
MSOL-Definability Equals Recognizability for
Halin Graphs and Bounded Degree

k-Outerplanar Graphs?

Lars Jaffke† and Hans L. Bodlaender‡

Abstract. One of the most famous algorithmic meta-theorems states
that every graph property that can be defined by a sentence in counting
monadic second order logic (CMSOL) can be checked in linear time for
graphs of bounded treewidth, which is known as Courcelle’s Theorem
[8]. These algorithms are constructed as finite state tree automata, and
hence every CMSOL-definable graph property is recognizable. Courcelle
also conjectured that the converse holds, i.e. every recognizable graph
property is definable in CMSOL for graphs of bounded treewidth. We
prove this conjecture for a number of special cases in a stronger form.
That is, we show that each recognizable property is definable in MSOL,
i.e. the counting operation is not needed in our expressions. We give
proofs for Halin graphs, bounded degree k-outerplanar graphs and some
related graph classes. We furthermore show that the conjecture holds for
any graph class that admits tree decompositions that can be defined in
MSOL, thus providing a useful tool for future proofs.

1 Introduction

In a seminal paper from 1976, Rudolf Halin (1934-2014), lay the ground work for
the notion of tree decompositions of graphs [13], which later was studied deeply
in the proof of the famous Graph Minor Theorem by Robertson and Seymour
[19] and ever since became one of the most important tools for the design of
FPT-algorithms for NP-hard problems on graphs. He was also the first one to
extensively study the class of planar graphs constructed by a tree and adding a
cycle through all its leaves, now known as Halin graphs [12].

Another seminal result is Courcelle’s Theorem [8], which states that for every
graph property P that can be formulated in a language called counting monadic
second order logic (CMSOL), and each fixed k, there is a linear time algorithm

? The research of the second author was partially funded by the Networks programme,
funded by the Dutch Ministry of Education, Culture and Science through the
Netherlands Organisation for Scientific Research.

† Department of Information and Computing Sciences, Utrecht University, P.O. Box
80.089, 3508 TB Utrecht, The Netherlands. Email: l.jaffke@students.uu.nl

‡ Department of Information and Computing Sciences, Utrecht University, P.O. Box
80.089, 3508 TB Utrecht, The Netherlands. Department of Mathematics and Com-
puter Science, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eind-
hoven, The Netherlands. Email: h.l.bodlaender@uu.nl

ar
X

iv
:1

50
3.

01
60

4v
1

 [
cs

.L
O

]
 5

 M
ar

 2
01

5
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Utrecht University Repository

https://core.ac.uk/display/39801741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that decides P for a graph given a tree decomposition of width at most k (while
similar results were discovered by Arnborg et al. [2] and Borie et al. [6]). Counting
monadic second order logic generalizes monadic second order logic (MSOL) with
a collection of predicates testing the size of sets modulo constants. Courcelle
showed that this makes the logic strictly more powerful [8], which can be seen
in the following example.

Example 1. Let P denote the property that a graph has an even number of
vertices. Then P is trivially definable in CMSOL, but it is not in MSOL.

The algorithms constructed in Courcelle’s proof have the shape of a finite state
tree automaton and hence we can say that CMSOL-definable graph properties
are recognizable (or, equivalently, regular or finite-state). Courcelle’s Theorem
generalizes one direction of a classic result in automata theory by Büchi, which
states that a language is recognizable, if and only if it is MSOL-definable [7].
Courcelle conjectured in 1990 that the other direction of Büchi’s result can also
be generalized for graphs of bounded treewidth in CMSOL, i.e. that each recog-
nizable graph property is CMSOL-definable.

This conjecture is still regarded to be open. Its claimed resolution by Lapoire
[16] is not considered to be valid by several experts. In the course of time proofs
were given for the classes of trees and forests [8], partial 2-trees [9], partial 3-trees
and k-connected partial k-trees [15]. A sketch of a proof for graphs of pathwidth
at most k appeared at ICALP 1997 [14]. Very recently, one of the authors proved,
in collaboration with Heggernes and Telle, that Courcelle’s Conjecture holds for
partial k-trees without chordless cycles of length at least ` [5].

In this paper we give self-contained proofs for Halin graphs, k-outerplanar
graphs of bounded degree, a subclass of k-outerplanar graphs (of unbounded
degree) and some classes related to feedback edge and/or vertex sets of bounded
size w.r.t. a spanning tree in the graph. In all of these cases we show a somewhat
stronger result, as we restrict ourselves to MSOL-definability, thus avoiding the
above mentioned counting predicate. Since Halin graphs have treewidth 3 [21],
Kaller’s result implies that recognizable properties are CMSOL-definable in this
case [15]. We strengthen this result to MSOL-definability.

Additionally, we show that Courcelle’s Conjecture holds in our stronger sense
for each graph class that admits certain types of MSOL-definable tree decomposi-
tions. We believe that this technique provides a useful tool towards its resolution
— if not for all graph classes, then at least for a significant number of special
cases.

In our proofs, we use another classic result in automata theory, the Myhill-
Nerode Theory [17][18]. It states that a language L is recognizable if and only if
there exists an equivalence relation ∼L, describing L, that has a finite number of
equivalence classes (i.e. ∼L has finite index). Abrahamson and Fellows [1] noted
that the Myhill-Nerode Theorem can also be generalized to graphs of bounded
treewidth (see also [11, Theorem 12.7.2]): Each graph property P is recognizable
if and only if there exists an equivalence relation ∼P of finite index, describing
P , defined over terminal graphs with a bounded number of terminal vertices.
This result was recently generalized to hypergraphs [3].

2

The general outline of our proofs can be described as follows. Given a graph
property P , we assume the existence of an equivalence relation ∼P of finite
index. We then show that, given a tree decomposition of bounded width, we
can derive the equivalence classes of terminal subgraphs w.r.t. its nodes from
the equivalence classes of their children. Once we reach the root of the tree
decomposition we can decide whether a graph has property P by the equivalence
class its terminal subgraph is contained in. We then show that this construction
is MSOL-definable.

The rest of the paper is organized as follows. In Section 2, we give the basic
definitions and explain all concepts that we use in more detail. In Section 3
we prove some technical results regarding equivalence classes w.r.t. nodes in
tree decompositions. The main results are presented in Sections 4 and 5, where
we prove Courcelle’s Conjecture for Halin graphs and other graph classes, such
as bounded degree k-outerplanar graphs. We give some concluding remarks in
Section 6.

2 Preliminaries

Graphs and Tree Decompositions

We begin by giving the basic definitions of the graph classes and some related
concepts used throughout the paper.

Definition 1 ((Planar) Embedding). A drawing of a graph in the plane is
called an embedding. If no pair of edges in this drawing crosses, then it is called
planar.

Definition 2 (Halin Graph). A graph is called a Halin graph, if it can be
formed by a planar embedding of a tree, none of whose vertices has degree two,
and a cycle that connects all leaves of the tree such that the embedding stays
planar.

Definition 3 (k-Outerplanar Graph). Let G = (V,E) be a graph. G is called
a planar graph, if there exists a planar embedding of G.

An embedding of a graph G is 1-outerplanar, if it is planar, and all vertices
lie on the exterior face. For k ≥ 2, an embedding of a graph G is k-outerplanar,
if it is planar, and when all vertices on the outer face are deleted, then one
obtains a (k − 1)-outerplanar embedding of the resulting graph. If G admits a
k-outerplanar embedding, then it is called a k-outerplanar graph.

One can immediately establish a connection between the two graph classes.

Proposition 1. Halin graphs are 2-outerplanar graphs.

The following definition will play a central role in many of the proofs of Sections
4 and 5.

3

Definition 4 (Fundamental Cycle). Let G = (V,E) be a graph with maximal
spanning forest T = (V, F). Given an edge e = {v, w}, e ∈ E\F , its fundamental
cycle is a cycle that is formed by the unique path from v to w in F together with
the edge e.

We now turn to the notion of tree decompositions and some related concepts.

Definition 5 (Tree Decomposition, Treewidth). A tree decomposition of
a graph G = (V,E) is a pair (T,X) of a tree T = (N,F) and an indexed family
of vertex sets (Xt)t∈N (called bags), such that the following properties hold.

(i) Each vertex v ∈ V is contained in at least one bag.
(ii) For each edge e ∈ E there exists a bag containing both endpoints.

(iii) For each vertex v ∈ V , the bags in the tree decomposition that contain v form
a subtree of T .

The width of a tree decomposition is the size of the largest bag minus 1 and the
treewidth of a graph is the minimum width of all its tree decompositions.

To avoid confusion, in the following we will refer to elements of N as nodes and
elements of V as vertices. Sometimes, to shorten the notation, we might not
differ between the terms node and bag in a tree decomposition.

Definition 6 (Node Types). We distinguish three types of nodes in a tree
decomposition (T,X), listed below.

(i) The nodes corresponding to leaves in T are called Leaf nodes.
(ii) If a node has exactly one child it is called an Intermediate node.

(iii) If a node has more than one child it is called a Branch node.

As we will typically speak of some direction between nodes in tree decomposi-
tions, such as a parent-child relation, we define the following.

Definition 7 (Rooted and Ordered Tree Decomposition). Consider a
tree decomposition (T = (N,F), X). We call (T,X) rooted, if there is one dis-
tinguished node r ∈ N , called the root of T , inducing a parent-child relation on
all edges in F . If there exists a fixed ordering on all bags sharing the same parent
node, then T is called ordered.

We now introduce terminal graphs, over which we will later define equivalence
relations for graph properties.

Definition 8 (Terminal Graph). A terminal graph G = (V,E,X) is a graph
with vertex set V , edge set E and an ordered terminal set X ⊆ V .

Terminal graphs of special interest in the rest of this paper are terminal subgraphs
w.r.t. bags in a tree decomposition. We require the notion of partial terminal
subgraphs in the proofs of Sections 3 and 5.1.

Definition 9 ((Partial) Terminal Subgraph). Let (T = (N,F), X) be a
rooted (and ordered) tree decomposition of a graph G = (V,E) with bags Xt and
Yt′ , t, t

′ ∈ N , such that t is the parent node of t′. The graphs defined below are
induced subgraphs of G given the respective vertex sets.

4

(i) A terminal subgraph of a bag Xt, denoted by [Xt]
+, is a terminal graph

induced by the vertices in Xt and all its descendants, with the set Xt as its
terminals.

(ii) A partial terminal subgraph of Xt given a child Yt′ , denoted by [Xt]
+
Yt′

is
the terminal graph induced by Xt and the vertices and edges of all terminal
subgraphs of the children of Xt that are left siblings of Yt′ , with terminal set
Xt.

The ordering in each terminal set of the above mentioned terminal graphs can
be arbitrary, but fixed.

For an illustration of Definition 9, see Figure 1a, where H = [XH]+ and G =
[XG]+XH .

Equivalence Relations

Definition 10 (Gluing via ⊕). Let G = (VG, EG, XG) and H = (VH , EH , XH)
be two terminal graphs with |XG| = |XH |. The graph G⊕H is obtained by taking
the disjoint union of G and H and for each i, 1 ≤ i ≤ |XG|, identifying the i-th
vertex in XG with the i-th vertex in XH .

Note that if an edge is included both in G and in H, we drop one of the edges
in G⊕H, i.e. we do not have parallel edges in the graph.

We use the operator ⊕ to define equivalence relations over terminal graphs.
Throughout the paper we will restrict ourselves to terminal graphs of fixed
boundary size (i.e. the maximum size of terminal sets is bounded by some con-
stant), since we focus on equivalence relations with a finite number of equivalence
classes. These, in general, do not exist for classes of terminal graphs with arbi-
trary boundary size (see [1]).

