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ABSTRACT

Within the ocean engineering literature, and, particularly, within
the wave energy research and hydrodynamic fields, different
methods can be found that aim to identify a finite-order para-
metric model to represent the radiation force convolution term
of the well-known Cummins’ equation. Such an approximation
process is required for several reasons: firstly, to obtain a math-
ematical representation that requires low computational effort
and, secondly, to ease the model-based control/estimation design
procedures. Recently, a new Matlab toolbox has been released
to obtain a parametric approximation of such a convolution term
based on moment-matching. This paper aims to compare this new
moment-matching-based application, with other well-established
software. This comparison is based not only on the quality of the
approximation, but also on the preservation of the intrinsic phys-
ical properties of radiation forces. Three different case studies
are used as a basis for the comparison.

KEY WORDS: Radiation forces; Parametric form; Model order
reduction; Frequency-domain identification; Time-domain iden-
tification

INTRODUCTION

Cummins’ equation (Cummins, 1962) is commonly used to de-
scribe, in the time-domain, the dynamics of the motion of marine
structures (floating bodies with zero mean velocity). However,
such an equation includes a convolution operation to express the
fluid memory effect associated to radiation forces, which can be a
drawback for several applications relevant to several ocean engi-
neering applications, such as, for example, applications belonging
to the wave energy field. To start with, this convolution term rep-
resents a drawback from a simulation point of view, given that
the numerical solution of such a mapping requires a high com-
putational effort. In addition, it can be inconvenient from an
estimation/control point of view, since state-of-the-art estima-
tion/control techniques are usually based on the availability of a
parametric state-space (SS) representation (at least in local co-

ordinates) of the system under analysis, i.e. a set of first order
differential equations (Faedo et al., 2017). In order to overcome
these drawbacks, researchers usually approximate the convolution
term using a suitable parametric structure. To this end, several
software utilities can be found in the literature, which attempt to
compute an approximating parametric model for the convolution
mapping introduced by Cummins.

The Centre for Ocean Energy Research (COER) has recently pre-
sented a moment-matching-based identification method for both
the radiation convolution term and the complete force-to-motion
(input-output) dynamics (Faedo et al., 2018). This strategy has
its foundation in recent advances on model order reduction by
moment-matching, developed over several studies such as (As-
tolfi, 2010) or (Scarciotti and Astolfi, 2016). This method allows
for the computation of a model that exactly matches the fre-
quency response of the original (target) system at a set of user-
selected frequencies, depicting an efficient method to compute a
state-space representation for the dynamics of Wave Energy Con-
verters (WECs) or, more generally, floating bodies with zero for-
ward speed. Motivated by both the solid theoretical and practical
results obtained, the Finite-Order Approximation by Moment-
Matching (FOAMM) Matlab application has been developed
within the COER (Peña-Sanchez et al., 2019), that systematically
applies this method using, as input, only raw frequency-domain
data provided by Boundary Element Method (BEM)-based hy-
drodynamic solvers, such as NEMOH (Babarit and Delhommeau,
2015) or WAMIT (Newman and Lee, 2002).

One of the best-established methods, for this particular approx-
imation problem, is the method developed by Pérez and Fossen
(2008) at the Norwegian University of Science and Technology.
Such a strategy proposes a parametric identification of the radia-
tion force impulse response function using only frequency-domain
data from BEM solvers. One year after the theory of this strat-
egy was presented, (Pérez and Fossen, 2009) developed a Mat-
lab toolbox that systematically applies their method, termed the
Frequency-Domain Identification (FDI) toolbox.

To the best of the authors’ knowledge, the only other available ap-
plication is the associated with the WEC motion simulator WEC-
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Sim (Yu et al., 2014). This software, termed Boundary Element
Method Input/Output (BEMIO) (Tom et al., 2015), is specifically
used within WEC-Sim to obtain a state-space approximation of
the radiation force convolution term. BEMIO can directly read
the outputs from BEM codes and save the relevant results in a
standardised format, or calculate the impulse response function
of the radiation force subsystem. Finally, and unlike FOAMM
and FDI, which are only available for Matlab, the developers of
BEMIO offer a Python-based version of the application.

We note that the time-domain approximation strategy based on
Prony’s method (De Prony, 1795) should be mentioned herein
since, even though there is no specific software utility developed
(for floating bodies), it is still a commonly used method within
the ocean engineering literature. In brief, this strategy is based on
identifying the radiation SS coefficients from the corresponding
impulse response function, and it has been used in noteworthy
studies, such as those involving the SEAREV WEC (Babarit and
Clement, 2006) and the Spar-buoy WEC (Grilli et al., 2007).

