

You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: Właściwości tribologiczne warstwy Al2O3 modyfikowanej dwusiarczkiem wolframu we współpracy z tworzywem PEEK/BG

Author: Joanna Korzekwa, Władysław Skoneczny

Citation style: Korzekwa Joanna, Skoneczny Władysław. (2009). Właściwości tribologiczne warstwy Al2O3 modyfikowanej dwusiarczkiem wolframu we współpracy z tworzywem PEEK/BG. "Tribologia" (Nr 4 (2009), s. 79-88).

Uznanie autorstwa – Na tych samych warunkach – Licencja ta pozwala na kopiowanie, zmienianie, rozprowadzanie, przedstawianie i wykonywanie utworu tak długo, jak tylko na utwory zależne będzie udzielana taka sama licencja.

UNIWERSYTET ŚLĄSKI w katowicach Biblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego Joanna KORZEKWA^{*}, Władysław SKONECZNY^{*}

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTWY AL₂O₃ MODYFIKOWANEJ DWUSIARCZKIEM WOLFRAMU WE WSPÓŁPRACY Z TWORZYWEM PEEK/BG

TRIBOLOGICAL PROPERTIES OF THE AL₂O₃ LAYER MODIFIED BY TUNGSTEN DISULFIDE IN COOPERATION WITH PEEK/BG MATERIAL

Słowa kluczowe:

właściwości tribologiczne, powłoka tlenkowa, dwusiarczek wolframu

Key-words:

tribological properties, oxide coating, tungsten disulfide

Streszczenie

Praca poświęcona jest badaniom zużycia tribologicznego warstw Al₂O₃ modyfikowanych dwusiarczkiem wolframu w skojarzeniu z tworzywem PEEK/BG. Wyniki badań tribologicznych obejmują pomiary oporów ruchu (określenie współczynnika tarcia ww. węzła), przeprowadzone na maszynie badawczej T-17. W pracy przedstawiono również analizę po-

^{*} Uniwersytet Śląski, Katedra Materiałoznawstwa, 41-200 Sosnowiec, ul. Śnieżna 2, e-mail: joanna.korzekwa@us.edu.pl

miarów stereometrycznych, wykonanych przed i po teście tribologicznym. W ramach badań tribologicznych w pracy przedstawiono również wyniki zużycia tworzywa PEEK/BG przeprowadzone metodą wagową. Otrzymane wyniki potwierdzają możliwość polepszenia właściwości tribologicznych skojarzenia ślizgowego Al₂O₃ – PEEK/BG poprzez wprowadzenie proszku WS₂ do elektrolitu.

WPROWADZENIE

Dwusiarczek wolframu (WS₂), podobnie jak MoS₂ lub grafit, należy do grupy smarów stałych. Materiały te, dzięki swojej warstwowej budowie oraz działającym między warstwami słabym siłom Van der Waalsa, mają niski współczynnik tarcia i dobre właściwości smarowe. Cechy te wysoko cenione są w skojarzeniach ślizgowych tarcia technicznie suchego. Dzięki możliwości zastosowania WS₂ w szerokim zakresie temperatur oraz pod wysokim ciśnieniem (w próżni do 1316°C) jest jednym ze smarów stałych, które można wykorzystać do zmniejszenia współczynnika tarcia w elementach współpracujących ślizgowo [L. 1, 2].

Zważywszy na szerokie spektrum możliwości zastosowania dwusiarczku wolframu o właściwościach smarowych (np.: części silników samochodowych, niektóre komponenty samolotów, cylindry siłowników), celowym wydaje się szukanie dróg modyfikowania powierzchni metali poprzez zastosowanie różnych warunków naniesienia WS₂.

Celem autorów niniejszego artykułu było sprawdzenie, w jaki sposób dodatek proszku WS_2 do elektrolitu (10, 20 i 30 g/l), wpłynie na właściwości tribologiczne nowo wytworzonej warstwy Al_2O_3/WS_2 w skojarzeniu z PEEK/BG. Podjęto analizę wpływu zawartości proszku WS_2 w elektrolicie na wartości współczynnika tarcia oraz na wartości zużycia partnera tribologicznego – PEEK/BG, a także analizę stereometryczną 3D struktury geometrycznej powierzchni przeciwpróbek Al_2O_3 oraz Al_2O_3/WS_2 .

MATERIAŁ BADAŃ

Materiał badań stanowiła para trąca warstwy Al₂O₃ i Al₂O₃/WS₂ z tworzywem sztucznym PEEK/BG.

