by multiple sensors. The sensors have access to energy har-
vesting sources which are everlasting but unreliable energy
sources compared to conventional batteries with fixed energy
storage. More specifically, we study a WSN with multiple
sensors, with Markovian energy harvesting profiles, employing
analog transmissions where the noisy sensor observations of
a remote Gaussian source are amplified and forwarded to the
FC over fading Markovian wireless channels. The FC estimates

the realization of the random process by using a BLUE. We
assume that the sensors are measuring the source at a uniform
sampling rate and their data queues are always full. Therefore,
in contrast to the energy harvesting and fading channel models
in [16], the harvested energy processes and channel fading gains
here are modelled as discrete-time processes over a slotted
time axis. The fading channel gains remain constant over each
time slot (same as the sensor sampling period) and can change
from one slot to another in a temporally correlated (Markov)
manner. We assume that the harvested energy during each slot
is stored in the battery (if the battery does not overflow due
to finite capacity limitations) and is available for use in the
next time slot. The harvested energy from one time slot to
another is also allowed to be temporally correlated following
a Markov process. Also, in contrast to [19], we consider multi-
sensor estimation where the sensors employ analog uncoded
transmission using an amplify and forward method to the FC.

Our objective is to design optimal energy allocation policies
at the transmitters to minimize total distortion over a finite-time
horizon or a long term average distortion over an infinite-time
horizon subject to energy harvesting constraints. This problem
is formulated as an MDP based stochastic control problem
and the optimal energy allocation policies are obtained offline
by the use of dynamic programming techniques. The optimal
transmission energy levels corresponding to a range of dis-
cretized values of the sensors’ channels, harvested energies and
battery levels are stored in a lookup table for use in real-time.
Using the concept of submodularity, the structure of the optimal
allocation energy policies is studied, simplifying the numerical
search for these optimal policies. These policies are based
on the assumption that only causal channel state and energy
harvesting information is available at transmitters. In the first
instance we assume that each sensor knows the values of causal
channel gains and harvested energies of all sensors. In practice,
the information about channel gains at the sensor transmitter
can be achieved via periodic pilot transmissions from the FC
and reciprocity between the sensors-to-FC and FC-to-sensors
channels (e.g., in a time-division-duplex (TDD) scheme). Each
sensor can obtain the information about the channel gains for
all other sensors via individual sensors reporting it to the FC
and the FC broadcasting this information to all sensors. The
information about harvested energies can also be achieved
similarly by each sensor reporting them to the FC, followed
by the FC broadcasting this information to all sensors via a
feedback channel. However, this imposes an excessive com-
munication burden on the sensor network. To circumvent this
problem, suboptimal decentralized strategies are developed for
the more realistic case where individual sensors only have local
information about their channel gains and harvested energies
and only statistical information about all other sensors’ channel
gains and harvested energies. In either case, based on the
available information (global or local), the sensor transmitter
chooses the corresponding transmission energy level from the
stored lookup table as mentioned earlier. Numerical simulation
results are presented illustrating the performance of the energy
allocation algorithms.

There are a few recent works that are directly relevant to
our current work. In an earlier conference version [21] of
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this work, we studied, with limited proof details, the optimal
energy allocation problem for distributed estimation over a
finite-time horizon where fading channel gains and harvested
energies vary in an independent and identically distributed
(i.i.d.) manner. In parallel, two recent works have also inde-
pendently considered optimum power allocation for distributed
estimation with energy harvesting at the sensors [22], [23]. In
[22], the authors study this problem with deterministic energy
harvesting models where the harvested energy information is
known non-causally. In [23], the authors consider both causal
and non-causal information and extend their previous work
[13] on throughput maximization of a wireless communication
system with an energy harvesting transmitter to a finite horizon
estimation problem and derive similar results on the optimum
power allocation policy.

The novelty of the current work is that we address the optimal
energy allocation problem at the sensor transmitters in a more
general setting compared to [21]–[23] where both finite horizon
and infinite-time horizon frameworks with causal information
are considered and the fading channel gains and harvested
energies are modelled as general Markovian processes. Being
fully aware of the fact that the optimal solution requires causal
channel gains and harvested energy information of all sensors
to be known at each sensor transmitter and the excessive
communication overhead this generates, we also develop a
suboptimal but decentralized framework with a significantly
reduced communication overhead where each sensor only uses
its local information and the statistics of all other sensors’
fading channels and energy harvesting processes.

In summary, the main contributions of this paper are as
follows:

i) Unlike the WSN model in [7], we consider energy har-
vesting sensors that are not constrained by fixed initial
battery storages, but rather the randomness of the har-
vested energy pattern. Energy harvesting is a promising
solution to the important problem of energy management
in wireless sensor networks. The integration of energy
harvesting technology on-board a sensor node is now a
practical reality [24]. We thus consider finite and infinite
horizon multi-sensor estimation problems with general
Markovian energy harvesting processes and Markovian
fading channels. The optimal energy allocation problems
are formulated as MDP based stochastic control problems
and dynamic programming (DP) based techniques are
used to obtain the optimal control solutions.

ii) It is well known that the optimal solution obtained by
DP techniques, in particular, as a stationary control policy
minimizing the infinite horizon control cost is computa-
tionally prohibitive. Thus motivated, we provide structural
results on the optimal energy allocation policy, which
lead to threshold policies which are optimal and yet very
simple to implement in some practical cases, e.g., when
the sensor is equipped with binary transmission energy
levels. Note that most sensors are usually equipped with
a finite number of transmission energy/power levels and
for flexibility of practical implementation, sensors can be
programmed to have only two levels.

iii) Motivated by the communication burden for the optimal
control solution where the FC needs to gather and then
communicate the information about channel gains and
harvested energies to all sensors, we provide a subopti-
mal solution where only statistical information about all
other sensors’ channel gains and harvested energies is
required. Numerical results are presented to illustrate the
performance gaps between the optimal and suboptimal
solutions.

The following notation will be used throughout the paper.
The set of sensors is denoted by M = {1, . . . ,M} where M
is the number of sensors. Discrete time is denoted by k ∈
Z+ := {0,1,2, . . .} and the value of sequence X at time slot
k is given by Xk or X(k). We use the subscript m as the label
for sensor m ∈ M . The notation Xm(k) or Xm,k is used to
denote the value of X for sensor m at time k. Boldface letters
represent vectors. AT denotes the transpose of a vector A.
We denote X(:,k) = [X1,k, . . . ,XM,k]

T , Xm,(·) = [Xm,0,Xm,1, . . .]
T

and Xm,[k] = [Xm,0, . . . ,Xm,k]
T for k ∈ Z+ and m ∈ {1, . . . ,M}.

We also denote X(−m,k) = [X1,0, . . . ,Xm−1,k,Xm+1,k, . . . ,XM,k]
T

for m ∈ {1, . . . ,M}. Let (Ω,F ,P) be a complete probability
space. E denotes the expectation operator. ∂L

∂x∗ represents the
partial differentiation of L with respect to x evaluated at a
specific value x = x∗. Finally, � and � represent component-
wise inequalities.

The organization of the paper is as follows. The system
model is given in Section II. The finite-time horizon optimal
energy allocation problem subject to energy harvesting con-
straints and its solution are given in Section III for both causal
and non-causal information patterns. The infinite-time horizon
optimal energy allocation problem subject to energy harvest-
ing constraints is formulated, and solved using dynamic pro-
gramming techniques in Section IV. Section V presents some
important structural results of the optimal policies, that can
give rise to simple threshold-based energy allocation policies in
some special cases. In Section VI, a suboptimal decentralized
solution to the case of sensors with only statistical information
of other sensors is developed, and Section VII presents the
numerical simulation results for the infinite horizon optimal
energy allocation problem. Concluding remarks are stated in
Section VIII.

II. SYSTEM MODEL

A diagram of the system architecture consisting of a WSN
with M sensors using an orthogonal multiple-access scheme is
shown in Fig. 1. The description of each part of the system is
given in detail below.

A. Source Model and Sensor Measurements

We assume that time is divided into slots of length equal to
the sampling time Ts, which is assumed to be unity without any
loss in generality. Therefore the sensors obtain discrete time
measurements of a source signal {θ(k)} at time instants k ≥ 0,
where the k-th time slot denotes the period between the time
instants k and k + 1. {θ(k)} is modelled as an i.i.d. Gaussian
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Fig. 1. System architecture.

process with zero mean and variance σ2
θ. The measurements of

the mth sensor, m ∈ M = {1, . . . ,M}, are obtained in the form

xm(k) = θ(k)+ vm(k), k ≥ 0

where xm(k) is the observation of sensor m at time k ≥ 0,
and {vm,(·),m ∈ M } is a sequence of i.i.d. Gaussian processes,
independent of {θ(k)}k≥0, with zero mean and variance σ2

m.
The sensors transmit their measurements via orthogonal fading
channels to an FC where the process {θ(k)}k≥0 is estimated.

