
Furman University Furman University

Furman University Scholar Exchange Furman University Scholar Exchange

Open Access Fund Publications

10-26-2019

Static Generation of UML Sequence Diagrams Static Generation of UML Sequence Diagrams

Chris Alvin
Furman University

Brian Peterson
Louisiana State University at Baton Rouge

Supratik Mukhopadhyay
Louisiana State University at Baton Rouge

Follow this and additional works at: https://scholarexchange.furman.edu/oa-fund

Recommended Citation Recommended Citation
Alvin, C., Peterson, B. & Mukhopadhyay, S. Static generation of UML sequence diagrams. Int J Softw Tools
Technol Transfer 2323, 31–53 (2021). https://doi.org/10.1007/s10009-019-00545-z

This Article (Journal or Newsletter) is made available online by part of the Furman University Scholar Exchange
(FUSE). It has been accepted for inclusion in Open Access Fund Publications by an authorized FUSE administrator.
For terms of use, please refer to the FUSE Institutional Repository Guidelines. For more information, please contact
scholarexchange@furman.edu.

https://scholarexchange.furman.edu/
https://scholarexchange.furman.edu/oa-fund
https://scholarexchange.furman.edu/oa-fund?utm_source=scholarexchange.furman.edu%2Foa-fund%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s10009-019-00545-z
%E2%80%9Dhttp:/scholarexchange.furman.edu/lib-records/1/%E2%80%9D
mailto:scholarexchange@furman.edu

International Journal on Software Tools for Technology Transfer (2021) 23:31–53
https://doi.org/10.1007/s10009-019-00545-z

GENERAL

Regular Paper

Static generation of UML sequence diagrams

Chris Alvin1 · Brian Peterson2 · Supratik Mukhopadhyay2

Published online: 26 October 2019
© The Author(s) 2019

Abstract
UML sequence diagrams are visual representations of object interactions in a system and can provide valuable information
for program comprehension, debugging, maintenance, and software archeology. Sequence diagrams generated from legacy
code are independent of existing documentation that may have eroded. We present a framework for static generation of
UML sequence diagrams from object-oriented source code. The framework provides a query refinement system to guide the
user to interesting interactions in the source code. Our technique involves constructing a hypergraph representation of the
source code, traversing the hypergraph with respect to a user-defined query, and generating the corresponding set of sequence
diagrams. We implemented our framework as a tool, StaticGen (supporting software: StaticGen), analyzing a corpus of 30
Android applications. We provide experimental results demonstrating the efficacy of our technique (originally appeared in
the Proceedings of Fundamental Approaches to Software Engineering—20th International Conference, FASE 2017, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22–29,
2017).

Keywords Static analysis · Scenario diagram generation · Sequence diagram · Code hypergraph · Query language ·
Vulnerability analysis

1 Introduction

Legacy object-oriented code may be accompanied by high-
level documentation and/or descriptive comments in the
source code, each of which may contain omissions or erro-
neous information. As documentation erodes, an engineer
can trust only the source code. A necessary component
of software archeology in object-oriented systems is the
interactions among objects. A sequence diagram is a visual
representation of those object interactions as well as their
lifelines.

Sequence diagrams generated from legacy code are inde-
pendent of existing documentation. Dynamic techniques for

B Chris Alvin
ctalvin@gmail.com; chris.alvin@furman.edu

Supratik Mukhopadhyay
supratik@csc.lsu.edu

1 Furman University, 3300 Poinsett Highway, Greenville, SC
29613, USA

2 Louisiana State University, 102F Electrical Engineering
Building, Baton Rouge, LA 70803, USA

generation of sequence diagrams from legacy code [5,22,
23,29,34] can synthesize a subset of all possible sequence
diagrams based on runtime traces. The capability of purely
dynamic reverse-engineering techniques to produce useful
diagrams depends on the quality of the executions. In par-
ticular, one may need a large number of executions with
sufficient diversity to cover the space of interactions. Exist-
ing static techniques [43] result in sequence diagrams that
replicate the original legacy source code, including condi-
tionals and loops, without providing further intuitive notions
beyond the code itself. Hybrid techniques like [18,42] com-
bine static and dynamic analysis. Information extracted from
an accurate static analysis framework can guide the execu-
tions during the dynamic stage.