Czysta warstwa Al_2O_3 otrzymana została metodą anodowania twardego stopu aluminium (EN – AW – 5251) w elektrolicie kwasów: siarkowego, szczawiowego i ftalowego [L. 3, 4]. Warstwy Al_2O_3/WS_2 otrzymane zostały poprzez dodanie, do czystego elektrolitu, 10, 20 oraz 30 g proszku WS_2 na litr elektrolitu (Aldrich - Sigma, wielkość ziarna < 2 µm). Proces anodowania twardego przeprowadzono dla stałej wartości ładunku elektrycznego 180 A·m, przy gęstość prądu 3A/dm², w stałej temperaturze 303 K±1 K. Przeciwpróbka miała kształt prostopadłościanu o powierzchni 1 cm². Oznaczenia przeciwpróbek przedstawiono w **Tabeli 1**.

Nazwa	Zawartość WS ₂ w elektrolicie [g/l]
1A	0
1B	10
1C	20
1D	30

Tabela 1. Oznaczenia przeciwpróbekTable 1. Designation of the counter-specimen

Próbkę pary trącej stanowił trzpień o średnicy 9 mm z tworzywa PEEK/BG firmy Erta. PEEK/BG jest liniowym polimerem aromatycznym polieteroeteroketonu z dodatkiem PTFE, grafitu i włókien węglowych. PEEK/BG swojej budowie zawdzięcza wysoką wytrzymałość mechaniczną, sztywność, twardość w wysokiej temperaturze oraz dobrą odporność na ścieranie i pełzanie [L. 5]. Dzięki tym cechom jest stosowany jako partner tribologiczny w skojarzeniach tarcia technicznie suchego [L. 6].

METODYKA BADAŃ

Badania tribologiczne przeprowadzono na stanowisku testera T17 o ruchu posuwisto-zwrotnym, typu trzpień-płytka, w warunkach tarcia technicznie suchego. Test tribologiczny składał się 4 etapów po 1500 m (docierania + 3 testy zasadnicze). Testy wykonano w temperaturze pokojowej, przy wilgotności powietrza 30±5%, stosując nacisk 0,5 MPa, przy średniej prędkości tarcia 0,2 m/s. Badania tribologiczne przeprowadzono dla dwóch przeciwpróbek każdego składu. Zużycie próbki PEEK/BG mierzono za pomocą wagi analitycznej. Pomiar siły tarcia wykonano testerem analogowo-cyfrowym Spider 8.

Badania powierzchni powłok tlenkowych wykonano metodą 3D za pomocą profilografometru stykowego Talysurf 3D Taylor Hobson. Maksymalny błąd pomiarowy podawany przez producenta wynosi 2% lub 2 nm. Wyniki pomiarów powierzchni, przed i po teście tarcia, opracowano za pomocą oprogramowania Talymap Universal 3D. Analizę przeprowadzono dla pola 2 mm x 2 mm. Morfologię otrzymanych powłok badano również za pomocą mikroskopu skaningowego Philips X130.

WYNIKI BADAŃ

Na **Rys. 1a** przedstawiono intensywność zużywania tworzywa PEEK/BG po współpracy tribologicznej z warstwami Al₂O₃, Al₂O₃/WS₂ oraz na **Rys. 1b** wartości współczynnika tarcia dla badanych skojarzeń ślizgowych.

- Rys. 1. a) Wykres zależności intensywności zużywania tworzywa PEEG/BG od ilości domieszki proszku WS₂ oraz b) wartości współczynnika tarcia dla badanych skojarzeń ślizgowych
- Fig. 1. a) Diagram of wear intensity of the PEEK/BG material as a function of WS_2 powder admixture amount and b) values of the friction coefficient

Z przedstawionych danych wynika, że wraz ze wzrostem zawartości proszku WS₂ w elektrolicie zmniejsza się intensywność zużywania tworzywa PEEK/BG. Wartości współczynnika tarcia, dla badanych skojarzeń bezsmarowych wynosiły odpowiednio: $\mu = 0,28$ dla 1A, $\mu = 0,29$ dla 1B, $\mu = 0,24$ dla 1C oraz $\mu = 0,25$ dla 1D. Biorąc pod uwagę wartości odchylenia standardowego, przedstawione na wykresach (**Rys. 1 a** i **b**), można stwierdzić, że większa zawartość domieszki WS₂ (20 i 30 g/l) wpływa korzystnie na zmniejszenie współczynnika tarcia.

W **Tabeli 2** zamieszczono wartości wybranych parametrów amplitudowych struktury geometrycznej powierzchni przeciwpróbek przed współpracą tribologiczną, a w **Tabeli 3** po współpracy tribologicznej. W większości przypadków naniesienie tworzywa PEEK/BG spowodowało korzystne zmiany wartości parametrów amplitudowych SGP. Na **Rys. 2** przedstawiono obraz SEM przeciwpróbki 1D z naniesionym materiałem PEEK/BG.

