Cyclophilin D is a Mitochondrial Sensor of Nano-Pulse Stimulation

Brittney L. Ruedlinger¹, Brittany P Lassiter¹, Maisoun Bani Hani¹, Nicola Lai², and Stephen J. Beebe¹ ¹ Frank Reidy Research Center for Bioelectrics and the ² Department of Electrical and Computer Engineering, Old Dominion University

Abstract

Nano-Pulse Stimulation (NPS), a pulsed power-derived technology, stimulates structural and functional changes in plasma membranes and cellular organelles. NPS induces a Ca²⁺ influx and opening of the mitochondrial permeability transition pore (mPTP) that dissipates the mitochondrial membrane potential ($\Delta \Psi_m$) and, when sustained, induces regulated cell death. Here we show that in rat cardiomyoblasts (H9C2) cyclophilin D (CypD) is a mitochondrial sensor for NPS as defined by observations that loss of $\Delta \Psi_{\rm m}$ is Ca²⁺ and mitochondrial reactive oxygen species (mROS) dependent and cyclosporin A (CsA)-sensitive, which are diagnostic qualities for effects on CypD and the mPTP. Mechanistically, NPS stimulates increases in intracellular Ca²⁺ which enhances mROS in a dose dependent manner. The regulatory role of CypD on mPTP activation, is effectively inhibited at low Ca²⁺ concentrations and/or by CsA. Although NPS-induced dissipation of $\Delta \Psi_{\rm m}$ is largely Ca²⁺dependent, the degree of Ca²⁺ sensitivities vary among cell types. Nevertheless, knockdown of the proapoptotic protein, APAF-1, and overexpression of the antiapoptotic protein, Bcl-xl, in human Jurkat T lymphocytes (E6.1) did not affect NPS-induced dissipation of $\Delta \Psi_{\rm m}$ or cell death. Taken together, these results indicate NPS induces activation of the mPTP through Ca²⁺-dependent, mROS-dependent, CsA-sensitive dissipation of the $\Delta \Psi_{\rm m}$ that is independent of caspase activation and insensitive to protection by Bcl-xl.

Objectives

Determine the effects of the following on the NPS-induced loss of viability and/or dissipation of $\Delta \Psi_{\rm m}$:

- dysregulated apoptotic proteins
- Ca²⁺-dependence
- **mROS-dependence**
- **CsA** inhibition

Conclusions

- NPS-induced cell death is independent of Bcl-xl protection.
- Knockdown of APAF-1 and overexpression of Bcl-xl did not prevent dissipation of $\Delta \Psi m$.
- NPS-induced dissipation of $\Delta \Psi_{\rm m}$ was dependent on Ca²⁺ and mROS and was sensitive to CsA inhibition.
- NPS effects CypD and the mPTP.
- CypD is a sensor for NPS.

Fig. 1. NPS induced dissipation of $\Delta \Psi_{\rm m}(A)$ and cell death (*B*) in Jurkat E6.1 clones with (blue) and without (gold) Bcl-xl overexpression in an electric field dependent manner. The cells were treated with 10, 60ns pulses at electric field strengths between 0 and 60 kV/cm. TMRE was used to determine the percentage of cells maintaining high $\Delta \Psi_m(A)$ shortly after treatment, and CellTiter-Glo luminescent cell viability assay (B) was used to determine the percentage of cell viability 24-hr post-treatment. Data values were normalized to the controls and represent the mean \pm SE (n = 3).

values < 0.05.

from the following for which we are especially grateful:

Pulse Biosciences, Inc. Yu Jing, Ph.D. Shu Xiao, Ph.D.

Contact Email(s): sbeebe@odu.edu, bruedlin@odu.edu