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Abstract—We recently introduced a noise-centric algorithm,
Guessing Random Additive Noise Decoding (GRAND), that
identifies a Maximum Likelihood (ML) decoding for arbitrary
code-books. GRAND has the unusual property that its complexity
decreases as code-book rate increases. Here we provide an
extension to GRAND, soft-GRAND (SGRAND), that incorporates
soft detection symbol reliability information and identifies a
ML decoding in that context. In particular, we assume symbols
received from the channel are declared to be error free or
to have been potentially subject to additive noise. SGRAND
inherits desirable properties of GRAND, including being capacity
achieving when used with random code-books, and having a
complexity that reduces as the code-rate increases.

Index Terms—Channel Coding; Soft detection; Symbol Relia-
bility; ML decoding; Error exponents.

I. INTRODUCTION

Consider a channel with inputs, Xn, and outputs, Y n,
consisting of blocks of n symbols from a finite alphabet
A = {0, . . . , |A| − 1}1. Assume that channel input is altered
by random noise, Nn, that is independent of the channel input
and also takes values in An. Assume that the function, ⊕,
describing the channel’s action, Y n = Xn⊕Nn, is invertible so
that knowing the channel’s output and input the noise can
be recovered: Nn = Y n 	 Xn. In the hard detection setting,
we recently introduced a novel noise-centric channel decoding
algorithm, GRAND [1], [2]. GRAND, which is described in
detail in the next section, has unusual features: it is suitable
for use with any code-book; it can be employed without
interleaving if noise is bursty; it is capacity achieving when
used with random code-books; and its complexity decreases
as code-book rates increase.

A significant feature of the GRAND approach is that if
information regarding the noise process is garnered at the
receiver and passed to the decoder, the algorithm can naturally
incorporate it. For example, [1], [2] establish that if the
receiver knows noise is bursty and well-modeled by a Markov
process, use of that information by GRAND results in more
accurate decodings as well as reduced decoding complexity.

In the present paper, we extend the remit of the algorithm’s
adaptability by establishing its ability to incorporate soft de-
tection symbol reliability information where symbols received
from the channel are accurately indicated to be error free or to
have possibly been subjected to independent, additive random
noise. In practice, this corresponds to a situation where, for

1Lower case letters correspond to realizations of upper-case random vari-
ables or their normalized limits, apart from for noise where z is used as n
denotes the code block-length. Logs are taken base |A| throughout.

example, soft information such as instantaneous Signal to
Interference plus Noise Ratio is thresholded so as to provide
false negatives with a sufficient small likelihood that they
do not dominate the block error probability; this approach
is, in effect, a simple code-independent quantization of soft
information for decoding [3].

As soft information is known to enhance decoding accuracy,
its use has been extensively considered since early on, with
Wagner decoding [4] and, later, Chase decoding [5]. It has
been extensively investigated in decoding algorithms for linear
block [6], [7] and convolutional [8] codes.

Unlike those code-book centric channel decoding algorithms
which require algorithmically involved modifications, soft
detection symbol reliability information can be incorporated
in a straight-forward way into the GRAND approach. In this
paper, we determine the gain in capacity, reduction in block
error rate, and decrease in decoding complexity that can be
obtained by leveraging this soft detection symbol reliability
information, leading to soft-GRAND (SGRAND),

II. GUESSING RANDOM ADDITIVE NOISE DECODING

To implement ML decoding, the sender and receiver share
a code-book Cn = {cn,1, . . . ,cn,Mn} consisting of Mn elements
of An. For a given channel output yn, denote the conditional
probability of the received sequence given the transmitted
code-word was cn,i by pY n|Cn(yn|cn,i) = P(Nn = yn	 cn,i) for
i ∈ {1, . . . ,Mn}. A ML decoding, cn,∗, is then an element of
the code-book that has the highest conditional likelihood of
transmission given what was received, i.e.

cn,∗ ∈ argmax
{

pY n|Cn(yn|cn,i) : cn,i ∈ Cn
}
. (1)

The fundamental principle underlying GRAND is that the
receiver rank-orders noise sequences from most likely to least
likely, breaking ties arbitrarily, and then sequentially queries
whether the sequence that remains when the noise is removed
from the received signal is an element of the code-book.
The first instance where the answer is in the affirmative is
the decoded element. To see that GRAND identifies a ML
decoding irrespective of how the code-book is constructed,
note that owing to the definition of cn,∗

pY n|Cn(yn|cn,∗) = P(Nn = yn	 cn,∗)

≥ P(Nn = yn	 cn,i) for all cn,i ∈ Cn
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and so by sequentially subtracting noise sequences from the
received sequence in decreasing order of likelihood and query-
ing if what remains is in the code-book, the first identified
element is a ML decoding.

