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ABSTRACT Multiple Indonesian cities currently aim to qualify as ‘‘smart cities.’’ Previous research on
defining smart cities (e.g., the implementation-oriented maturity model) tends to focus on components
over interrelationships, is challenging to apply to a specific context such as Indonesia, and offers limited
support for policy-relevant questions. In this paper, we propose to address these shortcomings to support
policymakers in identifying concrete action plans in Indonesia specifically. Our approach clarifies interre-
lationships for the context of use and supports structural (e.g., what aspects of a ‘‘smart city’’ are impacted
by an intervention?) as well as what-if policy questions. We started with a systems’ science approach
to developing a cognitive map of the components and their interrelationships, as is increasingly done in
participatory modeling and particularly in socio-ecological management. We transformed semi-structured
interviews of 10 Indonesian experts into maps and assembled them to create the first comprehensive smart
cities cognitive map for Indonesia, totaling 52 concepts and 98 relationships. While a cognitive map already
provides support for decision-making (e.g., by identifying loops in the system), it is only conceptual and thus
cannot form predictions. Consequently, we extended our cognitive map into a fuzzy cognitive map (FCM),
whose inference abilities allow to examine the dynamic response of an indicator (e.g., ‘‘smart city’’) in
response to different interventions. As fuzzy cognitive maps include the strengths of interrelationships but
not the notion of time, future research may refine our model using system dynamics. This refinement would
support policymakers in investigating when to conduct and/or evaluate an intervention.

INDEX TERMS Cognitive computing, participatory modeling, public policy, systems for smart cities.

I. INTRODUCTION
The population is increasing not only around the world but
also in Indonesia [1], [2]. This is paralleled with a tendency
for people to cluster in cities, which are already central to
Indonesia and are due to play an even more important role.
According to Parasati, about 59.35% of people live in urban
areas [3]. The share of the Indonesian population living in

The associate editor coordinating the review of this manuscript and
approving it for publication was Anna Visvizi.

cities is predicted to reach 67.66% by 2025, and 82%by 2045.
These dynamics have many consequences on economical and
societal factors in cities [4]. In particular, the challenges that
cities face will become even more pressing, calling for new
infrastructures [5]. Challenges include waste management,
traffic, and quality of life [6], [7]. Additional challenges come
from changes in the age pyramid as the population gets older.
Cities thus need new strategies [8], calling for innovative
scenarios and solutions [9]. The concept of ‘smart city’ is one
of the solutions.
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The definition of a ‘smart city’ often takes place at
a high level of abstraction, by listing generic doma-
ins [10]–[12]. This proves challenging for policymaking for
at least three reasons. First, policymaking takes place in a
specific context rather than in an abstract form. A definition
should thus clearly identify what is relevant to selecting and
implementing a smart city agenda in a context of use, such as
one particular town. This is echoed by the work of Angelidou,
who moved from abstract strategic planning for smart cities
to more concrete strategies, for instance by starting with an
assessment of what exists in a city and then setting goals
accordingly on domains such as the soft (e.g., knowledge
and innovation economy) and hard aspects of infrastructure
(e.g., transportation, energy) [13], [14]. Second, domains and
the components within them are interrelated: a modern city
is a system of systems [15], [16]. For instance, Albino et al.
point out that connections exist between people, technology,
and governance [9]. Several approaches have relied on a list
of independent rather than interconnected domains, as can
be seen in [17] for Brazilian cities, and in [18] for Indone-
sia. This oversimplification leads, for instance, to assuming
that investments in Information andCommunication Technol-
ogy (ICT) infrastructures automatically trigger sustainable
growth and a better quality of life, without unintended side
effects. Third, a definition is rarely operationalized in a quan-
titative sense. For example, it might include indicators such
as ‘creativity’, or a relatively vague ‘people’ domain. This
presents a dilemma for policymakers: either they do not try
to quantify the effects of a policy (which limits planning and
evaluation efforts) or they struggle in putting an exact number
on ‘creativity’ or ‘people’.

In this paper, we aim to address all three shortcomings for
the specific context of a ‘smart city’ in Indonesia. First, rather
than listing generic domains, we identify indicators relevant
to Indonesia. Second, instead of listing isolated indicators,
we take a systems science approach to focus on their inter-
relationships [19]. That is, we develop a systems map that
provides stakeholders of smart cities with both a comprehen-
sive evaluation framework and a tool to address structural
questions (e.g., what are the rippling consequences of an
intervention?). Finally, to avoid the issue of either avoiding
quantification or struggling with conducting it, we extend our
systems map into a simulation model as a Fuzzy Cognitive
Map (FCM). A FCM yields quantitative results by simulating
dynamics: policymakers can quantify how much an indicator
changes based on an intervention. While outputs are quanti-
tative, inputs have the flexibility of being either quantitative
(when data is available and/or policymakers are confident on
the value) or qualitative (e.g., setting an indicator as being
initially ‘high’ or ‘medium’), which allows policymakers to
deal with uncertainty in measurement.

The remainder of this paper is structured as follows.
In section II, we provide a succinct overview of the three
areas of research involved in this paper (i.e., smart cities, sys-
tems thinking, and simulation). We structured this overview
along four topical questions selected to make the paper

self-contained while allowing the reader to use our references
for a more in-depth introduction to the material. In section III,
we detail the methods used to construct a cognitive map and
then transform it into a Fuzzy Cognitive Map. These methods
are applied in section IV, which includes the results of the
quality control procedures for model building. Section V
is devoted to using the model, either to address structural
questions (via the cognitive map) or simulate scenarios
(via the fuzzy cognitive map). The final section contextual-
izes the practical implications of our work and concludes with
suggestions for potential extensions.