B. Transmitters: Multiple Sensors

We assume that the transmitters adopt an analog amplify
and forward uncoded strategy [5]. Thus, the transmitted signal
from the mth sensor at each time k ∈ Z+ is an amplified
version of the measured signal xm(k) with a power amplifying
factor αm,k. The energy consumption of sensor m at time k is
given by Em,k = αm,k(σ2

θ +σ2
m), where σ2

θ +σ2
m is the average

power of xm(k) per symbol. Let gm,k be the channel power
gain between the mth sensor and the FC in slot k, then the
signals zm(k) =

√αm,kgm,kxm(k) + nm,k, m ∈ M , k ≥ 0 are
received in the FC, where {nm,(·),m ∈ M } denotes a sequence
of i.i.d. additive white Gaussian noises (AWGNs) with variance
ξ2

m. The set of fading channel gains {gm,(·) : m ∈ M } for the
sensors is assumed to be a sequence of independent first-order
stationary and homogeneous Markov block-fading processes
(see [25]) where the channels remain constant over each fading
block (here assumed to be the same as the sampling interval
for simplicity), and varying from block to block in a tem-
porally correlated manner. Note that the stationary first-order
Markovian modelling includes the case of i.i.d. processes as a
special case.

We assume that channel state information is available at the
transmitters such that at each time k ∈ Z+, the state of all
sensors’ channel gains g(:),k is broadcasted to all sensors. In
practice, this can be achieved by channel reciprocity between
the sensor-to-FC and FC-to-sensor channels (such as in typical
time-division-duplex (TDD) based transmissions). In this sce-
nario, the sensor can estimate the channel gain based on pilot
signals transmitted from the remote receiver at the beginning of

each fading block. Another possibility (if channel reciprocity
does not hold) is to estimate the channel at the receiver based
on pilot transmissions from the sensor and send it back to
the sensor by channel state feedback. However, transmitting
pilot signals consumes energy which should then be taken into
account. To conform with our problem formulation, we there-
fore assume that channel reciprocity holds. Motivated by the
communication burden of this formulation, the more practical
scenario is studied in Section VI where each sensor only has
statistical information about all other sensors’ channel gains.

C. Energy Harvestor and Battery Dynamics

Let the unpredictable energy harvesting process of the sen-
sors be denoted by {Hm,(·) : m ∈ M } which is modelled as a
set of independent stationary first-order homogeneous Markov
process. This modelling for the harvested energy processes
is justified by empirical measurements in the case of solar
energy [26]. We also assume that harvested energy processes
and channel power gains across the M sensors are mutually
independent.

Assume that sensor m consumes energy Em,k at time k from
its battery with a maximum storage capacity B̂m, and collects
an amount of harvesting energy Hm,k which is then stored in
the battery for use in the next time slot. The dynamics of the
mth sensor’s stored battery energy Bm,(·), m ∈ M , is assumed to
follow a first-order Markov model

Bm,k+1 = min{Bm,k +Hm,k −Em,k, B̂m}, k ≥ 0 (1)

with given 0 ≤ Bm,0 ≤ B̂m, where B̂m is the maximum stored
energy in the battery of sensor m. In this paper, we assume
that the sensor only consumes energy for transmission of its
measurement to the FC. Note that a constant processing cost for
obtaining a measurement at each time-slot is not explicitly con-
sidered as this can be easily incorporated by reducing the finite
battery capacity by the required amount. We assume that each
sensor knows the energy harvesting information of all sensors.
This information can be achieved by each sensor reporting to
the FC and then FC broadcasting this information to all sensors
via feedback. Motivated by the communication burden of this
formulation, the more practical scenario is studied in Section VI
where each sensor only has statistical information about all
other sensors’ harvested energies.

Remark 2.1: It should be noted that the assumption of in-
dependent channels and energy harvesting processes across the
sensors is made only for analytical and computational tractabil-
ity. In practical settings, it is entirely possible to have energy
harvesting processes and fading channels that are correlated
across sensors. The solution techniques presented in this paper
can handle such correlated models, albeit at the expense of addi-
tional analytical complications and computational complexity.

D. Distortion Measure at Fusion Center

At each time k ∈ Z+ an estimate θ̂(k) of the unknown source
θ(k) is obtained at the FC from received signals z(:,k). We pre-
sume that BLUE is utilized at the FC due to its universality and
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simplicity (see [7] and references therein). We denote sm,k =
gm,k

ξ2
m(σ2

θ+σ2
m)

and E ′
m,k = Em,kσ2

θ. Then,

dm(Em,k,sm,k) =
E ′

m,ksm,k

1+ γ−1
m E ′

m,ksm,k

where γm =
σ2

θ
σ2

m
is the signal-to-noise ratio for sensor m. Then,

the achievable distortion at time k (which is the minimum mean
square error (MMSE) computed as the variance of the estimate
θ̂(k)) is given by

D
(
E(:,k),s(:,k)

)
=

σ2
θ

M
∑

m=1
dm(Em,k,sm,k)

(2)

when E(:,k) 
 0, and D(0,s(:,k)) = σ2
θ [7]. Note that when

E(:,k) = 0 (corresponding to the case when no sensor is trans-

mitting), the best estimate of θ(t) is simply θ̂(k) := E[θ(t)] = 0
which leads to the maximum distortion σ2

θ.
We establish some notation. Let g := (g1, . . . ,gM)T be the

vector of channel gains defined akin to (g1,k, . . . ,gM,k), then s :=
(s1, . . . ,sM)T is defined as sm = gm

ξ2
m(σ2

θ+σ2
m)

for m ∈ M .

Theorem 2.1: For given s := (s1, . . . ,sM)T , the distortion
function D(E,s) is a non-increasing convex function of E =
(E1, . . . ,EM)T 
 0.

Proof: We have

∂D(E,s)
∂Em

= − (D(E,s))2 × sm(
1+ γ−1

m E prime
m sm

)2 ≤ 0

∂D(E,s)
∂Em∂En

=2(D(E,s))3 × sm(
1+ γ−1

m E prime
m sm

)2

× sn(
1+ γ−1

n E ′
nsn

)2 , for n �= m

∂2D(E,s)
∂E2

m
=2(D(E,s))3 ×

(
s2

m(
1+ γ−1

m E ′
msm

)4

+
γ−1

m s2
m(

1+ γ−1
m E ′

msm
)3 ×

M

∑
m=1

dm (Em,sm)

)
.

We denote d := (d1(E1,s1), . . . ,dM(EM,sM))T ,

p :=

(
s1(

1+ γ−1
1 E ′

1s1
)2 , . . . ,

sM(
1+ γ−1

M E ′
MsM

)2

)T

q :=

(
γ−1

1 s2
1(

1+ γ−1
1 E ′

1s1
)3 , . . . ,

γ−1
M s2

M(
1+ γ−1

M E ′
MsM

)3

)T

then the Hessian of the distortion function is

∇2D(E,s) =
2σ2

θ
(1T d)3

(
(1T d)diag(q)+ppT )

which is positive semidefinite due to the fact that for all
x := (x1, . . . ,xM)T we have xT ∇2D(E,s)x ≥ 0. Therefore, the
distortion function is a non-increasing convex function of E �
0. Note that the discontinuity of the distortion function at E = 0

is not a problem as convex functions can be discontinuous at
boundary points. �

III. FINITE-TIME HORIZON OPTIMAL TRANSMISSION

ENERGY ALLOCATION PROBLEM AND ITS SOLUTION

The finite-time horizon optimal transmission energy alloca-
tion problem aims to minimize an expected sum distortion over
a finite time-window, where the distortion function is given by
(2), subject to energy harvesting constraints (1).

min
{E(:,k): 1≤k≤T}

T

∑
k=1

E
[
D
(
E(:,k),s(:,k)

)]
s.t. 0 ≤ Em,k ≤ Bm,k (a.s.) ∀ m ∈ M , 1 ≤ k ≤ T (3)

where Bm,k is the mth sensor’s stored battery energy available at
time k which satisfies the dynamics (1). The reader is referred
to [21] for a similar formulation but with i.i.d. channel gains
and harvesting energies.

In the first instance, we consider the realistic scenario of
causal information case where the unpredictable future wire-
less fading channel gains and energy harvesting information
are not a priori known to the sensors. More precisely, the
information available at any sensor at time k ≥ 1 is given
by Ik = {(gm,[k],Hm,[k],Bm,[k]) : m ∈ M }. The causal infor-
mation Ik is used at each sensor to decide the amount of
energy allocation E(:,k). A policy {Em,(·) : m ∈ M } is feasi-
ble if the energy harvesting constraint 0 ≤ Em,k ≤ Bm,k are
almost surely (a.s.) satisfied for all m ∈ M and k ≥ 0. The
admissible control set is then given by U := {Em,(·) : Em,k

is adapted to sigma-field σ(Ik) and 0 ≤ Em,k ≤ Bm,k (a.s.) ∀m ∈
M }. Intuitively, the admissible controls are the controls that do
not use any information about future random processes, which
is essentially a causality requirement in stochastic systems.