Definition 11 (Equivalence Relation over Terminal Graphs). Let P de-
note a graph property. ∼P denotes an equivalence relation over terminal graphs,
describing P , defined as follows. Let G, H and K be terminal graphs with fixed
boundary size. Then we have:

G ∼P H ⇔ ∀K : P (G⊕K)⇔ P (H ⊕K)

This yields notions of equivalence classes and finite index in the ordinary way.
We might drop the index P in case it is clear from the context.

We illustrate Definition 11 with an example.

Example 2. Let P denote the property that a graph has a Hamiltonian cycle. Let
G and H be two terminal graphs with terminal sets XG and XH , respectively
(where |XG| = |XH |). We say that G and H are equivalent w.r.t. ∼P , if for all
terminal graphs K (with terminal set XK , |XK | = |XG| = |XH |), the graph
G⊕K contains a Hamiltonian cycle if and only if H⊕K contains a Hamiltonian
cycle. A simple case when this hols is when both G and H contain a Hamiltonian
path such that their terminal sets consist of the two endpoints of the path.

5

As mentioned earlier, our ideas are based on the Myhill-Nerode Theory for graphs
of bounded treewidth. The following theorem formally states this result.

Theorem 1 (Myhill-Nerode Theorem for Graphs of Treewidth k). Let
P denote a graph property. Then the following are equivalent for any fixed k.

(i) P is recognizable for graphs of treewidth at most k.
(ii) There exists an equivalence relation ∼P , describing P , of finite index.

By the proof of this theorem (see, e.g., [11, Theorem 12.7.2]) we know that we can
identify some equivalence classes of ∼P with accepting states in the automaton
given in (i). Let CP denote such an (’accepting’) equivalence class and G ∈ CP
a terminal graph. Then we know that the graph G ⊕ (XG, ∅, XG) has property
P . We will use this fact in the proofs of Sections 4.3 and 5.1.

MSOL-Definability

We now define monadic second order logic over graphs. All variables that we use
in our expressions are either single vertices/edges or vertex/edge sets. Atomic
predicates are logical statements with the least number of variables, e.g. the
vertex membership ’v ∈ V ’. Higher-order predicates can be formed by join-
ing predicates via negation ¬, conjunction ∧, disjunction ∨, implication → and
equivalence↔ together with the existential quantifier ∃ and the universal quanti-
fier ∀. A predicate without free variables, i.e. variables that are not in the scope of
some quantifier, is called a sentence. A graph property is called MSOL-definable
if we can express it with an MSOL-sentence.

A central concept used in this paper is an implicit representation of a tree
decomposition in monadic second order logic, as we cannot refer to bags and
edges in a tree decomposition as variables in MSOL directly. Hence, we most
importantly require two types of predicates. The first one will allow us to verify
whether a vertex is contained in some bag and whether any vertex set in the
graph constitutes a bag in its tree decomposition. In our definition, each bag will
be associated with either a vertex or an edge in the underlying graph together
with some type, whose definition depends on the actual graph class under consid-
eration. The second one allows for identifying edges in the tree decomposition,
i.e. for any two vertex sets X and Y , this predicate will be true if and only if both
X and Y are bags in the tree decomposition and X is the bag corresponding to
the parent node of Y .

While all MSOL-definable tree decompositions have to be rooted, not all of
them have to be ordered. In some cases, however, an ordering on nodes with
the same parent is another prerequisite, which also has to be verifiable with an
MSOL-predicate.

Definition 12 (MSOL-definable tree decomposition). A rooted (and or-
dered) tree decomposition (T,X) of a graph G is called MSOL-definable, if the
following hold.

(i) Each bag X in the tree decomposition can be identified by one of the following
predicates (where s and t are constants).

6

(a) BagVτ1(v,X), . . . ,BagVτt(v,X): The bag X is associated with type τi and
the vertex v ∈ V , where 1 ≤ i ≤ t.

(b) BagEσ1
(e,X), . . . ,BagEσs(e,X): The bag X is associated with type σj and

the edge e ∈ E, where 1 ≤ j ≤ s.
Furthermore there exists at least one type that contains the corresponding
vertex or both endpoints of the corresponding edge.

(ii) There exists a predicate Parent(Xp, Xc) to identify edges in T , which is true,
if and only if Xp is the parent bag of Xc.

We call an MSOL-definable tree decomposition ordered, if the following holds.

(iii) There exists a predicate nb≺(Xl, Xr), which is true if and only if Xl and Xr

are siblings such that Xl is the direct left sibling of Xr.

3 Constructing Equivalence Classes

The current section contains a number of technical results related to equivalence
classes of (partial) terminal subgraphs of bags in a tree decomposition. In par-
ticular, we will show how to derive the equivalence classes of (partial) terminal
subgraphs of bags in a tree decomposition from the equivalence classes of some
(partial) terminal subgraphs of child/sibling bags. Hence we prove that these
equivalence classes are related to each other in the same way as states in some
finite automaton via its transition function, which will be of vital importance in
the proofs of Sections 4.3 and 5.1.

In the following, unless stated otherwise, we assume that our tree decom-
position is rooted and ordered. First, we consider branch nodes. We begin by
defining an operator, which can be seen as an extension of the ⊕-operator.

Definition 13 (Gluing via ⊕B). Let XG be a branch bag in a tree decompo-
sition with child XH and let G = [XG]+XH = (VG, EG, XG) and H = [XH]+ =
(VH , EH , XH) denote the partial terminal subgraph of XG given XH and the
terminal subgraph of XH , respectively. The operation ⊕B is defined as:

G⊕B H = (VG ∪ VH , EG ∪ EH , XG)

Note that again, we drop parallel edges, if they occur.
Consider the situation depicted in Figure 1 and suppose that we know the

equivalence class for the graph G = [XG]+XH , i.e. the partial terminal subgraph
of XG given XH , and the equivalence class for graph H = [XH]+, the terminal
subgraph of XH . We want to derive the equivalence class of the partial terminal
subgraph of XG given the right sibling of XH (which is the terminal graph
G⊕B H).

We will prove that the equivalence class of G ⊕B H only depends on the
equivalence class of G and H by explaining how we can create a terminal graph
in this class from any pair of graphs G′ ∼ G, H ′ ∼ H with XG′ = XG and
XH′ = XH . Note that since we are only interested in determining whether
the underlying graph of the tree decomposition, say G∗, has property P , it is

7

XG

XH

G

H

G⊕B H

(a) The respective terminal graphs

XG

X ′
G = XG

G

H

XH

(b) Splitting {XG, XH}

Fig. 1. Branch node in a tree decomposition

sufficient to only consider terminal graphs in the equivalence classes of G and H
that have the same terminal sets as G and H. These classes contain any number
of (terminal) graphs, which are (also up to isomorphism) completely unrelated
to G∗ and hence can be disregarded. The following lemma formalizes the above
discussion.

Lemma 1. Let XG be a branch bag in a tree decomposition and XH one of its
child bags. Let G = [XG]+XH , H = [XH]+ and G′ and H ′ two terminal graphs. If
G′ ∼ G, H ′ ∼ H, XG = XG′ and XH = XH′ , then (G⊕B H) ∼ (G′ ⊕B H

′).

Proof. We first define an operator that allows us to rewrite ⊕B.

Definition 14 (Gluing via ⊕T). Let G be a (terminal) graph and X an ordered
set of vertices. The operation ⊕T is defined as:

G⊕T X = (VG ∪X,EG, X)

That is, we take the (not necessarily disjoint) union of X and the vertices in G
and let X be the terminal set of the resulting terminal graph.

Note that ⊕T can either be used to make a graph a terminal graph, or to equip
a terminal graph with a new terminal set. One easily observes the following.

Proposition 2. Let G and H be two terminal graphs as in Lemma 1. Then,

G⊕B H =

(a)︷ ︸︸ ︷
(G⊕ (H ⊕T XG)︸ ︷︷ ︸

(b)

)⊕T XG . (1)

This process of rewriting ⊕B can be illustrated as shown in Figure 1b. Instead
of computing G⊕BH directly, we split the edge between the bags XG and XH ,
creating a new bag X ′G in between the edge, where X ′G = XG. Then we extend
H to a terminal graph with terminal set X ′G by using the ⊕T -operator. Denote

8

G
H

K
XK

XG = XH

Fig. 2. Terminal graphs G,H and K as in the proof of Proposition 3. The dashed lines
indicate, which vertices are being identified in the corresponding ⊕-operation.

this graph by HX′G
. Since HX′G

has terminal set X ′G = XG, we can apply ⊕ to
G and H ′, such that all vertices that are identified in the operation are equal.
This results in the graph consisting of all vertices and edges in both G and H.
Eventually, we apply ⊕T to the resulting graph again to make it a terminal
graph with terminal set XG.

We will lead the proof of Lemma 1 in two steps: First we show that we can
construct graphs equivalent to (G ⊕H) ⊕T XG by members of the equivalence
classes of G and H, if G and H have the same terminal set (Part (a) of Equa-
tion 1, where H denotes the terminal graph H ⊕T XG). In the second step, we
show that we can construct graphs equivalent to H ⊕T X from members of the
equivalence class H for any terminal set X (Part (b) of Equation 1).

We now proceed with the formal proofs.

Proposition 3. Let G = (VG, EG, XG) and H = (VH , EH , XH) be two terminal
graphs with XG = XH . Let G′ and H ′ be two terminal graphs with G′ ∼ G,
H ′ ∼ H, XG = XG′ and XH = XH′ . Then,

(G⊕H)⊕T XG ∼ (G′ ⊕H ′)⊕T XG′ .

Proof. By Figure 2 we can observe the following.

K ⊕ ((G⊕H)⊕T XG) = G⊕ ((K ⊕H)⊕T XG)

Regardless of the order in which we apply the operators, both graphs will have
the same vertex and edge sets. As for the identifying step (using the ⊕-operator),
one can see that for all i = 1, . . . , |XK | we have that the i-th vertex in XK is
identified with the i-th vertex in XG in the left-hand side of the equation and
with the i-th vertex in XH in the right-hand side. The equality still holds, since
XG = XH . We use this argument (and the fact that XG′ = XG = XH = XH′)
to show the following.

∀K : P (K ⊕ ((G⊕H)⊕T XG))⇔ P (G⊕ ((K ⊕H)⊕T XG))

⇔P (G′ ⊕ ((K ⊕H)⊕T XG′))⇔ P (H ⊕ ((K ⊕G′)⊕T XH))

⇔P (H ′ ⊕ ((K ⊕G′)⊕T XH′))⇔ P (K ⊕ ((G′ ⊕H ′)⊕T XG′))

Hence, our claim follows. ut

9

K
XK

H
X XH

Fig. 3. Terminal graphs H and K, and a terminal set X. The dashed lines indicate,
which vertices are being identified in the corresponding ⊕-operation.

Lemma 2. Let H,H ′ be terminal graphs with H ∼ H ′, XH = XH′ and X an
ordered vertex set. Then, H ⊕T X ∼ H ′ ⊕T X.

Proof. By Figure 3, one can derive a similar argument as in the proof of Propo-
sition 3. Note that |XK | = |X| (otherwise, ⊕ is not defined) and let KX =
K⊕(X, ∅, X), i.e. the graph obtained by identifying each i-th vertex in XK with
each i-th vertex in X, where 1 ≤ i ≤ |XK |. Then,

K ⊕ (H ⊕T X) = H ⊕ (KX ⊕T XH).

In the left-hand side, we first extend the terminal graph H to have terminal
set X and then glue the resulting graph to K. Thus the i-th vertex in XK is
identified with the i-th vertex in X, i = 1, . . . , |XK |. The same vertices are being
identified in the first step in computing the right-hand side, which is constructing
the graph KX . We then extend this graph to have terminal set XH and glue
it to the graph H. Since again, in both of the computations the same vertices
get identified and both graphs have equal vertex and edge sets, we see that our
claim holds. We use this argument (and the fact that XH = XH′) to conclude
our proof as follows.