II. BACKGROUND
A. HOW ARE SMART CITIES DEFINED?
There has been a growing interest in smart cities. The concept
was born in 1994, and has gained a lot of popularity in the
last two decades [9] with many scholars working on defining
it [12]. Numerous projects in Asia and America have focused
on the development of smart cities [20], and detailed exam-
ples are now available for cities such as Amsterdam, Seoul,
San Francisco, and New York [20], [21].

Many scholars have explored the meanings and the
(implicit) components of smart cities [22]. The developing of
the concept started with cyber-, digital-, intelligent- and then
smart-cities [7]. Dameri, quoting Carugliu and Qi, explained
that the different terms cover similar concepts [23], which
all lead to the notion of a ‘smart city’ [10], the de facto
term in the field. In the 1990s, smart cities had a focus on
Information and Communication Technology (ICT). Years
later, the concept started to include citizens and city gover-
nance [9]. This widening definition resulted in incorporating
multiple domains within smart cities, such as ICT, human
resources, economics, and governance [24].

According to [7], there is at least 100 definitions for a
smart city. In addition to the definitions aforementioned, other
definitions (Table 1) include designating a city as ‘smart’
when human and social assets interact with the infrastructure
and technology to create economic growth while enjoying
a livable environment. Alternatively, a smart city has been
identified as combining a variety of technologies to create a
friendly environment, while providing the community with a
more equitable life [7].

B. WHY DO WE MAP SYSTEMS?
Cases as diverse as a smart city, population health, or social
unrest are often seen as complex or ‘messy’ [33], [34]. In such
cases, the outcome of interest is shaped by, and contributes to,
a multiplicity of factors which are also interdependent. This
stands in contrast with simple problems where an optimal
solution may be found by isolating a set of root causes, fixing
them, and seeing the result straightforwardly propagate onto
a final outcome through chains of causes-and-effects. Conse-
quently, complex problems are often situated in a system.

Systems thinking typically starts with creating a map,
either because there is value in the mapping process and/or
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TABLE 1. Definitions for smart cities from 14 articles.

because the map will support additional activities. While a
comprehensive list of reasons for creating a map has been
provided elsewhere [34]–[36], three reasons are of particular
importance in the present paper. First, ‘‘effective participation
by stakeholders in [creating a map] increases the legitimacy
of decisions’’ [34]. In our context, a transparent process for
co-creating amapwith Indonesian experts on smart cities will
contribute to building trust in the result, thus increasing the
potential use of the map for decision-making in Indonesia.
Second, creating a map is a step toward the development of
an operational solution to a problem. Indeed, a map identifies
the relevant factors (within the boundary of the problem) and
their interactions. Translated to our application, a map tells
us what we need to consider when deciding whether or how
an Indonesian city can qualify as a smart city. Third, a map
may support analytical tasks and policy-oriented questions,
particularly when it is developed as a network. Note that we
specifically refer to structural questions because the answer is
obtained only by investigating the structure of a map, which is
different from ‘what-if’ questions or scenarios which involve
the use of computational experiments in simulation models.

Using a map for structural questions is one of the key
tasks in this paper. These questions are relatively common
in policymaking [37]–[40] and include:

• In which way(s) will an intervention impact my evalua-
tion outcome? Structurally, this means finding the paths
from the intervention factors to the outcome [37], [40].

• Will an intervention have impacts beyond the evalua-
tion outcome? This common question about ‘rippling
effects’ can be satisfied by searching for factors that are
directly impacted by the intervention set, and following
the chains as far as possible (i.e. performing a breadth-
first search) [37], [40].

• What are the leverage points to alter the dynamics of
the system? This question, most common for policy-
makers trained in systems thinking or SystemDynamics,
involves an inventory of higher-level structures involv-
ing several interdependent concepts [37], [39], [41],
such as loops.

• What are the core components of the system? As sys-
tems are usually entirely connected, the classic network
definition of ‘strong’ and ‘weak’ components may not
apply. Instead, policymakers are particularly interested
in identifying communities and seeing how the system
can be reduced to interactions between communities of
factors [38].

C. HOW DO WE MAP SYSTEMS?
The many approaches to create maps of systems can be
broadly divided into two categories. They can be data-driven,
for instance by using Machine Learning (ML) and Natural
Language Processing (NLP) to derive maps from a text cor-
pus [36], [42]. In a data-driven approach, researchers typi-
cally collect the data produced by individuals (e.g., reports,
longitudinal data, social media excerpts) and transform it with
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sophisticated methods. In contrast, researchers taking a Par-
ticipatory Modeling (PM) approach facilitate the production
of data by individuals, and ensure that a participant’s input
is processed in a transparent manner [34], [43]. For example,
a participant may be asked ‘what do you think contributes
to this problem?’, and all entities mentioned in the answer
will then be connected to the problem of interest within a
network diagram [35]. As mentioned in the previous section,
transparency in creating the model with experts is important
in our work to develop trust and support the model’s uptake.
Consequently, we focus on the PM approach.

Maps are routinely used in participatory modeling projects
to examine socio-environmental dynamics [44], although
their use also extends to societal [45] and public health
issues [46]. The two most common participatory modeling
methods to map systems are rich pictures and (variations of)
causal loop diagrams (CLD). Both are highly transparent and
result in artifacts that are easy to modify (see Table 1 in [43]).
A rich picture is an unconstrained drawing of the issues,
structure, process, and outcomes related to a problem of
interest [47]. Rich pictures often serve as a ‘‘starting point
to surface the different factors influencing a problem situ-
ation’’ [34] (emphasis added). Thus they may not include
any interdependency between factors, or if they do, the exact
nature of the interdependency may not be provided.

