

ASHESI UNIVERSITY COLLEGE

BUILDING A WEB-BASED CONTINOUS SIGN LANGUAGE

TRANSLATION APPLICATION FOR THE DEAF AND HARD-OF-

HEARING (DHH)

APPLIED PROJECT

B.Sc. Computer Science

Samuel Atule

2020

ASHESI UNIVERSITY COLLEGE

BUILDING A WEB-BASED CONTINOUS SIGN LANGUAGE

TRANSLATION APPLICATION FOR THE DEATH AND HARD-OF-

HEARING (DHH)

APPLIED PROJECT

Applied Project submitted to the Department of Computer Science, Ashesi

University College in partial fulfilment of the requirements for the award of

Bachelor of Science degree in Computer Science.

Samuel Atule

2020

i

DECLARATION

I hereby declare that this Applied Project is the result of my own original work and that no

part of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

……………………………………………………………………………………………

Candidate’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

I hereby declare that preparation and presentation of this Applied Project were supervised in

accordance with the guidelines on supervision of Applied Project laid down by Ashesi

University.

Supervisor’s Signature:

……………………………………………………………………………………………

Supervisor’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

ii

Acknowledgements

Writing this Applied Project was harder than I thought, and more rewarding than I could

have ever imagined. Thank you to Dad, the Mastercard Foundation, and Ashesi University,

who took a chance on me, and have given me this transformative education. To the Ashesi

community, colleagues, and friends whose warmth and acceptance made my learning

experience a great one. To these colleagues: Mustapha Yusif Tidoo and Sabastien Dovonon

Gbetonji and to my lecturer Dr. Ayorkor Korsah all of whom have been instrumental in my

academic and career paths. To my amazing lecturer and friend, Dr. Esi Ansah, and to

Florence Mawusi Ofori all of whom were always there anytime I went AWOL. Thank you

for your love and support.

And lastly, to my supervisor, Dr. David Ebo Adjepon-Yamoah, whose encouragement, and

academic advice helped me undertake this project. Thank you.

iii

Abstract

Advancement in technology has brought about limitless possibilities. We have seen

technology been applied to every aspect of our lives, from Medicine to the food we eat. This

technology can also be applied to make life more comfortable for the Deaf and Hard-of-

Hearing (DHH) individuals. Assistive technologies have been built for individuals with

various forms of disabilities. DHH individuals have seen assistive technologies in the form

of mechanical hardware, and cybernetics that enables translation of sign language to verbal

communication in various languages. However, these technologies are often expensive and

difficult to afford. In this project, an automatic sign language translation model is

implemented to help people without hearing impairment to communicate better with DHH

individuals in order to better provide services for them.

iv

Table of Content

DECLARATION .. i

Acknowledgements .. ii

Abstract ...iii

Chapter 1: Introduction .. 1

1.1 Background .. 1

1.2 Related Works .. 1

1.3 Motivation and Problem Significance .. 2

Chapter 2: Requirements ... 4

2.1 Project Scope .. 4

2.2 Technical Product Description ... 5

2.3 Project Objectives .. 5

2.4 System Users .. 6

2.4.1 Public Users .. 6

2.4.2 Technical Users ... 6

2.5 Use Cases and Diagrams .. 7

2.5.1 Public User Use Case Scenario ... 7

2.5.2 Public User Use Case Diagram ... 7

2.5.3 Technical User Use Case Scenario ... 8

2.5.4 Technical User Use Case Diagram ... 8

2.6 Requirements .. 9

v

2.6.1 Procedure for Requirement Gathering and Analysis .. 9

2.6.2 Requirement Specification .. 9

2.6.2.1 Functional Requirements ... 9

2.6.2.1.1 Translation Model Requirements .. 9

2.6.2.1.2 Web Service (API) Requirements ... 10

2.6.2.1.3 Web Application Interface Requirements ... 11

2.6.2.2 Non-Functional Requirements ... 12

2.7 Design and Implementation Constraints .. 13

Chapter 3: Architecture and Design ... 14

3.1 Design Specification .. 14

3.2 Module Decomposition .. 14

3.3 Architecture Description .. 15

3.3.1 Module 1 — Application Interface ... 15

3.3.2 Module 2 — Web Service ... 15

3.3.3 Module 3 — Data Processing Pipeline ... 17

3.3.4 Module 4 — Translation Model .. 18

Chapter 4: Implementation .. 20

4.1 System Components ... 20

4.2 Web Application Interface Implementation ... 20

4.3 Web Service (API) Implementation ... 22

vi

4.4 Data Collection and Processing Pipeline ... 28

4.5 Sign Language Translation Model Implementation ... 32

Chapter 5: Testing and Results .. 37

5.1 Development and Component Testing ... 37

5.2 System-level Testing .. 41

5.3 User Testing ... 42

5.4 Analysis of Test Results and Challenges ... 43

Chapter 6: Conclusion and Recommendations .. 44

6.1 Summary .. 44

6.2 Major Limitations... 45

6.3 Other Limitations ... 45

6.4 Recommendations and Future Works .. 46

References .. 47

1

Chapter 1: Introduction

1.1 Background

The global commitment to reduce barriers for persons with disabilities, coupled with

unparalleled advancement in technology, has motivated the development of many assistive

technologies in recent times. One category of persons with disability which have been

greatly disadvantaged is the Deaf and Hard-of-Hearing (DHH). Deaf people experience

higher rates of unemployment and underemployment and earn lifetime wages that are

between $356,000 and $609,000 less than their comparably educated normal-hearing

counterparts [8]. [8] further observed that this substantial loss of earning power reflects the

lack of understanding of the cultural and communication needs of deaf people. [1]

duplicated the observation made in [8] among DHH patients and health workers in South

Africa, Brazil, the United States, and Netherlands. [1] conducted a study examining the

quality of communication between 26 General Practitioners (GPs) and 32 of their deaf

patients. The authors found that only 13% of doctors and patients evaluated their GP-Patient

communication as good against 39% of cases where the communication was rated moderate

or bad. In the United Kingdom, 44% of deaf patients found the last contact with their GP or

health center difficult or very difficult comparable to 17% from a general population survey,

according to [1] Around 466 million people worldwide representing over 5% of the entire

world population have disabling hearing loss, the prevalence of these cases is greatest in

Sub-Sahara Africa, South Asia, and the Asia Pacific [10].