A. Finite-Time Horizon Optimal Energy Allocation Policies

For the causal information case {Ik : 0 ≤ k ≤ T − 1} where
the unpredictable future wireless fading channel gains and
energy harvesting information are not a priori known to the
sensors, the solution to the stochastic control problem (3) is
given in the following theorem.

Theorem 3.1: For a given initial condition I0 = {gm,0,Hm,0,
Bm,0 : m ∈ M } the value of the finite-time horizon mini-
mization problem (3) with causal information is given by
V0(gm,0,Hm,0,Bm,0) which can be computed recursively from
the backward Bellman dynamic programming equation

Vk(g,H,B) = min
0�E�B

{D(E,s)

+ E
[
Vk+1 (g̃,H̃, B̃)

∣∣g,H,E
]}

, 0 ≤ k ≤ T −1 (4)

where B̃m = min{Bm + Hm − Em, B̂m} for m ∈ M , and the
terminal condition is given by

VT (g,H,B) := min
0�E�B

D(E,s) = D(B,s) (5)

where all available energy is used for transmission in the final
time T .
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Proof: The proof follows from the optimality equations
for finite-time horizon stochastic control problems (see [27]). �

The solution to the stochastic control problem (3) is then
given by

Eo
k(g,H,B) = arg min

0�E�B
{D(E,s)

+ E
[
Vk+1(g̃,H̃, B̃)

∣∣g,H,E
]}

, 0 ≤ k ≤ T −1 (6)

where B̃m = min{Bm +Hm −Em, B̂m} for m ∈ M , and V (·, ·, ·)
is the solution to the Bellman equation (4).

Remark 3.1: Note that such dynamic programming based
optimal energy allocation policies rely on building a look-up
table for discretized values for the state (channel, harvested
energy and battery level) and action (energy levels) spaces off-
line. In real time, based on the exact values of the current
state, the optimal energy allocation is obtained via (6). Similar
dynamic programming based optimal policies have also been
considered under the title of online transmission policies in
Section VI of [16]. Note however that the energy harvesting
and fading channel models of [16] assume temporally indepen-
dent models, whereas in this work we allow them to evolve
according to a temporally correlated Markov process. This gen-
eralization requires the application of a more general stochas-
tic control methodology along with the associated Bellman
dynamic programming equation given by (4). It is generally
known that due to the exponential complexity of the dynamic
programming algorithms, such algorithms can be computation-
ally complex. Various suboptimal strategies can be designed by
approximating the value function using approximate dynamic
programming methods (ADP). Design of suboptimal energy
allocation policies based on such ADP techniques is beyond
the scope of the current paper and will be treated elsewhere.

The causal information pattern is clearly relevant to the most
practical scenario. However, it is also instructive to consider the
non-causal information scenario where each sensor has a priori
information about the fading channel gains {gm,(·) : m ∈ M }
and harvested energies {Hm,(·) : m ∈ M } for all time periods
including the future ones (see a detailed analysis of this setting
in [21] for finite horizon problems and see also [22], [23]
for similar results). This may be feasible in the situation of
a known/deterministic environment where the wireless fading
channel gains and the harvested energies are predictable [13].
More importantly, the performance of the non-causal informa-
tion case can serve as a benchmark (a lower bound) for the
causal case. Indeed, we present some performance comparison
between the performances in the causal and the non-causal
case in the Numerical Examples section. Note also that the
finite horizon energy allocation problem for the non-causal
case can be formulated as a convex optimization problem
similar to the off-line throughput maximization problem with
an energy harvesting transmitter as presented in [13], [16].
Below, we present the solution to two such cases with non-
causal information. First, note that in general the solution to
the dynamic programming equation (6) can only be obtained
numerically and there is no closed form solution. To illustrate
the properties of the optimal solution, below we provide a
closed form solution for a simple example of a horizon T = 2

energy allocation problem with non-causal information for
a single sensor. Subsequently, we provide the finite-horizon
optimal energy allocation results for multiple sensors with
non-causal information and infinite battery storage capacity at
each sensor. The solution to the non-causal case with finite
battery storage capacity can be obtained with the additional
constraint that 0 ≤ Em,k ≤ Bm,k (a.s.) ∀m ∈ M , where Bm,k+1 =
min{Bm,k +Hm,k −Em,k, B̂m}, k ≥ 0, following similar convex
optimization techniques as used in Section IV of [16] where
throughput maximization over fading channel is considered.

B. A Closed Form Solution for the Horizon 2 Single Sensor
Problem With Non-Causal Information

To get some insight about the optimal energy allocation
strategy (6), we derive the optimal solution in the simple case
of a single sensor when T = 2. We drop the subscript m in
this case and set σ2

θ = 1, ξ2 = 1 for simplicity. We assume
non-causal information case where (B1,H1,g1,g2) is known to

the sensor. Denote E∗ :=
√

g2√
g1+

√
g2
(B1 +H1), a :=

√
g2
g1

H1, and

b :=
(√

g!+
√

g2√
g1

)
B̂−H1.

Lemma 3.1: Consider the stochastic control problem (3)
with T = 2 where the information (B1,H1,g1,g2) is given.
Then, the optimal transmission energy for slot 1 is of the form

Eo
1 =

⎧⎨
⎩

B1 H1 > B̂ or B1 < a
E∗ H1 ≤ B̂ and a ≤ B1 ≤ b
[B1 +H1 − B̂]+ H1 ≤ B̂ and B1 ≥ b

where [x]+ := max(x,0), and the optimal transmission energy
for slot 2 is given by Eo

2 = min{B1 +H1 −Eo
1 , B̂}.

Proof: From (5), we get the optimal solution for slot T = 2
as Eo

2 = B2 which is a function of E1 by (1). We define

W (E) :=D

(
E,

g1

1+σ2

)
+ D

(
min{B1 +H1 −E, B̂}, g2

1+σ2

)
.

First, suppose H1 > B̂. Then, B̂ = min{B1 + H1 − E1, B̂}.
Thus, the minimum of W (E1) = D(E1,s1) + D(B̂,s2) where
0 ≤ E1 ≤ B1 is achieved by Eo

1 = B1. Second, suppose H1 ≤ B̂.
In case 0 ≤ E1 ≤ B1 +H1 − B̂ we have min{B1 +H1 −E1, B̂}=
B̂ so the optimal E to minimize W (E) such that 0 ≤ E1 ≤
B1 + H1 − B̂ is given by the largest value B1 + H1 − B̂. On
the other hand, in case [B1 + H1 − B̂]+ ≤ E1 ≤ B1 we have
B1 +H1 −E1 = min{B1 +H1 −E1, B̂} which yields W (E1) =
D(E1,s1)+D(B1 +H1 −E1,s2). In this case the optimal solu-
tion to the unconstrained optimization problem minE1 W (E1) is

given by E∗ =
√

g2√
g1+

√
g2
(B1 +H1). But, by using the convexity

of W (E1) we get

Eo
1 =

⎧⎨
⎩

B1 if E∗ > B1

E∗ if [B1 +H1 − B̂]+ ≤ E∗ ≤ B1

[B1 +H1 − B̂]+ if E∗ < [B1 +H1 − B̂]+

where H1 ≤ B̂ (see the discussion below Theorem 5.1). By
writing the above conditions in terms of B1, we obtain Eo

1 as
stated in lemma. This together with (1) implies that Eo

2 = B2 =
min{B1 +H1 −Eo

1 , B̂}. �
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The above solution implies that: (i) the sensor uses all stored
energy if the energy to be harvested is large, H1 > B̂, or the
stored energy is small B1 < a, (ii) the sensor saves as much
stored energy as possible for slot 2 if the energy to be harvested
is small, H1 ≤ B̂, and the stored energy is large B1 ≥ b, and
(iii) in other cases, the sensor tends to spend more energy in
the first slot if it knows that the channel gain

√
g2 is high thus

the amount of remaining energy
√

g1√
g1+

√
g2
(B1 +H1) in slot 2 is

sufficient to obtain the satisfactory level of total distortion. Note
also that this solution for the horizon 2 case can also be used as
a basis for constructing simple suboptimal strategies in the case
of a finite horizon causal scenario.