Tabela 2. Parametry amplitudowe struktury geometrycznej powierzchni przeciwpróbek przed współpracą tribologiczną

Nazwa	Parametry amplitudowe SGP						
	Sq um	Sa um	Ssk	Sp um	Sv um	Sz um	
1A	1,17639	0,88475	-1,29064	2,608	7,04	9,648	
1B	1,30239	0,988105	-1,19506	3,568	7,344	10,912	
1C	1,25611	0,940032	-1,3953	2,736	7,84	10,576	
1D	1,27699	0,947413	-1,49572	2,624	7,952	10,576	

 Table 2.
 The amplitude parameters of surface geometrical structure of counterspecimen before tribological test

Tabela 3. Parametry amplitudowe struktury geometrycznej powierzchni przeciwpróbek po współpracy tribologicznej

Table 3. The amplitude parameters of surface geometrical structure of counterspecimen after tribological test

Nazwa	Parametry amplitudowe SGP						
	Sq	Sa	Ssk	Sp	Sv	Sz	
	μm	μm		μm	μm	μm	
1A	0,687232	0,51948	-0,82428	3,152	3,712	6,864	
1B	1,12464	0,785093	-2,2198	2,24	8,048	10,288	
1C	1,07345	0,69881	-2,80883	1,872	9,056	10,928	
1D	0,667436	0,477524	-2,26976	1,248	5,84	7,088	

- Rys. 2. Obraz SEM powierzchni przeciwpróbki 4D z naniesionym materiałem PEEK/BG
- Fig. 2. SEM image of the counter-specimens 4D surface with deposited PEEK/BG material

Zmiany parametrów amplitudowych przedstawiono na przykładzie średniego arytmetycznego odchylenia chropowatości *Sa* (**Rys. 3**). Zgodnie z wartościami parametru *Sa* można przyjąć, iż wyjściowe powierzchnie warstwy tlenkowej Al₂O₃ oraz Al₂O₃/WS₂ charakteryzowały się porównywalną chropowatością, nie wykazując na tym etapie widocznych różnic spowodowanych dodatkiem WS₂ do elektrolitu. Wynik ten koreluje z parametrem *Sk* krzywej nośności (**Rys. 4**a).

Fig. 3. Diagram of the mean arithmetic deviation of *Sa* versus WS₂ contents in electrolyte, before and after tribological test

Współpraca tribologiczna spowodowała dla wszystkich powierzchni obniżenie parametrów *Sa* i *Sk*, co jest bezpośrednio związane ze stanem powierzchni tlenkowej wynikającej z procesu zużywania tworzywa PEEK/BG i powłoki tlenkowej. Po współpracy tribologicznej z PEEK/BG warstwy Al_2O_3/WS_2 wykazały oczekiwaną tendencję zmniejszenia chropowatości ze wzrostem zawartości WS₂. Zachowanie takie potwierdzają również parametry krzywej nośności *Sk* (**Rys. 4a**) oraz *Spk* (**Rys. 4b**).

- Rys. 4. Zależność parametru Sk (a) oraz Spk (b) od zawartości WS_2 w elektrolicie, przed i po tarciu tribologicznym
- Fig. 4. Dependence of Sk parameter (a) and Spk (b) on WS₂ contents in electrolyte, before and after tribological interaction

Korzyści płynące z zastosowania dodatku WS_2 do elektrolitu potwierdzone zostały również wartościami współczynnika skośności. Wartość współczynnika asymetrii *Ssk* dla przeciwpróbek Al_2O_3/WS_2 maleje po współpracy tribologicznej, a dla przeciwpróbki Al_2O_3 nieznacznie rośnie, pozostając jednakże ujemnym (**Tab. 2** i **3**). Charakter zmian parametrów zawartych w tabelach potwierdzają wartości współczynników tarcia badanych skojarzeń.

W **Tabeli 4** zestawiono parametry krzywych Abbotta-Firestone'a przed i po współpracy tribologicznej. Parametr *Sk* stanowi miarę efektywnej głębokości chropowatości, charakteryzując górną część powierzchni, która szybko ulegnie wytarciu po rozpoczęciu pracy. Mała wartość parametru *Spk* jest natomiast miarą dużej odporności na ścieranie, czyli dobrego zachowania się podczas docierania [L. 7, 8]. Zgodnie z jego charakterem przedstawionym na **Rys. 4b** dodatek smaru stałego WS₂ do struktury tlenku Al₂O₃ powoduje wzrost odporności powierzchni na ścieranie. Wartości parametru *Spk* po współpracy tribologicznej potwierdzają tę zależność.