∀K : P (K ⊕ (H ⊕T X))⇔ P (H ⊕ (KX ⊕T XH))

⇔P (H ′ ⊕ (KX ⊕T XH′))⇔ P (K ⊕ (H ′ ⊕T X))

ut

This concludes our proof of Lemma 1. ut

The methods used in this proof also allow us to handle intermediate nodes in
a tree decomposition. For an illustration see Figure 4a. Lemma 2 suffices as an
argument that we can derive the equivalence class of G from graphs equivalent
to H.

Next, we generalize the situation of Lemma 1, where we were dealing with
two child nodes of a branch bag, to handle any constant number of children at
a time (see Figure 4b). We will apply this result to tree decompositions that are
not ordered but instead have bounded degree.

10

XG

XH

H

G

(a) Intermediate node,
where G = H ⊕T XG.

XG

XH1
XH2

XH3

G

H1 H2 H3

(b) Bounded degree branch node. Note that G =
(H1 ⊕T XG)⊕B (H2 ⊕T XG)⊕B (H3 ⊕T XG).

Fig. 4. Intermediate and bounded degree branch node in a tree decomposition.

Lemma 3. Let XG be a branch bag in a tree decomposition with a constant
number of child bags XH1

, . . . , XHc . Let H1 = [XH1
]+,. . . , Hc = [Xc]

+. If H ′1 ∼
H1, . . . ,H

′
c ∼ Hc and XH′1

= XH1
, . . . , XH′c

= XHc , then

(H1 ⊕T XG)⊕B · · · ⊕B (Hc ⊕T XG) ∼ (H ′1 ⊕T XG)⊕B · · · ⊕B (H ′c ⊕T XG)

Proof. Let G and H be the two terminal graphs as indicated below.

(H1 ⊕T XG)︸ ︷︷ ︸
G

⊕B (H2 ⊕T XG)⊕B · · · ⊕B (Hc ⊕T XG)︸ ︷︷ ︸
H

Since H1 ∼ H ′1, we know by Lemma 2, that (H1 ⊕T XG) ∼ (H ′1 ⊕T XG). Let
G′ = (H ′1 ⊕T XG), then we have that G ∼ G′. Now, by Lemma 1, we know that
(G⊕B H) ∼ (G′ ⊕B H) and hence:

G⊕B H ∼ (H ′1 ⊕T XG)⊕B H

We can apply this argument repeatedly and our claim follows. Note that the
child bags XH1 , . . . , XHc do not need a specific ordering, as in this context the
operation ⊕B is commutative (all graphs, which it is applied to, have terminal
set XG). ut

4 Halin Graphs

This section is devoted to proving our first main result, which is that MSOL-
definability equals recognizability for the class of Halin graphs. As outlined be-
fore, we will prove that finite index implies MSOL-definability. In a first step, we
will show that we can define a certain orientation on the edges of a Halin graph

11

together with an ordering on edges with the same head vertex in monadic second
order logic (Section 4.1), which we then will use to construct MSOL-definable
tree decompositions of Halin graphs (Section 4.2). We conclude the proof in
Section 4.3.

In many of the proofs of MSOL-definability of graph (or tree decomposition)
properties, we use other graph properties that have been shown to be MSOL-
definable before, and refer for more precise expressions to the appendix.

4.1 Edge Orientation and Ordering

In the following we will develop an orientation on the edges of a Halin graph, to-
gether with an ordering on edges with the head vertex, which is MSOL-definable.
Our goal is that in this orientation, the edges that form the cycle connecting the
leaves is a directed cycle and the tree of the Halin graph forms a directed tree
with some arbitrary root on the outer cycle.

Lemma 4 (Cf. [10], Lemma 4.8 in [15]). Let G be a graph of treewidth k.
Any orientation φOri on its edges using predicates head(e, v) and tail(e, v) is
MSOL-definable.

Proof. Since G has treewidth k, we know that it admits a k + 1-coloring on its
vertices. We assume we are given such a coloring and denote the color set by
{0, 1, . . . , k}. Now let F be a set of edges of G and e = {v, w} an edge in the
graph. We know that col(v) 6= col(w) and thus we either have col(v) < col(w)
or col(v) > col(w). We let the edge e be directed from v to w, if

(i) col(v) < col(w) and e ∈ F , or
(ii) col(v) > col(w) and e /∈ F

and otherwise from w to v. Thus we can choose any orientation of the edge set
of G by choosing the corresponding set F . Assuming that φOri uses predicates
head(e, v) and tail(e, v) as shown in Appendix A.1, we can define our sentence
as

∃X0 · · · ∃Xk(∃F ⊆ E)(k + 1-col(V,X0, . . . , Xk) ∧ φOri).
ut

Lemma 5. Let G = (V,E) be a Halin graph. The orientation on the edge set of
G such that its spanning tree forms a rooted directed tree and the outer cycle is
a directed cycle, is MSOL-definable.

Proof. Since Halin graphs have treewidth 3, we can use Lemma 4. Let ET de-
note the edges in the spanning tree and EC the edges on the outer cycle. The
orientation stated above can be defined in MSOL as

φOri = ∃ET∃EC(PartE(E,ET , EC) ∧ Tree→(V,ET) ∧ Cycle→(IncV(EC), EC)).

The MSOL-predicates given in Appendix A.1 complete the proof. ut

12

r

e
f

el er = fl

frv

Fig. 5. Example of a Halin graph with edge orientation.

Next, we define an ordering on all edges with the same head vertex in a Halin
graph, which we can define in monadic second order logic using the orientation
of the edges given above and its fundamental cycles. This is a central step in our
proof, as it allows us to avoid using the counting predicate in the construction
of our tree decomposition. The main idea in the proof of Lemma 6 is that we
can order the child edges of a vertex in the order in which their leaf descendants
appear on the outer cycle.

Lemma 6. For any vertex in a Halin graph there exists an ordering nb< on its
child edges that is MSOL-definable.

Proof. Let G = (V,E) be a Halin graph with an orientation on its edges as
shown in Lemma 5, ET its edges of the spanning tree, EC the edges of the outer
cycle and r the root of the tree ET . Now, consider an inner vertex v ∈ V (a
non-leaf vertex w.r.t. the tree) and two child edges e and f of v (with e 6= f).
Every edge of a Halin graph is contained in exactly two fundamental cycles.
Assume we have an ordering on the child edges of v and f is the right neighbor
of e. We denote the edges in EC , whose fundamental cycles contain e and f by
e`, er, f` and fr, such that e` and f` (er and fr) are contained in the left (right)
fundamental cycles of e and f , respectively. (See Figure 5 for an example.)

Now consider directed paths in EC from r to the tail vertices of the above
mentioned edges. If f is on the right-hand side of e, then the path from r to
the tail of fr is always the shortest of the four. The MSOL-predicates given in
Appendix A.2 define such an ordering nb<(e, f). ut

4.2 MSOL-Definable Tree Decompositions

In this section we will describe how to construct a width-3 tree decomposition
of a Halin graph that is definable in monadic second order logic.

First we introduce the notion of left and right boundary vertices of a Halin
graph with an edge orientation and ordering as described in the previous section.

Definition 15 (Left and Right Boundary Vertex). Given a vertex v ∈ V
of a Halin graph G, a vertex is called its left boundary vertex, denoted by bdl(v)

13

l(x) x

y

bdl(y)
bdr(x)

bdl(x)

bdr(l(x))

(a) Structural overview of a Halin graph.

R1

R2

R3

LR

L3

L2

L1

(b) The component
created for each edge.

Fig. 6. Constructing a component of a tree decomposition for an edge of a Halin graph.

if there exists a (possibly empty) path EP from v to bdl(v) in ET , such that the
tail vertex of each edge in EP is the leftmost child of its parent. Similarly, we
define a right boundary vertex bdr(v). The boundary of a vertex v is the set
containing both its left and right boundary vertex, denoted as bd(v).

Note that for all cycle vertices v ∈ VC , we have v = bdl(v) = bdr(v). We now
state the main result of this section.

Lemma 7. Halin graphs admit width-3 MSOL-definable tree decompositions.

Proof. Let G = (V,E) be a Halin graph and suppose we have an orientation and
ordering on its edges as described in Section 4.1. That is, we have a partition
(EC , ET) of E such that EC forms the (directed) outer cycle and ET the (di-
rected) tree of G and there is an ordering on edges with the same head vertex
in ET .

For each edge e ∈ ET we construct a component in the tree decomposition
that covers the edge itself and one edge on the outer cycle. A component for
an edge e = {x, y}, where y is the parent of x in ET covers the edges {x, y}
and the edge {bdr(l(x)), bdl(x)} on EC , whose fundamental cycle both contains
{x, y} and {l(x), y} (see Figure 6a for an illustration). For the former we create
a branch of bags of types R1, R2 and R3 and for the latter bags of types L1, L2
and L3, joined by a bag of type LR, containing the following vertices.
R1. This bag contains the vertex x and its boundary vertices bd(x).
R2. This bag contains the vertices x and y and the vertices bd(x).
R3. This bag forgets the vertex x and thus contains y and bd(x).
L1. This bag contains the vertices y, bdl(y) and bdr(l(x)).
L2. This bag introduces the vertex bdl(x) to all vertices in the bag L1.
L3. This bag forgets the vertex bdr(l(x)) and thus contains y, bdl(y) and bdl(x).
LR. This bag contains the union of L3 and R3, and hence contains the vertices
y, bdl(y) and bd(x).
Figure 6b illustrates the structure of the component described above.

To continue the construction, we note that removing bdr(x) from the bag of
type LR results in a bag of type L1 for the right neighbor edge, if such an edge

14

exists. If x is the rightmost child of y, then removing bdr(x) results in a bag
of type R1 for the edge between y and its parent in ET . This way we can glue
together components of edges using the orientation and ordering of the edge set
of the graph. Note that if x is the leftmost child of y, then it is sufficient to only
create bags of types R1, R2 and R3, since we do not have to cover an edge on
the outer cycle.

Once we reach the root (i.e. y is the root vertex of the graph), we only create
the bags of type R1 and R2 and our construction is complete.

One can verify that this construction yields a tree decomposition of G and
since the maximum number of vertices in one bag is four, its width is indeed
three.

To show that these tree decompositions are MSOL-definable, we note that
we can define each bag type in MSOL in a straightforward way, once we defined
a predicate for boundary vertices. The predicate Parent(Xp, Xc) requires that
there are no two bags in the tree decomposition that contain the same vertex
set and so we contract all edges between bags with the same vertex set.

The MSOL-predicates given in Appendix A.3 complete the proof. ut
From the construction given in this proof, we can immediately derive a conse-
quence that will be useful in the proof of Section 4.3.

Corollary 1. Halin graphs admit binary width-3 MSOL-definable tree decom-
positions such that all their leaf bags have size one.

Proof. It is easy to see by the construction given in the proof of Lemma 7
that this tree decomposition is binary. All leaf bags are of type R1 and are
associated with edges whose tail vertex x is a vertex on the outer cycle. Hence,
x = bdl(x) = bdr(x) and our claim follows. ut
We will illustrate the construction of a tree decomposition given in the proof of
Lemma 7 with the following example.

Example 3. Consider the graph depicted in Figure 7a. We are going to show how
to create the component of its tree decomposition corresponding to the edges
{a, b}, {a, c} and {c, i}.
– {a, b}: Since the vertex b does not have a left sibling, we only create bags
R1, R2 and R3. Note that LR = R3, since LR = L3 ∪ R3, and we do not
have a bag of type L3.

– {c, i}: Since i is a leaf vertex we have that bdl(i) = bdr(i) = i and so the
right path starts with a bag {i}. For the same reason we have that the bags
R2 and R3 are equal and we contract the edge. For the left path this has the
effect that L3 and LR are equal, so the edge between them gets contracted
as well.