That said, the objective of this paper is twofold. Firstly, this
study aims to report the available techniques and applications
for this particular approximation problem, and explain the dif-
ferent options presented by each software/method. Secondly, and
as the main contribution of this paper, we aim to provide a critical
comparison between different software applications (and Prony’s
method), both in the frequency- and time-domain. To fulfil this
last objective, the methods are compared in terms of approxi-
mation quality, model order and preservation of physical char-
acteristics of the radiation subsystem (including internal stabil-
ity, passivity, among others). For the sake of completeness, the
strategies are not only tested using geometrically complex WECs,
but also with a vessel-shaped hull, as detailed in Section 4.

The reminder of this paper is organised as follows. Section 2
briefly discusses the equations to characterise the motion of a
floating body. In Section 3 the different identification toolboxes
considered in the study are introduced, while the test cases used
for the numerical comparison are shown in Section 4. Finally,
Section 5 illustrates, compares and discusses the results obtained
for each application/method, while the main conclusions (and
future work) are encompassed in Section 6.

EQUATIONS OF MOTION

This section provides a brief description of the linear hydrody-
namic equations of motion used to describe the behaviour of
a floating body, aiming to precisely describe what the differ-
ent strategies are designed to approximate. Since the analysed
applications, in general, only process single-input single-output
(SISO) models1, 1-DoF (Degree of Freedom) devices are consid-
ered within this study.

The equation of motion, for a 1-DoF floating body, can be ex-
pressed in the time-domain in terms of Newton’s second law,
obtaining the following formulation:

mẍ(t) = Fr(t) + Fh(t) + Fe(t) + u(t), (1)

where m is the mass of the body, ẍ(t) the acceleration, Fe(t)
the wave excitation force, Fr(t) the radiation force, Fh(t) the

1It should be noted that, even though a multiple-input multiple-
output version of the moment-matching-based identification strategy
has already been presented in (Faedo et al., 2019), the current FOAMM
toolbox can only handle SISO models.

hydrostatic restoring force, and u(t) represents any other exter-
nal input force. The linearised hydrostatic force for a floating
body can be written as Fh(t) = −shx(t), where sh denotes the
hydrostatic stiffness. The radiation force Fr(t) is modelled, from
linear potential theory, using the well-known Cummins’ equation
(Cummins, 1962), as

Fr(t) = −µ∞ẍ(t)−
∫ +∞

0

k(τ)ẋ(t− τ)dτ, (2)

where µ∞ = limω→+∞A(ω). µ∞ > 0 represents the added-mass
at infinite frequency, A(ω) the radiation added mass and k(t) the
radiation impulse response, containing the memory effect of the
fluid response. Regarding the external input force u(t), for the
WEC case, it is usually represented in terms of a Power Take-
Off (PTO) force2. Finally, the complete linearised equation of
motion of the floating body can be written as

(m+ µ∞)ẍ(t) + k(t)∗ ẋ(t) + shx(t) = Fe(t) + u(t), (3)

where the symbol ∗ represents the convolution integral opera-
tor. We note that such a convolution term is exactly what the
applications analysed in this study aim to approximate using a
approximated parametric model.

By applying the Fourier transform to Eq.(3), and considering
velocity as the measurable output, the following representation

ˆ̇x(jω) = Fe(jω)H(jω), (4)

where H(jω) represents the force-to-velocity frequency response,
holds. Specifically, H(jω) is a function of a specific set of char-
acteristic frequency-dependent parameters, namely

H(jω) =
1

B(ω) + jω [A(ω) +m] +
sh
jω

, (5)

where B(ω) is the radiation damping of the device (Falnes, 2002).
The hydrodynamic parameters A(ω) and B(ω) can be efficiently
obtained using existing BEM solvers, such as those discussed in
Section 1.

The relation between time-, Eq.(3), and frequency-domain,
Eq.(4), models was established by Ogilvie (1964). Such a rela-
tionship is defined as a function of the hydrodynamic parameters
B(ω) and A(ω), and the radiation kernel k(t), using the definition
of the Fourier transform as

B(ω) =

∫ +∞

0

k(t) cos(ωt)dt,

A(ω) = µ∞ −
1

ω

∫ +∞

0

k(t) sin(ωt)dt.