1.2 Related Works

The significance of this problem has necessitated specific solutions. In order to

reduce the communication gap among DHH people, some authors have proposed and

developed disability-friendly user interfaces to enable DHH personnel to consume

information in different formats. [6] built a web-based sign language animation avatar that

2

allowed DHH persons to easily access text-based web documents available for DHH persons

who could only communicate in sign language. [9] also implemented a speed and pausing

animation model for the American Sign Language system. However, other authors such as

[12], [7], and [11] all used physical hardware such as sensor gloves or cybernetics to ensure

the continuous real-time sign language recognition and interpretation in a workplace

context. However, these authors observed that the cost of hardware is very expensive and

requires that either the DHH person or the normal person wear them before communication

could ensue. [4] employed a combination of statistical probability and simple Recurrent

Networks (SRN) and developed a continuous Chinese Sign Language (CSL) system to

transcribe Chinese sign language into text or speech. Realizing the limitation of SRN since

it often uses hand-crafted features to describe sign language motion, [5] instead employed

3D Convolutional Neural Network to implement an automatic sign language recognition

model. However, [5] noted the expensive nature of computing power needed to build such

a model given the high computation needed to model hand motions and the prodigious

amount of data.

1.3 Motivation and Problem Significance

Ashesi University is an educational institution with the mission to educate a new

generation of ethical and entrepreneurial leaders in Africa. The institution prides itself on

the beautiful and accessible nature of its building for people with disabilities. [13] studied

accessible built environments among universities in Ghana and ranks Ashesi University as

the second best in the Country. However, the school does not currently admit deaf students

and those with Hard-of-Hearing challenges. Currently, the institution delivers teaching

through traditional audiovisual means such as Projectors and Whiteboards. This, however,

does not provide the facility to teach students with DHH challenges.

3

Furthermore, another case can be made for communication between Practitioners

and DHH individuals during access to public services, where facilities are not usually

provided for DHH individuals. As many as 70% of sign language users have said they have

been left without interpreters during their time in accident and emergency departments

throughout 2010 [3]. Apart from the difficulty in communication that is making it difficult

to access health care services as illustrated in the context of this paper above, the study [2]

on the issues facing deaf people when accessing public services concluded that Accessing

an Interpreter, Accessibility of written English, Communication & Deaf awareness of

Frontline Staff are some of the major challenges.

Project DHH seeks to provide a fast and reliable sign language translation that will

enhance communication among DHH individuals and those without hearing impairment.

This will serve to introduce accessibility facilities at Ashesi and other universities to provide

tuition for students with DHH challenges, in the future, thereby creating a holistic effort to

ensure that all manner of students can access quality education at all levels. Furthermore,

this project will ensure that written English is readily accessible to DHH individuals, remove

the need for interpreters at public institutions, and ensure that DHH individuals are not

isolated within the context of our society. The proposed implementation is a mobile-based

sign language translation application that can take communication in sign language and

translate it into its equivalent written English. The reverse approach of translating English

test into an avatar to ensure two-way communication will be implemented in a future

iteration of this project.

4

Chapter 2: Requirements

2.1 Project Scope

Project DHH will be implemented as an Application Programming Interface (API),

where it can be accessed by both a web-based environment and a mobile environment. For

the purposes of this academic study, this project will implement the API and make it publicly

accessible. The version one of this project will then build a user-oriented web-based

application where users can access the functionalities of the API. In totality, this project will

span over a Python API made publicly accessible, a web-based interface to access and

control the functionalities of the API. Furthermore, and most importantly, the scope of the

scenarios in which this application can be used to effectively facilitate sign language

communication will largely depend on the nature of the data the machine learning model

will be trained on. Since I do not have access to large amount of data, and the data will be

manually collected, this project will be implemented to facilitate conversations occurring

within the confines of the classroom building. Therefore, the scope of this project also

extends to data collection. Considering the limited range of scenarios that this application

can support as well as the novel architecture of the machine learning model that is

implemented, Project DHH can be viewed as proof of concept. In this regard, this project

will implement a data pipeline to make training of the model very easy in the future when

more data is acquired. In totality Project DHH will thus have the following components:

I. Manual data collection limited to conversations within the classroom setting.

II. Deep Learning model implementation and training.

III. A 3D Recurrent Convolutional Neural Network(3DRCNN) and training.

IV. Building and deploying 3DRCNN as API.

V. Implementation of a web-based interface or a mobile application interface.

VI. Deploying the web-based application interface.

5

VII. Implementing a pipeline for continuous training and deployment as more data is

made available.

As stated above, Project DHH can also be viewed as a prototype to evaluate the accuracy

and efficiency of the model architecture employed in this project. As a result, in this system:

I. The mobile-based application interface will only be implemented in future iterations

of the project.

II. The web-based application interface does not have a user-specific profile.

III. The system will be deployed on a lightweight server, and so the context of use will

be highly localized for initial user testing.

2.2 Technical Product Description

Project DHH is a deep learning application with a web-based interface that translates

sign language into English to facilitate communication between DHH individuals and those

without hearing impairment.

Project DHH works by using a web-based application interface to access the user

camera in order to take video clips of a user signing. This video data is then passed to the

trained 3DRCNN deep learning model, which is implemented in the Python Keras

framework and deployed as an API, through some endpoint. The Keras backend model

predicts the English translation of the sign language communication in the video data and

sends the prediction back to the web-based application interface to be displayed through

another endpoint.

2.3 Project Objectives

The following objectives will be accomplished by the end of this academic project:

I. Employ a deep learning architecture that ensures faster training time and efficient

use of computer memory.

6

II. Build a deep learning model that translates sign language to English within near real-

time.

III. Implement and deploy a deep learning model as an API for public accessibility.

IV. Build a web-based application interface for users to access model functionalities.

V. Implement a data pipeline for continuous training and deployment of the deep

learning model.

2.4 System Users

This system is primarily intended for two users: (i) Public Users (target users) (ii)

Technical Users (periphery users).

2.4.1 Public Users

These are the primary users, and whose needs this system will broadly address.

These are people with DHH challenges, and those without DHH challenges but who

generally communicate with DHH individuals. They may include individuals but also public

institutions that serve the needs of people with DHH challenges. These users are considered

the early adopters and will form a majority of users who will test this system’s

functionalities for feasibility.

2.4.2 Technical Users

These are users who are only interested in accessing the underlying technologies of

the system’s backend API but not necessarily the entire system. They include other software

developers who want to build other products around the functionalities of the system’s

backend API. These users form only a small base of this system’s users.