– {a, c}: This component can be constructed in a straightforward manner. The
bag L1 is the parent of the bag LR w.r.t. {a, b} and R1 is the parent of LR
w.r.t. {c, i}. Since in both cases the vertex sets are equal, we also contract
these edges.

Figure 7b shows the resulting part of the tree decomposition.

15

r

a

b c
d

e f g h i

(a) An example Halin graph.

a, e, f

a, b, e, f

b, e, f

{a, b}

i

c, i

c, g, i

c, g, h, i

c, g, h

{c, i}

{a, c}

a, c, g, i

a, g, i

a, e, f, g

a, e, g

a, e, g, i

a, e, i

(b) The component of the tree decomposition
corresponding to the denoted edges.

Fig. 7. An example subtree of a tree decomposition of a Halin graph.

4.3 Finite Index Implies MSOL-Definability

In this section we complete the proof of our first main result, stated below. We
will also use ideas that we give here first for extending our results to other graph
classes, see Section 5.

Lemma 8. Finite index implies MSOL-definability for Halin graphs.

Proof. By Lemma 7 we know that Halin graphs admit MSOL-definable tree
decompositions of bounded width and thus what is left to show is that we can
define the equivalence class membership of terminal subgraphs w.r.t. its bags in
monadic second order logic.

We know that the graph property P has finite index, so in the following we
will denote the equivalence classes of ∼P by C1, . . . , Cr. By Lemmas 1 and 3
we know that we can derive the equivalence class of a terminal subgraph w.r.t.
a node by the equivalence class(es) of terminal subgraphs w.r.t. its descendant
nodes in the tree decomposition. Hence, we can conclude that the following two
functions exist, also taking into account that our tree decomposition is binary
(Corollary 1).

Proposition 4. There exist two functions fI : N×P(V)→ N and fJ : P2(N)×
P(V)→ N, such that:

(i) If X is an intermediate bag in a tree decomposition with child bag Xc and
[Xc]

+ ∈ Ci, then [X]+ ∈ CfI(i,X).
(ii) If X is a branch bag with child bags X1 and X2, [X1]+ ∈ Ci and [X2]+ ∈ Cj,

then [X]+ ∈ Cf({i,j},X).

16

Roughly speaking, these functions can be seen as a representation of the transi-
tion function of an automaton that we are given in the original formulation of
the conjecture (cf. Theorem 1).

Next, we mimic the proof of Büchi’s famous classic result for words over an
alphabet [7], as shown in [20, Theorem 3.1]. For each equivalence class i we define
sets CEi,σ ⊆ E for each type σ (see the proof of Lemma 7) and equivalence class

i. An edge e is contained in set CEi,σ, if and only if the terminal subgraph rooted
at a bag of type σ w.r.t. the edge e is in equivalence class i.

Our MSOL-sentence consists of three parts. First, we identify the equivalence
classes corresponding to leaf nodes of the tree decomposition, and we will denote
this predicate as φLeaf . This is rather trivial, since we know that all leaf bags
contain exactly one vertex (Corollary 1) and there is one unique equivalence
class to which they all belong, in the following denoted by CLeaf . Note that
these bags are always of type R1.

Second, we derive the equivalence class membership for terminal subgraphs
using Proposition 4, assuming we already determined the equivalence class to
which the terminal subgraphs w.r.t. its descendants belong. We denote this pred-
icate by φTSG.

Lastly, we check if the graph corresponding to the terminal subgraph of the
root bag of the tree decomposition is in an equivalence class satisfying P , which
we denote by φRoot. We know that we can identify these equivalence classes by
(the discussion given after) Theorem 1 and will denote them by CA1

, . . . , CAp .

Our MSOL-sentence then combines to:

φLeaf ∧ φTSG ∧ φRoot (2)

Sentence 2 together with the details for the subsentences given in Appendix A.4
complete the proof. ut

Combining Lemma 8 with Theorem 1 and [8], we directly obtain the following.

Theorem 2. MSOL-definability equals recognizability for Halin graphs.

5 Extensions

The methods we used in the proofs of Section 4 can be generalized and applied
to a number of other graph classes, some of which we are going to discuss in this
section. The main results are presented in Sections 5.1 and 5.4. In the former we
show that MSOL-definability equals recognizability for any graph class that ad-
mits either a bounded degree or an ordered MSOL-definable tree decomposition
and in the latter we give the proof for bounded degree k-outerplanar graphs.
Furthermore we study another subclass of k-outerplanar graphs in Section 5.2
and graphs that can be constructed with bounded size feedback edge and vertex
sets in Section 5.3.

17

5.1 MSOL-Definable Tree Decompositions

We will now turn to generalizing the proof for Halin graphs to any graph class
that admits MSOL-definable tree decompositions that are either ordered or have
bounded degree. The proof works analogously as the proof of Lemma 8. This
result will give us a useful tool to prove Courcelle’s Conjecture for a number of
graph classes, since it will follow immediately from the construction of MSOL-
definable tree decompositions.

Lemma 9. Finite index implies MSOL-definability for each graph class that
admits MSOL-definable ordered tree decompositions of bounded width.

Proof. It is easy to see that the predicate φRoot can be defined in the same way
as in the proof of Lemma 8, only adding a short case analysis, since we do not
necessarily know of which type the root bag is. Since leaf bags might not neces-
sarily always have size one, we apply a small change to the tree decomposition.
Assume that its width is k and that we have a (k + 1)-coloring on the vertices
of the graph, such that each vertex in a bag has a different color. Then, for each
leaf bag of size greater than one, we add one child bag containing only the vertex
with the lowest numbered color. This bag will be identified by a newly intro-
duced type and associated with the same vertex/edge as its parent. We modify
the Bag- and Parent-predicates accordingly and can define φLeaf in the same
way as in Lemma 8, again including a case analysis as for the φRoot-predicate.

Hence, in the following we only need to show how to define φTSG to prove
the claim. Again assume that the equivalence classes of ∼P are denoted by
C1, . . . , Cr. We can use the function fI defined in Proposition 4 to describe
the relations between the equivalence classes for intermediate nodes. We need
another function to handle partial terminal subgraphs w.r.t. a branch node,
whose existence is guaranteed by Lemma 1.

Proposition 5. There exists a function fJ : N×N→ N, such that the following
holds. If X is a branch bag with child bag Y , [X]+Y ∈ Ci and [Y]+ ∈ Cj, then:

(i) If Y is the rightmost child of X, then [X]+ ∈ CfJ (i,j).
(ii) Otherwise [X]+r(Y) ∈ CfJ (i,j), where nb≺(Y, r(Y)).

In the following, let τ ∈ {τ1, . . . , τt} and σ ∈ {σ1, . . . , σs}. We define a number
of sets, each one associated with an equivalence class i, containing either vertices
or edges in the graph (as indicated by their upper indices), CVi,τ and CEi,σ. If a

vertex v is contained in the set CVi,τ this means that the terminal subgraph

rooted at the bag for vertex v of type τ is in equivalence class i. CEi,σ is the

edge set analogous to CVi,τ . These sets can be used to define the equivalence class
membership of terminal subgraphs rooted at intermediate nodes.

Now let X be a bag in the tree decomposition with child Y , such that the
node containing X is an intermediate node. We have to distinguish four cases
when deriving the membership of a vertex/an edge in the respective sets, which
are:

18

1. Both X and Y correspond to a vertex.
2. Both X and Y correspond to an edge.
3. X corresponds to a vertex and Y to an edge.
4. X corresponds to an edge and Y to a vertex.

The predicates defining these cases for intermediate nodes are given in Appendix
A.5.

When considering a branch node and the partial terminal subgraphs asso-
ciated with it, we have to analyze at most eight such cases. We first turn to
the definition of sets representing the equivalence class membership of a partial
terminal subgraph rooted at a branch bag w.r.t. one of its children. Assume that
a bag X is of type τ for vertex v and one of its child bags Y is of type τ ′ for the

vertex v′. Let C
V |P
i,τ and C

V |C
i,τ ′ be sets of vertices. We express that the partial

terminal subgraph rooted at the bag of type τ for vertex v w.r.t. the bag of type

τ ′ for vertex v′ is in equivalence class i by having v ∈ CV |Pi,τ and v′ ∈ CV |Ci,τ ′ . We

define edge sets C
E|P
i,σ and C

E|C
i,σ with the same interpretation. The predicates

for branch nodes can be found in Appendix A.5, which complete the proof. ut

If we are given an MSOL-definable tree decomposition that does not have an
ordering on the children of branch nodes, but instead we know that each branch
node has a constant number of children, we can prove a similar result.

Lemma 10. Finite index implies MSOL-definability for each graph class that
admits bounded degree MSOL-definable tree decompositions of bounded width.

Proof. Since this proof works almost exactly as the proof of Lemma 9, we only
state the differences. Let c + 1 denote the maximum degree of a (branch) node
in the tree decomposition and again we refer to the equivalence classes of ∼P
as C1, . . . , Cr. Using Lemma 3 we know that the following holds (generalizing
Proposition 4(ii)).

Proposition 6. There exists a function fJ : Pc(N) × P(V) → N, such that if
X is a branch bag in a tree decomposition with child bags X1, . . . , Xk (where
2 ≤ k ≤ c), and each terminal subgraph [Xi]

+ is in equivalence class Cci , then
the terminal subgraph [X]+ is in equivalence class fJ({c1, . . . , ck}, X).

Again, to define our predicate we use vertex sets CVi,τ to represent equivalence
class membership of a terminal subgraph rooted at a vertex bag of type τ and
edge sets CEi,σ for edge bags of type σ (and equivalence class i). We show how
to define a predicate for branch bags in such tree decompositions in Appendix
A.5 and our claim follows. ut

Combining Lemmas 9 and 10 with Theorem 1 and [8], we obtain the following.

Theorem 3. MSOL-definability equals recognizability for graph classes that ad-
mit ordered or bounded degree MSOL-definable tree decompositions of width at
most k.

19

c

(a) G without edge
orientation

r = r2

r1

c

(b) G with edge ori-
entation

Fig. 8. An example 2-cycle tree G with central vertex c.

5.2 k-Cycle Trees

In this section we consider graph class which can be seen as a slight generalization
of Halin graphs.

Definition 16 (k-cycle trees). A graph G is called cycle tree, if it is a planar
graph that can be obtained by a planar embedding of a tree with one distinguished
vertex c ∈ V , called the central vertex, such that all vertices of distance d from c
are connected by a cycle. If each vertex (except for c) is contained in one cycle,
the number of which is k, then G is called a k-cycle tree. We will refer to the
cycle of distance d from c as the cycle Cd.

Figure 8a shows an example of a 2-cycle tree. We easily observe the following.

Proposition 7. Each k-cycle tree is k-outerplanar.

Lemma 11. Any edge orientation φOri using predicates head(e, v) and tail(e, v)
is MSOL-definable for k-outerplanar graphs .

Proof. This follows immediately from Lemma 4 and the fact that k-outerplanar
graphs have treewidth at most 3k − 1 [4, Theorem 83]. ut

To prove our result for k-cycle trees, we need the notion of the i-th left and right
boundary of a vertex, referring to vertices on the i-th cycle of the graph.

Definition 17 (i-th boundary vertex). Given a vertex v, we say that w is
its i-th left boundary vertex, denoted by bdli(v), if w lies on Ci and there exists
a path ElP from v to w, only using edges of the tree of the graph, such that no
other path from v to any vertex on Ci exists that uses an edge that lies on the left
of one of the edges in ElP . Similarly, we define the i-th right boundary vertex
bdri (v).

Now we are ready to prove the main result of this section.

20

L1

L2

L3

R1

R2

LR

Fig. 9. Bag types and edges for a component in the tree decompositions of a k-cycle
tree.

Lemma 12. k-Cycle trees admit MSOL-definable binary tree decompositions of
width at most 4k.