(6)

Thus, the impulse response k(t) can be written, involving the
frequency-dependent hydrodynamic parameter B(ω), as

k(t) =
2

π

∫ +∞

0

B(ω) cos(ωt)dω. (7)

Eq.(7) allows a frequency-domain analysis of k(t) using a direct
application of the Fourier transform, i.e.

k̂(jω) = B(ω) + jω [A(ω)− µ∞] . (8)

2The interested reader is referred to (Falnes, 2002), for a more com-
prehensive description of PTO systems.
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The function K(jω) represents the frequency response of the ra-
diation force dynamics, and it is the target model to be approx-
imated by frequency-domain methods. On the contrary, for the
strategies that identify the radiation SS using time-domain data,
the target system to be parameterised is the previously intro-
duced impulse response function k(t).

IDENTIFICATION APPLICATIONS

In this section, the different parameterisation applications con-
sidered in this study are introduced. For the sake of clarity (and
economy of space), the underlying theory of each different method
is not explicitly discussed herein and, therefore, the interested
readers are referred to each corresponding theoretical study. It
should be noted that the different applications/methods intro-
duced in this section appear in order of release date, where the
first application/method discussed refers to the oldest strategy.

FDI toolbox

This software runs in Matlab, and it requires the user to have
the commercially available signal processing toolbox in order to
operate it. However, as explained in (Pérez and Fossen, 2009),
alternative functions can be implemented by the user in order to
avoid using such a toolbox. The application can be downloaded
for free from their website www.marinecontrol.org.

The coefficients, and different options, of this application need to
be defined in the main file composing this software suite, termed
FDIRadMod.m. Then, FDIRadMod.m calls the different
functions that comprise the toolbox, depending on the selected
options. Thus, in order to work, this software requires the user to
provide (as vectors) the frequency-domain hydrodynamic coeffi-
cients A(ω) and B(ω), along with a vector containing the corre-
sponding (discrete) set of frequencies. Additionally, the infinite-
frequency added mass µ∞ and a structure (FDIopt) containing
information about the options of the software, can also be defined.
Regarding the quantity µ∞, it can be either explicitly provided
by the user (as a scalar) or, if FDIopt.AintFlag is set to 0,
the application automatically computes an estimate of its value
based on Ogilvie’s relations (see Section 2).

Once FDIRadMod.m is called, the application asks the user to
choose a desired frequency range over which to perform the para-
metric approximation. This frequency range is strongly linked to
the frequency spectrum of the input of the system, as discussed
in (Faedo et al., 2018). After selecting the frequency range, the
software asks if is there any “wild” points in the frequency data
to be removed before performing the approximation3.

Subsequently, the FDI toolbox automatically estimates the best
order of the approximation, by linearly increasing the model or-
der and computing the corresponding approximation error, as
a function of both the approximated and the target radiation
added mass and damping coefficients. Once this approximation
error is less than a predefined value, the software stops increas-
ing the order4, and the obtained model output is plotted along
with the target data. At this point, the application prompts the

3The aim of this is to remove any possible information that the user
considers unrealistic, as could happen for irregular frequencies (Penalba
et al., 2017).

4It should be noted that, if the fitting condition is not fulfilled, the
application will continue increasing the order until the maximum order
specified in FDIop.OrdMax is reached.

user to either manually introduce a new desired order for the
approximating model, or to retain the last computed model and
exit the function. If a new system order is specified, the model
is re-computed and the output plotted against the target data,
and the application consults the user one more time regarding
the option to introduce a new model order, or exit the function.
Such a loop is repeated until the user explicitly specifies that the
obtained model is acceptable.

Regarding the identification method, three different options are
given to solve the parameter optimisation problem (which can be
chosen by changing FDIopt.Method):

• linearise the optimisation problem and solve a linear Least-
Square (LS) problem,

• solve an iterative LS problem (where the maximum num-
ber of iterations is given by FDIopt.Iterations), or

• use the linear LS solution to initialise a nonlinear LS prob-
lem (solved using a Gauss-Newton method).

Once the system order and optimisation method are chosen, the
function returns the numerator and denominator coefficients of
the estimated transfer function for the radiation force subsys-
tem, and the estimate of µ∞ if FDIopt.AintFlag is set to 0.
Given that FDI offers, as outputs, the numerator and denomi-
nator of the input-output dynamics of the approximating model,
in order to obtain the SS representation of the radiation impulse
response, the user needs to compute a realisation of the obtained
transfer function (for example, any canonical realisation can be
used (Taghipour et al., 2008)).