A CLD and its variations use a more structured process to
create a map as a network in which factors are represented
as nodes (e.g., governance, infrastructure) and connected via
directed edges. The constraints ensure that edges are identi-
fied, thus resulting in a network rather than a collection of
isolated factors. Edges may have no labels (in an Interrela-
tionship Digraph [34]), qualitative labels (Mind Map, Causal
Map [43]), or categorical labels. In a CLD, the categorical
labels serve to specify the causality. Consider for instance a
causal edge from A to B, meaning that a change in Awill have
an impact on B. The causality is categorized either as positive
(labeled ‘+’) when an increase in A triggers an increase in B,
or negative (labeled ‘-’) when an increase in A promotes
a decrease in B. Categorical labels are commonplace when
the system map is a step toward the development of a sim-
ulation model. Due to historical differences between fields,
a model using System Dynamics (SD) calls an intermediate
system map a CLD whereas a model using Fuzzy Cognitive
Maps (FCMs) may present it as a ‘causal map’ or ‘cognitive
map’ [48]. In this paper, we create a systems map of Smart
Cities as a step toward the development of a FCM. From
here on, we will refer to the map as a ‘cognitive map’,
that is, a directed network with categorized causal edges
(positive ‘+’, negative ‘−’).

D. HOW CAN WE MEASURE THE CONSEQUENCES
OF AN ACTION?
Structural questions are useful for policymaking
(section II.B) but they are limited to identifying components.
Policymakers also often ask ‘what-if’ questions, or scenarios,
such as: how much do we need to improve the infrastructure

such that we shift toward a smart city? Conversely, if we
have to make cuts, in which area can we decrease investments
while minimally impacting the rest of the system? A systems
map (section II.C) cannot support such quantitative what-if
questions because it is a diagram. That is, what-if questions
require a simulation model to predict the dynamical effect
of an intervention [49]. There are several ways to extend a
systems map into a simulation model [43]. Two particularly
common approaches in a participatory context are System
Dynamics (SD) and Fuzzy Cognitive Maps (FCMs).

As explained by Lavin et al. [50], cognitive maps only
capture the existence of a causal relation from a factor A to
another factor B. Helping experts to detail the nature of these
relations remains an active field of research in participatory
modeling [51]. For instance, relations can be characterized
through parameters including intensity of the change (how
much does B change when A changes?), timing (is the impact
constant per time unit? are there delays?), and previous
history (does the change depend on previous values of A
and/or B?). System Dynamics can handle all three parameters
and has been used to model smart or ‘eco-cities’ [52], with a
prominent example being the ‘SystemsDynamics for Smarter
Cities’ app developed by IBM and applied to Portland, OR
(c.f., chapters 8-9 in [53]). However, building SD models in
a participatory context faces many challenges: ‘‘individuals
may not be readily able to provide a clear number or to
precisely estimate the duration of a time lag’’ [54], and the
process may take many months with extensive logistics to
facilitate groups or perform in depth interviews. Fuzzy Cog-
nitive Mapping provides an alternative: it is less detailed,
as neither time nor history are represented, but the sole
focus on capturing the intensity of the change is signifi-
cantly simpler for participants. The simple process to develop
an FCM is a key asset emphasized in several books and
reviews [55]–[60].

As summarized by Dickerson and Kosko, an FCM is a
nonlinear dynamical system akin to a neural network. Its
structure is a fuzzy signed digraph with feedback, where
nodes are fuzzy sets and edges are fuzzy rules [61]. An FCM
has been formalized in several ways, using a 4-tuple [62] or a
6-tuple [63]. Others have defined an FCM not only by its
structure but also by how nonlinear dynamics are performed,
thus creating FCMs that behave differently [64]. In line with
our previous work, we formalize an FCM through a com-
pact notation with three tuples [48], [50], [65]. A Fuzzy
Cognitive Map F t = (V t ,E, f ) at step t is formed of a
set V t of n nodes taking values in [0, 1] (0 indicating the
absence and 1 the presence of a concept), which interact
through a set E of edges with a causal weight in [−1, 1].
The last tuple f is a clipping function which forces a
node’s value to remain in its operating range. The updated
FCM F t+1 is computed from F t by transforming the values
of nodes through Equation 1.

V t+1
i = f

(
V t
i +

j=n∑
j=1,j 6=i

V t
j × ej,i

)
(1)
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FIGURE 1. Overview of our the four steps to develop a cognitive map.

The equation is performed repeatedly until the nodes cho-
sen as outputs either (i) stabilize when they change by less
than a given threshold from one update to the next; or
(ii) more than τ steps of updates have been done, suggest-
ing that stabilization with the desired threshold cannot be
achieved. While a comprehensive introduction to the theo-
ries and tools of FCM is beyond the scope of this paper,
a few technical aspects should be mentioned to support the
replication of our results. First, the choice of the clipping
function f noticeably impacts the results of an FCM and
whether stabilization will occur. Indeed, a discrete f forces
the FCM into a fixed point or a limit whereas a continu-
ous f enables a chaotic attractor [66], [67]. In this work,
we use a hyperbolic tangent like many previous works [50],
[68]–[70], which means that we need to watch for the pres-
ence of a chaotic attractor. Second, machine learning can be
used to create [58], or improve [71] an FCM (e.g., ensuring
that it converges faster without significantly changing the
results [72]). As we take a participatory modeling approach
(section II.B) rather than a data-driven approach, we build
the FCM with experts rather than optimizing the weights
based on data. We also do not re-engineer the FCM so that
it converges faster: the small computational footprint of our
experiments does not call for an improvement in convergence
speed, and modifying the FCMwould detract from the essen-
tial goal of keeping a transparent process in participatory
modeling.

III. METHODS
A. DEVELOPMENT OF A COGNITIVE MAP
There are four steps to create a comprehensive cognitive map
of the factors and interrelations at work in a complex system
(Figure 1). The first step is to set the boundaries for the map:
what does it seek to represent, and what lies outside its scope?
For emerging problems, facilitated sessions with stakeholders
often serve to identify boundaries. In a well-studied domain
such as smart cities, we extensively analyzed the literature
to identify suitable boundaries. That is, we searched Google
Scholar for articles published in English since 2016 that
included one of the following sets of keywords: ‘‘smart city’’,
‘‘smart cities’’ and ‘‘sustainable city’’. We read the abstracts
to identify relevant articles, which were then examined to
identify the components commonly included in ‘smart cities’
and group them into themes.