Proof. We can show this in almost exactly the same way as for Halin graphs
(Lemma 7), so we will focus on pointing out the differences. Again, at first we
define an edge orientation on k-cycle trees. Instead of partitioning the edge set
into one directed tree and one directed cycle we now have one directed tree ET
and k directed cycles, such that ECi denotes the cycle of distance i from the
central vertex c.

The root of the tree is a vertex incident to the outermost cycle and for each
cycle Ci we have one incident root vertex ri, which will be used to define the
neighbor ordering of edges with the same head vertex. For a cycle Ci this will be
a vertex of distance k − i from the root vertex of the tree. One can verify that
this edge orientation is MSOL-definable by Lemma 11 and the predicates given
in Appendix A.6. For an illustration of the orientation see Figure 8b.

Using this orientation one can define a predicate nbi<(e, f) for ordering all
edges with the same parent, which then can be utilized to define i-th boundary
vertices.

As in the proof of Lemma 7, we construct a component in the tree decomposi-
tion for each edge e ∈ ET . The definition of the bag types is somewhat different,
since now we have to take into account at most k cycle edges per component
instead of a single one. Given an edge e = {x, y} such that y is the parent of x
and y lies on cycle Ci, we have the following types of bags, with edges between
them as shown in Figure 9. (Note that if in the following we refer to boundary
vertices, we always mean the boundary vertices on higher numbered cycles.)
R1. This bag contains the vertex x and all its left and right boundaries.
R2. This bag contains all vertices in the bag R1 plus the vertex y.
L1. This bag contains the vertex y, all its left boundary vertices and the right
boundary vertices of y in the forest consisting of ET without the edge e and its
right neighbors.
L2. This bag contains all vertices of the bag L1 plus the left boundary vertices
of x (including x itself, if x 6= c).
L3. This bag contains the vertices of the bag L2 minus the right boundary ver-

21

tices z of y without e and its right neighbors, such that z has a matching left
boundary vertex. That is, there is an edge between said boundary vertices and
thus the vertex z can be forgotten.
LR. This bag contains the union of the bags L3 and R2.
One can verify that this construction yields a tree decomposition for k-cycle
trees. The largest of its bags is of type LR, which might contain four boundary
sets, each of which has size at most k, plus the vertices x and y. Since we have
only one vertex, which is no boundary vertex (the central vertex c), we can con-
clude that the size of this bag is at most 4k+1 and hence this tree decomposition
has width 4k. The predicates in Appendix A.6 complete the proof. ut
Combining Lemma 12 with Theorem 3, we can derive the following.

Theorem 4. MSOL-definability equals recognizability for k-cycle trees.

5.3 Feedback Edge and Vertex Sets

In this section we consider graphs that can be obtained by the composition of a
graph that admits an MSOL-definable (ordered) tree decomposition and some
feedback edge or vertex sets, defined below.

Definition 18. Let G = (V,E) be a graph. An edge set E′ ⊆ E is called feed-
back edge set, if G′ = (V,E \ E′) is acyclic. Analogously, a vertex set V ′ is
called feedback vertex set, if the graph G′ = (V \ V ′, E \ E′) is acyclic, where
E′ denotes the set of incident edges of V ′ in E.

Theorem 5. Let G = (V,E) be a graph with spanning tree T = (V, F), which
admits an MSOL-definable (ordered) tree decomposition of width k, such that its
vertex and edge bag predicates are associated with either (a subset of the) vertices
of the graph or (a subset of the) edges in the spanning tree.

Let l be a constant. A graph G′ admits an MSOL-definable (ordered) tree
decomposition of width k + l, if one of the following holds.

(i) Let E′ denote a set of edges, such that each biconnected component of the
graph T ′ = (V, F ∪ E′) has a feedback edge set of size at most l, where
G′ = (V,E ∪ E′).

(ii) Let V ′ denote a set of vertices and E′ ⊆ (V ×V ′)∪(V ′×V ′) a set of incident
edges, such that each biconnected component of the graph T ′ = (V ∪ V ′, F ∪
E′) has a feedback vertex set of size at most l, where G′ = (V ∪ V ′, E ∪E′).

Proof. (i). Let e = {v, w} be an edge in E′ and note that since G has bounded
treewidth k, there exists a (k + 1)-coloring on its vertices. Assume wlog. that
the coloring set is a set of natural numbers {1, . . . , k + 1} and col(v) < col(w).
Then we add the vertex v to each bag that is associated with either a vertex
or an edge in T that lie on the fundamental cycle of e. The width of the tree
decomposition increased by at most l (by Lemmas 6 and 73 in [4]).

(ii). Let v be a vertex in V ′. We add v to all bags that correspond to ver-
tices/edges contained in the same biconnected component as v (in T ′). The fact
that the treewidth increased by at most l follows from [4, Lemmas 6 and 72].

22

In Appendix A.7 we show how to extend all predicates to include the newly
introduced vertices in the bags for both cases. ut

As an example we apply Theorem 5 to both Halin graphs and k-cycle trees,
which - in combination with Theorem 3 - yields the following result.

Theorem 6. Let C denote a graph class such that its members can be con-
structed from a Halin graph or a k-cycle tree together with either an edge set or
vertex set as described in Theorem 5. Then, MSOL-definability equals recogniz-
ability for all members of C.

5.4 Bounded Degree k-Outerplanar Graphs

We now give another method for proving Courcelle’s conjecture based on the
notion of vertex and edge remember numbers, which will enable us to prove it for
k-outerplanar graphs of bounded degree. We first give the necessary definitions.

Definition 19 (Vertex and Edge Remember Number). Let G = (V,E) be
a graph with maximal spanning forest T = (V, F). The vertex remember number
of G (with respect to T), denoted by vr(G,T), is the maximum number over all
vertices v ∈ V of fundamental cycles that use v. Analogously, we define the edge
remember number, denoted by er(G,T).

Theorem 7. Let G = (V,E) be a graph with a spanning tree T = (V, F) and
let k = max{vr(G,T), er(G,T) + 1}. G admits

(i) a width-k MSOL-definable tree decomposition of bounded degree, if G has
bounded degree.

(ii) a width-k MSOL-definable ordered tree decomposition, if there is an MSOL-
definable ordering nb<(e, f) over all edges e, f ∈ F with the same head ver-
tex.

Proof. For both (i) and (ii) we can construct a tree decomposition (T ′, X) as
shown in the proof of Theorem 71 in [4]. That is, we create a tree T ′ = (V ∪F, F ′),
where F ′ = {{v, e} | v ∈ V, e ∈ F,∃w ∈ V : e = {v, w}}, i.e. we add an extra
node between each two adjacent vertices in the spanning tree. The construction
of the sets Xt, t ∈ V ∪ F works as follows. For a bag associated with a vertex v
in the spanning tree we first add v to Xv, and for a bag associated with an edge
e, we add both its endpoints to Xe. Then, for each edge e ∈ E \F , we add one of
its endpoints to each bag corresponding to a vertex or edge on the fundamental
cycle of e. To make sure that our method of choosing one endpoint of an edge
is MSOL-definable, we use the same argument as in the proof of Theorem 5(i).
That is, we assume the existence of a vertex coloring in the graph and pick the
vertex with the lower numbered color.

One can verify that (T ′, X) is a tree decomposition of G and we have for
all vertex bags Xv that |Xv| ≤ 1 + vr(G,T) and for all edge bags Xe that
|Xe| ≤ 2 + er(G,T) and thus the claimed width of (T ′, X) follows.

23

Now we show that finding a spanning tree such that its vertex and edge
remember number are bounded by a constant, say κ, is MSOL-definable, if it
exists. We can simply do this by guessing an edge set ET ⊆ E and checking
whether ET is the edge set of a spanning tree in G with the claimed bound on
the resulting vertex and edge remember numbers. Since κ is constant, this can
be done in a straightforward way, see Appendix A.8.

For defining the Bag- and Parent-predicates, we assume wlog. that we have
a root and an MSOL-definable orientation on the edges in the spanning tree,1

so we can directly define such predicates, see Appendix A.8.

For case (i) one easily sees that (T ′, X) has bounded degree, since the degree
of any node corresponding to a vertex v ∈ V in the tree decomposition is equal
to the degree of v in G. Nodes containing edge bags are always intermediate
nodes.

Case (ii) holds, since we can define an orientation nb<(Xa, Xb) for the chil-
dren of each vertex bag by using the ordering of its corresponding edges.

The predicates defined in Appendix A.8 complete the proof. ut

In his proof for the treewidth of k-outerplanar graphs being 3k− 1, Bodlaender
used the following lemma.

Lemma 13 (Lemma 81 in [4]). Let G = (V,E) be a k-outerplanar graph with
maximum degree 3. Then there exists a maximal spanning forest T = (V, F) with
er(G,T) ≤ 2k and vr(G,T) ≤ 3k − 1.

Given the nature of its proof, one immediately has the following consequence.

Corollary 2. Let G = (V,E) be a k-outerplanar graph with maximum degree
∆. Then there exists a maximal spanning forest T = (V, F) with er(G,T) ≤ 2k
and vr(G,T) ≤ ∆k − 1.

We can now prove the main result of this section.

Theorem 8. MSOL-definability equals recognizability for k-outerplanar graphs
of bounded degree.

Proof. Let G = (V,E) be a k-outerplanar graph with maximum degree ∆. By
Corollary 2, we know that there exists a maximal spanning forest T = (V, F) of
G with er(G,T) ≤ 2k and vr(G,T) ≤ ∆k − 1. By Theorem 7(i), we know that
G admits an MSOL-definable tree decomposition of bounded degree. If ∆ < 3,
then the width of this tree decomposition is at most 4k + 1, and if ∆ ≥ 3, it is
at most ∆k − 1, so in both cases the width is bounded by a constant. The rest
now follows from Theorem 3. ut

Note that the theorem also holds, if we add feedback edge and vertex sets to a
k-outerplanar graph of bounded degree, as explained in Theorem 5.

1 This clearly holds by Lemma 4, since trees have treewidth 1.

24

6 Conclusion

In this paper we showed that MSOL-definability equals recognizability for Halin
graphs, k-cycle trees, graph classes constructed using certain feedback edge or
vertex sets and bounded degree k-outerplanar graphs. Hence we proved a number
of special cases of Courcelle’s Conjecture [8], which states that each graph prop-
erty that is recognizable for graphs of bounded treewidth is CMSOL-definable,
additionally strengthening it to MSOL-definability.

For our proofs, we introduced the concept of MSOL-definable tree decompo-
sitions, and used MSOL-definable tree decompositions of bounded degree or or-
dered MSOL-definable tree decompositions (i.e. admitting an ordering on nodes
with the same parent). We additionally showed that this conjecture holds for
any graph class that admits either one of these kinds of tree decompositions.

We hope that the techniques of our paper give useful tools to solve other
special cases in the future, and also help to establish the border between cases
that allow MSOL-definability versus cases that need the counting predicate of
CMSOL.

We plan to further investigate the case of k-outerplanar graphs and believe
that the following conjecture holds.

Conjecture 1. Recognizability equals

(i) MSOL-definability for 3-connected k-outerplanar graphs.
(ii) CMSOL-definability for k-outerplanar graphs.

We also hope to establish that 3-connectedness is a necessary condition to avoid
the counting predicate in our proof, which for k-outerplanar graphs will provide
us a with clear separation between MSOL and CMSOL.

Another interesting graph property that might be used in such proofs is
Hamiltonicity (in our sense that means a graph admits a Hamiltonian path).
It is easy to see that one can order nodes with the same parent in an MSOL-
definable tree decomposition, if the underlying graph admits a Hamiltonian path,
hence we conjecture the following.

Conjecture 2. MSOL-definability equals recognizability for (3-connected) Hamil-
tonian partial k-trees.