7

2.5 Use Cases and Diagrams

2.5.1 Public User Use Case Scenario

An individual without DHH challenges wishes to communicate with another person

with DHH challenges. So, she proceeds to lunch the web application interface either on her

computer or using her mobile phone. The user wishing to understand the sign language

communication of the person with the DHH challenges proceeds to click on the “start”

feature on the web interface. This action opens the webcam of the computer or camera of

the mobile phone, and the user can focus it on the DHH person who is signing. After the

DHH is done communicating, the user can simply press the “translate” button on the web

interface, and the equivalent translation of the sign language in English is immediately

displayed below the camera footage on the web interface for the user’s perusal. These

actions can be repeated anytime an individual decides to communicate with the DHH user.

2.5.2 Public User Use Case Diagram

Figure 2.1: Public User Use Case Diagram

8

2.5.3 Technical User Use Case Scenario

A computer developer wishes to develop a mobile application that has the capability

of translating sign language communication to the English language. Instead of

implementing a translation engine from scratch, she decides to access the API

documentation of the publicly hosted Sign Language translation backend of this system, and

then build her mobile application interface to access this API directly. The documentation

may also guide her on how to harvest more data, and to further train or fortune the

functionalities of the backend API. Furthermore, a researcher may wish to study the

accuracy or capabilities of Sign Language Recognition (SLR) models available publicly.

This model can be directly downloaded, and the results reproduced with ease using the data

pipeline of the model.

2.5.4 Technical User Use Case Diagram

Figure 2.2: Technical User Use Case Diagram

9

2.6 Requirements

2.6.1 Procedure for Requirement Gathering and Analysis

Requirements were elicited through an intended literature review. For instance, as

mentioned earlier, [5] implemented a 3D Convolutional neural network for automatic sign

language recognition and noted the expensive nature of computing power needed to build

such a model. Furthermore, the authors also noted the large amount of data needed to create

such a model.

Moreover, conducting some ethnography research at the Mampong Deaf School, the

observation made was that most of the pupils there did not have access to android phones;

however, the school’s IT laboratory was equipped with computers. This also informed the

type of application interface that this project implemented. Finally, the author’s domain

knowledge from working with deep learning was also employed during the requirements

gathering and analysis phase of this project.

2.6.2 Requirement Specification

2.6.2.1 Functional Requirements

2.6.2.1.1 Translation Model Requirements

This is the core component of the system and is responsible for the translation of

sign language communication into English text. It is implemented as a deep learning model

which takes in video data containing the sign language communication, and response with

a translation of the communication into English for the user.

Request/Response Sequence

(i) The user lunches the application interface on the web or through their android

phone

10

(ii) The user clicks on the “start” button on the interface, and then the user’s camera

is accessed to start recording video of the DHH person communication.

(iii) The user clicks on the “translate” button, and the video recording is sent to the

translation engine.

(iv) The translation engine takes as input the video stream and returns the English

translation as the response.

(v) The response is displayed on the application interface for the user to see.

User Requirements

(i) The user needs the translation engine to perform near real-time prediction to

ensure the conversation does not stall.

(ii) The user needs an accurate translation of sign language communication to

prevent misinterpretation.

(iii) The user needs faster training time to ensure the model can be integrated into

new systems.

System Requirements

(i) The translation engine must send a response reliably to facilitate integration.

(ii) The system must implement an appropriate mechanism to report feedback upon request

completion.

2.6.2.1.2 Web Service (API) Requirements

This subcomponent ensures that other systems can access the functionalities of the

Translation engine of this system. This is a web service implemented on top of the

Translation engine with publicly available documentation of the various endpoints so that

another user (technical user) can build a system with the Translation engine.

Request/Response Cycle

11

(i) The user accesses the API documentation of the web service available publicly

online.

(ii) The user builds a system (interface) that accesses the “post” Uri of the web

service and posts video data containing sign language communication to this

URI of the web service.

(iii) The user retrieves a response that signal prediction was completed using a “get”

Uri from the web service available in the documentation.

(iv) The user retrieves the web service’s response containing the translation of the

sign language using another “get” Uri from the web service.

(v) The user’s system then consumes this response however they choose to.

User Requirements

(i) The user needs the API document available publicly in other to access the various

functionalities of the web service.

(ii) The user needs the system to accept the request as well as respond with data in

the specified format, as stated in the API documentation.

System Requirements

(i) The system must implement a “get” request endpoint to retrieve video data from

the application interface when a user clicks the “translate” button.

(ii) The system must implement a “post” request to make the response available to

the application interface after translation is complete.

(iii) The system must respond with a reliable data format.

2.6.2.1.3 Web Application Interface Requirements

This feature enables public users to be able to access the functionalities of the

backend translation web service. This could be implemented as a web application interface

12

or a mobile application interface. For the purpose of this study, a web-based application

interface will be implemented.

Request/Response Sequence

(i) The user lunches the application interface on the web or through their android

phone.

(ii) The user clicks on the “start” button on the interface, and then the user’s camera

is accessed to start recording video of the DHH person communication.

(iii) The user clicks on the “translate” button, and the video recording is sent to the

translation engine.

(iv) The translation engine takes as input the video stream and returns the English

translation as the response.

(v) The response is displayed on the application interface for the user to see.

2.6.2.2 Non-Functional Requirements

Usability: The system should be designed for ease of use and learnability by users.

Simple Intuitive Interface: The system must have an interface that is simplified, easy to use,

and minimizes the steps taken to accomplish a task.

Highly Diverse Dataset: The system must be trained with diverse data in order to translate

user communication with high accuracy regardless of the origin of the user.

Reliability: The system must provide translation with high accuracy and should be able to

handle errors such as incorrect data format to ensure that system is always available.

Light Weight Application Interface: The application must not consume a lot of resources so

that it can run on several computing environments.

13

Near Real-Time Translation: The model must be lightweight to ensure faster response time

in order to prevent users from waiting too long.

Privacy Protection: The system must secure user data to ensure that user conversations are

secured from external attacks and data leakage.

Maintainability: The system must be easy to maintain or modify to ensure the scalability of

the system.

2.7 Design and Implementation Constraints

As stated above in the scope of this project, scenarios in which this application can

be used to effectively facilitate sign language communication will largely depend on the

nature of the data the deep learning model will be trained on. Since I do not have access to

a large amount of data, this project will be implemented to facilitate conversations occurring

within the confines of the classroom building. As such, communications outside this scope

may be less accurate.