GRAND can be thought of as a guessing race where the
querying process is halted either with success on identifying
the true noise, and hence the transmitted code-word, or with
an error on identifying a non-transmitted element of the code-
book. In the present paper we assume that, in addition to
the channel output Y n, the receiver is provided with a vector
of symbol reliability information, Sn taking values in {0,1}n

where a 0 truthfully indicates a symbol has not been subject to
noise while a 1 indicates it may have been, which is similar in
spirit to the well-known Gilbert-Elliott model [9], [10]. The
core idea behind SGRAND is for Sn to be used as a mask
that separates symbols that require guessing from those that
do not.

The adaptation to the symbol reliability information setting
results in a ML decoder, SGRAND, that proceeds as follows:
• Given channel output yn and symbol reliability information

sn, initialize i = 1, set the non-noise-impacted symbol loca-
tions of guessed noise sequence zn to 0, and set the masked
potentially noise-impacted locations zn to be the most likely
noise sequence of length ln = ∑i sn

i .
• While xn = yn	 zn /∈ Cn, increase i by 1 and change the

masked symbols of zn to be the next most likely noise
sequence of length ln.

• The xn resulting from this while loop is the decoded element.
Based on the same logic as GRAND, this procedure identifies
a ML decoding, but it will perform fewer queries and the
output element will be more likely to be the transmitted one,
given the targeted nature of the querying.

III. MATHEMATICAL ANALYSIS

As in [2], for the analysis of SGRAND we exploit the fact
that the algorithm is a guessing race. The difference here is
that the decoder is only asking questions of the sub-string
potentially impacted by noise.

If informed that n symbols have been potentially impacted
by noise, the receiver creates a guesswork order [11], G :
An 7→ {1, . . . , |A|n}, a list of noise sequences ordered from
most likely to least likely and breaking ties arbitrarily:

G(zn,i)≤ G(zn, j) iff P(Nn = zn,i)≥ P(Nn = zn, j), (2)

For general i.i.d. noise, exponential families whose elements
all possess the same guesswork order have been identified [12].

Assumption 1. When noise occurs, it is i.i.d., distributed as
N1 where P(N1 = i) = pN|S(i|1) = P(N = i|S = 1) for i ∈ A.

Under assumption 1, if one must guess the entire noise
string of length n, Arikan [13] first established how the positive
moments of guesswork, E(G(Nn)α) for α > 0, scale in n in
terms of Rényi entropies. Building on those and subsequent re-
sults that treated negative moments, it was established that the
logarithm of guesswork satisfies a Large Deviation Principle
(LDP) [14].

Proposition 1 (Guesswork Moments & LDP [13], [15], [14]).
Under assumption 1, if Sn = 1n so that all received symbols
are potentially impacted by noise and are distributed as
N1, the scaled Cumulant Generating Function (sCGF) of
{n−1 logG(Nn)} exists:

Λ
N1(α) = lim

n→∞

1
n

logE(G(Nn)α |Sn = 1n)

=

{
αH1/(1+α) if α >−1
−Hmin if α ≤−1,

(3)

where Hα is the Rényi entropy of a single noise element, N1,
with parameter α

Hα =
1

1−α
log

(
∑
i∈A

pN|S(i|1)α

)
,

H = H1 =−∑
i∈A

pN|S(i|1) log pN|S(i|1),

and Hmin =−max
i∈A

log pN|S(i|1).

Moreover, given Sn = 1n, the process {n−1 logG(Nn)} satisfies
a LDP with convex rate-function

IN1(x) = sup
α∈R

(xα−Λ
N1(α)), (4)

where IN1(0) = Hmin and IN1(H) = 0.