The second step starts the participatory approach by iden-
tifying experts and helping them to externalize their knowl-
edge. Experts are selected given the domains identified in
the first step. Three criteria are essential to select experts in

participatory modeling. First, experts have to be collectively
representative of the range of stakeholders involved in a smart
city: that is, they must be from the ‘triple helix’ [73] con-
sisting of government representatives, industry members, and
individuals from educational institutions. Second, to qualify
as expert, each person needs at least 3 years of experience
in implementing a given domain to smart cities. A same
person may qualify as expert in several domains. Third,
there must be a sufficient number of experts: each domain
must be covered by multiple experts, and their conclusions
should not vary in ways that create significant uncertainty
in the model. Saturation is checked upon completion of
the interviews and uncertainty is checked at a later stage
(section IV-E). Having selected experts, semi-structured
interviews take place to identify which concepts compose a
relevant domain, and account for connections within as well
as across domains [74].

The third step transforms the recorded interviews into
individual maps. When an expert mentions that one factor
causes another, we record it as a directed, labeled (‘+’, ‘−’)
edge in the map. At this stage, we also check the structure
of each map given the expectations of participatory mod-
eling. In particular, having too many nodes may be symp-
tomatic of a lack of focus, which may jeopardize the model’s
boundaries.

The last step is to create a comprehensive map by com-
bining the individual maps. This is a common practice in
participatory modeling, where an aggregate map represents
the ‘‘mental model help by a group of stakeholders’’ [50].
If experts are limited to using a pre-defined list of concepts,
then aggregating their individual maps is straightforward: if
two experts use a concept with the same name, then it repre-
sents the exact same idea and the aggregatedmap shows it as a
single concept [75]. In semi-structured interviews, however,
each expert freely decides how to name each concept. This
approach causes two challenges [76], [77]: a single idea may
be referred to under different names, and a single name may
actually cover two ideas depending on the context at a par-
ticular moment of the interview. The challenges are resolved
manually, by identifying whether two concept names refer
to the same idea based on context, and if so, gathering them
under a single name in the aggregate map [76]. Similarly to
the third step, we analyze the structure of the aggregate map
and also compare it with the individual maps (e.g., to iden-
tify whether the synthesis represents a general agreement).
This final map is under particular scrutiny, thus the analysis
also includes higher-order metrics such as the number of
loops or density of connections, to assess whether experts
were selective.

B. ADDING FUZZY VALUES AND INFERENCE
CAPABILITIES
As detailed studies show how to extend a cognitive map into
an FCM [33], [46], [68], we provide a succinct overview.Note
that the FCM assigns a weight to the edges and can update
(via Equation 1) the value of nodes, but node values are not set
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FIGURE 2. Fuzzy memberships functions account for the vagueness and
uncertainty in linguistic terms.

when creating the model: they are provided when using the
model on a specific case (as in section V-B). This is similar
to the machine learning process, in which we create a model
(e.g., a classifier) and later provide it with cases to classify.
We use a classical three steps process to assign a weight to
each edge [33], [46], [68]:

(1) Create a questionnaire, distributed to each participat-
ing expert. For each relationship, the questionnaire
asks to categorize the causal strength using a linguis-
tic term chosen from ‘non-existent’, ‘very low’, ‘low’,
‘medium’, ‘strong’, ‘very strong’, and ‘unsure’.

(2) A triangular Fuzzy Membership Function is associated
to all linguistic terms (Figure 2) but ‘unsure’, which is
discarded as an expert does not feel confident to answer.

(3) For each edge, we transform the experts’ answers into a
number using Fuzzy Logic with Mamdani rules and the
centroid method for defuzzification.

Similarly to the previous section in which we controlled
the structural soundness of the maps, we examined the lin-
guistic terms chosen by the experts. We cannot presume that
a specific expert is ‘right’ or ‘wrong’ in choosing a term:
we use participatory modeling as we do not know what
the right value would be. Therefore, quality control in an
FCM is not exerted by looking at correctness in individual
respondents but rather by looking at cohesion in the group.
If experts are equally likely to choose any of the terms for a
relationship, then there is low cohesion, which translates to
more uncertainty in the model’s weights, thus suggesting an
insufficient number of experts (see step 3 in section III-A).
Conversely, if all experts agree on the term for a relationship,
then cohesion is maximal. As in our previous work, we used
entropy to measure cohesion in the experts’ answers [46]. The
entropy E(R) for a relationship R is given by

E(R) = −
7∑
i=1

pi × log2(pi) (2)

where pi represent the proportion of answers to each of the
seven linguistic variables.

IV. CREATING THE MODEL
A. STEP 1: MODEL BOUNDARIES
We found a total of 150 references which, after manual
examination, were narrowed to 29. Fourteen of the articles,
often in the form of institutional statements rather than peer-
reviewed articles, proposed definitions for smart cities that
implicitly touched on the core components. These fourteen
broad interpretations of a ‘smart city’ are listed in Table 1.
The remaining fifteen peer-reviewed articles either provided
explicit models for smart cities or examined the specific
components required for a smart city (Table 2). These fifteen
articles provided the foundations to set model boundaries.

As expected, we observe that different articles empha-
size different components when discussing the concept of a
smart city. One articled looked for an innovative economy
and infrastructure combined with a specific form of gov-
ernance [7] while another identified six major components
(each being made in turn of several indicators): economy,
people, governance, mobility, environment, and living [15].
Technology was common to many definitions, with many
referencing Information and Communications Technology
(ICT) specifically [1] or technology in general [12]. The
common theme across articles is that a smart city is first and
foremost a comfortable city with easy access to a wide range
of services, while performing well on social and environmen-
tal metrics.