C. Sensors With Infinite Energy Storage Capacity

In this section, we provide a brief summary of the the
optimal energy allocation results for the finite-time horizon
optimization problem (3) where B̂m → ∞ in (1), and the sen-
sors have non-causal information. Clearly, this is an idealistic
and impractical scenario. However, the performance achieved
in this setting can be used as a benchmark for the smallest
achievable distortion.

As B̂m → ∞, the dynamics of the mth sensor’s stored battery
energy Bm,(·), m ∈ M , in (1) reduces to

Bm,k = Bm,0 +
k−1

∑
l=0

Hm,l −
k−1

∑
l=0

Em,l . (7)

A non-negative energy allocation is feasible if and only if
Bm,k ≥ 0 for k ∈Z+ and m ∈ M . The finite-time horizon distor-
tion minimization problem (3) with non-causal information can
then be formulated as

min
{E(:,k): 1≤k≤T}

T

∑
k=1

D
(
E(:,k),s(:,k)

)

s.t.
k

∑
l=0

Em,l −Bm,0 −
k−1

∑
l=0

Hm,l ≤ 0 (a.s.) m ∈ M (8)

which is a convex optimization problem (see Theorem 2.1).
Note that the expectation operator for the distortion function
can be dropped due to the availability of non-causal information
about all harvested energy and channel gains. The explicit
solution to this problem was provided in [21] and the key steps
are summarized below.

Let λm,k ≥ 0 denote the Lagrange multiplier associated with
the constraints in (8), then the Lagrangian associated to (8) is
given by

L
({

Em,[k],λm,[k] : m ∈ M
})

=
T

∑
k=1

Lk
(
E(:,k),λ(:,k)

)

=
T

∑
k=1

[
D
(
E(:,k),s(:,k)

)

+
M

∑
m=1

λm,k

(
k

∑
l=0

Em,l −Bm,0 −
k−1

∑
l=0

Hm,l

)]

(9)

where Em,k ≥ 0 is the energy allocation of the mth sensor at
time k. We note that {Eo

m,[k] : m ∈ M } and {λo
m,[k] : m ∈ M }

are primal and dual optimal solutions to (9) if and only if they
satisfy the following Karush-Kuhn-Tucker (KKT) optimality
conditions for 1 ≤ k ≤ T and m ∈ M : ∑k

l=0 Em,l − Bm,0 −
k−1
∑

l=0
Hm,l ≤ 0, Em,k ≥ 0, λm,k, along with λm,k(∑k

l=0 Em,l −Bm,0−
k−1
∑

l=0
Hm,l) = 0, and ∂L

∂Eo
m,k

= 0 if Eo
m,k > 0, ∂L

∂Eo
m,k

≥ 0 if Eo
m,k = 0.

Denote U∗
m,k =Bm,0+∑k−1

l=0 Hm,l −∑k−1
l=0 E∗

m,l which represents
the largest amount of energy that the m-th sensor can use in
slot k. Then, the optimal energy allocation strategy is given in
Theorem 3.2 below.

Theorem 3.2: Suppose that the energy capacity of each
sensor’s battery is infinite. Then, the optimal energy allocation
in slot k, Eo

m,k, is given by

Eo
m,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if

[
M
∑

m=1
dm,k

(
Ω∗

m,k,sm,k

)]−1

≥ 1

Ω∗
m,k if

[
M
∑

m=1
dm,k

(
Ω∗

m,k,sm,k

)]−1

< 1

where Ω∗
m,k is given by

Ω∗
m,k =

⎧⎨
⎩

0 if Ωm,k ≤ 0
Ωm,k if 0 < Ωm,k <U∗

m,k
U∗

m,k if Ωm,k ≥U∗
m,k

(10)

where Ωm,k=
γm

σ2
θ
√sm,k

(
Dk

√νm,k− 1√sm,k

)
and νm,k=(

T
∑

l=k
λo

m,l)
−1

,

and Dk stands for a shorthand notation of D(Eo
(:,k),s(:,k)).

Proof: From KKT necessary conditions, we have

∂L
∂Eo

m,k

⎧⎨
⎩
≥ 0 if Eo

m,k = 0
= 0 if 0 < Eo

m,k <U∗
m,k

≤ 0 if Eo
m,k =U∗

m,k.

In case Eo
(:,k) = 0, then we can write Lk(E(:,k) = 0) = σ2

θ ≤

Lk(E(:,k) = Ω(:,k)) =σ2
θ[

M
∑

m=1
dm,k(Ω∗

m,k,sm,k)]
−1

, which implies

that [
M
∑

m=1
dm,k(Ω∗

m,k,sm,k)]
−1

≥ 1. Now suppose Eo
(:,k) �= 0, then

we have

∂L
∂Eo

m,k
=−

(
D
(

Eo
(:,k),s(:,k)

))2
× sm,k(

1+ γ−1
m σ2

θEo
m,ksm,k

)2 +
1

νm,k

Thus, if 0 < Eo
m,k < U∗

m,k then Eo
m,k =

γm

σ2
θ
√sm,k

(
Dk

√νm,k − 1√sm,k

)
. Note that in this case νm,k+1 = νm,k

since the energy causality constraint at slot k is satisfied with
inequality and thus λm,k = 0 based on the KKT optimality
conditions. �

We can also characterize the following obvious property
0 ≤ νm,0 ≤ . . . ≤ νm,T , which is helpful for the computation of
the optimal solution (10). This follows because νm,k ≤ νm,k+1

since λo
m,k ≥ 0 for all k. Note also that in the last slot T , all the
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Fig. 2. Illustration of the random staircase water-filling energy allocation in a
2-sensor estimation over 5 slots with non-causal information and infinite battery
capacity.

remaining energy Bm,T must be used up from optimality, thus
Eo

m,T = Bm,T .
Remark 3.2: The optimal energy allocation obtained above

using a standard convex optimization based Lagrangian for-
mulation follows similar techniques used in [16] and [13] for
throughput maximization over fading channels with energy
harvesting. The difference in the expressions of the optimal
energy allocation (as compared to [13], [16] arise due to the
fact that we are considering multiple sensors and the objective
function is based on the distortion measure.

Water-filling interpretation: Adapting the term staircase
water-filling from [13], [23] slightly, this solution can be in-
terpreted as a random staircase water-filling algorithm with a
flat bottom of height γm

σ2
θsm,k

for sensor m at time k. We note that

the optimal water level changes over the blocks, and in fact the

water level of sensor m at block k is given by
D(Eo

(:,k),s(:,k))

σ2
m

√
νm,k
sm,k

(since γm

σ2
θ
= 1/σ2

m), where νm,k = (
T
∑

l=k
λo

m,l)
−1

, and Eo
(:,k),λ

o
m,k

are the optimal energy allocation and Lagrange multipliers
associated with the constraints in (8), respectively. The heights
of the steps for this solution are no longer monotonically in-
creasing as in [13], [23], and they depend on the total distortion
and the channel gains (hence the word “random”). This solution
is also related to the directional water-filling power allocation
solution presented in [16]. Clearly, due to the energy causality
constraints present here, the energy allocation solution pre-
sented in (10) also preserves the directional nature of the energy
flow. However, unlike [16], the water-levels in each slot are ran-
domly time-varying. Fig. 2 illustrates this solution for a 5-slot
optimal energy allocation problem for one of the sensors in a
two-sensor distributed estimation scenario where the harvested
energies and channel fading gains of the two sensors are i.i.d.
with exponential distributions. The blue coloured components
show the transmission energy used in each slot. Note that due
to the availability of the non-causal information, the specific
statistical nature of the energy harvesting process and fading
channel gains (as to whether they are i.i.d. or Markov) do not
make a difference to the optimal solution.

Remark 3.3: It is easily seen from (7) that the aver-
age optimal energy consumption for this scenario given by
limT→∞

1
T ∑T−1

l=0 Em,l is upper bounded by H̄m, the mean of
the stationary ergodic energy harvesting process for sensor m
(assumed to be finite). For all other scenarios such as with
causal information, the associated average energy consumption
will be lower due to the fact that the corresponding achieved
expected distortion will be higher than the non-causal case.

IV. INFINITE-TIME HORIZON OPTIMAL TRANSMISSION

ENERGY ALLOCATION PROBLEM AND ITS SOLUTION

In this section we formulate an infinite-time horizon optimal
transmission energy allocation problem subject to energy har-
vesting constraints (1) to minimize the distortion function (2).
In this formulation, the optimal energy allocation policies are
computed at the transmitters. It is assumed that the each sensor
has perfect causal information about channel gains, harvested
energies and maximum battery storages of all sensors. This
assumption is feasible by the mechanism that each sensor
reports its channel gain and harvested energy to the FC and
then FC sends this information to all sensors via feedback
(see Sections II-B and II-C). As will be evident later, the
optimal energy allocation problem can be solved offline and
the optimal solution stored in a lookup table on-board all the
sensors, for given (discretized) values of sensors’ harvested
energies, battery levels and channel gains. Based on the avail-
able information, in real time, a sensor can simply select the
corresponding transmission energy level from this lookup table.