In order to help the user to understand which parameters need
to be pre-defined and how the application is run, different files
with an example case are provided by the developers, along with
the toolbox files.

BEMIO toolbox

In contrast to FDI, the BEMIO toolbox identifies the paramet-
ric model of the radiation convolution term using time-domain
data, i.e. utilising k(t). Though there exists a Matlab ver-
sion at the moment, the original platform of this application is
Python. However, since the conversion from Python to Mat-
lab was specifically made to implement BEMIO in WEC-Sim
(which only runs in Matlab), the Python-based BEMIO code
is no longer supported by the developers. It is important to
highlight that BEMIO does not require of any other additional
toolbox to run (i.e. it runs in a plain Matlab version), and it
can be downloaded for free from https://wec-sim.github.io/

WEC-Sim/index.html5.

The main file of this application is called bemio.m, which in-
vokes a number of functions. The first function called explicitly
depends on the BEM solver used to compute the hydrodynamic
parameters. This software is capable of reading the output files
from NEMOH, WAMIT or AQUA (ANSYS, 2013), and convert-
ing them into a standardised format. After pre-processing the
hydrodynamic data (and storing it in a structure called hydro),
bemio.m calls a function to compute k(t) (which is also saved
in the hydro structure). Finally, bemio.m invokes the Ra-
diation IRF SS routine, where the SS model of the radiation
impulse response is specifically computed.

5See https://wec-sim.github.io/bemio/ for the Python version.
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The only mode offered by BEMIO, is the automatic order selec-
tion mode, where the user selects the maximum order of the SS
realisation and an accuracy threshold for the fit of the SS reali-
sation (these are indeed the only options that the user can freely
select). Therefore, to obtain a SS representation of a (fixed) user-
defined order, one can set up the maximum order as the desired
order, while setting the approximation threshold to 16. Using this
approach, the code increases the model order until the selected
maximum order is reached. Though the computational time re-
quired by the toolbox is relatively low, this method is inherently
sub-optimal with regard to its computational capabilities, given
that the software always computes the totality of the parametric
models going from order 2, up to the desired (or optimal) order.

After Radiation IRF SS is run, the function returns (inside the
structure hydro) the matrices of the approximating SS model for
the radiation force subsystem. Additionally, as for the FDI tool-
box, the application is distributed with an example case, designed
to help the user to understand the relevant working principles of
the toolbox.

FOAMM toolbox

This is, to the best of the authors’ knowledge, the most recently
released toolbox for the approximation of radiation forces avail-
able in the literature. Similar to FDI, this toolbox identifies a
parametric model based on frequency-domain data, i.e. from
K(jω). Even though the application uses a Matlab toolbox
to perform the underlying optimisation problem, since it is pro-
vided in an executable form, it effectively runs on a plain Matlab
version. However, it requires the user to have installed the cor-
rect matlab runtime version, for which the installer is provided,
along with the FOAMM toolbox files. This application, along
with the Matlab runtime installer and the toolbox manual, can
be downloaded (for free) from http://www.eeng.nuim.ie/coer/

downloads/.

The main function of this toolbox is the main.m file. main.m
loads the corresponding hydrodynamic coefficients (which need to
be provided as for the FDI toolbox), defines the different modes
and options of the application (using the Options structure),
and calls the FOAMM routine (file containing the identification
algorithm).

As previously explained for the FDI toolbox, FOAMM also allows
the user to choose the desired frequency range over which to
perform the parametric approximation. Additionally, due to the
fact that FOAMM is based on moment-matching methods, the
resulting model exactly matches the target frequency response
at a set of user-selected frequencies: the steady-state response
of the obtained finite-order parametric model, and that of the
target system, are exactly the same at the selected interpolation
frequency points. This effectively helps to retain key underlying
characteristics of the target system, such as, for example, the
behaviour at the resonant frequency of the floating structure (i.e.
the H∞-norm of the system). Thus, a sensible choice of such
interpolation frequencies can help to obtain an accurate low order
parametric approximation of the target system.