We grouped the themes from the literature into nine
domains (Table 3) to guide the identification of experts.
We avoided the use of ‘niche’ domains by requiring that a
domain appeared in at least three articles.

B. STEP 2: SEMI-STRUCTURED INTERVIEWS
The objective of this step is to transform the nine domains
into concepts (or ‘indicators’) and interrelationships. In other
words, we want to see precisely which concepts compose
a domain, and account for connections within as well as
across domains. We identified 10 experts, who all accepted
to participate in phone interviews held from November 20 to
November 30, 2017. All participants provided informed con-
sent and were recorded for later analyses. A sample interview
is provided as Appendix. The semi-structured interviews
share the same goal and methodology, which is to tease out
interrelationships by following on the experts’ suggestions.
Since the experts make different suggestions and are familiar
with different domains, the specific questions vary across
interviews. Interviews lasted between 40 and 60 minutes and
were all conducted in Indonesian.

C. STEP 3: FROM INTERVIEWS TO MAPS
Each individual interview from step 2 resulted in a recorded
conversation mentioning specific concepts and interrelation-
ships. As performed in previous research [74] we represented
the outcome of each interview as a causal map. For instance,
consider an expert who stated:

‘‘The increasing use of technology makes the
city even smarter in solving their problem.’’
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TABLE 2. Components in fifteen articles on smart cities.

This is shown in Figure 3-B as an edge going from ‘‘use
of technology’’ to ‘‘smart city’’ with a positive causality (+).
In another interview, an expert stated:

‘‘As more people use public transportation,
it will decrease gas consumption in the city, and

TABLE 3. Domains and specific indicators based on the literature.

FIGURE 3. Individual maps produced from two semi-structured
interviews.

it will automatically increase the quality of the
ecological environment through decreasing the pol-
lution caused by gas consumption.’’

This statement is represented via several edges in
Figure 3-A: ‘‘Use of Public transportation’’ connects
with negative causality (-) to ‘‘Gas consumption’’, which
in turn connects with negative causality to ‘‘ecological
environment’’.
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FIGURE 4. Total (a) and density (b) of nodes and edges for each of the
10 experts. Experts are numbered, but not ordered.

Upon completion of this step, we obtained 10 indi-
vidual maps, whose structural properties are summarized
in Figure 4, while sample maps are shown in Figure 3. Our
results indicate that the experts used from 20 to 24 nodes, and
from 27 to 38 edges. These results are in line with previous
participatory studies that produced maps of socio-ecological
systems: a study of environmental management with 20 par-
ticipants had an average of 24 nodes and 27 edges [84],
while an article on ecosystem conservation with 51 partic-
ipants reported 24 nodes and 43 edges on average [85], and
research on coastal management with 59 participants resulted
in 18 nodes and 28 edges on average [86].

D. STEP 4: AGGREGATING MAPS
The 10 individual maps were aggregated into one (Figure 5)
that synthesizes the expertise of all participants. Note that
large maps of complex systems are notoriously problem-
atic when used as decision-support systems [87]. As will
be detailed in section VI, we note that our map is meant
to be used either through interactive tools for participatory

modeling, or reduced to sub-structures of interest for poli-
cymakers. Instead of analyzing a picture, readers wishing to
examine our map can access it on a third-party repository
(https://osf.io/z543j/) as a list of weighted edges.

This aggregate map has n = 52 nodes and m = 98 edges
of which 26 expressed negative causation and the remain-
ing 72 expressed positive causation. The network density,
given by m

n(n−1) , is 0.037. A very low density is typical
for maps produced by experts, as they are highly selec-
tive in the causal connections that they form between con-
cepts [50]. On average, there are 1.94 edges per node, which
further highlights that experts were very selective in linking
concepts.

The concepts were further categorized [75] into driver
concepts (i.e. where a node or concept influences, but is
not influenced by, the system; in other words, nodes that
only have outgoing edges), ordinary concepts (i.e. nodes
with both incoming and outgoing edges), and receiver con-
cepts (i.e. nodes with only incoming edges). Table 4 reports
how many, and which, concepts fell under each category.
The table also reports on the two categories of feedback
loops [88]: reinforcing (when a part of the system that may
grow or amplify) and balancing (a stabilizing or goal-seeking
process). Loops were automatically extracted and categorized
using the ActionableSystems software [37].
Finally, we compared the characteristics of our aggregate

map with the individual maps used to create it (Table 5).
If the experts often disagreed, then their maps would have
very little in common, thus the number of nodes and edges
in the aggregate map would be close to the sum of nodes and
edges across the individual maps. Conversely, when experts
report the same concept or connection, it is represented only
once in the final map. A higher level of agreement is thus
indicated by a lower number of elements in the final map.
We find that the number of nodes and edges are respectively
2.5 and 3 times as numerous in the final map as in an average
expert map, indicating general agreement.

E. EXTENSION INTO A FUZZY COGNITIVE MAP
All ten experts were given access to the online question-
naire in Indonesian, accessible at https://tinyurl.com/survey
FCM2018. The questionnaire first prompted them to pro-
vide identifying information, and then to choose a linguistic
term representing the causal weight for each relation. The
ten experts completed the form from October 12th 2018 to
October 25th 2018. Their anonymized answers can be
accessed at https://osf.io/z543j/. Figure 6-a shows that, out
of the 10 answers made by each expert, a relationship was
on average most commonly seen as ‘strong’ (3.39), ‘very
strong’ (3.38), or ‘medium’ (2.38). While we may expect
experts to consider that relations from their own interviews
are important, Figure 6-a suggests that experts found most
relations to be important, even if they did not suggest them in
the interview. Experts thus considered that relations included
in the map were often important. This finding is rein-
forced by noting that there are very few cases when experts

VOLUME 7, 2019 46143



H. S. Firmansyah et al.: Identifying the Components and Interrelationships of Smart Cities in Indonesia

FIGURE 5. Our final aggregate map, built from the individual maps of the 10 contributing experts.