Furthermore, this system is implemented and trained on Google’s free tier GPU

available on Google Collaboratory with only 12 Gigabytes of RAM. Therefore, computing

resources will pose a significant challenge, which will increase training time and may

decrease the number of design iterations that can be made within the limited time of this

study. Moreover, the size of the deep learning architecture, which will be used to increase

accuracy, may be affected since the size of the model depends on the number of computing

resources available. Furthermore, Google Collaboratory also limits the amount of data that

can be stored during model training, thereby decreasing the amount of data used to train the

model.

14

Chapter 3: Architecture and Design

3.1 Design Specification

Project DHH system is created by implementing a deep learning architecture called

Three-dimensional Recurrent Convolutional Neural Network (3DRCNN) using an encoder-

decoder at the recurrent layer, a web service, and an application interface. The process that

the video data containing the sign language communication goes through is shown in Figure

3.1.

Figure 3.1: Flow chart diagram for the system

3.2 Module Decomposition

As illustrated in Figure 3.1 above, Project DHH is divided into four main modules;

each one represents a high-level step in the principal system.

The modules are:

• Application Interface

• Web Service

• Data Processing Pipeline

• Translation Model

3D Convolutional

model
recurrent
model 3D Frames 3D Frames

Sign Language Translation process Video Data Processing

DHH System

 Extraction Formatting

Application Interface

User Video
Data

Web Service

API
Interface

15

3.3 Architecture Description

The system generally employs the Model View Controller (MVC) in order to easily

accommodate future changes to the entire system. The system implements each of the

modules above separately, without introducing dependencies among the other components

of the system. Furthermore, a web service architecture is employed at the backend to reduce

critical system failures when incorporating more services in the future.

3.3.1 Module 1 — Application Interface

The system uses a [web or mobile] application interface to access the underlying

functionalities of the translation engine through a web service. This interface is simplified

to include two buttons to record video data and trigger the backend translation engine. A

text field is created on the interface to display the response from the backend engine.

3.3.2 Module 2 — Web Service

The system employs a web service architecture to manage all components of the

system. This means the web service coordinates requests and responses between the

application interface(s) and the underlying translation model.

Another approach is to directly couple the translation engine together with interface either

as a monolithic web application or a mobile application. The advantage of implementing

this system as a monolithic application is that users will be able to access the functionalities

of this application without the need for internet access. Furthermore, the monolithic

architecture will increase processing time, leading to near Realtime translation. Although

the monolithic architecture would be efficient in achieving the objectives of this project in

terms of near Realtime translation, and faster computational time, there are significant

challenges to employing this architecture, and the reason why this architecture was not

implemented in this project.

16

TensorFlow (the machine learning framework that was used to implement the

translation engine) provides the TensorFlow Lite used to deploy machine learning models

directly on the mobile environment, it has yet to add features that allow for on-device

training, or easy deployment on mobile environments. This means that the machine learning

model cannot be trained on mobile devices, a lot of time is needed to deploy a complex

model such as this system on to a mobile environment.

Therefore, the Web service architecture was implemented to circumvent the

challenges stated above. The advantages are that the client device will not spend resources

doing computation locally, which for most client devices, would likely take too long to

complete translation. Furthermore, client application interfaces would be lightweight since

the backend is hosted on a separate server. This means that a wide variety of client devices

can install the system without worrying about hardware limitations. Moreover, a web service

enforces uniformity. This means different computing environments will be able to access

and extend the underlying functionalities of the translation engine.

Other advantages of Web Service Architecture are:

(i) Improves model performance since a single model is trained and utilized by all

users rather than having an individual model for each user.

(ii) Model performance can also be tracked since a single model is used.

17

Figure 3.2: Schematic diagram of Web Service Architecture

3.3.3 Module 3 — Data Processing Pipeline

The system implements a data processing pipeline that processes the video data into

a reliable format for the translation model. This module takes as input the video recording

containing the sign language communication and returns an array of tensors in the format

(40, 128, 128, 3) or (40, 224, 224, 3) to the convolutional neural network (CNN) of the

translation model. To achieve this, the video recording is first extracted into colored frames,

and each array converted into an array of pixels. The number of frames from each video

recording may differ, and hence frames from each video are sampled into a fixed size of 40.

Each of these 40 frames is then converted into an appropriate aspect ratio and then cropped

into a shape of (224, 224, 3) or (128, 128, 3) depending on the CNN model that is used for

feature extraction. At this point, the data is in the correct format to be passed to the

translation model.

18

 Extraction Sampling

 (Video Data) (Variable frames) (40 frames)

Figure 3.3: Schematic diagram of the Data Processing Pipeline

3.3.4 Module 4 — Translation Model

This is the core module of the system and implements a deep learning model that

accepts an array from frames extracted from the data processing module and predicts the

translation of the sign language. A 3-Dimensional Recurrent Convolutional Neural Network

(3D-RCNN) architecture is employed in this model.

Considering the limited dataset available for this project and the high computational

requirement of this deep learning model, the convolutional model was not implemented

from scratch as this will led to overfitting resulting in low accuracy. Instead, transfer

learning was employed using ReceptionV3 convolutional and the popular MobileNet model

available in the Keras Machine Learning Framework. The output layers of these models are

removed, leaving only the pooling layers in order to extract high-level spatial features of the

frames. The extracted 40 frames of the video data are fed into the convolutional model in

order to retrieve the spatial features of each frame. After the convolutional model, a tensor

of shape (40, 1024) is returned and saved locally. The extracted spatial features saved locally

are then passed to a recurrent model, which is implemented as an Encoder-Decoder model.

The encoder-decoder model is implemented and trained from scratch to exploit the temporal

information from the 40 extracted features and predict translation based on this feature. This

model is trained end-to-end using the extracted features from the convolutional model.

Model

Model

19

Figure 3.4: Schematic diagram of 3D-RCNN Model Architecture

Figure 3.5: Rolled Schematic diagram of Encoder-Decoder Model

02 1024 x 1

40

40

01

CNN

40

01 1024 x 1 Translated

Text

Fram
Video

(224x224

)

Translated

Text

Encoder

LSTM

Extracted Frames

feature

from CNN model

(40, 1024)

x

x

 …
(Output from encoder

model discarded)

h,

c

Internal states (h, c)

passed as initial

Decoder states

(latent space 256)

Representing

semantic structure

of target sentence

Decoder

LSTM

Input Start

Character to

predict next

character

Target text is

outputted

character by

character, and

been feedback

to generate

next character

20

Chapter 4: Implementation

4.1 System Components

The Flow Chart Diagram in Figure 3.1 depicts the components of the entire system.