Another noteworthy feature of FOAMM is that it not only
considers an automatic order determination method, but three
different identification procedures can be selected using Op-

6The approximation accuracy threshold for BEMIO is defined from
0 to 1, being 1 a 100% accurate approximation.

tions.Method. The first option is the manual identification
method, where the user selects the desired interpolation frequen-
cies, inherently determining the final order of the model (i.e.
twice the number of interpolation frequencies selected). For the
second identification method, the user selects the desired order,
and the toolbox optimises the position of the interpolation fre-
quencies. Finally, in the last method, FOAMM linearly increases
the order of the model and optimises the position of the match-
ing frequencies, until the accuracy thresholds (defined in Op-
tions.ThresRel and Options.ThresAbs) are fulfilled. For the
last two methods, where the program optimises the location of
the set of interpolation frequencies, FOAMM allows the user to
pre-define a partial subset of these interpolation points. By way
of example, if the user desires a model of order 4 (i.e. two interpo-
lation frequencies), and explicitly defines one of the interpolation
frequencies to be the resonant frequency of the device, FOAMM
only optimises the location of the remaining free frequency.

The choice of both the frequency range and the interpolation fre-
quencies can be carried out by explicitly pre-defining such values
in the code itself, via a graphical interface (as in the FDI tool-
box), or using Matlab’s command window. This can be changed
using Options.FreqRangeChoice and Options.FreqChoice,
as shown in (Peña-Sanchez, 2019). Additionally, if µ∞ is not pro-
vided by the user, the application will automatically calculate its
value using Ogilvie’s relations (see Section 2).

Once FOAMM finishes the optimisation, the matrices of the
SS representation of the selected target system are returned. As
for the other two toolboxes, FOAMM is distributed along with
an example case study in order to ease the understanding of the
different options of the toolbox, and show how the hydrodynamic
data should be pre-defined.

In contrast to the other two previously described toolboxes,
FOAMM has an option to identify a parametric model of the
complete force-to-motion dynamics of the device under analysis
(and not only the radiation force subsystem). This feature can
be easily activated using the Options.Mode flag. We note that,
as shown in (Faedo et al., 2018), when identifying the force-to-
motion dynamics, the dimension (order) of the final SS of the
WEC is usually lower than if the radiation impulse response is
identified separately, and later embedded into Cummins’ equa-
tion (for the same approximation quality).

Prony’s method

As mentioned in the introduction, even though there is no spe-
cific toolbox developed tackling Prony’s method (in wave energy
systems), such a strategy is included in this comparison since it
is broadly used in the community. Regarding the algorithm, it
can be coded by the user (as performed for the current compar-
ison), or the Matlab built-in function prony.m can be used.
Finally, the accuracy of the obtained parametric model will de-
pend (mostly) on the definition of k(t).

TEST CASES

For the sake of completeness, three different geometries are con-
sidered for the comparison performed in this study, as depicted
in Fig.1. The first geometry (G1), shown in Fig.1(a), is a CETO-
like device (Fiévez and Sawyer, 2015), while a device similar to
the float of the OPT WEC (Mekhiche and Edwards, 2014) is
chosen for the second geometry (G2), as illustrated in Fig.1(b).
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(a) k(t) for the surge mode of G1. (b) k(t) for the heave mode of G2. (c) k(t) for the roll mode of G3.

Fig. 3 Radiation impulse response kernel k(t) for the different geometries considered in the comparison.

Finally, the last geometry considered for the comparison (G3) is
chosen to be a vessel7, as shown in Fig.1(c).

(a) G1: CETO-like device. (b) G2: OPT Float-like device.

(c) G3: Vessel

Fig. 1 The low-order meshes of the considered geometries
(only half of the meshes is shown, since symmetry is
assumed).

Table 1 contains information about the dimension of the geome-
tries. It should be noted that, for G1 and G2, the dimensions
are the same as in (Penalba et al., 2017).

Table 1 Dimension of the geometries analysed.

G1
Diameter 17m
Height 6m

G2
Outer diameter 9.5m
Inner diameter 6m
Draft 2.25m

G3
Length 170m
Draft 20m
Width 30m

The target frequency responses of the different geometries con-
sidered are shown in Fig.2. As depicted in Fig.2(a), the frequency
response of G1 is multi-modal, hence increasing its complexity
when it comes to parametric approximation (Faedo et al., 2018).
Regarding G2, the device has been chosen due to the underlying

7The mesh used to generate the hydrodynamic coefficients
has been obtained from https://www.friendship-systems.com/news/

2017/online-demo-ropax-vessel-from-holiship/.

complexity when identifying a device with a moon-pool, as de-
picted in Fig.2(b). Finally, even though the frequency response
of G3 appears to be “simpler” than those of the previous cases,
and since the applications/methods under comparison are not ex-
clusively used for WEC systems, evaluating their capabilities to
approximate a vessel’s radiation force frequency response is also
within the scope of this study.

