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Introduction
In high-energy physics, particle accelerators are built to gain insight
into elementary particles by colliding them onto a nuclear target
or against other particles. The reactions from the collision trans-
form the incoming particles into set of outgoing particles, known
as physics ”events”. Existing high-energy accelerators include the
LHC at CERN for proton-proton collisions, CEBAF at Jefferson
Lab for po-larized electron-hadron scattering, as well as the future
Electron-Ion Collider (EIC) [6].

Overview
The goal of this project is to develop a machine learning event gen-
erator (MLEG) that can faithfully reproduce particle events at the
vertex level that is free of theoretical assumptions about underlying
particle dynamics. By training the model at the event level using
the reconstructed detector-level particle four-vectors, the model can
capture all the relevant particle correlations without the need to a
priori specify particular observables to study. The MLEG can thus
be viewed as a compactified data storage utility that can provide fu-
ture access to observables not conceived of at the time of the origi-
nal experiments. The successfully trained MLEG will be a valuable
software tool for phenomenological studies at JLab12 and beyond,
providing a unique avenue for quantitatively testing the validity of
theoretical approximations implemented in QCD factorization the-
orems.
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Fig. 1: Conceptual design of the project. The diagram shows the overview of
the project. The (event generator) simulates the electron-proton scattering as in
(Nature). The Folding GAN uses a real detector simulator information to fold the
synthetic events which are passed to the the discriminator model to be compared
and analysed against the reconstructed events

Methods
During the initial phase of the project, we have successfully devel-
oped an event generator that can simulates particle events.

• We use generative adversarial networks (GANs) [1] to build the
MLEG. Since the GAN is trained at the event level, the major
challenge has been to identify a suitable data representation.

• We incorporate maximum mean discrepancy kernel test [7] to in-
crease the precision of the generated distributions.

• We transform the features to address the sharp peaks exist in the
dataset. For example, instead of directly using pz as a generated
feature, we use the transformed variable T (pz) = log(Eb − pz).

• We enhance the training by augmenting new features to increase
the sensitivity of the discriminator. For instance, we use a cus-
tomized layer to calculate the momentum energy which than
passed to the discriminator. The energy E can be calculated as
E =

√
px ∗ px + py ∗ py + pz ∗ pz.

Results
To validate the MLEG, we first train on synthetic events generated
from Pythia 8 [2]. Our results [8] show a good agreement with the
true distribution (Pythia). We also see as in Fig. 2 the model can
capture the underlying correlations between the features.

Fig. 2: 2-dimensional histogram of px and py The correlation histogram shows
our model on the right side has captured the inter-correlations between px and py

For the generation of the inclusive lepton MC events, we have
trained a GAN with the architecture shown in Fig. 3. After training

on ∼ 105 inclusive electron samples from Pythia, the GAN is able
to reproduce relatively well the scattered electron phase space, as il-
lustrated in Figs. 4–7 for the normalized yields versus Bjorken xbj,
the four-momentum transfer squared Q2, and the scattered lepton
transverse momentum pT. The uncertainties on the GAN generated
events are obtained by training the GAN multiple times using the
bootstrapping method.
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Fig. 3: The GAN setup. The original architecture proposed in [3], where the
MMD [4] was used as the loss function of the GAN’s generator, is extended to
include the Wasserstein loss function [5] for the discriminator, and a weighted
function combining Wasserstein and MMD loss for the generator. Novel feature
transformation algorithms ensure four-momentum conservation in the generator,
and significantly enhance the effectiveness of the discriminator. The GAN train-
ing took ≈12 hours on an Nvidia GeForce 2080Ti GPU.
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Fig. 4: Normalized xbj distributions, generated from the GAN and Pythia 8.
Note that xbj has not been included as a feature in the GAN training.
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Fig. 5: Normalized Q2 distributions. As in Fig. 4, the photon virtuality Q2 has
not been included as a feature in the GAN traning, indicating that the NNs can
generate derived quantities from four-vectors.
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Fig. 6: xbj – Q2 correlation. The similarity between the iso-contours indicates
that the NNs can accurately learn the correlations between xbj and Q2.
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Fig. 7: Normalized scattered lepton pT distribution. Unlike for xbj and Q2

in Figs. 4 and 5, the transverse momentum pT has been included as feature in
the GAN training. The NNs are able to learn the structure across ∼ 5 orders of
magnitude of the distribution.

Conclusions
We have explored the MLEG model in building the first event gen-
erator for electron-proton scattering that faithfully mimics particle
generation at femtometer scales, without the need for theoretical in-
put. Our MLEG design involves a GAN that generates particle mul-
tiplicities followed by a GAN that generates particle four-vectors
conditioned to the outcome of the first generator.
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