Setting α = 1 in eq. (3), as Arikan originally did in his inves-
tigation of sequential decoding, establishes that the expected
guesswork grows exponentially in n with rate H1/2, which is
no smaller than the Shannon entropy, H. That the zero of the
rate-function in eq. (4) occurs at H ensures, however, that the
majority of the probability is accumulated by making queries
up to and including the Shannon typical set. The apparent
discrepancy in these two facts occurs because the guesswork
distribution has a long tail that dominates its average [13],
[16]. In the soft-detection setting, for a transmitted block of
length n it is not necessary to guess a noise-string of length
n, only potentially noise-impacted symbols. To that end, we
have the following assumption.

Assumption 2. With Ln = ∑
n
i=1 Sn

i being the number of po-
tentially noise-impacted symbols in a block of length n, the
proportion of them, {Ln/n}, satisfies a LDP with a strictly
convex rate-function IL : R 7→ [0,∞] such that IL(y) = ∞ if
y /∈ [0,1] and IL(µ) = 0, where limn E(Ln/n) = µ > 0. Define
the sCGF for α ∈ R to be

Λ
L(α) = lim

n→∞

1
n

logE
(
|A|αLn

)
= sup

x∈[0,1]

(
αx− IL(x)

)
∈ [−∞,∞],

which exists due to Varadhan’s Lemma, e.g. [17].

Under Assumptions 1 and 2, the channel’s capacity with
soft detection symbol reliability information is upper bounded
by

CSoft ≤ limsup
n→∞

1
n

sup I(Xn;(Y n,Sn))

= 1−µh(pN|S(·|1)), (5)
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where h
(

pN|S(·|1)
)
= −∑i∈A pN|S(i|1) log pN|S(i|1) is the

Shannon entropy of pN|S(·|1); SGRAND will confirm this
is achievable. Under Assumptions 1 and 2, for a distinct
purpose it has been established that with a random number
of characters to be guessed one has the following LDP [18].

Proposition 2 (LDP for guessing subordinated noise [18]).
Under assumptions 1 and 2, the joint subordinated guesswork
and length process {(1/n logG(NLn

1 ),Ln/n)} satisfies a LDP
with the jointly convex rate-function IN1,L(g, l) = lIN1 (g/l)+
IL(l). The subordinated guesswork process {1/n logG(NLn

1 )}
alone satisfies a LDP with the convex rate function IN1

L
(g) =

infl∈[0,1]
(
lIN1 (g/l)+ IL(l)

)
, where IN1

L
(µH) = IN1,L(H,µ) =

0. The sCGF for {1/n logG(NLn

1 )}, the Legendre-Fenchel
transform of IN1

L
, is given by the composition of the sCGF

for the length with the sCGF for the guesswork of non-
subordinated noise

Λ
N1

L
(α) = lim

n→∞

1
n

logE
(

G
(

NLn

1

)α)
= Λ

L(ΛN1(α))

= sup
g
(gα− IN1

L
(g)) for α ∈ R. (6)

In particular, the average number of queries to required to
identify subordinated noise is given by ΛN1

L
(1) = ΛL(H1/2).

To characterize the number of queries made until a non-
transmitted element of the code-book is identified, which is
the second part of the race, we assume that the code-book is
uniformly random. For such code-books, the location of each
of its elements in the guessing order of a received transmission
is itself uniform in {1, . . . , |A|n}. Thus the distribution of the
number of guesses until any non-transmitted element of the
code-book is hit upon is distributed as the minimum of Mn =
b|A|nRc such uniform random variables, where R is the code-
book rate. We can, therefore, use the following result from
[2].