(a) K(jω) for the surge mode of G1.

(b) K(jω) for the heave mode of G2.

(c) K(jω) for the roll mode of G3.

Fig. 2 Frequency response of the radiation kernels of the
geometries considered for the study.

Finally, Fig.3 depicts the impulse response function k(t) for each
of the three different geometries. It can be seen how, for G1 and
G3, the impulse response function fades out to 0 in approximately
30 [s], while k(t) for G2 keeps oscillating up to around 50 [s].
Additionally, one can notice from the oscillations of each different
k(t) signals shown that G3 has the slowest dynamics, followed
by G1 and G2.
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COMPARISON RESULTS

In this section, the results obtained by the different identifica-
tion toolboxes are discussed. First, an analysis is carried out on
how the different options of the applications affect the results ob-
tained. Finally, a summary of the obtained results, along with a
comparison of the results obtained by the different toolboxes, is
provided. It should be noted that the accuracy of the identified
models is given in terms of the Normalised Root Mean Square
Error (NRMSE), which is defined as follows:

NRMSEf =

√√√√∑(
f − f̃

)2∑
f2

, (9)

where f̃ stands for the approximated f , and f represents the
target frequency response K(jω) or the impulse response k(t),
depending on the context.

FDI toolbox

The first step when using the FDI (and FOAMM) toolbox is
choosing the frequency range where the approximation is com-
puted. However, since such an option is not included in BEMIO,
the frequency range is set to completely cover the vector of fre-
quencies utilised to compute the hydrodynamic coefficients using
BEM solvers, which varies for the different geometries (Fig.2).

(a)

(b)

(c)

Fig. 4 NRMSEK(jω) for different model orders using the dif-
ferent identification methods of the FDI toolbox, when
considering G1 (a), G2 (b) and G3 (c).

Fig.4 depicts the accuracy of the obtained approximating model
for the different identification (optimisation) methods contained
in the FDI toolbox, and different model orders, for the three ge-
ometries under analysis. It can be appreciated that the linear
LS methods gives, overall, the worst results. Additionally, even
though for G3, represented in Fig4(c), both the iterative and non-
linear LS methods give similar results, the iterative LS method
obtains more reliable results than the nonlinear LS, as shown

for G1 and G2. Therefore, the iterative LS is the identification
method used (for FDI) in the reminder of this comparison8.

BEMIO toolbox

As mentioned in Section 3, since BEMIO has no other (user-
defined) option than the fitting accuracy threshold and the max-
imum model order, the quality of the obtained model depends
(mostly) on the definition of k(t). Thus, as shown in Fig.5, the
smaller the time-step (dt) used to define k(t), the more accurate
the obtained approximation. Since the accuracy improvement is
not significant when reducing the time-step to less than 0.04 [s],
this time-step is selected for the definition of k(t)9.

Fig. 5 NRMSEk(t) for different time-steps, when considering
G2.

FOAMM toolbox

For the FOAMM toolbox, the manual method is used to identify
the parametric models given that, as explained in (Peña-Sanchez
et al., 2019), a wise selection of the interpolation frequencies im-
proves the quality of the obtained models. The set of interpola-
tion points for G1 ({1}, {1, 2} and {1, 2, 2.5} [rad/s]), and G2
({1.75}, {1.75, 0.8} and {1.75, 0.8, 2.6} [rad/s]), are selected fol-
lowing the criteria developed in (Faedo et al., 2018) and (Peña-
Sanchez et al., 2018), respectively. Regarding the frequencies se-
lected for G3, since the frequency response is dynamically simpler
than for the other two cases, a single interpolation point is cho-
sen at ω = 0.55 [rad/s]. Note that, for model orders higher than
6 (or 2 for G3, since a unique frequency is specified), FOAMM
optimises the position of the remaining frequencies.