These components include (1) Application Interface (2) Web Service (3) Data Processing

Pipeline (4) Translation Engine.

4.2 Web Application Interface Implementation

The application interface is implemented on top of the Web Service as a Web

Application, as well as a Mobile Application. These interfaces request data from the Web

Service, format this data, and then displays the information for users.

Angular1 Web Application Framework

The Web Application Interface is implemented using the open-source Angular1 web

application framework maintained by Google, individuals, and other corporations. This

framework is both mobile and desktop-ready, which means building interfaces for multiple

platforms is easier. Furthermore, as a framework, as compared to using pure JavaScript,

Angular comes with boilerplate code and components, which helps bootstrap the

development process and reduces the development time.

Angular HttpClient2 HTTP API

As seen from the schematic diagram of the Web Service, Figure 3.2, the web

application interface is expected to communicate with the backend service by sending

requests and receiving responses. The HttpClient2 Module in the Angular framework offers

a simplified HTTP API to enable communication with the backend Web Service. It contains

1 Angular, https://angular.io/
2 Angular HttpClient, https://angular.io/guide/http

https://angular.io/

21

simple endpoints such as POST, GET, PUT etc. to create and send requests as well as receive

generated responses from the backend service.

Figure 4.1: Code showing Angular HttpClient accessing JSON data from web service

Figure 4.2: Web application interface

22

4.3 Web Service (API) Implementation

The Web Service acts as the interface and facilitates the interaction between the

application interfaces and the underlying Translation Engine of the system. This architecture

was chosen to enable the decoupling of the application interfaces and the backend

Translation Engine as required by the system design architecture. The Web Service is

implemented in the Python3 language, using the Flask4 Micro Web Framework. OpenCV-

Python5, a python wrapper to OpenCV, is employed by the Web Service to access the

camera feed of the users, in order to provide camera data of user sign language

communication for prediction.

Python Language:

The Python programming language is an interpreted, high-level, general-purpose

programming language. Python is best used for data-intensive processing and provides a

vast number of free to use third-party modules as well as extensive support libraries to

increase development and processing speed. Furthermore, the best Machine Learning

Frameworks such as Keras6, Tensorflow7, and PyTorch are open-sourced and readily

available in Python3 to use. This, therefore, made the decision to use Python3 inevitable.

Flask4 Micro Web Framework:

Flask is a lightweight web application framework designed to make web

development easy and quick to get started with, but with the capability to scale up to

complex applications. It does not provide boilerplates, but contains minimal tools and

libraries, in order to provide more flexibility to the application developer. The Flask

3 Python, https://www.python.org/
4 Flask, https://flask.palletsprojects.com/en/1.1.x/
5 OpenCV-Python, https://pypi.org/project/opencv-python/
6 Keras, https://keras.io/
7 Tensorflow, https://www.tensorflow.org/

https://pypi.org/project/opencv-python/

23

Framework is used in the development of the Web Service because of the ease of integration

with the underlying Backend Translation Engine of the system since the Engine is also

implemented using the Python Language. Furthermore, high flexibility provides total

control over the development process.

OpenCV9

OpenCV is an image and video processing library with bindings in Python3 and other

programming languages. OpenCV is used for image and video analysis, as well for also

capturing camera feed from a user device. OpenCV could also be used for facial and object

detection, and other machine learning applications, however, the library is used for video

capturing, and image analysis by the Web Service. OpenCV provides Python binding called

OpenCV-Python in order to use it in a Python project.

The decision to use OpenCV coincides with the requirements of this project. It is not only

freely available to use but is fast since it is implemented in C/C++ programming languages.

Furthermore, OpenCV uses low RAM making it very efficient to handle and process the

large data requirement of this application.

9 OpenCV, https://opencv.org/

24

Figure 4.3: Code showing implementation of OpenCV to access frames from the webcam

Postman10

Postman is an HTTP API testing tool, which was used to test the various endpoints

of the web service. It provides an intuitive graphical user interface (GUI), and standard

HTTP methods to make testing APIs easier.

10 https://www.postman.com/

25

Figure 4.4: Postman sending a get request for API information

Figure 4.5: Postman sending a post request to stream frames from the webcam

26

Figure 4.6: Sending a post request with frames for prediction in Postman

Git11 and GitHub12

Git is an open-source version-control system that was used during the development

process to track changes in the project source code. This helped to maintain project code by

creating different git branches to implement separate logic before merging to the central

repository. Furthermore, the source code was published unto a remote GitHub12 repository

to avoid losing code if the local computer is not available. GitHub12 provides remote hosting

for version control systems.

11 Git, https://git-scm.com/
12 Github, https://github.com/

27

Figure 4.7: Output of pushing changes to Github using Git

Figure 4.8: Source code published on GitHub

28

Figure 4.9: Code showing implementation of Web Service in Visual Studio Code

4.4 Data Collection and Processing Pipeline

The Data Collection and Data processing Pipeline is a crucial component needed to

implement the Translation Model. The Translation Model requires a cornucopia of video

data in order to be able to provide correct results. Furthermore, this module also transforms

the video data into a ready-consumable format for the Translation Model.

YouTube API13

The YouTube API allows developers and programmers to access video statistics and

YouTube channels data via REST and XML-RPC calls. This API13 was employed to harvest

and create a large volume of training data for the Translation Model since there is a dearth

of training data for Sign Language Translation. Playlist videos from the American Sign

Language Youtube Channel called ASLMeredith14 was downloaded together with their

corresponding transcription. The videos are then segmented using the sentence durations of

its transcription in JSON format. Subsequently, manual cross-checking was carried out to

13 YouTube API, https://pypi.org/project/python-youtube/
14 ASLMeredith, https://www.youtube.com/channel/UCsuBAbMlPGJ95w3mwhz-30g

29

remove bad data points before the generated dataset is fed into the Data Processing Pipeline.

This API is a good choice because it is implemented in the Python programming language

and integrates seamlessly with the entire system code for automation. Furthermore, Youtube

videos were free to download without any legal restriction leading to a short amount of time

in generation a large dataset.

MoviePy15 Python Module

MoviePy is a Python module used for video editing, such as cutting, concatenating,

or title insertions. It is also used for video compositing, video processing, and works with

the most common video formats such as MPEG, mp4, GIF, among others. In order to

generate the training data from the YouTube playlists, this module was employed to trim

video segments into sentence long duration using their corresponding transcript data. This

module was used because it supports the most video formats such as MPEG and mp4, which

the downloaded YouTube videos used.