TABLE 4. Content of the aggregate map at the concept level (alphabetically ordered per category) and loop level.

considered that a relation may be candidate for deletion
(‘no causality’ = 0.2).
We also used entropy to assess whether experts formed a

cohesive group in their answers. The least cohesive group
would choose the linguistic variables uniformly at random.
If there were ten variables to choose from, then each of
the ten experts would choose a different one. Since there
are only seven variables to choose from, the most uniform
distribution is obtained when three variables are chosen by
two experts each, and the other four variables are each picked
by one expert. This would lead to an entropy of 3× (− 2

10 ×

log2( 2
10 )) + 4 × (− 1

10 × log2( 1
10 )) ≈ 2.72. Consequently,

a relation with an entropy close to 2.7 indicates no cohesion
among experts. We found the minimum (i.e. best) entropy
to be 0.971, as experts often agreed on the relation from
‘quality of social factor’ to ‘smart city’, and the maximum
(i.e. worst) entropy to be 2.32, as experts had different takes
on how the ‘percentage of renewable energy’ would impact
‘gas consumption’. The entropy for each question is shown as
part of additional interactive visualizations provided as sup-
plementary online material hosted on Tableau Server at

TABLE 5. Comparing individual maps with our final aggregate map.

https://tinyurl.com/analyzeFCMsurvey. As shown in
Figure 6-b, there is strong agreement in the experts’ choices:
over 80% of the relationships had an entropy of 1.8 and under.
The agreement is even stronger when it comes to relations that
directly impact the key concept of ‘smart city’: their average
entropy is 1.47.

After performing quality control on the group-level cohe-
sion, we used their answers to create the FCM. This was
accomplished through a Python script written in a Jupyter
Notebook. The script starts by converting the experts’ linguis-
tic variables into numerical edge weights using the skfuzzy
library. These weights and the network structure (stored via
the NetworkX library) are then passed to a Python FCM

46144 VOLUME 7, 2019



H. S. Firmansyah et al.: Identifying the Components and Interrelationships of Smart Cities in Indonesia

FIGURE 6. Average use of each linguistic term per question (a; top) and
cumulative distribution of entropy across all questions (b; bottom).

library previously developed by our research group [48], [50]
to create the FCM object. At that stage, the FCM can be
provided with a case (i.e. an initial value of all nodes’
weights) to predict their dynamics until stabilization of the
output (i.e. smart city). Both the notebook and the FCM
library are provided in a compressed archive in our repos-
itory at https://osf.io/z543j/. As we are not the authors
of either skfuzzy or NetworkX, we note that readers

interested in replicating our work will need to install these
two libraries.

V. USING THE MODEL
A. STRUCTURAL QUESTIONS
There is a common misunderstanding in systems science and
policymaking that large systems maps can simply be looked
at, as if they were images. For instance, a map created for
obesity through a participatory modelling approach similar
to ours was depicted as ‘‘brilliantly useful in demonstrat-
ing the complexity of factors [while] difficult to see how
one might use it in any practical way to develop system
approaches’’ [87]. Instead of appearing as a herald of com-
plexity in smart cities, our map seeks to support policymakers
in elucidating structural questions. Rather than an image, our
map is first and foremost a network. Consequently, struc-
tural questions are addressed using network analysis soft-
ware or, when policy-makers are the target audience, using
a software for interactive network visualization and analysis
(e.g., ActionableSystems [37], Gephi). In this section,
we exemplify how the map can be decomposed based on
specific policy tasks (Figure 7), rather than being used as one
massive piece as shown in Figure 5.

As an example of structural policy question, consider that
decision makers wish to directly promote a ‘‘smart city’’.
They can use well-known levers such as ecological sus-
tainability and the quality of the infrastructure (Figure 5).
A systems approach reveals that increasing the engagement
of stakeholders in governance may have both a small direct
contribution to a smart city, and a stronger indirect contribu-
tion by promoting social factors. While the factors directly
affecting a smart city can be seen as high-level, more distal
and concrete drivers are represented, such as accessibility
to the public transit system, the use of temporary waste
disposal, or network coverage.

One important task is to understand the current state of
the system, before trying to alter it through an interven-
tion. Loops play an important role in the dynamics of a
system, as do alternative paths between factors [89]. Using
ActionableSystems, we decomposed the map into its
16 reinforcing and 6 balancing loops (Figure 7a-b), and we
also navigated its many alternative paths (Figure 7-c).

Figure 8(a) shows a reinforcing loop by which a greater
demand for internet access is met with increased network
coverage, which eventually prompts higher demands. This
loop is a useful lever to promote a smart city from an infor-
mation technology standpoint. As reinforcing loops cannot
grow forever, such loops implicitly call for decision makers
to identify the resources or limits to growth, which may then
be re-allocated. Figure 8(b) brings attention to a problem of
smart cities, whereby an interest in increased mobility could
be met with a higher motor vehicle density, thus reducing the
ecological sustainability and quality of life that are important
to a smart city. In short, identifying the virtuous cycles allows
policymakers to benefit from naturally occurring dynamics
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FIGURE 7. The map viewed through the open-source ActionableSystems (https://osf.io/7ztwu/) software. The software can decompose the
map into loops (a), to display and categorize them once at a time (b). Starting from a given intervention factor, decision makers can see all
factors eventually impacted (c) and click on one to visualize the route.

of the system for their intervention (e.g., through reallocation
of resources to further fuel a loop), while identifying prob-
lematic loops prompts important questions about the balance
of priorities, or how an action in the system may produce
unintended consequences. Unintended rippling effects can
also be explored by selecting a possible factor for interven-
tion, and examining all affected factors from most proximal
to distal. Figure 8(c) exemplifies how the smart city system
would be affected when attempting to directly intervene on
economic growth: there would be positive effects by reducing
poverty and unemployment, and eventually more economic
growth may be observed (bottom-right); however, waste pro-
duction will also be increased and, without appropriate waste
management, ecological sustainability may be negatively
affected.