A. Infinite-Time Horizon Stochastic Control Problem

We now aim to find the optimal energy allocation strategy
in U that minimizes the expected total distortion measure over
infinite-time horizon. This optimization problem is formulated
as a Markov decision process based stochastic control problem:

min
{E(:,k): k≥0}

lim sup
T→∞

1
T

T

∑
k=1

E
[
D
(
E(:,k),s(:,k)

)]
s.t. 0 ≤ Em,k ≤ Bm,k (a.s.) ∀m ∈ M , k ≥ 0 (11)

where Bm,k is the mth sensor’s stored battery energy available at
time k which satisfies the dynamics (1). Note that the expecta-
tion in (11) is computed over all random variables {gm,(·):m∈M },
{Hm,(·):m∈M }.

It is evident from (11) that for any sensor m ∈ M the
transmission energy used in slot k, Em,k, affects its amount
of stored energy Bm,k+1 available at time k + 1 which in turn
affects its transmission energy Em,k+1 since 0 ≤ Em,k+1 ≤
Bm,k+1 = min{Bm,k +Hm,k −Em,k,B̂m} by (1). Moreover, Em,k

also affects energy allocation strategies of all other sensors,
En,k where n �= m, due to the coupling in distortion function
D(·, ·) defined in (2). Note that (11) is a multi-sensor stochastic
control problem with centralized information. Similar to the
finite-horizon scenario, we assume the availability of causal
information at each sensor.
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B. Stationary Optimal Energy Allocation Policies

The stochastic control problem (11) with centralized infor-
mation {Ik}k≥0 can be regarded as a Markov Decision Process
(MDP) formulation [27], [28]. The stationary energy allocation
policy is computed offline from the Bellman dynamic program-
ming equations given below.

Some notation is presented first. Given the vectors of fading
channel gains g := (g1, . . . ,gM)T , harvested energies H :=
(H1, . . . ,HM)T , battery storages B := (B1, . . . ,BM)T and sen-
sors’ energy consumptions E :=(E1, . . . ,EM)T at time k≥ 0, we
denote the corresponding fading channel gains, harvested ener-
gies and battery storages at time k + 1 by g̃ := (g̃1, . . . , g̃M)T ,
H̃ := (H̃1, . . . , H̃M)T and B̃ := (B̃1, . . . , B̃M)T , respectively. We
recall that for any sensor m ∈ M both fading channel gains
gm,(·) and harvested energies Hm,(·) are modelled as first-order
homogeneous Markov processes, and the dynamics of its stored
batteries Bm,(·) is given by (1) as B̃m =min{Bm+Hm−Em, B̂m}.

The solution to the stochastic control problem (11) is now
presented in the following theorem.

Theorem 4.1: Independent of the initial condition {gm,0,
Hm,0,Bm,0 : m ∈ M }, the value of the infinite-time horizon
stochastic control problem (11) is given by ρ which is the
solution of the average-cost optimality (Bellman) equation

ρ+V (g,H,B)

= min
0�E�B

{
D(E,s)+E

[
V (g̃,H̃, B̃)

∣∣g,H,E
]}

(12)

where V is called the relative value function.
Proof: See the Appendix. �

The stationary optimal solution to the stochastic control
problem (11) is then given by

Eo(g,H,B)

= arg min
0�E�B

{
D(E,s)+E

[
V (g̃,H̃, B̃)

∣∣g,H,E
]}

(13)

where V (·, ·, ·) is the solution to the average cost Bellman
equation (12).

Remark 4.1: Equation (12) together with the control policy
Eo defined in (13) is known as the average cost optimality
equations. If a control policy Eo, a measurable function V , and
a constant ρ exist which solve (12), (13), then the control Eo is
optimal, and ρ is the optimal cost in the sense that

lim sup
T→∞

1
T

T−1

∑
k=0

E

[
D
(

Eo
(:,k),s(:,k)

)]
= ρ

and for any other control policy {E(:,k) : k ≥ 0} such that 0 ≤
Em,k ≤ Bm,k (a.s.) ∀m ∈ M and k ≥ 0, we have

lim sup
T→∞

1
T

T−1

∑
k=0

E
[
D
(
E(:,k),s(:,k)

)]
≥ ρ.

The reader is referred to [29] for a proof of the average cost
optimality equations and related results. �

We now simplify the terms in (12). First, we have

D(E,s) = σ2
θ ×

(
M

∑
m=1

σ2
θEmsm

1+ γ−1
m σ2

θEmsm

)−1

where sm = gm
ξ2

m(σ2
θ+σ2

m)
and 0 ≤ Em ≤ Bm.

Let G and H be the time-invariant probability transition laws
of the Markovian fading channel process {gm,(·) : m ∈ M } and
the Markovian harvested energy process {Hm,(·) : m ∈ M },
respectively. Since the mutually independent processes g =
(g1, . . . ,gM)T and H = (H1, . . . ,HM)T are independent of other
processes and random variables, we may write

E
[
V (g̃,H̃, B̃)

∣∣g,H,E
]

=
∫

g̃,H̃

V (g̃,H̃, B̃)G(g̃|g)H(H̃|H)dg̃dH̃ (14)

where B̃ = (B̃1, . . . , B̃M)T such that B̃m = min{Bm + Hm −
Em, B̂m} for any sensor m ∈ M .

Remark 4.2: The expression (14) can be simplified further in
the three following cases:

(i) If the processes {gm,(·) : m ∈ M } and {Hm,(·) : m ∈ M }
are finite state Markov chains with Ng and NH states
labeled as {1, · · ·Ng} and {1, · · · ,NH}, respectively, then
the right term in (14) becomes

Ng

∑
i=1

NH

∑
j=1

V
(
i, j, B̃( j)

)
× (P(g)G)i × (P(H)H) j

where B̃( j) := min{B−E+H( j), B̂}, P(g) := [P(g(1)),
. . . ,P(g(Ng))], P(H) := [P(H(1)), . . . ,P(H(NH))], G and
H are the probability transition matrices for g =
(g1, . . . ,gM)T and H = (H1, . . . ,HM)T , respectively, and
(P(g)G)i denotes the i-th component of the vector
P(g)G.

(ii) If Markovian processes {gm,(·) : m ∈ M } and {Hm,(·) :
m ∈ M } are independent processes across sensors, then
the right hand side term in (14) becomes

∫

g̃,H̃

V (g̃,H̃, B̃)×
M

∏
m=1

(
Gm(g̃m|gm)×Hm(H̃m|Hm)

)
dg̃dH̃

where Gm and Hm are the probability transition laws of
the mth sensor’s Markovian processes gm,(·) and Hm,(·),
respectively.

(iii) If processes {gm,(·) : m ∈ M } and {Hm,(·) : m ∈ M } are
i.i.d. processes over time and across the sensors, then the
right hand side term in (14) becomes

∫

g̃,H̃

V (g̃,H̃, B̃)×
M

∏
m=1

(
P(g̃m)×P(H̃m)

)
dg̃dH̃.

�
We solve the Bellman equation (12) by the use of relative

value iteration algorithms (see Chapter 7 in [27]). Note that
a discretized version of the Bellman equation (12) is used to
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facilitate numerical computation for finding suboptimal solu-
tions to the stochastic control problem (11), where the fading
channel, harvested energy and battery level state spaces and the
energy allocation space are discretized. As the number of dis-
cretization levels increases, it is expected that these discretized
(suboptimal) solutions converge to the optimal solutions [30].
As mentioned earlier, the optimal energy allocation solution
as a function of these discretized state values of (g,H,B) is
stored in a lookup table on-board all the sensors, which can
then select the appropriate energy level in real-time based on
available causal information about (g,H,B).

V. SOME STRUCTURAL RESULTS ON THE OPTIMAL

ENERGY ALLOCATION POLICIES

In this section the structure of the optimal transmission
energy allocation policy (13) is studied for the infinite-time
horizon stochastic control problem (11). The idea is to apply
the notion of submodularity (see [31]) to the recursive Bellman
equation (12). Following the same arguments one can show
similar structural results for the finite-time horizon optimal
energy allocation strategy (6).