Pytube316 Python Module

Pytube3 is a lightweight Python library for downloading YouTube videos. It is easy

to configure and use and provide interfaces for downloading video playlists on YouTube.

15 MoviePy, https://pypi.org/project/moviepy/
16 Pytube3, https://python-pytube.readthedocs.io/en/latest/

30

Figure 4.10: Using YouTube API to download sign language playlists and transcriptions

Figure 4.11: Using MoviePy to trim videos to sentence-level durations

31

Google Collaboratory17

Google Collaboratory is a free cloud service based on the Jupiter Notebook and

supports free GPU and 12GB RAM. Is also comes with most machine learning modules

already installed. This platform was used to train the machine learning model for translation.

Figure 4.12: Source code on Google Collaboratory

Pandas18

Pandas is an open-source library that provides high-performance, easy-to-use data

structures and data analysis tools for the Python programming language. This library was

used to format text data in the data processing pipeline.

NumPy19

17 Google Collaboratory, https://research.google.com/colaboratory/faq.html
18 Pandas, https://pandas.pydata.org/
19 NumPy, https://numpy.org/

32

NumPy is an open-source library for scientific computing with Python. This library

was employed because of the high tensor operation requirements of video data. Furthermore,

it is also employed by all the Machine Learning libraries used in the Translation Engine

Model.

4.5 Sign Language Translation Model Implementation

This component is the backbone of the entire system. It accepts user’s sign language

communication in the form of video frames and computes the translation of the sign

language into the English Language, using Deep Learning. This component employs several

machine learning technologies and state of the art machine learning techniques such as

Keras, TensorFlow, and Transfer Learning.

General Implementation Technique

As indicated in the model architecture, after the video frames are extracted and

processed, they are then passed into one of two Convolutional Neural Network: the

MobileNet or InceptionV3 for feature extraction. The choice of including these models was

to provide preference depending on the nature of the user’s device. For instance, MobileNet

is a lightweight model, and will preferably run on a low-end user device. These extracted

features are then fed into an Encoder Model, a Long Short-Term Memory (LSTM)

Recurrent Neural Network (RNN), to compute a 256-sized latent space vector representing

the semantic space of the expected output sentence. The 256-sized latent space vector is

then used as the initial states for another LSTM-RNN Model called the Decoder Model.

This model then outputs sentence character by character using the tab character as a starting

character and then feeding the previously generated character back to the Decoder Model to

output the next character. Refer to the general architecture and the motivation for using

Transfer Learning.

33

InceptionV320

InceptionV320 is a convolutional neural network model made available in Keras

alongside its weights and can be used for prediction, feature extraction, and fine-tuning.

This model is heavy with a size of 92MB, with over 23 million configurable parameters.

However, it has a top-5 accuracy of 0.937 on the ImageNet validation dataset.

MobileNet21

MobileNet is also another deep learning model made available in Keras alongside

its weights and can be used for prediction, feature extraction, and fine-tuning. Unlike

InceptionV3, this model is lightweight with a size of 16MB, and about 4 million

configurable parameters. However, it has a top-5 accuracy of 0.895 on the ImageNet

validation dataset.

Keras7

Keras is an open-sourced machine learning framework written in the Python

programming language. Keras is easy to use, largely supported and makes configuring

neural networks less complicated. It is a high-level API implemented on top of several high-

end numeral computational libraries such as TensorFlow Core API, Theano, CNTK, among

others. This framework was chosen because of its ease of building models, as well as its

support of most of the backend numeric computational engines.

TensorFlow9

The TensorFlow Library is an open-source for symbolic math operations and used

for machine learning applications such as building neural networks. This library was used

with the Keras framework for fast vector operations involving the video data.

Encoder-Decoder Models

20 InceptionV3, https://keras.io/api/applications/inceptionv3/
21 MobileNet, https://keras.io/api/applications/mobilenet/

34

The Encoder-Decoderer Model implemented in this system is an adaption of the

Sequence to Sequence Model example implemented on the official Keras documentation

page22.

Figure 4.13: Visualization of Encoder-Decoder architecture

22 Sequence to Sequence Model Example, https://keras.io/examples/lstm_seq2seq/

https://keras.io/examples/lstm_seq2seq/

35

Figure 4.14: Visualization of MobileNet CNN architecture

36

Figure 4.15: Visualization of InceptionV3 CNN architecture

37

Chapter 5: Testing and Results

This chapter explores suitable testing techniques to validate the entire system against

the functional and non-functional requirements of the project. Testing also reveals bugs and

logical errors within the system. In order to assess the validity of the entire system, the

following testing techniques where employed: Component Testing, System-level Testing,

User Testing. In the final part of this chapter, an analysis of the test results, as well as the

various part of the system that did not work out, is also stated for future implementation.

5.1 Development and Component Testing

Development Testing is a testing practice where testing is carried out alongside the

development process. In this technique, the testing and the development process is tightly

coupled together, such that the code is immediately checked as it is written. This means

bugs and logic errors are quickly exposed, and the quality of the development code is

improved. All the various system components where testing during the development phase

to ensure that completed components were free of bugs.

Component testing was simultaneously carried during the development phase. In this

testing technique, individual components of the system called modules are tested separately

without integration with other components of the system. Since the business logic of the

entire system was separated, it provided room to do Component Testing.

(i) Translation Backend Model Component

The Translation Model is a machine learning model and hence was tested to ensure

the predictive accuracy of the model. During the development process, the model was

trained on 161 video data points and validated on 40 video data points with 20 epochs. The

Word Error Rate (WER) or the Character Error Rate (CER) are the two most suitable

performance metrics to validate a translation model. However, due to the challenge of

38

integrating a custom CER custom function with Keras framework, the validation accuracy,

as well as empirical evidence of the model in use, was used as a performance metric. The

CER custom metric was be implemented in future works of this project. The model was

trained using a small epochs value of 20 because of the limited computing power available.

Figure 5.1a: Training Encoder-Decoder model

Figure 5.1b: Training and saving Encoder-Decoder model to file

39

(ii) Web Service (API)

The Web Service implemented two main endpoints to support the functional

requirements of the system. These included a video streaming endpoint and the model

selection endpoint. The video streaming endpoint, /ml/api/v1.0/md/vf, expected a post

request with JSON data indicating whether to either returns video frames from the user

webcam or call the prediction function to compute the prediction as a JSON response. On

the other hand, the model selection endpoint, /ml/api/v1.0/md/<int:model_id>, receives a

GET request and loads the corresponding convolutional neural network such as MobileNet

or InceptionV3, as specified in the URL address.