B. FUTURE SCENARIOS
As explained in section II-D, a Fuzzy Cognitive Map is a
simulation model that can update the value of nodes based on
the causation represented by edges. The value of the nodes
must depict a specific case. For instance, when simulating
ecosystems, the nodes can be initialized to represent a specific
type of lake [50]. As our FCMwas designed for smart cities in
Indonesia, it is essential to follow its context of use and apply
it to cases consistent of such cities.We use Bandung as a guid-
ing example, since it has been previously been analyzed from
a smart city perspective [90]. In our Jupyter Notebook (avail-
able at https://osf.io/z543j/), we assigned a value to each node
based on the city of Bandung. For instance, we accounted
for the high traffic density and use of technology

(‘Road Traffic Intensity’=‘Use of technology’ = 0.8) but
also noted a low share of renewable energy (‘Percentage of
Renewable Energy’ = 0.3). Note that policymakers may
similarly assign numerical values when they are certain
and/or quantitative data is available for a case. However they
are not limited to numerical values: a case may be described
using linguistic terms which are mapped to numbers
(Figure 2), thus allowing experts to deal with uncertain values
in indicators.

We ran the FCM with this case of Bandung as a baseline.
That is, given Bandung as it currently stands, we projected
what it would become in the absence in an intervention. The
FCM stopped updating the weights of nodes (Equation 1,
section II-D) when ‘smart city’ changed by less than 0.001.
Results suggest that Bandung may eventually be categorized
as a ‘smart city’ with high economic growth and use of tech-
nology, but at the expense of significant pollution. To change
these expected consequences of the current situation, policy-
makers may consider several interventions as possible sce-
narios. As documented elsewhere, possibilities include an
increase in green space, a change in the energy mix, and
an improvement in the waste infrastructure [12], [26], [83].
We thus considered two possible scenarios: (A) increasing
the share of green space, and (B) increasing the share of green
space while promoting renewable energy over gas consump-
tion. Our results are shown in Figure 9 and can be entirely
replicated by running our notebook from https://osf.io/z543j/.
The baseline pollution of 0.91 decreases by only three percent
points when promoting green spaces (0.88), but by 22 percent
points when also promoting renewable energy (0.69).
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FIGURE 8. Loops (a-b) and rippling consequences (c), as seen from the
ActionableSystems software [37].

As discussed in section II-D, what-if questions can include
identifying the right improvements in the pursuit of a higher
outcome (as we examined with pollution), or estimating the
effect of a cut when budgetary restrictions are considered.
We provide an example of the latter case by focusing on
cuts in education. Although this hypothetical example pri-
marily serves to illustrate the capacity of our FCM to support
decision-making, we note that education is an important topic

FIGURE 9. Level of pollution in Bandung, Indonesia, from 0 (absent) to 1
(fully present) in the baseline case compared to two future scenarios.

FIGURE 10. Quality of social factors in Bandung, Indonesia as a result of
cuts in the education index.

in Indonesia, and a contributor to the concept of a smart
city in this setting (Figure 5). Kawamura recently reported
that, although ‘‘the amended constitution provides at least
20% of budgetary allocations to the education sector [. . .],
education spending has still been lower than the average of
lower middle-income countries as well as neighboring coun-
tries in the region’’ [91]. In addition, shifting government
educational priorities have occasionally resulted in cuts to
higher education in favor of basic education. To examine
the impact of cuts, we set the FCM to stabilize when both
‘smart city’ and the ‘quality of social factors’ (our evalua-
tion outcome) changed by less than 0.001. We lowered the
investment in education (captured by the Education Index) to
reflect cuts of different amplitudes, from small (preserving
an index of 0.7 close to its baseline) to large (lowering the
index to 0.2). Our heatmap (Figure 7) shows the value for
‘quality of social factors’ as the FCM iterates until stabiliza-
tion. Note that the number of iterations depends on initial
conditions but remains very small, thus reiterating that our
FCM does not need automatic simplifications to lower the
number of iterations (section II-D). Results also demonstrate
the presence of nonlinear effects, since a reduction in the
education does not have a constant effect on the quality of
social factors: going from 0.8 to 0.7 only causes a reduction
of 0.019 whereas going from 0.3 to 0.2 has a difference of
0.2266− 0.1596 = 0.067 (i.e. the effect is 3.5 times larger).

VI. DISCUSSION
Many scholars have provided definitions for the con-
cept of a ‘smart city’ (section II-A). However, the wide
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range [10]–[12] and apparent widening of the definition
proves problematic when decision makers seek to implement
and/or evaluate implementations to make a city ‘smarter’.
Different cities or countries will examine different concepts
and components, or pursue different approaches toward dif-
ferent objectives. Definitions can be made more precise when
broken down into domains (Table 2), but the translation of
these domains into practical objectives for decision making
remains arduous. Most importantly, independently mapping
each domain to metrics for interventions would ignore that
domains are interrelated [9]. Implementing a smart city policy
based on seemingly disconnected domains may thus lead to
implicitly forming erroneous assumptions, such as thinking
that investing in one domain may be sufficient to trigger a
change without addressing limiting factors found in other
domains. Conversely, the impact of a change may be underes-
timated, as rippling effects can permeate across domains and
amplify a change through virtuous cycles.

In this paper, our overarching objective is to provide an
operational definition of a smart city that is suitable for
Indonesia, which experiences a significant growth of urban
populations [3], thus creating a timely call for innovative
scenarios [8], [9]. This objective was realized in two con-
secutive steps. First, we took a systems science approach
to map the specific factors within each domain, and their
interconnections within as well as across domains. We used a
participatory modelling approach by creating maps with ten
Indonesian experts, and combining these individual maps into
one overall systems map (‘‘the map’’) consisting of 52 factors
(or concepts) connected by 98 directed, weighted causal links
(or relationships). Second, we extended the map into a Fuzzy
Cognitive Map by asking experts to characterize each causal
link, and transforming intuitive characterizations into num-
bers through Fuzzy Logic.