Acknowledgements

The second author thanks Bruno Courcelle, Mike Fellows, Pinar Heggernes and
Jan Arne Telle for inspiring discussions.

References

[1] Abrahamson, K.R., Fellows, M.R.: Finite automata, bounded treewidth, and well-
quasi-ordering for bounded treewidth. In: Proceedings of the AMS Summer Work-
shop on Graph Minors and Graph Structure Theory. Contemporary Mathematics,
vol. 147, pp. 539–564. AMS (1993)

25

[2] Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
Journal of Algorithms 12(2), 308–340 (1991)

[3] van Bevern, R., Fellows, M.R., Gaspers, S., Rosamond, F.A.: Myhill-Nerode meth-
ods for hypergraphs. In: Proceedings ISAAC 2013, LNCS, vol. 8283, pp. 372–382.
Springer (2013)

[4] Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science 209(1-2), 1–45 (1998)

[5] Bodlaender, H.L., Heggernes, P., Telle, J.A.: paper in preparation (2015)
[6] Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algo-

rithms from predicate calculus descriptions of problems on recursively constructed
graph families. Algorithmica 7(1-6), 555–581 (1992)

[7] Büchi, J.R.: Weak second-order arithmetic and finite automata. Mathematical
Logic Quarterly 6(1-6), 66–92 (1960)

[8] Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Information and Computation 85(1), 12–75 (1990)

[9] Courcelle, B.: The monadic second-order logic of graphs V: On closing the gap be-
tween definability and recognizability. Theoretical Computer Science 80(2), 153–
202 (1991)

[10] Courcelle, B.: The monadic second-order logic of graphs VIII: Orientations. An-
nals of Pure and Applied Logic 72(2), 103–143 (1995)

[11] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science, Springer (2013)

[12] Halin, R.: Studies on minimally n-connected graphs. Combinatorial Mathematics
and its applications pp. 129–136 (1971)

[13] Halin, R.: S-functions for graphs. Journal of Geometry 8(1-2), 171–186 (1976)
[14] Kabanets, V.: Recognizability equals definability for partial k-paths. In: Proceed-

ings ICALP 1997, LNCS, vol. 1256, pp. 805–815. Springer (1997)
[15] Kaller, D.: Definability equals recognizability of partial 3-trees and k-connected

partial k-trees. Algorithmica 27(3-4), 348–381 (2000)
[16] Lapoire, D.: Recognizability equals monadic second-order definability for sets of

graphs of bounded tree-width. In: Proceedings STACS 1998, LNCS, vol. 1373, pp.
618–628. Springer (1998)

[17] Myhill, J.R.: Finite automata and the representation of events. Tech. Rep. WADC
TR-57-624, Wright-Paterson Air Force Base (1957)

[18] Nerode, A.: Linear automaton transformations. Proceedings of the American
Mathematical Society 9(4), 541–544 (1958)

[19] Robertson, N., Seymour, P.: Graph minors. III. Planar tree-width. Journal of
Combinatorial Theory, Series B 36(1), 49–64 (1984)

[20] Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages.
Beyond Words. vol. 3, pp. 389–455. Springer (1996)

[21] Wimer, T.V.: Linear Algorithms on K-terminal Graphs. Ph.D. thesis, Clemson
University, Clemson, SC, USA (1987)

26

A Monadic Second Order Predicates and Sentences

We build sentences in monadic second order logic from a collection of predicates.
Once we defined these predicates they will be the building blocks of more complex
expressions, joined by MSOL-connectives and/or quantification of its declared
variables. Hence, we follow the ideas of the work of Borie et al. [6], who also give
a large list of predicates and their definitions.
Note that the length of our sentences and formulas always has to be bounded
by some constant, independent of the size of the input graph.

We will denote single element variables by small letters, where v, w, v′, w′, . . .
typically represent vertices and e, f, e′, f ′, . . . edges. Set variables will be denoted
by capital letters. Unless stated otherwise explicitly, V always denotes the vertex
set of some input graph G and E its edge set. Since we always assume our
predicates to appear in the context of such a graph we might drop these two
variables as an argument of a predicate.

By some trivial definition, the following predicates are MSOL-definable (see
also Theorem 1 in [6]). In our text we might refer to them as the atomic predi-
cates of monadic second order logic over graphs.

(I) v = w (Vertex equality)
(II) Inc(e, v) (Vertex-edge incidence)

(III) v ∈ V (Vertex membership)
(IV) e ∈ E (Edge membership)

Note that to shorten our notation we might omit statements such as v ∈ V or
e ∈ E when quantifying over a variable. In this case we are referring to some
vertex/edge in the whole graph and the interpretation of the variables will always
be obvious from the context or the notational conventions explained above.

From the atomic predicates, one can directly derive the following:

– Adj(v, w,E) (Adjacency of v and w in E)
– Edge(e, v, w) (e = {v, w})

In a straightforward way (and by Theorem 4 in [6]), one can see that the following
are MSOL-definable:

– V = V ′ ∪ V ′′, V = V ′ \ V ′′, V = V ′ ∩ V ′′ (plus the edge set equivalents)
– V ′ = IncV(E′) [E′ = IncE(V ′)] (V ′ [E′] is the set of incident vertices [edges]

of E′ [V ′])
– deg(v,E) = k (v has degree k in E, where k is a constant)
– Conn(V,E), Connk(V,E), Cycle(V,E), Tree(V,E), Path(V,E)

A.1 Edge Orientation of a Halin Graph

In the current section we show how to define an edge orientation on a Halin
graph as explained in the proof of Lemma 5. That is, we will define a partition
of the edge set of the graph into a directed tree ET and a directed cycle EC .

27

As outlined in the proof, we use a coloring on its vertex set to define the
orientation of edges. Since we will use this result in later sections as well, we
define the general case of a k-coloring on the vertices of a graph.

PartV (V,X1, . . . , Xk)⇔(∀v ∈ V)
(∨

1≤i≤k

v ∈ Xi ∧
∧

1≤i≤k
j 6=i

¬v ∈ Xj

)
k-col(X1, . . . , Xk)⇔PartV (V,X1, . . . , Xk)

∧∀e∀v∀w
(

Edge(e, v, w)→
∧

1≤i≤k

¬(v ∈ Xi ∧ w ∈ Xi)
)

Now we define a predicate head(e, v) that is true if and only if v is the head
vertex of the edge e in the given orientation by comparing the indices of the
color classes that contain an endpoint of e. Note that the following predicates
always appear in the scope of an edge set F and a k-coloring X1, . . . , Xk.

col<(v, w)⇔
∨

1≤i<j≤k

(v ∈ Xi ∧ w ∈ Xj)

head(e, v)⇔∃w(Edge(e, v, w) ∧ e ∈ F ↔ col<(v, w))

tail(e, v)⇔∃w(Edge(e, v, w) ∧ ¬e ∈ F ↔ col<(v, w))

Arc(e, v, w)⇔Edge(e, v, w) ∧ head(e, v) [e = (v, w)]

Analogously to the definition of vertex degree predicates deg(v,E), as shown
in [6, Theorem 4], we can define predicates deg←(v,E) and deg→(v,E) for the
in-degree and out-degree of a vertex in a directed graph. We show how to define
that the in-degree of a vertex is equal to a certain constant k.

deg←(v,E) ≥ k ⇔∃w1 · · · ∃wk
((∧

1≤i≤k

(∃e ∈ E)Arc(e, wi, v)
)

∧
∧

1≤i<j≤k

¬wi = wj

)
deg←(v,E) ≤ k ⇔∀w1 · · · ∀wk+1

((∧
1≤i≤k+1

(∃e ∈ E)Arc(e, wi, v)
)

→
∨

1≤i<j≤k+1

wi = wj

)
deg←(v,E) = k ⇔deg←(v,E) ≤ k ∧ deg←(v,E) ≥ k

In a similar way we can define predicates for the out-degree and regularity of a
vertex for in- and out-degree and both (denoted by k-reg←, k-reg→ and k-reg↔,
respectively). This enables us to define predicates for directed trees and cycles.

Cycle→(V,E)⇔Conn(V,E) ∧ 1-reg↔(V,E)

Tree→(V,E)⇔Tree(V,E) ∧ (∃r ∈ V)(∀v ∈ V)
(

(r = v ∧ deg←(v,E) = 0)

∨ (¬v = r ∧ deg←(v,E) = 1)
)

28

A.2 Child Ordering of a Halin Graph

This section concludes the proof of Lemma 6, that is we define an ordering
on edges in a Halin graph that have the same parent in the tree ET . There-
for we define predicates for directed paths and fundamental cycles. Note that
Path→(s, t, E′) is true if and only if E′ is a directed s− t-path.

Path→(V,E)⇔Tree→(V,E) ∧ (∀v ∈ V) deg(v,E) ≤ 2

Path→(s, t, E′)⇔Path→(IncV(E′), E′) ∧ deg←(s) = 0 ∧ deg→(t) = 0

Now we turn to the notion of fundamental cycles. We assume that the following
predicates appear within the scope of an edge set ET , which is a spanning tree
of the given graph.

FundCyc(E′)⇔Cycle(IncV(E′), E′) ∧ (∃e ∈ E′)(∀e′ ∈ E′)(¬(e = e′)↔ e ∈ ET)

FundCyc(e, e′)⇔(∃E′ ⊆ E)(e ∈ E′ ∧ e′ ∈ E′ ∧ FundCyc(E′))

Note that FundCyc(e, e′) is true if and only if there exists a fundamental cycle
in the graph containing both e and e′. Now we can define an ordering nb<(e, f)
on edges with the same parent, as explained in the proof of Lemma 6.

nb<(e, f)⇔head(e) = head(f) ∧ (∃f ′ ∈ EC)(∀e′ ∈ EC)(∀F ′ ⊆ EC)(∀E′ ⊆ EC)((
FundCyc(e, e′) ∧ FundCyc(f, f ′) ∧ Path→(r, tail(e′), E′)

∧ Path→(r, tail(f ′), F ′)
)
→ F ′ ⊂ E′

)
Furthermore we define a predicate nb≺(e, f) that is true if and only if f is the
leftmost right neighbor of e and vice versa. We also apply this notion to vertex
variables, which allows us to refer to left and right siblings of a vertex. We denote
these predicates by sib<(x, y) and sib≺(x, y).

nb≺(e, f)⇔nb<(e, f) ∧ ∀f ′((¬f = f ′ ∧ nb<(e, f ′))→ nb<(f, f ′))

sib<(x, y)⇔∃e∃f(tail(e, x) ∧ tail(f, y) ∧ nb<(e, f))

sib≺(x, y)⇔∃e∃f(tail(e, x) ∧ tail(f, y) ∧ nb≺(e, f))

In the following we will use the rewrite of sib≺ to

y = l(x)⇔ sib≺(y, x).

This expresses that a vertex y is the direct left sibling of the vertex x in our
ordering.

A.3 Tree Decomposition of a Halin Graph

In this section we define predicates Bagσ(e,X) for all bag types used in the
proof of Lemma 7, and Parent(Xp, Xc) according to the given construction. In
the following we assume that we are given an edge e ∈ ET , e = {x, y}, such that
y is the parent of x in ET .

29

Boundary vertices For defining predicates for bag types in our tree decom-
position, we need to show how to define boundary vertices in MSOL. First, we
define predicates to check whether a vertex is the right-(/left-)most child of its
parent.

ChildR+(x)⇔∀y∀z∀e∀e′((Arc(e, y, x) ∧Arc(e′, y, z))→ nb<(e′, e))

Note that ChildL+(x) can be defined similarly, replacing nb<(e′, e) by nb<(e, e′).
In the following we let VC = IncV(EC).

y = bdr(x)⇔(x ∈ VC ∧ x = y) ∨
(
x ∈ V ∧ y ∈ VC

∧
(

(∃EP ⊆ ET)(Path→(x, y, EP) ∧ (∀e ∈ EP)

(∀z(tail(e, z)→ ChildR+(z))))
))

Replaying ChildR+ by ChildL+ in the above predicate we can also define y =
bdl(x).