To test whether the various endpoints were working, the Postman application was

employed to interact with the web service. Postman ensures that the request and response

are in the standard format, and the various HTTP methods such as POST and GET are also

supported.

Figure 5.2: Model prediction in Postman

40

Figure 5.3: Web service running in visual studio code

(iii) Data Processing Pipeline

The Data Processing Pipeline is expected to receive video frames, crop them into an

appropriate size depending on the CNN model that is selected, either MobileNet or

InceptionV3 model. This component is tested to ensure that the target user in the video

frames must not be cropped out. In order to test this, the final output of component, the

cropped frames, are visualized to make sure the target user is still visible in the frames, as

shown below:

Figure 5.4: Unprocessed and processed frames data

41

(iv) Web Application Interface

This component was built with mock data to ensure that the various elements of the

interface, such as the video streaming section, the start, and translate buttons as well as the

model selection form were all in place. The video streaming section was initially replaced

with static picture frames.

The start and the translate button were expected to send a post request to a default

route when submitted, while the select element sent a get request when selected.

Figure 5.5: Web application interface

5.2 System-level Testing

This testing stage validates the complete and fully integrated system. In this testing

technique, all the individual components are harmonized and tested end-to-end to meet the

entire system specification. At this stage, the mock data on the web application interface

was replaced with dynamic data generated from the backend logic of the system. The

generated video frames from the webcam where retrieved and replaced on the web interface

to simulate the streaming process. Furthermore, the start and translate buttons are configured

42

to send a post request to the video streaming endpoint to trigger recording, and prediction,

respectively when triggered. The select element is also configured to send a GET request to

the model selection endpoint, thereby loading one of the two CNN models at the backend.

The Translation Model is trained and saved to a local directory, where the web

service is pointed to load and use it for prediction without on-device training. The various

endpoints encapsulate the underlying implementation of the Translation Engine, ensuring

that different pre-trained models can be easily integrated.

To test the system end-to-end, a user was made to sign using the web application

interface, and the predicted results displayed on the application.

5.3 User Testing

In the User Testing stage, the entire system is deployed and made available to users

to interact with in order to discover design flaws. This stage ensures that the capacity of the

system is measured and can withstand the volume of user requests during production.

Furthermore, the ease of use is measured and ensures the system meets its intended purpose.

To satisfy the scope of this project within the limited time available, and due to the

requirements of users to understand American Sign Language, only a few test users met this

requirement and were invited to test out the application.

The application was deployed to a server, and the URL of the application sent out to

the users who were knowledgeable in communicating in the American Sign Language. The

particular domain of conversation on which the training data was generated is also made

know to the users, so that they do not sign out of context. Their feedback is then collated

with regards to the accuracy of the model, and the intuitive nature of the web interface.

43

5.4 Analysis of Test Results and Challenges

The user testing was not very successful due to the lack of knowledge in the

American Sign Language by most users and the author as well. As a result, only a few sign

language communications were learned by the author and then used to test the application.

Users found the web application interface intuitive and simple to use.

However, even though the web service was fully implemented, there was difficulty

in retrieving video frames from the server with Angular HttpClient, this led to only fully

implementing the web application without the accompanying mobile platform. The mobile

interface will be implemented in the future iteration of this project. Other challenges were

developing proper performance metrics to evaluate the Translation Model performance, and

therefore only the empirical performance was used. And finally, due to the limited

computing power available, the model was not trained for several epochs, and only small

training data was employed to train the model as well. There was be a lot of improvement

in model performance if a lot of training data was used.

44

Chapter 6: Conclusion and Recommendations

6.1 Summary

The larger goal of this project is to provide a fast and reliable sign language translation

that will enhance communication among DHH individuals and those without hearing

impairment. This will serve to bridge the lack of accessible facilities for people with DHH

challenges in an educational and public institution and help reduce the need for Interpreters.

The main goals of this project, as stated from the onset, were achieved:

(i) A novel deep learning architecture 3D-RCNN was employed to achieve faster

training time and efficient use of computer memory.

(ii) An end-to-end deep learning model for translating sign language to English

within near real-time was implemented.

(iii) The Translation Model was further implemented as a web service and deployed

for public accessibility.

(iv) A web-based application interface that enabled users to translate sign language

communication English was also implemented and deployed.

(v) And finally, a data pipeline for generating large datasets using YouTube sign

language playlists for continuous training of the deep learning model was also

implemented.

The system implemented in this project could be adopted and trained to translate any

version of Sign Language into English or any target language. It can also be easily integrated

into other projects as the web service, or source code of the Translation model is made

available. Furthermore, the Encoder-Decoder model, as implemented in this project, could

also be modified to do Language Translation. All this achieved with a lightweight Encoder-

Decoder architecture model and the use of Transfer Learning to reduce the computing power

requirements of traditional machine learning models.

45

6.2 Major Limitations

However, this system is without its challenges. As with any machine learning model,

there is an inherent bias in the model due to the characteristics of the generated dataset. The

YouTube playlist that was employed to create the training data was produced by a single

female author. This leads to a bias of the model towards female personalities. This is likely

expected, but this challenge could be avoided by producing dataset that reflects both

genders. Furthermore, as a conversational model, the generated dataset needs to reflect all

domains that the model is going to be used in. One approach could be to develop a specific

model for specific conversational contexts. Another method could mean collecting enough

data to train a general model that could be used in any conversational domain. In this version

of the implemented model, specific data was generated to reflect trivial greetings, basic

personal introduction, and Christmas season’s conversations, among others. Hence, this

model would not work correctly when sign language communication is outside the domain

the dataset was generated.

Furthermore, there is limited computing power needed to train the model on the large

dataset that is generated. Paid cloud services could be explored in the future to train the

model on a larger dataset to increase the predictive capacity of the model.

6.3 Other Limitations

Other limitations include the inability to build a mobile platform for the system. A

mobile application will increase the number of people who would use the system and make

the system more beneficial during conversations. However, fully implementing a web

service and web application proofs that it is possible to build a mobile application for this

system. Future iterations of this project will mitigate this limitation. Furthermore, the web

application does not currently look appealing. More design concepts will be infused into it

in future work.

46

6.4 Recommendations and Future Works

Several improvements can be made to the existing system. A major one could

involve experimenting with the size of the Encoder-Decoder model, to figure out the best

network size that improves the general performance of the Translation system. However,

this will require large computing power to quickly try out different model parameters. It was

not possible to try different parameters due to the limited nature of the available computing

power. Furthermore, more time could be used to manual sort through the dataset that is

automatically generated with the data pipeline. This will help improve the quality of the

generated dataset, thereby increasing the performance of the Translation model.