We now present the relative value iteration algorithm to solve
the Bellman equation (12). It is used to construct structural
results for the optimal transmission policy. First, we consider
the Bellman equation for the finite T -horizon stochastic control
problem:

Vt(g,H,B)

= min
0�E�B

{
D(E,s)+E

[
Vt+1(g̃,H̃, B̃)

∣∣g,H,E
]}

(15)

with terminal condition VT+1(g,H,B) = 0. We now define the
function

Ht(·, ·, ·) :=Vt(·, ·, ·)−Vt(g f ,H f ,B f ), 0 ≤ t ≤ T (16)

where (g f ,H f ,B f ) �= (g0,H0,B0) is fixed. We then have the
following relative value iteration algorithm recursion

Ht(g,H,B)

= min
0�E�B

{
D(E,s)+E

[
Vt+1(g̃,H̃, B̃)

∣∣g,H,E
]}

− min
0�E�B

{
E [D(E,s)|g = g f ]

+ E
[
Vt+1(g̃,H̃, B̃)

∣∣g=g f ,H=H f ,E=E f
]}
(17)

for 0 ≤ t ≤ T −1. It can be shown that the relative value recur-
sion (17) converges to the optimal solution ρ of the infinite-time
horizon average cost Bellman equation (12) as T goes to infinity
(see the discussion on page 391 in Chapter 7 of [27]).

Lemma 5.1: Given g and H, the value function Vt(g,H,B) in
(15) is convex in B for 0 ≤ t ≤ T .

Proof: First, note that, for given g and H, the final time
value function

VT (g,H,B) = min
0�E�B

D(E,s) = D(B,s)

is a convex function in B by Theorem 2.1. Now assume that
Vt+1(g,H,B), 0 ≤ t ≤ T −1, is convex in B for given g and H.
Then, for given H and E, the function

Vt+1
(
g,H,min{B−E+H, B̂}

)
is convex in B, since it is the minimum of Vt+1(g,H, B̂) which
is a constant independent of B, and by the induction hypothesis
the convex function Vt+1(g,H,B − E + H) in B. Since the
expectation operator preserves convexity,

E
[
Vt+1

(
g̃,H̃,min{B−E+H, B̂}

)∣∣g,H,E
]

given in (15) is a convex function in B. But, Vt(g,H,B) in (15) is
the infimal convolution of two convex functions in B for given
g and H and hence is convex in B (see the proof of Theorem 1
in [13]). �

Definition 5.1: [[32] after [31]] A function F(x,y) : X ×Y →
S is submodular in (x,y) if F(x1,y1)+F(x2,y2) ≤ F(x1,y2)+
F(x2,y1) for all x1,x2 ∈ X and y1,y2 ∈ Y such that x1 ≥ x2 and
y1 ≥ y2. �

It is important to note that the submodularity is a suffi-
cient condition for optimality of monotone increasing policies.
Specifically, if F(x,y) defined above is submodular in (x,y)
then y(x) = argminy F(x,y) is non-decreasing in x. We now
present the main Theorem of this section which gives structural
results on the optimal energy allocation policies (13).

Theorem 5.1: Given g and H, the optimal energy allocation
policy of any sensor m ∈ M , Eo

m(g,H,B), given in (13) is
non-decreasing in Bm regardless of all other sensors’ policies,
Eo

n (g,H,B), n �= m, for all m ∈ M .
Proof: For given sensor m ∈ M , we assume B(−m) =

(B1, . . . ,Bm−1,Bm+1, . . . ,BM) and E(−m) = (E1, . . . ,Em−1,
Em+1, . . . ,EM) are fixed. Then, for fixed g and H the optimal
energy policy of the sensor m can be written as

Eo
m(g,H,B)

=arg min
0�E�B

{D(E,s)

+ E
[
V
(
g̃,H̃,min{B−E+H, B̂}

)∣∣g,H,E
]}

=:L(Bm,Em) (18)

by the fact that Bn and En are fixed for all n �= m, and Em is
only constrained by its own battery energy storage Bm. We aim
to show that L(Bm,Em) is submodular in (Bm,Em) based on
Definition 5.1, i.e., for every E ′

m ≥ Em and B′
m ≥ Bm, we have

L
(
B′

m,E
′
m

)
−L

(
Bm,E

′
m

)
≤ L

(
B′

m,Em
)
−L(Bm,Em). (19)

It is evident that E[D(E,s)|g] is submodular in (Bm,Em) since it
is independent of Bm. Let x = (x1, . . .xM) such that xi = Bi −Ei

for i ∈ {1, . . . ,M}, then we denote

Z(xm) := E
[
V
(
g̃,H̃,min{B−E+H, B̂}

)∣∣g,H,E
]

where xn = Bn−En is fixed for all n �= m. Since Z(xm) is convex
in xm (by Lemma 5.1) we have

Z(x+ ε)−Z(x)≤ Z(y+ ε)−Z(y), x ≤ y, ε ≥ 0
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(see Proposition 2.2.6 in [33]). Now let x = Bm − E ′
m, y =

Bm −Em and ε = B′
m −Bm. Then, we have the submodularity

condition (19) for Z(xm) [13]. Therefore, L(Bm,Em) is sub-
modular in (Bm,Em). Note that submodularity is a sufficient
condition for optimality of monotone increasing policies, i.e.,
since L(Bm,Em) is submodular in (Bm,Em) then Eo(Bm) =
argminEm L(Bm,Em) is non-decreasing in Bm (see [31]). �

The structural result of Theorem 5.1 implies that, for
fixed g, H, B(−m) = (B1, . . . ,Bm−1,Bm+1, . . . ,BM) and E(−m) =
(E1, . . . ,Em−1,Em+1, . . . ,EM), if E∗

m is the unique solution to the
convex unconstrained minimization problem

Eo
m(g,H,B) = argmin

Em
{D(E,s)

+ E
[
V
(
g̃,H̃,min{B−E+H, B̂}

)∣∣g,H,E
]}

which can be easily solved using numerical techniques such as
a bisection search. Then, the solution to the problem (13) where
0 ≤ Em ≤ Bm will be of the form

Eo
m(g,H,B) =

⎧⎨
⎩

0 if E∗
m ≤ 0

E∗
m if 0 < E∗

m < Bm

Bm if E∗
m ≥ Bm.

In other words, the search for the optimal Eo
m can be carried out

in one direction for a given Bm. Note that since Eo
m is a function

of Eo
n , n �= m, the computation of the optimal energy policy of

sensor m, Eo
m, cannot be carried out independently from those

of other sensors Eo
n , n �= m.

A. Threshold Policy for Binary Energy Allocation Levels

Note that while solving for the optimal energy allocation
level in the Bellman equation requires not only discretization
of the state space but also that of the action space. However,
the discretization of the action space to a finite number of
energy allocation levels is not often an issue as in practice, a
sensor transmitter can be programmed to have a finite number
of transmission power/energy levels. In fact, for simplicity of
implementation, often a sensor can be equipped with only
two power/energy levels for transmission. Thus it is perfectly
natural to consider the scenario where the energy allocation
space is binary.

In case that the transmission energy allocation control of
sensor m, Em, belongs to a two element set {u0,u1} where
u0 < u1, the monotonicity of Theorem 5.1 yields a threshold
structure. This threshold structure implies that, for fixed g, H,
B(−m) and E(−m), the optimal transmission energy allocation
policy is threshold of the form

Eo
m(g,H,B) =

{
u0 if Bm ≤ B∗

m(g,H,B)
u1 otherwise

(20)

where B∗
m(g,H,B) is the battery storage threshold.

The threshold structure of the optimal transmission energy
allocation policy in the case of a binary energy allocation set
simplifies the implementation of the optimal energy allocation
significantly. However, this requires the knowledge of the bat-
tery energy threshold B∗ above. In general, there is no closed
form expression for B∗, but it can be found via iterative search

algorithms. Here we present a gradient algorithm based on
Algorithm 1 in [34] to find the threshold.

First, we establish some notation. For fixed g, H, B(−m) and
E(−m) denote

Jk (B
∗
m) := {D(E,s)

+ E
[
Vk

(
g̃,H̃,min{B−E+H, B̂}

)∣∣g,H,E
]}

(21)

where the threshold policy Em is defined based on (20) as

Eo
m =

{
u0 if Bm ≤ B∗

m
u1 otherwise.

The term Jk(·) above is the first term of right hand side ex-
pression in (17) without the minimization, where the threshold
policy Eo

m, depending on the threshold policy B∗, is used in the
relative value iteration.

Set a pre-specified accuracy parameter ε. For n ∈ N, 0.5 <
κ ≤ 1 and ω,ς > 0 we denote ωn := ω

(n+1)κ and ςn := ς
(n+1)κ .

Then for fixed g, H, B(−m) and E(−m), the computation of
the optimal battery storage threshold B∗

m is carried out by the
following algorithm:

Algorithm 1 Gradient algorithm for computing the threshold

1: Initialize the battery storage threshold B(0)
m .

2: repeat
3: For n = 0,1, . . .