Proposition 3 (LDP for Guessing a Non-transmitted Code–
word [2]). Assume that Mn = b|A|nRc for some R > 0, and
that Un,1, . . . ,Un,Mn are independent random variables, each
uniformly distributed in {1, . . . , |A|n}. Defining Un =mini Un,i,
{1/n logUn} satisfies a LDP with the lower semi-continuous
rate-function

IU (u) =

{
1−R−u if u ∈ [0,1−R]
+∞ otherwise

(7)

and limn→∞ n−1 logE(Un) = 1−R.
A graphical representation of the probabilistic guessing race

can be found in Fig. 1. When all symbols are subject to noise,
the channel is within capacity so long as the zero of the
rate-function for guessing noise, which occurs at the Shannon
entropy rate of the noise H, is smaller than the zero of the rate-
function for identifying a non-transmitted code-word, which
occurs at 1− R. As in all likelihood the correct decoding
is identified after fewer queries than an incorrect decoding
would be identified, the algorithm experiences concentration
onto correct decodings, which leads to the Channel Coding

0 0.1 0.2 0.3 0.4 0.5 0.6

x
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IN(x), p=0.05, q=1
IN,L(x), p=0.05, q=0.4
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Fig. 1. Guesswork decoding race. A= {0,1}, with a random code-book of rate
R, with bits independently impacted by noise with probability q, whereupon
they are flipped with probability p. For p = 0.05 and R = 0.6, plot shows
large deviations rate function for: incorrectly identifying a non-transmitted
element of the code-book, IU (x); guessing the true noise if q = 1, IN1 (x);
with q = 0.4, guessing the true noise if a random set of locations are declared
to be potentially noise-impacted, IN1

L
(x); With x being the value on the x-

axis, when 2nx noise guesses are made, the likelihood of success for each of
these racing elements is approx. 2−n infy<x I(y) for the relevant I(y).
Theorem, R < 1−H, in [2]. Here, the zero of the rate function
for the subordinated noise-guessing with soft detection symbol
reliability information occurs at µH. So long as µH is smaller
than 1−R, noise-guessing concentrates on identifying correct
decodings, leading to any R < 1−µH being achievable.

Theorem 1 (Soft Detection Channel Coding Theorem with
SGRAND). Under Assumptions 1 and 2, and those of Proposi-
tion 3, if the code-book rate is less than capacity, R < 1−µH,
then the probability that the SGRAND identified ML decoding
is not the transmitted code-word decays exponentially in the
block length n,

lim
n→∞

1
n

logP
(

Un ≤ G
(

NLn

1

))
=− inf

u∈[µH,1−R]
{IU (u)+ IN1

L
(u)}< 0. (8)

If, in addition, g∗ exists such that

d
dg

IN1(g)|g=g∗ = 1, (9)

which is analogous to one minus Gallager’s critical rate,
recalling H1/2 is the Rényi entropy of the noise with parameter
1/2, the SGRAND error rate is

ε(R) =− lim
n→∞

1
n

logP
(

Un ≤ G
(

NLn

1

))
=


1−R−ΛL(H1/2) if R ∈ (0,1−µg∗)
IN1

L
(1−R) if R ∈ [1−µg∗,1−µH)

0 if R ∈ (1−µH,1].
(10)

Proof. As {Un} is independent of {(G(NLn

1 ),Ln)}, we have
that

{(
n−1 logUn,n−1 logG(NLn

1 ),Ln/n
)}

satisfies an LDP
with rate-function IU (u) + IN1,L(g, l). Now note the equiva-
lence of the following two events:{

Un ≤ G
(

NLn

1

)}
=

{
1
n

log
(

Un/G
(

NLn

1

))
≤ 0
}
.

By the contraction principle, e.g. [17], with the
continuous function f (u,g, l) = (u − g, l), the process
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{(
n−1 log

(
Un/G

(
NLn

1
))

,n−1Ln
)}

satisfies a LDP with
rate-function infu∈[0,1−R]

{
IU (u)+ IN1,L (u− x, l)

}
. Consider

ε
L(R, l) :=

− lim
δ↓0

lim
n→∞

1
n

logP

(
1
n

log

(
Un

G
(
NLn

1

))≤ 0,
Ln

n
∈ (l−δ , l +δ )

)
= inf

x≤0
inf

u∈[0,1−R]

{
IU (u)+ IN1,L (u− x, l)

}
= inf

u∈[0,1−R]

{
IU (u)+ inf

g≥u
lIN1

(g
l

)}
+ IL(l).