Comparison

As shown in Fig.6, the results obtained by FOAMM and FDI are
similar for the totality of the analysed cases. Additionally, both
produce a lower NRMSEK(jω) than BEMIO and Prony’s method,
which stems from the fact that both FDI and FOAMM parame-
terise radiation forces using a frequency-domain error minimisa-
tion criterion. We also note that the results obtained by applying
Prony’s method are the least accurate, obtaining (for a 10th or-
der system for G3) a (Lyapunov) unstable model, which is not
particularly useful as a parametric approximation.

It is noteworthy that the results obtained by Prony’s method do
not improve when considering the error on the obtained para-
metric model impulse response k(t), as can be appreciated from
Fig.7. This is not the case for the BEMIO toolbox, which
obtains (overall, of among the different methods) the lowest

8Which is also recommended by Pérez and Fossen (2009)
9Note that this also applies to k(t) used for the Prony’s method.
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Fig. 6 NRMSEK(jω) for different model orders and toolboxes,
when considering G1 (a), G2 (b) and G3 (c).

NRMSEk(t). Regarding the FDI and FOAMM toolboxes, the ob-
tained NRMSEk(t) are indeed similar to the NRMSEK(jω) shown
in Fig.6, for the three geometries. However, one could notice
that, while in Fig.6 all the parametric models obtained using the
FDI toolbox give consistent results, there are some cases where
the obtained NRMSEk(t) is peculiarly high. This has been al-
ready reported in (Pérez and Fossen, 2009), where the authors
specify that if the order of the proposed model is too large, there
will be over-fitting and therefore, the approximation error will
increase. Additionally, it should be noted that, the results ob-
tained by both FDI and FOAMM could be improved by selecting
a different frequency range (Peña-Sanchez et al., 2018).

Radiation subsystem physical properties

The parametric models for the radiation force subsystem should
respect the underlying physical properties of radiation forces. To
be precise, the parametric model should be input-output stable,
passive, strictly proper, and should have zeros at the origin (the
interested reader is referred to (Pérez and Fossen, 2008) for com-
prehensive discussion of these properties). Regarding the stability
of the parametric models, apart from the previously mentioned
cases where, due to numerical inaccuracies, the obtained model is
unstable (twice for FDI and once for Prony’s method), the iden-
tified approximating models are, in general, input-output stable.

As discussed in (Faedo et al., 2018b), passivity is an important
property of radiation systems. It should be noted that even
though none of the toolboxes explicitly guarantee passivity, BE-
MIO and FOAMM are the ones obtaining the higher number of
passive models (around 75% of the cases). In fact, for the case of
the FOAMM toolbox, a particular selection of the interpolation
frequencies can be used to obtain a passive model, since there ex-
ist a relation between the interpolation frequencies, the spectral

(a)

(b)

(c)

Fig. 7 NRMSEk(t) for different model orders and toolboxes,
when considering G1 (a), G2 (b) and G3 (c).

zeros of a system, and its passivity (Faedo et al., 2018b).

Finally, it should be noted that, in contrast to FDI, FOAMM
or Prony’s method, the parametric models obtained using the
BEMIO toolbox contain a non-zero feed-through matrix, which
directly implies that the computed model is not strictly proper.

CONCLUSIONS AND FUTURE WORK

This paper presents a review of the available applica-
tions/methods to compute parametric models that approximate
the radiation force convolution term of Cummins’ equation. Ad-
ditionally, a critical comparison between the different available
software (and Prony’s method) is provided, both in the time-
and frequency-domain. The comparison is carried out using not
only two geometrically complex wave energy converters, but also
using a vessel-shaped hull, to further extend the analysis to more
general marine applications.

The paper shows that the FDI and FOAMM toolboxes can ob-
tain accurate results in both the frequency- and time-domain.
On the contrary, the results obtained by BEMIO are accurate in
the time-domain (which stems from the fact that BEMIO identi-
fies the parametric model using time-domain data), while, in the
frequency-domain, the approximating systems obtained are not
as accurate as those computed by FDI or FOAMM.

Additionally, it is also shown that, while none of the toolboxes is
able to enforce all the physical properties of the radiation force
kernel, FOAMM is the only application able to consistently re-
spect the full set of physical properties (apart from passivity,
which is respected in more than 75% of the analysed cases). We
note that, as introduced by Faedo et al. (2018b), passivity can
be enforced using a moment-based approach. The developers of
FOAMM plan to include this theoretical modification in an up-
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coming version of the application.

Finally, future work will compare how the quality of the obtained
radiation force parametric models impacts on the input-output
(force-to-motion) behaviour of the floating bodies.
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