1) Compute the gradient:

∂Bm J(n)k :=
Jk

(
B(n)

m +ωn

)
− Jk

(
B(n)

m −ωn

)
2ωn

. (22)

2) Update the battery storage threshold of sensor m via

B(n+1)
m = B(n)

m − ςn∂Bm J(n)k

which gives

E(n+1)
m (g,H,B) =

{
u0 if Bm ≤ B(n+1)

m

u1 otherwise.

3) Compute Jk(B
(n+1)
m ) using (21).

4: until Convergence: |Bn+1
m −Bn

m|
Bn

m
≤ ε.

The above algorithm is a gradient-estimate based algorithm
(see [35]) for estimating the optimal threshold B∗ where only
measurements of the loss function is available (i.e., no gradient
information). We note that (22) evaluates an approximation to
the gradient. This algorithm generates a sequence of estimates
for the threshold policy B∗ which converges to a local mini-
mum with corresponding energy allocation u∗. The reader is
referred to [35] for associated convergence analysis of this and
other related algorithms (see e.g., Theorem 7.1 in [35]). Note
that gradient-estimate based algorithms are sensitive to initial
conditions and should be evaluated for several distinct initial
conditions to find the best local minimum.
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VI. SUBOPTIMAL DECENTRALIZED SOLUTIONS: SENSORS

WITH ONLY STATISTICAL INFORMATION ABOUT

CHANNEL GAINS AND HARVESTING ENERGIES

The models in Sections III and IV and assume that each
sensor has perfect causal information about the fading channels
gains and harvested energies of all sensors. In this section, we
consider the more realistic scenario where each sensor has only
statistical information about all other sensors’ channel gains
and harvested energies.

We now aim to construct a suboptimal decentralized strategy
for a generic sensor n ∈ M . Note that any other sensor applies
similar suboptimal algorithm in a decentralized manner inde-
pendently of all other sensors.

For the generic sensor n ∈ M , we define

D̄n
(
E(:,k),gn,k,P

(
g(−n,k)

))

= σ2
θ

∫
g(−n,k)

(
M

∑
m=1

σ2
θEm,ksm,k

1+γ−1
m σ2

θEm,ksm,k

)−1

× P
(
g(−n,k)

)
dg(−n,k)

where we recall that g(−n,k)=[g1,0, . . . ,gn−1,k,gn+1,k, . . . ,gM,k]
T ,

sm,k =
gm,k

ξ2
m(σ2

θ+σ2
m)

.

Sensor n applies the following decentralized model for the
battery storage of any other sensor m ∈ M , B̄m,(·):

B̄m,k+1 = min
{

B̄m,k + H̄m,k −Em,k, B̂m
}
, (23)

where B̄m,0 = Bm,0, and H̄m,k = E(Hm,k) is the mean of the
harvested energy of sensor m at time k computed by sensor n
by the use of the density function P(Hm,k). Since sensor n has
perfect information about its own harvested energy, we have
H̄n,k = Hn,k which yields (1).

We present some notation. Let µ be a probability den-
sity function on the state of fading channel gains g(−n) =

(g1, . . . ,gn−1,gn+1, . . . ,gM)T , and ν be a probability den-
sity function on the state of harvested energies H(−n) =

(H1, . . . ,Hn−1,Hn+1, . . . ,HM)T at time k ≥ 0. Then, we denote
the corresponding density functions of the fading channel gains
and harvested energies at time k+ 1 by µ̃ and ν̃, respectively.
Since for any sensor m ∈ M both fading channel gains gm,(·)
and harvested energies Hm,(·) are modelled as first-order homo-
geneous Markov processes, we may write µ̃ = G̃µ, and ν̃ = H̃ν
where G̃ and H̃ are the probability transition matrices for g(−n)
and H(−n), respectively. Given the vector of battery storages
B̄ := (B̄1, . . . , B̄M)T and the sensors’ energy consumptions E :=
(E1, . . . ,EM)T at time k ≥ 0, we denote the corresponding
battery storages at time k+ 1 by B̃ := (B̃1, . . . , B̃M)T such that
the dynamics of B̃m,(·) is given by (23) as B̃m = min{B̄m +

E(Hm)−Em, B̂m}.
We now present the solution to the decentralized version of

stochastic control problem (11) in the following theorem.
Theorem 6.1: For any sensor n ∈ M , independent of the

initial condition {gm,0,Hm,0,Bm,0 : m ∈ M }, the value of the
infinite-time horizon stochastic control problem (11) with de-

centralized information is given by ρ which is the solution of
the average-cost optimality (Bellman) equation

ρ+V (g,H,µ,ν, B̄) = min
0�E�B̄

{E [Dn(E,s)|g,µ]

+ E
[
V (g̃, H̃, µ̃, ν̃, B̃)

∣∣g,H,µ,ν,E
]}

(24)

where V is called the relative value function.
Proof: The proof is similar to the proof of Theorem 4.1

and is omitted. �
The stationary decentralized optimal solution computed by

sensor n is then given by

Ēo(g,H,µ,ν, B̄) = arg min
0�E�B̄

{E [Dn(E,s)|g,µ]

+ E
[
V (g̃, H̃, µ̃, ν̃, B̃)

∣∣g,H,µ,ν,E
]}

(25)

such that Ēo = (Ēo
1 , · · · , Ēo

n , · · · , Ēo
M) which is the optimal strate-

gies for all sensors from the perspective of sensor n using
perfect information about its own fading channel gain and
harvested energy (g,H) together with only statistical informa-
tion about the other sensors’ fading channel gains and har-
vested energies (µ,ν). Note that sensor n only applies its own
control Eo

n .
We first simplify the terms in (24). First, we have

E [Dn(E,s)|g,µ] = D̄n(E,g,µ)

= σ2
θ ×

∫
g(−n)

(
M

∑
m=1

σ2
θEmsm

1+ γ−1
m σ2

θEmsm

)−1

×µ(g(−n))dg(−n)

where sm = gm
ξ2

m(σ2
θ+σ2

m)
and 0 ≤ Em ≤ B̄m. Second, we may write

E
[
V (g̃, H̃, µ̃, ν̃, B̃)

∣∣g,H,µ,ν,E
]

=
∫

g̃,H̃

V (g̃, H̃, µ̃, ν̃, B̃)µ̃(g̃−n)ν̃(H̃−n)P(g̃|g)P(H̃|H)dg̃dH̃

where µ̃ = G̃µ, ν̃ = H̃ν, and B̃ = (B̃1, . . . , B̃M)T such that B̃m =
min{B̄m +E(Hm)−Em, B̂m} for m ∈ M .

We note that this decentralized solution is obviously subopti-
mal but reduces the communication overhead and is hence more
practical.

VII. NUMERICAL RESULTS

In this section, we present some numerical results on the
performance of the optimal energy allocation strategies for
both causal and non-causal side information. We focus on the
infinite-horizon case primarily because finite horizon results
were presented in [21]. Note that for the infinite-horizon case,
the results for the non-causal scenario was obtained from
the finite-horizon optimal energy allocation with non-causal
information, with a suitably long time horizon used to obtain a
long-term average for comparison purposes. For obtaining these
numerical results, we let the variance of the source signal σ2

θ be
equal to 1 mW. First, we consider the case of a single sensor
with the following parameters: ξ2 = 0.01 mW, σ2 = 0.01 mW
and γ = 100 defined in Section II. Both channel power gains
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Fig. 3. One sensor case with i.i.d channel gains and harvesting energies:
Infinite-time horizon average distortion versus the maximum battery storage
(mWh).

Fig. 4. One sensor case with i.i.d channel gains and harvesting energies:
Infinite-time horizon average transmission energy (mWh) versus the maximum
battery storage (mWh).

{gk} and harvested energies {Hk} are assumed to be i.i.d. expo-
nentially distributed with probability density function (p.d.f) of
the forms P(gk) =

1
ḡ exp(−gk/ḡ) and P(Hk) =

1
H̄ exp(−Hk/H̄),

respectively, with ḡ and H̄ being their means. We now fix the
mean of the fading channel gains to ḡ = 0.1 (or −10 dBm)
and the mean of harvested energy to H̄ = 4 milliwatt hour
(mWh). Then, we plot in Fig. 3 the average distortion versus
the maximum battery storage energy for the infinite-time hori-
zon formulation (11) for both cases of causal and non-causal
information. We note that the performance gets better as the
maximum battery storage energy increases in both cases since
the sensor has more flexibility in choosing transmission energy
levels. Fig. 3 also shows that in this setting the performance
for the non-causal information case is generally better than the
performance of system with causal information. However, the
performance gap decreases as the battery capacity increases
(e.g., from 17.54% at a battery capacity of 1 mWh to 8.8% at a
battery capacity of 4 mWh). For this case we also plot in Fig. 4
the corresponding average transmission energy (mWh) versus
the maximum battery storage energy. Note that as the maximum
battery storage increases, the average energy consumption also
increases. However, since the average energy consumption is
upper bounded by the mean of the harvested energy process

Fig. 5. One sensor case with i.i.d channel gains and harvesting energies:
Infinite-time horizon average transmission energy (mWh) versus the mean of
fading channel gains.