For u ∈ [0,1−R], IU (u) = 1−R− u is linearly decreasing,
while lIN1(g/l) is convex in g with minimum, zero, at g = lH.
Thus if R≥ 1− lH, setting u = 1−R and g = lH, εL(R, l) =
IL(l). If R < 1− lH, then as both IU (u) and lIN1(g/l), as a
function of g, are strictly decreasing on [0, lH], we have

inf
u∈[0,1−R]

{
IU (u)+ inf

g≥u
lIN1

(g
l

)}
= inf

u∈[lH,1−R]

{
1−R−u+ lIN1

(u
l

)}
,

which is strictly positive as IU is strictly decreasing to 0 on
[lH,1−R] while lIN1(u/l) is strictly increasing in u on the
same range. Assuming Gallager’s critical rate, g∗ defined in
eq. (9), exists, as IU is decreasing at rate 1 and

d
dg

lIN1
(g

l

)
|g=lg∗ = 1,

then if lg∗ ≤ 1−R, i.e. if R≤ 1− lg∗,

inf
u∈[lH,1−R]

{
1−R−u+ lIN1

(u
l

)}
= 1−R− lg∗+ lIN1 (g∗)

= 1−R− lH1/2,

as IN1(g∗) = g∗ − H1/2. If, instead, lg∗ ≥ 1− R, then the
infimum occurs at u = 1−R and

inf
u∈[lH,1−R]

{
1−R−u+ lIN1

(u
l

)}
= lIN1

(
1−R

l

)
if R ∈ [1− lg∗,1− lH]. The error exponent, ε(R) in eq. (10),
is obtained by the contraction principle, projecting out Ln/n
and giving ε(R) = infl∈[0,1] ε

L(R, l).

Combining Propositions 2 and 3 in a distinct way deter-
mines the asymptotic complexity of SGRAND in terms of the
number of queries until a decoding, correct or incorrect, is
identified: Dn := min

(
G
(
NLn)

,Un
)
. I.e SGRAND terminates

at either identification of the noise that was in the channel or
when a non-transmitted element of the code-book is identified,
whichever occurs first. On the scale of large deviations, if the
code-book is within capacity, R< 1−µH, then the sole impact
of the code-book is to curtail excessive guessing when unusual
noise occurs.

Theorem 2 (Complexity of SGRAND). If R < 1−µH, under
Assumptions 1 and 2, and those of Proposition 3, {1/n logDn}

satisfies the LDP with a lower-semicontinuous convex rate-
function

ID(d) =

{
IN1

L
(d) if d ∈ [0,1−R]

+∞ if d > 1−R
(11)

and the expected number of guesses until a ML decoding is
found by SGRAND satisfies

lim
n→∞

1
n

logE(Dn) = min
(
Λ

L(H1/2),1−R
)
.

Proof. Consider the process {n−1 logDn}. As f (g,u) =
min(g,u) is a continuous function, by the contraction principle
it satisfies a LDP with rate-function ID(d) = inf{IN1

L
(g) +

IU (u) : min(g,u) = d}. If d > 1−R, ID(d) = ∞ as IU (d) = ∞

for d > 1−R. Alternatively, if d ≤ 1−R,

ID(d) = min
(

IN1
L
(d)+ inf

x≥d
IU (x), inf

x≥d
IN1

L
(x)+ IU (d)

)
= min

(
IN1

L
(d), inf

x≥d
IN1

L
(x)+ IU (d)

)
as IU (x) is decreasing for x ∈ [0,1−R]. If R < 1− µH, then
we make the following geometric considerations

IN1
L
(0) = inf

l

{
IL(l)+ lIN1(0)

}
= inf

l

{
IL(l)+ lHmin

}
≤ µHmin,

where in the last inequality we have set l = µ . As min-entropy
is less than Shannon entropy µHmin ≤ µH < 1−R and as IN1

L

is convex, IN1
L
(d) ≤ IU (d) for all d ∈ [0,H] while IN1

L
(d)

is increasing on [H,1− R] and so ID(d) = IN1
L
(d) for d ∈

[0,1− R]. For the scaling result for E(Dn), we reverse the
Legendre-Fenchel transform of ID to obtain the sCGF of the
process {n−1 logDn} via Varadhan’s Lemma.