Bag Types We define an MSOL-predicate for each bag type that we introduced
in the proof of Lemma 7. Using the definition of boundary vertices given above,
we can define them in a straightforward manner.

BagR1(e,X)⇔(x′ ∈ X)↔ (x′ = x ∨ x′ = bdr(x) ∨ x′ = bdl(x))

BagR2(e,X)⇔(x′ ∈ X)↔ (x′ = y ∨ x′ = x ∨ x′ = bdr(x) ∨ x′ = bdl(x))

BagR3(e,X)⇔(x′ ∈ X)↔ (x′ = y ∨ x′ = bdr(x) ∨ x′ = bdl(x))

BagL1(e,X)⇔(x′ ∈ X)↔ (x′ = y ∨ x′ = bdl(y) ∨ bdr(l(x)))

BagL2(e,X)⇔(x′ ∈ X)↔ (x′ = y ∨ x′ = bdl(y) ∨ x′ = bdr(l(x)) ∨ x′ = bdl(x))

BagL3(e,X)⇔(x′ ∈ X)↔ (x′ = y ∨ x′ = bdl(y) ∨ x′ = bdl(x))

BagLR(e,X)⇔(x′ ∈ X)↔ (x′ = y ∨ x′ = bdl(y) ∨ x′ = bdr(x) ∨ x′ = bdl(x))

As a next step we will unify the above predicates, to deal with the cases when
certain bags do not need to be created for an edge. This is the case when we
reach the root vertex of the graph or whenever an edge is the leftmost child edge
of a vertex.

Bag(X)⇔∃e
(
y = r ∧ (BagR1(e,X) ∨ BagR2(e,X))

∨
(
¬y = r ∧

(
(ChildL+(x) ∧ (BagR1(e,X) ∨ BagR2(e,X)

∨ BagR3(e,X))) ∨ (¬ChildL+(x) ∧ (BagR1(e,X)

∨ · · · ∨ BagLR(e,X)))
)))

The Parent Relation We now turn to defining the predicate Parent(Xp, Xc),
which is true if and only if the bag Xp is the parent bag of Xc in the tree

30

decomposition. Due to the contraction step we can only have edges between
bags if their vertex sets are not equal. Note that adding the term ’¬Xp = Xc’ is
sufficient to represent these contractions. The rest is a case analysis as implied
by Figure 6b and the respective parent/child relationships between components.

Parent(Xp, Xc)⇔Bag(Xp) ∧ Bag(Xc) ∧ ¬Xp = Xc ∧ (ParentI(Xp, Xc)

∨ ParentNB(Xp, Xc) ∨ ParentP (Xp, Xc))

ParentI(Xp, Xc)⇔∃e
(

(BagR1(e,Xc) ∧ BagR2(e,Xp))

∨ (BagR2(e,Xc) ∧ BagR3(e,Xp))

∨ ((BagR3(e,Xc) ∨ BagL3(e,Xc)) ∧ BagLR(e,Xp))

∨ (BagL1(e,Xc) ∧ BagL2(e,Xp))

∨ (BagL2(e,Xc) ∧ BagL3(e,Xp))
)

ParentNB(Xp, Xc)⇔∃e∃e′(nb≺(e, e′) ∧ BagLR(e,Xc) ∧ BagL1(e′, Xp))

ParentP (Xp, Xc)⇔∃e∃e′(ChildR+(x) ∧ tail(e′, y)

∧ BagLR(e,Xc) ∧ BagR1(e′, Xp))

A.4 Equivalence Class Membership for Halin Graphs

In this section we complete the proof of Lemma 8, which states that finite index
implies MSOL-definability for Halin graphs. In particular we define the predi-
cates φLeaf , φTSG and φRoot, which represent the cases for leaf bags, inner bags
(i.e., intermediate and branch bags that are not the root) and the root bag,
respectively.

The predicate φLeaf can be defined in a straightforward way, using the fact
that we know that all terminal subgraphs of leaf bags are in the equivalence class
CLeaf and that leaf bags are always of type R1.

φLeaf = ∀X∀e((BagR1(e,X) ∧ Leaf(X))→ e ∈ CLeaf,R1)

Next, we turn to defining φTSG, where we distinguish two cases. That is, either
X is an intermediate or a branch bag. We conduct the case analysis as implied
by the construction of our tree decomposition as shown in Section 4.2.

φTSG =
(
∃Ci,L1∃Ci,L2∃Ci,L3∃Ci,R1∃Ci,R2∃Ci,R3∃Ci,LR

)
i=1,...,r

∀X∀Y
(

(Parent(X,Y) ∧ Int(X))→ φTSG,Int

∧ ∀Y ′(¬(Y = Y ′) ∧ Parent(X,Y) ∧ Parent(X,Y ′) ∧ Branch(X))

→ φTSG,Branch

)
The first case we are considering is when X is an intermediate node with child
bag Y . These edges either belong to the same component, which is handled in
the first part of the predicate, or they belong to components of different edges,

31

such that the two are either direct neighbor edges according to the nb≺-ordering
or one of the edges is the parent edge of the other one.

φTSG,Int =∀e
(

(BagL2(e,X) ∧ BagL1(e, Y))→
∧

i=1,...,r

(e ∈ Ci,L1 → e ∈ CfI(i,X),L2)

∨ (BagL3(e,X) ∧ BagL2(e, Y))→
∧

i=1,...,r

(e ∈ Ci,L2 → e ∈ CfI(i,X),L3)

∨ (BagR2(e,X) ∧ BagR1(e, Y))→
∧

i=1,...,r

(e ∈ Ci,R1 → e ∈ CfI(i,X),R2)

∨ (BagR3(e,X) ∧ BagR2(e, Y))→
∧

i=1,...,r

(e ∈ Ci,R2 → e ∈ CfI(i,X),R3)
)

∨ ∀e∀e′
(

(ParentNB(X,Y) ∧ BagL1(e′, X) ∧ BagLR(e, Y))

→
∧

i=1,...,r

(e ∈ Ci,LR → e′ ∈ CfI(i,X),L1)
)

∨
(

(ParentP (X,Y) ∧ BagR1(e′, X) ∧ BagLR(e, Y))

→
∧

i=1,...,r

(e ∈ Ci,LR → e′ ∈ CfI(i,X),R1)
)

Now we assume that X is a branch node with child bags Y and Y ′. We can’t
identify the types of the bags Y and Y ′ immediately, since some of the edges
in the component might have been contracted. So in the following, let L denote
the type L1, L2 or L3, and R, respectively, R1, R2 or R3. We can define each
combination of the actual types in exactly the same way.

φTSG,Branch =∀e
(

(BagLR(e,X) ∧ BagL(e, Y) ∧ BagR(e, Y ′))

→
∧

i=1,...,r

j=1,...,r

((e ∈ Ci,L ∧ e ∈ Cj,R)→ e ∈ CfJ ({i,j},X),LR)
)

Knowing that all graphs that have property P are contained in one of the equiv-
alence classes CA1

, . . . , CAp and that the root bag is always of type R2, we can
define φRoot directly.

φRoot = ∀X∀e
(

(Root(X) ∧ BagR2(e,X))→
∨

i=A1,...,Ap

e ∈ Ci,R2

)

A.5 Equivalence Class Membership - Generalized

In the current section we describe how to define predicates for the equivalence
class membership of (partial) terminal subgraphs in any MSOL-definable or-
dered tree decomposition, hence concluding the proof of Lemma 9. In this case
we do not know the specific shape of the tree decomposition, so our case analysis

32

becomes somewhat more lengthy. We give examples for each predicate involved
from which it will become apparent that one can define any such case in a similar
way.
Once we defined all predicates for MSOL-definable ordered tree decompositions,
we additionally show how to define the case of branch nodes in an MSOL-
definable tree decomposition of bounded degree, hence concluding the proof of
Lemma 10.

As before (Appendix A.4) we first define all sets that we need for the predi-
cates and then distinguish the cases that X is an intermediate node or a branch
node. These predicates will be defined in detail in the following sections.

φTSG =
(
∃CVi,τ∃CEi,σ∃CV |Pi,τ ∃C

E|P
i,σ ∃C

V |C
i,τ ∃C

E|C
i,σ

)
i=1,...,r

τ,∈{τ1,...,τt}
σ,∈{σ1,...,σs}(

φTSG,Int ∧ φTSG,Branch
)

Intermediate Nodes First, we define the equivalence class membership for
terminal subgraphs corresponding to an intermediate node in the tree decompo-
sition. We conduct a case analysis as discussed in the proof of Lemma 9 w.r.t.
the types of the bags X and Y .

φTSG,Int =∀X∀Y
(

(Int(X) ∧ Parent(X,Y))

→
∧

τ,τ′∈{τ1,...,τt}
σ,σ′∈{σ1,...,σs}

(
φInt,τ,τ ′ ∧ φInt,σ,σ′ ∧ φInt,τ,σ ∧ φInt,σ,τ

))
(3)

Case 1. Both bags belong to a vertex. For each pair of types τ, τ ′ ∈ {τ1, . . . , τt}
one can define the following predicate.

φInt,τ,τ ′ =∀v∀v′
(

(BagVτ (v,X) ∧ BagVτ ′(v
′, Y))

→
∧

i=1,...,r

(v′ ∈ CVi,τ ′ → v ∈ CVfI(i,X),τ)
)

Case 2. Both bags belong to an edge. For each pair of types σ, σ′ ∈ {σ1, . . . , σs}
we can write down a similar predicate.

φInt,σ,σ′ =∀e∀e′
(

(BagEσ (e,X) ∧ BagEσ′(e
′, Y))

→
∧

i=1,...,r

(e′ ∈ CEi,σ′ → e ∈ CEfI(i,X),σ)
)

Case 3. The bag X belongs to a vertex and Y belongs to an edge. For each pair
of a type τ ∈ {τ1, . . . , τt} and σ ∈ {σ1, . . . , σs} one can define:

φInt,τ,σ =∀v∀e
(

(BagVτ (v,X) ∧ BagEσ (e, Y))

→
∧

i=1,...,r

(e ∈ CEi,σ → v ∈ CVfI(i,X),τ)
)

33

Case 4. The bag X belongs to an edge and Y belongs to a vertex. For σ, τ as
above we define:

φInt,σ,τ =∀e∀v
(

(BagEσ (e,X) ∧ BagVτ (v, Y))

→
∧

i=1,...,r

(v ∈ CVi,τ → e ∈ CEfI(i,X),σ)
)

Branch Nodes In the following we will define predicates for branch nodes, such
that all bags considered always correspond to vertices in the graph. Note that in
the cases that some of them are edge bags, one can write down all predicates in
the same way (replacing some vertices/vertex sets with edges/edge sets in the
predicates).
First we define the general case, in which Y is neither the leftmost nor the
rightmost child of X and deal with the special cases later. Let Y ′ is the direct
right sibling of Y .

φIBranch,τ,τ ′,τ ′′ =∀v∀v′∀v′′
(

(BagVτ (v,X) ∧ BagVτ ′(v
′, Y) ∧ BagVτ ′′(v

′′, Y ′))

→
∧

i=1,...,r

((
v ∈ CV |Pi,τ ∧ v′ ∈ C

V |C
i,τ ′ ∧ v′ ∈ CVj,τ ′

)
→
(
v ∈ CV |PfJ (i,j),τ

∧ v′′ ∈ CV |CfJ (i,j),τ ′′

)))
Now we consider the situation when Y is the leftmost child of X with right sibling
Y ′. In this case we derive the partial terminal subgraph [X]+Y ′ by pretending that
Y is the only child of X and using the method for intermediate nodes. It is easy
to see that this way we indeed define the equivalence class membership for [X]+Y ′ .