(see Remark 3.3), it eventually converges to the average energy
consumption of the infinite maximum energy storage capacity
case (see Section III-C). The non-causal information pattern
allows the sensor to spend more energy on average to achieve a
smaller distortion.

We now fix the mean of harvested energy to H̄ = 1 (mW)
and the maximum battery storage energy to 2 (mWh). For the
infinite-time horizon formulation (11) the average distortion
versus the mean of the fading channel gains is plotted in Fig. 5
for both cases of causal and non-causal information. As shown
in Fig. 5 the performance gets better as the mean of the fading
channel gains increases in both cases. For example, in the causal
information case, the average distortion decreases by almost
33% as the average channel gain increases by 2 dB (from
0.5 to 1).

Second, we take multiple sensors with following parameters
ξ2

m = 0.01 mW and σ2
1 = σ2

3 = 0.01 mW, whereas σ2
2 = σ2

4 =
0.0125 mW. This results in γ1 = γ3 = 100 and γ2 = γ4 =
80, as defined in Section II. The fading channel gains and
harvested energies are assumed to be 2-level discrete Markov
chains with values {0,0.05} and {0,0.25}, respectively, and the

transition matrix

[
0.7 0.3
0.4 0.6

]
. We assume uniform maximum

storage energy capacity B̂m = B̂ for all m. A comparative
performance evaluation of multi-sensors for the infinite-time
horizon formulation (11) with causal fading channel gains and
energy harvesting information is illustrated in Fig. 6 which
shows the performance gets better as the maximum battery
storage increases. Fig. 6 also illustrates the advantage of mul-
tiple sensors as the distortion performance can be improved by
increasing the number of sensors.

Similar simulation results are shown in Fig. 7 in the case
of 3-level discrete Markov chains for fading channel gains and
harvested energies with values {0, 0.05, 0.1} and {0, 0.25, 0.5},
respectively. The common transition matrix for these Markov

chains is given by T =

⎡
⎣0.7 0.2 0.1

0.3 0.4 0.3
0.5 0.3 0.2

⎤
⎦. We can see that

in the optimal energy allocation scheme, the allocated energy
values will depend not only on the current channel gain and
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Fig. 6. Multi-sensor case with 2-level Markovian channel gains and har-
vesting energies: Infinite-time horizon average distortion versus the maximum
battery storage (mWh).

Fig. 7. Optimal and suboptimal solutions to multi-sensor case with 3-level
Markovian channel gains and harvesting energies: Infinite-time horizon average
distortion versus the maximum battery storage (mWh).

current distortion but also on the energy harvesting through the
battery storage. The allocated energy tends to be higher when
the distortion is larger, provided the corresponding channel gain
and the battery storage are not too small.

In Fig. 7 we further plot the suboptimal solutions where
each sensor only knows its own channel and harvested energy
together with the statistics of all other sensors’ channels and
harvested energies. Similar to Fig. 6 the performance gets
better as the maximum battery storage increases. Fig. 7 also
indicates that, as expected, the performance for the optimal
solution with full exact information of other sensors’ channels
and harvested energies is better than the performance of the sub-
optimal solution with only statistical information about channel
gains and harvested energies of other sensors (see Section VI).
Note that the decentralized suboptimal solution reduces the
communication overhead and is hence more practical.

Threshold Policy: We now consider the case that the trans-
mission energy allocation control belongs to a two element
set {0, 0.5} in the infinite-time horizon formulation (11). As
explained at the end of Section V the optimal transmission
energy allocation policy is threshold of the form

Eo(g,H,B) =
{

0 if B ≤ B∗(g,H,B)
0.5 otherwise

Fig. 8. Performance of threshold policy using (i) relative value iteration
algorithm, and (ii) gradient algorithm.

where B∗(·, ·, ·) is the corresponding battery storage threshold.
We assume one sensor with i.i.d. exponentially distributed
channel gains and harvested energies where ḡ = 4 (dB) and
H̄ = 4 (mWh). The maximum battery storage is B̂ = 1 (mWh).
Fig. 8 shows the simulation results where the relative value
iteration algorithm and the threshold policy based algorithm are
used. In the gradient algorithm, the parameters of Section V-A
are set to ω = 0.1, ς = 0.5 and κ = 1. It can be seen that there
is a small gap between the simulation results obtained via the
two methods. This can be attributed to the fact that the optimal
threshold is not exactly calculated by the gradient algorithm
which only converges to a local minimum.

VIII. CONCLUSION

We considered the problem of minimizing the distortion
incurred in estimating a random source via multiple sensors
equipped with energy harvesting technology. This problem is
formulated as a Markov decision process and then optimal
energy allocation policies are obtained by the use of dynamic
programming techniques. Using the concept of submodularity,
the structure of the optimal allocation energy policies is studied.
Suboptimal solutions are also discussed for the more realistic
case that each sensor only knows its own channel and harvested
energy together with the statistics of all other sensors’ channels
and harvested energies. Numerical results were presented to
illustrate the distortion performances corresponding to these
scenarios. Future generalizations of this work will consider,
amongst others, battery storage imperfections in charging and
discharging, non-orthogonal multi-access schemes and mutual
interference amongst the sensor transmissions.

APPENDIX

Proof of Theorem 4.1: The proof follows from the
average-cost optimality equations for stochastic control prob-
lems (see e.g., [27]). We first show that the following inequality
holds:

ρ+V (g,H,B)≥ min
0�E�B

{
D(E,s)+E

[
V (g̃,H̃, B̃)

∣∣g,H,E
]}
(A.1)
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by verifying conditions (W) and (B) of [36] that guarantee
the existence of solutions to (A.1) for MDPs with general
state space. Denote the state space S and action space A , i.e.,
(g(:,k),H(:,k),B(:,k)) ∈ S and E(:,k) ∈ A . Condition (W) of [36]
refers to some compactness conditions on the state and action
space and some continuity conditions on the transition proba-
bility functions for specific state and action pairs, and the cost
function. In our notation these conditions can be summarised as:

0) The state space S is locally compact.
1) Let U(·) be the mapping that assigns to each (g(:,k),H(:,k),

B(:,k)) the nonempty set of available actions. Then U((g(:,k),
H(:,k),B(:,k)) lies in a compact subset of A and U(·) is upper
semicontinuous.

2) The transition probabilities are weakly continuous.
3) The one-step cost D(·, ·) is lower semicontinuous.

By E(:,k) � B(:,k) where Bm ≤ Bmax for all m ∈ M , conditions
0) and 1) of (W) can be easily verified. Condition 2) follows
from (1), while condition 3) follows from the definition of the
distortion (2) which is bounded.

A popular technique for proving average optimality is by
defining the following discounted cost and then letting the
discount factor ρ → 1:

vρ(g0,H0,B0) = inf
{E(:,k):k≥0}

E

[
∞

∑
k=0

ρk
E [D(E,s)|g]|g0,H0,B0

]

where 0 < ρ < 1. Define also

mρ = inf
(g0,H0,B0)

vρ(g0,H0,B0)

wρ(g0,H0,B0) =vρ(g0,H0,B0)−mρ

Then Condition (B) of [36] in our notation implies that

sup
ρ<1

wρ(g0,H0,B0)< ∞, ∀(g0,H0,B0).

This can be verified easily based on the fact that distortion
function (2) is bounded by σ2

θ. Hence condition (B) of [36] is
satisfied and a solution to (A.1) exists.

To show equality in (A.1), we will require a further equicon-
tinuity property on vρ(·, ·, ·) to be satisfied for all ρ ∈ (0,1).
This can be verified by a similar argument as in the proof
of Proposition 3.2 of [37] (see Appendix A of [37]). Finally,
one needs to verify certain further conditions to prove that
there exists a bounded solution to the average cost optimality
(12). Here we simply summarize the relevant theorem from
[38] that leads us to this proof, namely, Theorem 5.5.4. The
assumptions required for this proof rely on non-negativity,
lower semi-continuity and inf-compactness of the distortion
function and continuity of the transition probability functions
(See Assumption 4.2.1 in [38]), which are guaranteed in our
case. Also, one needs Assumption 5.5.1 of [38] to be satisfied,
which requires some boundedness and equicontinuity condi-
tions on the solutions to the discounted-cost optimality equation
associated with vρ(g0,H0,B0) defined above. For our case, this
assumption can also be verified. Due to space restrictions, the
lengthy details of these assumptions and the corresponding

proof of Theorem 5.5.4 in [38] cannot be provided here fully.
The readers are referred to Section 5.5 of [38] for further details.
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