It is recommended that varied YouTube playlist be used in generating the dataset to

reduce the model bias. This model could also be used to implement Sign Language

Translation in any language. This is highly encouraged so that global accessibility could be

improved for DHH individuals worldwide.

Beyond the above recommendation, the following will be implemented in future

iterations of the project as they are very essential to achieve the goals of this project:

(i) Implement a mobile application interface for both android and IOS operating

systems.

(ii) Generate large and varied datasets to implement a general Translation Model for

most conversational domains.

47

References

[1] Alexa Kuenburg, Paul Fellinger, Johannes Fellinger. 2014. Health Care Access

Among Deaf People, The Journal of Deaf Studies and Deaf Education, Volume 21,

Issue 1, January 2016, Pages 1–10, https://doi.org/10.1093/deafed/env042

[2] British Death Council. (2014). Accessing Public Services: Issues for Deaf People.

Retrieved from

https://bda.org.uk/wpcontent/uploads/2017/03/BDA_Accessing_Public_Services-

Issues_for_Deaf_People-London_Boroughs_12-2014.pdf

[3] Edwards Jim. 2013. Scared, abandoned and ignored: public services for deaf people.

The Guardian, https://www.theguardian.com/public-leaders-

network/2013/may/10/public-services-deaf-people-loophole

[4] Gaolin Fang and Wen Gao. 2002. An SRN/HMM system for signer-independent

continuous sign language recognition. Proceedings of Fifth IEEE International

Conference on Automatic Face Gesture Recognition, Washington, DC, USA, 2002,

pp. 312-317. doi:10.1109/AFGR.2002.1004172

[5] Jie Huang, Wengang Zhou, Houqiang Li and Weiping Li, “Sign Language

Recognition using 3D convolutional neural networks,” 2015 IEEE International

Conference on Multimedia and Expo (ICME), Turin, 2015, pp. 1-6. doi:

10.1109/ICME.2015.7177428

[6] Jin-Woo Chung, Ho-Joon Lee , Jong C. Park. Improving accessibility to web

documents for the aurally challenged with sign language animation. Proceedings of

the International Conference on Web Intelligence, Mining and Semantics, May 25-

27, 2011, Sogndal, Norway. Doi:10.1145/1988688.1988727

https://doi.org/10.1093/deafed/env042
https://bda.org.uk/wpcontent/uploads/2017/03/BDA_Accessing_Public_Services-Issues_for_Deaf_People-London_Boroughs_12-2014.pdf
https://bda.org.uk/wpcontent/uploads/2017/03/BDA_Accessing_Public_Services-Issues_for_Deaf_People-London_Boroughs_12-2014.pdf
https://dl.acm.org/citation.cfm?id=1988727
https://dl.acm.org/citation.cfm?id=1988727
https://dl.acm.org/citation.cfm?id=1988727
https://dl.acm.org/citation.cfm?id=1988727
https://doi.org/10.1145/1988688.1988727

48

[7] Jiyong Ma, Wen Gao, Jiangqin Wu and Chunli Wang. 2000. A continuous Chinese

sign language recognition system. Proceedings Fourth IEEE International

Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580),

Grenoble, France, 2000, pp. 428-433. Doi: 10.1109/AFGR.2000.840670.

[8] Luft Pamela. 2000. Communication barriers for deaf employees: Needs assessment

and problem-solving strategies. in work. February 2000. 14(1). pp. 51-59.

https://www.researchgate.net/publication/11026132_Communication_barriers_for_

deaf_employees_Needs_assessment_and_problem-solving_strategies.

[9] Matt Huenerfauth. 2009. A Linguistically Motivated Model for Speed and Pausing

in Animations of American Sign Language. Proceedings ACM Transactions on

Accessible Computing (TACCESS), Volume 2 Issue 2, June 2009. Doi:

10.1145/1530064.1530067.

[10] World Health Organization. 2019. Deafness and Hearing Loss.

https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

[11] Syed A. Mehdi, and Y. N. Khan. (2002). Sign language recognition using sensor

gloves. Proceedings of the 9th International Conference on Neural Information

Processing, 2002. ICONIP’ 02., Singapore, 2002, pp. 2204-2206 vol.5.

doi: 10.1109/ICONIP.2002.1201884

[12] Stephen Cox, Michael Lincoln, Judy Tryggvason, Melanie Nakisa, Mark Wells,

Marcus Tutt, Sanja Abbott. Tessa, a system to aid communication with deaf people.

Proceedings of the fifth international ACM conference on Assistive technologies,

Edinburgh, Scotland, pp. 205 – 212, July 2002. Doi:10.1145/638249.638287

[13] Eric P. Tudzi, John Bugri, and Anthony Danso. 2017. Towards Accessible Built

Environments in Universities in Ghana: An Approach to Inclusiveness Assessment.

https://www.researchgate.net/journal/1875-9270_Work
https://www.researchgate.net/publication/11026132_Communication_barriers_for_deaf_employees_Needs_assessment_and_problem-solving_strategies
https://www.researchgate.net/publication/11026132_Communication_barriers_for_deaf_employees_Needs_assessment_and_problem-solving_strategies
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

49

Disability, CBR, and Inclusive Development (DCID) Journal, 28(1), 189-206. doi:

https://doi.org/10.5463/dcid.v28i1.592.

[14] Carlos M. Travieso, Jesus B. Alonso and Miguel A. Ferrer. Sign language to text by

SVM. Seventh International Symposium on Signal Processing and Its Applications,

2003. Proceedings., Paris, France, 2003, pp. 435-438 vol.2. doi:

10.1109/ISSPA.2003.1224907

 [15] D. Uebersax, J. Gall, M. Van den Bergh and L. Van Gool. Real-time sign language

letter and word recognition from depth data. 2011 IEEE International Conference

on Computer Vision Workshops (ICCV Workshops), Barcelona, 2011, pp. 383-390.

doi: 10.1109/ICCVW.2011.6130267.

 [16] T. Shanableh, K. Assaleh and M. Al-Rousan. Spatio-Temporal Feature-Extraction

Techniques for Isolated Gesture Recognition in Arabic Sign Language. in IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no.

3, pp. 641-650, June 2007. Dosi:10.1109/TSMCB.2006.889630.

https://doi.org/10.5463/dcid.v28i1.592