φL+Branch,τ,τ ′,τ ′′ =∀v∀v′∀v′′
(

(BagVτ (v,X) ∧ BagVτ ′(v
′, Y) ∧ Bagτ ′′(v

′′, Y ′))

→
∧

i=1,...,r

(
v′ ∈ CVi,τ ′ →

(
v ∈ CV |PfI(i,X),τ ∧ v′′ ∈ C

V |C
fI(i,X),τ ′′

)))
When reaching the rightmost child of a branch bag X, we derive the terminal
subgraph [X]+. Assume in the following that Y is the rightmost child of X.

φR+
Branch,τ,τ ′ =∀v∀v′

(
(BagVτ (v,X) ∧ BagVτ ′(v

′, Y))

→
∧

i=1,...,r

((
v ∈ CV |Pi,τ ∧ v′ ∈ C

V |C
i,τ ′ ∧ v′ ∈ CVj,τ ′

)
→ v ∈ CVfJ (i,j),τ

))
One can define a predicate φTSG,Branch in a similar way as φTSG,Int using
the predicates described above together with ChildL+(X), ChildR+(X) and
nb≺(X,Y). Disregarding the types of bags for now, one can define the predi-

34

cate φ′TSG,Branch in the following way.

φ′TSG,Branch = ∀X∀Y
(

(Parent(X,Y) ∧ Branch(X))→
((

ChildR+(Y) ∧ φR+
JoinB

)
∨ ∀Y ′

(
nb≺(Y, Y ′)→

((
ChildL+ ∧ φL+Branch

)
∨
(
¬ChildL+(Y) ∧ φIBranch

)))))
Note that to include the case analysis, one can define a predicate φTSG,Branch
as it is done in the definition of φTSG,Int (Predicate 3), for all combinations of
vertex/edge types.

Branch Nodes for Bounded Degree Tree Decompositions To finish the
proof of Lemma 10, we only have to show how to define a predicate for branch
nodes with a constant number of children as explained in the proof.
Again, we give an example predicate for the case that all bags involved are vertex
bags and note that all other cases can be defined similarly. Consider a branch
bag X with child bags X1, . . . , Xk, all corresponding to vertices in the graph
and types τ1, . . . , τk. Then we can define this predicate as follows.

φBranch,τ,τ1,...,τk =∀v∀v1 · · · ∀vk
(

(BagVτ (v,X) ∧ BagVτ1(v1, X1)

∧ · · · ∧ BagVτk(vk, Xk))→
∧

i1=1,...,r
···

ik=1,...,r

(
(v1 ∈ CVi1,τ1

∧ · · · ∧ vk ∈ CVik,τk)→ v ∈ CVfJ ({i1,...,ik},X),τ

))

A.6 k-Cycle Trees

In the current section we give all predicates to define a tree decomposition of a
k-cycle tree in MSOL, as explained in the proof of Lemma 12. We first define the
edge orientation φOri and then all predicates for the bag types. Note that since
this construction is very similar to the one for Halin graphs, we do not define
the Parent-predicate explicitly, as it works in almost the exact same way.

As a first step we define a predicate to check whether two vertices have a
certain (constant) distance in a given edge set.

dist(v, w,E′) = k ⇔ (∃EP ⊆ E′)(Path(v, w,EP) ∧ |EP | = k)

This allows us to define the the i-th cycle of the graph.

E′ = Cyclei ⇔Cycle→(IncV(E′), E′) ∧ ∀v(Inc(v,E′)→ dist(c, v, E) = i)

35

We can write down the orientation φOri described in the proof of Lemma 12 in
the following way.

φOri =∃ET∃EC1
· · · ∃ECk∃r1 · · · ∃rk−1

(
(PartE(E,ET , EC1

, . . . , ECk)

∧ Tree→(V,ET) ∧
∧

i=1,...,k

ECi = Cyclei

∧
∧

i=1,...,k−1

(
ri ∈ IncV(ECi) ∧ dist(r, ri, ET) = k − i

))

We can define a predicate nbi<(e, f) in complete analogy to nb<(e, f) as shown
in Appendix A.2 by simply replacing EC by ECi and r by ri (for the case that
i = k don’t have to modify it). This predicate is true if and only if e is on the
left of f , such that e and f have the same head vertex, i.e. their tail vertices lie
on the same cycle.

Now we turn to defining the i-th boundary vertex (Definition 17).

w = bdri (v,E
′)⇔(w ∈ VCi ∧ v = w)

∨ (∃EP ⊆ E′)(Path→(v, w,EP) ∧ w ∈ IncV(ECi))

∧ (∀e ∈ EP)¬(∃E′P ⊆ E′)
(

Path→(v, w,E′P) ∧ (∃e′ ∈ E′P)∨
i=1,...,k

nbi<(e, e′)
)

(4)

To define bdli, we simply replace nbi<(e, e′) by nbi<(e′, e) in line 4. In the following
we abbreviate w = bdi(v,ET) to w = bdi(v). We denote by NBR(e) the edge set
containing e and all its right neighbor edges.

We are now equipped with all tools to define the bag types for a tree decom-
position of a k-cycle tree. We use the same notation as in Appendix A.3, that
is, we have an edge e = {x, y}, such that y is the parent of x in ET and assume
that the vertex y lies on cycle Ci. The predicate CarryBDr defines the case that
the vertex x does not have a left boundary on a cycle Cj , so that we have to pass
on the right boundary vertex of y without the edge e and its right neighbors.

CarryBDr(e, z)j ⇔ (¬(∃z′(z′ = bdlj(x))) ∧ z = bdrj(y,ET \NBR(e))

We continue by defining the bag types R1, . . . , LR.

BagR1(e,X)⇔z ∈ X ↔
∨

i<j≤k

(
z = bdlj(x) ∨ z = bdrj(x)

)
BagR2(e,X)⇔z ∈ X ↔

(
z = y ∨

∨
i<j≤k

(
z = bdlj(x) ∨ z = bdrj(x)

))

36

BagL1(e,X)⇔z ∈ X ↔
(
z = y ∨

∨
i≤j≤k

(
z = bdlj(y)

∨ z = bdrj(y,ET \NBR(e))
))

BagL2(e,X)⇔z ∈ X ↔
(
z = y ∨

∨
i<j≤k

(
z = bdlj(y) ∨ z = bdlj(x)

∨ z = bdrj(y,ET \NBR(e))
))

BagL3(e,X)⇔z ∈ X ↔
(
z = y ∨

∨
i<j≤k

(
z = bdlj(y) ∨ z = bdlj(x)

∨ CarryBDr(e, z)
))

BagLR(e,X)⇔z ∈ X ↔
(
z = y ∨

∨
i<j≤k

(
z = bdlj(x) ∨ z = bdrj(x)

∨ z = bdlj(y) ∨ CarryBDr(e, z)
))

Note that defining the Parent-predicate works in the same way as for Halin
graphs, taking into account the missing bag type R3.

A.7 Adding Feedback Edge/Vertex Sets

In this section we complete the proof of Theorem 5. In the following, let G′ =
(V ′, E′) and G = (V,E) be graphs as stated in Theorem 5. Assume that we are
given predicates BagVτ and BagEσ for vertex bag types τ and σ, defined for vertices
and edges of the spanning tree ET of a graph, defining a tree decomposition of
G′. One can observe that we can define the sets V ′ and (a set representing) E′

easily, using the following facts.

– Each vertex v′ ∈ V ′ is contained in a bag of the tree decomposition, i.e. (at
least) one of the Bag-predicates evaluates to true for some set X ⊆ V .

– For each edge e′ ∈ E′ there is a bag containing both endpoints. Note that if
there is an edge in E \ E′, such that both its endpoints are contained in a
bag, we do not need to consider it any further.

In the following we assume that V ′ and E′ are defined and FundCyc uses the
maximal spanning tree ET , upon which the construction of the tree decomposi-
tion of G′ is based. First, we consider the case of feedback edge sets. We use the
notion of fundamental cycles rather that directly referring to biconnected com-
ponents, since it makes our predicate shorter (while in this case they express the

37

same thing).2

BagE,+σ (e,X)⇔v′ ∈ X ↔
(

(∃e′ ∈ E \ E′)
(

Inc(v′, e′) ∧ FundCyc(e, e′)

∧ ∀w((¬v′ = w ∧ Inc(w, e′))→ col(v′) < col(w))
))

BagV,+τ (v,X)⇔v′ ∈ X ↔
(

(∃e′ ∈ E \ E′)
(

Inc(v′, e′) ∧ FundCyc(v, e′)

∧ ∀w((¬v′ = w ∧ Inc(w, e′))→ col(v′) < col(w))
))

For feedback vertex sets we can define similar additions to the respective predi-
cates, directly using the biconnected components mentioned in the proof.

BagV,+τ (v,X)⇔v′ ∈ X ↔
(

(∃V2 ⊆ V)(v ∈ V2 ∧ v′ ∈ V2

∧ Conn2(V2, ET ∪ IncE(V2 \ V ′)))
)

BagE,+σ (e,X)⇔v′ ∈ X ↔
(

(∃V2 ⊆ V)
(
v′ ∈ V2 ∧ e′ ∈ IncE(V2 \ V ′)

∧ Conn2(V2, ET ∪ IncE(V2 \ V ′))
))

A.8 Bounded Vertex and Edge Remember Number

As the last of our extensions, we show how to define tree decompositions that
have a bounded vertex and edge remember number. Hence, we will conclude
the proof of Theorem 7, which we used to prove the case for bounded degree
k-outerplanar graphs.

First, we are going to show how to identify an edge set as a spanning tree with
vertex remember number less than or equal to κ and edge remember number
less than or equal to λ, both constant.

∃ET (Tree(V,ET) ∧ vr(ET) ≤ κ ∧ er(ET) ≤ λ)

vr(ET) ≤ κ⇔(∀v ∈ V)(∀e1 ∈ E \ ET) · · · ∀(eκ+1 ∈ E \ ET)((∧
i=1,...,κ+1

FundCyc(v, ei)
)
→

∨
1≤i<j≤κ+1

ei = ej

)
er(ET) ≤ λ⇔(∀e ∈ E)(∀e1 ∈ E \ ET) · · · ∀(eλ+1 ∈ E \ ET)((∧

i=1,...,λ+1

FundCyc(e, ei)
)
→

∨
1≤i<j≤λ+1

ei = ej

)
In the following, assume that ET is the edge set of the spanning tree of G (as
shown above), which additionally has edge orientations, defined in MSOL by

2 Note that the predicate FundCyc can easily be defined for a combination of a vertex
and an edge as well.

38

predicates head and tail (cf. Appendix A.1). Note that the last predicate in the
list, nb<(Xa, Xb) requires an ordering on edges with the same head vertex.

BagV (v,X)⇔v′ ∈ X ↔ (v′ = v ∨ (∃e ∈ E \ ET)(Inc(v′, e)

∧ FundCyc(v, e)))

BagE(e,X)⇔v′ ∈ X ↔ (Inc(v′, e) ∨ (∃e′ ∈ E \ ET)(Inc(v′, e′)

∧ FundCyc(e, e′)))

Parent(Xp, Xc)⇔∃v(∃e ∈ ET)((BagV (v,Xp) ∧ BagE(e,Xc) ∧ head(v, e))

∨ (BagV (v,Xc) ∧ BagE(e,Xp) ∧ tail(v, e)))

nb<(Xa, Xb)⇔(∃ea ∈ ET)(∃eb ∈ ET)(head(ea) = head(eb) ∧ nb<(ea, eb))

39

	MSOL-Definability Equals Recognizability for Halin Graphs and Bounded Degree k-Outerplanar GraphsThe research of the second author was partially funded by the Networks programme, funded by the Dutch Ministry of Education, Culture and Science through the Netherlands Organisation for Scientific Research.