Tabela 4. Parametry krzywej Abbotta-Firestone'a przed i po współpracy tribologicznej

Nazwa	<i>Sk</i> [µm]		<i>Spk</i> [µm]		Svk[µm]	
	przed testem	po teście	przed testem	po teście	przed testem	po teście
1A	2,42	1,15	0,51	0,66	2,09	1,14
1B	2,71	1,34	0,59	0,39	2,24	2,47
1C	2,51	1,33	0,50	0,34	2,28	2,44
1D	2,46	0,90	0,43	0,21	2,41	1,35

Table 4. Abbotte-Firestone curve parameters before and after tribological interaction

Na **Rys. 5** przedstawiono strukturę geometryczną powierzchni warstwy tlenkowej Al₂O₃/WS₂ (**Rys. 5a**) oraz warstwy tlenkowej Al₂O₃/WS₂ z naniesionym materiałem PEEK/BG (**Rys. 5b**) dla przeciwpróbki 1D. Spośród badanych powłok przeciwpróbka 1D charakteryzowała się najkorzystniejszymi parametrami tribologicznymi w skojarzeniu ślizgowym z tworzywem PEEK/BG, co potwierdzają wyniki analizy stereometrycznej ww. powłoki tlenkowej.

- Rys. 5. Obraz izometryczny (3D) warstwy tlenkowej Al₂O₃/WS₂ (a) oraz warstwy tlenkowej Al₂O3/WS₂ z naniesionym materiałem PEEK/BG (b)
- Fig. 5. Isometric image of Al₂O₃/WS₂ surface layer (a) and Al₂O₃/WS₂ surface layer with deposited PEEK/BG material (b)

WNIOSKI

Przedstawione wyniki badań oraz ich analiza pozwalają stwierdzić, że:

- Istnieje możliwość polepszenia właściwości tribologicznych (obniżenia współczynnika tarcia oraz zmniejszenia intensywności zużywania próbki PEEK/BG), skojarzenia ślizgowego Al₂O₃ – PEEK/BG poprzez wprowadzenie proszku WS₂ do elektrolitu.
- Zmniejszenie chropowatości przeciwpróbek po badaniach tribologicznych wynika z transferu materiału PEEK/BG na powierzchnię przeciwpróbki, jak również uwarunkowane jest zawartością proszku WS₂ dodawanego do elektrolitu.

LITERATURA

- 1. Sawyer G., Blanchet T.: Lubrication of Mo, W, and their Alloys with H2S gas admixture to room temperature air, Wear, 225–229, Part 1, 1999, 581–586.
- 2. Voevodin A.A., Zabinski J.S.: Nanocomposite and nanostructured tribological materials for space applications, Composites Science and Technology, 65, 2005, 741–748.
- 3. Skoneczny W.: Mechanizm formowania powłoki tlenkowej na aluminium w wyniku obróbki elektrolitycznej, Inżynieria Powierzchni, 1, 1999, 35–40.
- 4. Skoneczny W.: Oxide layers obtained using the electrolytic method on AlMg₂ aluminum alloy, Inżynieria Chemiczna i Procesowa, 20, 1999, 363–373.
- Skoneczny W., Gołąb A.: Badanie współpracy tribologicznej tworzywa PEEK/BG ze stalą łożyskową, Zagadnienia Eksploatacji Maszyn, 4 (152), 2007, 23–35.
- Skoneczny W., Bara M.: Właściwości tribologiczne tworzywa PEEK/BG w skojarzeniu bezsmarowym z nawęglonym Al₂O₃. Praca zbiorowa pod re-

dakcją Józefa Koszkula i Elżbiety Bociągi. Postęp w przetwórstwie materiałów polimerowych, Wydawnictwo Politechniki Częstochowskiej, 2006, 235–243.

- Oczoś K., Liubimov V.: Struktura geometryczna powierzchni, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2003.
- Wieczorkowski M., Cellary A., Chajda J.: Przewodnik po pomiarach nierówności powierzchni czyli o chropowatości i nie tylko, Politechnika Poznańska, Instytut Technologii Mechanicznej, ZTiSP, Poznań 2003.

Recenzent: Remigiusz MICHALCZEWSKI

Summary

In this article, the authors pay attention to the tribological behaviours of Al_2O_3 layers modified by tungsten disulfide powder. Oxide layers of Al_2O_3/WS_2 were obtained by using hard anoding treatment in multicomponent electrolyte of sulphuric acid, oxalic acid and phthalic acid with 10, 20 and 30 g/l WS₂ addition. PEEG/BG material was the tribological partner for the Al_2O_3/WS_2 ceramics layer in reciprocating motion, under lubricant free friction conditions. Measurements were made with a T17 tribological tester. The results of the friction coefficient for the sliding couple and wear intensity of the PEEK/BG material are presented. The geometrical structures of the layers of Al_2O_3/WS_2 surface before and after tribological interaction were measured using a Talysurf 3D Taylor Hobson profilograph.

The obtained results indicate the following:

- There is a possibility to improve the tribological properties of Al₂O₃ layers through the WS₂ powder addition to the electrolyte.
- > Decreasing of the roughness of the counter-specimen after tribological interaction is the result of applied sliding film and also the amount WS_2 powder that was put to the electrolyte.