The systems maps and the FCM can be used to address
different policy-relevant questions. By leveraging the exper-
tise of several contributors, the map provides a repository in
which practical factors can be studied vis-a-vis their impact
on the central goal of a smart city. In particular, it allows users
to target one set of factors and identify the factors that those
directly and indirectly impact, as well as giving the specific
causal strength of those impacts. It also allows users to work
backward from a target by identifying what levers can be used
to impact it. In contrast with the purely structural use of the
map, the FCM provides support for scenario-based or ‘what-
if’ policy questions.We demonstrated for the city of Bandung
that two hypothetical scenarios could be simulated, and their
effects on pollution contrasted. We further illustrated that
the FCM is a dynamical system (i.e. it updates values until
stabilization) by simulating the consequences of budgetary
reductions in the educational system. While the scenarios
simulated were chosen as they are relevant interventions for
smart cities and/or challenges specific to Bandung, our main
takeaway is the ability of our system to simulate scenarios
impacting Indonesian smart cities in general rather than these
specific guiding examples.

There are several limitations to this work. First, it is
grounded in the specific context of Indonesia. Comparative
studies of smart cities have highlighted significant differences
in implementation [20], [21], thus our map may not be imme-
diately applicable to any other context. Future work may
identify which parts of the map can be used as more generic
‘building blocks’, and which ones need alterations.

Second, there is no typical number of participants in a par-
ticipatorymodeling. On the one hand, maps have been built in
participatory models with as few as 7 [46], 8 [92] or 12 partic-
ipants [93]; on the other hand, studies have been conducted
with as many as 51 [85], or even 59, participants [86]. Our
study recruited ten experts to reach saturation on each of the
nine domains that we identified from the literature (Table 3).
Experts generally agreed on the causal strength between
indicators (Figure 6), particularly for the indicators that
directly drive the concept of ‘smart city’. Nonetheless, having
additional experts may contribute to capturing under-studied
aspects of smart cities, thus creating new concepts or inter-
relationships, which in turn can create new loops. Our map
may be changed as new evidence becomes available, or if
additional experts wish to revise its structure.

Finally, the map was only built from the knowledge of
experts, which is very sparse as they selected the relationships
for which they think there is strong evidence. In contrast,
groups of stakeholders with lower expertise in the system
would be expected to generate more dense maps [50]. Obtain-
ing and contrasting the maps of experts with those produced
by other groups can have important implications for decision-
making [94]. Indeed, the expert map may point to an inter-
vention with high expected benefits, but constituents may
expect lower or even negative consequences. Reconciling
perspectives to assess which interventions are supported is
an essential step to go from the identification to the realiza-
tion of an intervention [95]. Future studies may thus extend
our approach to compare and contrast perspectives between
groups, either to bridge gaps or to identify interventions with
a large support.

VII. CONCLUSION
Smart city is a broad concept, often based on a list of high-
level domains or independent indicators. We created an oper-
ational definition of smart city, specific to the context of
Indonesia. Our approach is rooted in participatory modeling,
and involved 10 experts working on smart cities in Indonesia.
Our definition includes a systems map of 52 indicators and
98 relationships, which can be used to understand the system
surrounding smart cities. Our definition also provides a sim-
ulation model to quantify the consequences of possible inter-
ventions. Together, the map and simulation model support the
identification and evaluation of specific interventions.

APPENDIX
SAMPLE INTERVIEW
This sample verbatim transcript was translated from Indone-
sian and edited for clarity as well as anonymity of the
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interviewee (A). All interviews were conducted by the first
author (H).
H: Hello, how are you, this is Hendra.

A: Hi, I’m fine. How are you doing today?
H: I’m fine. I’m calling for the interview about my research
in identifying smart city components through an expert’s
perspective. And I’m here to interview you.
A: Ok, we can continue.
H: Prior to starting, your agreement is required on the consent
that I already sent to you via email.
A: Ok. I have the consent.
H: Please read it.
A: [Read the subject information and consent form.]
H: So, before we begin, have you read and understood the
subject information and consent form, and freely agree to
participate?
A: Yes, I will.
H: So let’s begin, basically there are two points that I seek
in this interview. The first one that I want to touch on is
about what it takes to make the city smarter in general, and
the second one is to identify what are the components that
can make a city smarter according to your expertise. Can we
continue?
A: Ok, we can continue.
H: Based on your perspective, what are the components that
can make cities smarter?
A: According to my views, human resource is important,
technology, governance, and it is about regulations.
H: The regulations are about the government?
A: Yes, you’re right.
H: Is there another one which will boost a smart city?
A: Yes, economic. With economic increase, the cities will
become smarter.
H: How about the environment?
A: It’s more of an impact. When the cities get smarter,
the environment will be better.
H: Let’s talk about the impact of these components on
each other. For instance, what about the effect that human
resources have on the concept of the smart city. As you
said, the governance, technology and economy are smart city
components.
A: Basically, the city will become smarter when it manages
the human resource. And then the city has a good gover-
nance in manage the cities. Another component which makes
cities smarter is when a government has good regulations.
So basically there is the connection between government and
governance.
[Continue to discuss this connection across components.]
H: Let’s talk about economics. How do you think it relates
with smart cities?
A: Well, the smartest of the cities will increase the economic
growth. It’s a normal relationship when the city has a lot
of innovations starting, entrepreneurship. . . They will have
a support to fuel the economic growth.
H: Can you mention the indicators of economic growth?
A: As I said before. Initiating innovations, entrepreneurship,

co-creation, diversity of industries, and a good governance.
[Continue to tease out factors and relationships. Closing
remarks.]
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