IV. EXAMPLE: SOFT CONDITIONAL BSC
Assume that data is transmitted in a binary alphabet, A =
{0,1}, noise is additive in F2, and each transmitted bit is
impacted by noise independently with probability pS(1) = q∈
[0,1] whereupon pN|S(1|1) = p ∈ [0,1]. From eq. (5), the soft
decoding channel’s capacity is CSoft = 1−qh2(p), where h2(p)
is the binary Shannon entropy. The corresponding channel in
which Sn is not observed is a binary symmetric channel (BSC)
with probability pN|S(1|1)pS(1) = pq, whose channel capacity
is CHard = 1−h2(qp). As h2 is concave, CSoft ≥CHard for all
q and p.

As the soft detection symbol reliability information {Sn}
is constructed of i.i.d. elements, the rate function govern-
ing the LDP for the proportion of noise impacted symbols,
{Ln/n}, in Assumption 2 is the Kullback-Leibler divergence,
IL(l) = −(1− l) log((1− l)/(1−q))− l log(l/q), which has
the corresponding sCGF ΛL(α) = log(1−q+q2α). The rate
function for LDP of the rescaled guesswork {1/n logG(Nn

1 )}
in eq. (4) is the Legendre-Fenchel transform, IN1(g) =
supα

(
αg−ΛN1(α)

)
, of ΛN1(α)

=


− logmax(p,1− p) if α ≤−1
−p log(p)− (1− p) log(1− p) if α = 1

(1+α) log
(

p
1

1+α +(1− p)
1

1+α

)
if α ∈ (−1,1)∪ (1,∞).
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Fig. 2. BSC comparison, with P(S = 1) = q and P(N = 1|S = 1) = p), for a
range of q and p such that pq = 10−2, n = 102, a target block error rate of
10−2 and a code-rate of R. In the upper plot, the horizontal dashed line is the
target block error. In the lower plot the dashed black line gives approximate
complexity of the brute force approach. Circles indicate complexity crossing
points. Diamonds indicate the rate above which the target block error rate
would be exceeded.

From eq. (6), the sCGF for the subordinated guesswork of true
noise is ΛN1

L
(α) = ΛL(ΛN1(α)). The exponent of the average

complexity required to identify the true noise in the channel
with soft detection symbol reliability information is given by

lim
n→∞

1
n

logE
(

G
(

NLn

1

))
= log

(
1−q+q22log(p1/2+(1−p)1/2)

)
,

while for the hard detection channel it is

lim
n→∞

1
n

logE(G(Nn)) = 2log
(
(qp)1/2 +(1−qp)1/2

)
.

While prefactors are not captured in the asymptotic anal-
ysis in Theorems 1 and 2, they allow approximations. For
SGRAND’s error probability we use ≈ 2−nε(R) for R < 1−
qh2(p), where the expression for ε(R) can be found in eq. (10).
For SGRAND, our measure of complexity is the average num-
ber of guesses per bit, ≈ 2nmin(1−R,ΛL(H1/2))/n. For comparison,
let the complexity of the brute force computation of a ML
decoding to be the number of conditional probabilities to be
computed per bit before rank ordering and selecting the most
likely code-book element, 2nR/n. Thus we are equating the
work of one noise guess with computation of one conditional
probability. As with SGRAND, this scheme results in ML
decoding and so shares its error and success probabilities.

For n = 100 and (q, p) pairs such that pq = 10−2 and
so comparable with the hard detection channel, Fig. 2 plots
approximate error probabilities and complexity as a function
of code-book rate. The upper panel shows error probabili-
ties, with a target block error rate indicated by the dashed
horizontal line. Soft detection symbol reliability information
greatly improves block error probability even though in this

comparison the conditional probability of a bit flip given
soft detection symbol reliability information increases as the
soft detection probability decreases. The lower panel shows
approximate complexity, with the dashed for the brute force
approach, which grows exponentially in the code-book rate.
The complexity of SGRAND is initially flat, corresponding to
the average number of guesses until the true noise is identified.
As R increases, eventually the SGRAND complexity drops,
as encountering an erroneous element of the code-book clips
the long guessing tail of true noise. Soft detection symbol
reliability information dramatically reduces complexity.
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