We present a technique, depicted in Fig. 1, for static gen-
eration of UML sequence diagrams1 together with a query
system to guide the user to the most interesting interactions
in the (unobfuscated) source code2 Given an existing object-

1 Some authors [20,24] refer to these diagrams as scenario diagrams.
This is a segue to UML sequence diagrams.
2 Our technique will work on obfuscated code as well, but the resulting
sequence diagrams may be difficult to understand.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-019-00545-z&domain=pdf
http://orcid.org/0000-0001-6044-2159
https://github.com/doubleblindanon/SeqGenWeb

32 C. Alvin, et al.

Code Base

(1) Typed Control Flow Graph

(2) Source Code Hypergraph

(3) Sequence Diagrams

Query-Based Refinement

Fig. 1 The StaticGen system flowchart

oriented code base as input, our technique involves three
distinct steps as shown inFig. 1.Thefirst step in our technique
(Fig. 1) takes the input codebase and transforms it into a typed
control-flow graph (TCFG): a control-flow graph annotated
with type information—a familiar structure in static analysis
acquired from an existing front-end tool such as Soot [39] or
goto-cc [21].

The TCFG for a program P captures the execution
of P , but does not explicitly capture (a) the interac-
tions among the objects constituting P , (b) their con-
text, and (c) the causal ordering of their interactions. For
example, the TCFG in Fig. 3 does not explicitly cap-
ture the fact that a call to middleButtonOnClick
requires the context of an object of type View. Simi-
larly, it does not explicitly capture the fact that the opera-
tions setText(“clicked”), opt = r.nextInt(),
c = getBlue(), and SetUpperRightButton(c)
take place within the method middleButtonOnClick.
In addition, the TCFG does not have any explicit construct to
represent interactions among objects. A TCFG does not also
contain the complete context of object information. That is,
the TCFG contains the static datatype of a particular object,
but the TCFG does not explicitly maintain the superclass
hierarchy for each object.

For the code in Fig. 2, the TCFG is depicted in Fig. 3.
Hence, the second step of our methodology involves con-
structing a directed code hypergraph [7] (Sect. 3) that
captures (1) intra- and inter-procedural control flow, (2) mes-
sage interactions among objects, (3)message context, and (4)
causal ordering of messages. From the source code in Fig. 2,
we consider a portion of the generated code hypergraph (cor-
responding to a hyperpath [7]) in Fig. 4. A code hypergraph
corresponding to the input source code contains two cate-
gories of nodes. The first category refers to code objects:
objects and their datatypes (rounded corners in Fig. 4). The
second category of nodes, called trace nodes, capture a trace
of amethod (rectangles in Fig. 4). For example, it is clear that
middleButtonOnClick in Fig. 2 has 2 ∗ 4 = 8 possible
traces due to the permutation of respective branches; Fig. 4
depicts one of those 8 trace nodes.

Fig. 2 Example android source code

Fig. 3 The typed control-flow graph for Fig. 2

A directed hyperedge captures a message context in the
form of an origin hypernode (a set of nodes) and causal order-
ing by virtue of directedness of hyperedges. The annotation
of each hyperedge defines correspondingmessages. In Fig. 2,
for example, a call to middleButtonOnClick requires
the context of an object of type View and a callee; the cor-
responding hyperedge in Fig. 4 is labeled accordingly with
the destination method and program state information for
context.

The third step in our technique (depicted in Fig. 1) con-
structs sequence diagrams (Sect. 5) given a code hypergraph
corresponding to an input code base. Each hyperpath [7] in

123

Static generation of UML sequence diagrams 33

Fig. 4 A portion of the code hypergraph corresponding to the code in
Fig. 2

that hypergraph encodes all object interactions in an execu-
tion of the code base and therefore a corresponding sequence
diagram can be generated. The hyperpath in Fig. 4 corre-
sponds to the sequence diagram shown in Fig. 5. To empower
the user to identify “interesting” interactions, we provide a
query-based refinement interface that allows the user to nar-
row the resultant set of generated sequence diagrams based
on their criteria and guides the user to the most interesting
interactions in the source code.

We evaluated the effectiveness of our tool, StaticGen,
on 30 open-source Android applications [12,44]. StaticGen
generated 647.1 sequence diagrams on average per pack-
age taking a mean of 96.78 seconds for each package. In
addition to helpingdevelopers comprehend legacy code,Stat-
icGen could fill an important security role for normal users
as well. In a second experiment, we conducted a case study
of using StaticGen to uncover security vulnerabilities. The
query refinement system of StaticGen using the notions of
“interesting” and “refinement” allowed us to narrow down
the set of all sequence diagrams of a program to a subset that
exposed a vulnerability.

This paper makes the following contributions:

• Section 2 formalizes a sequence diagram with respect to
a hyperpath in a hypergraph.

• We describe a tool StaticGen for statically generating
sequence diagrams by constructing (Sect. 3) and explor-
ing (Sect. 5) a code hypergraph for an input code base.

• StaticGen provides a query system to refine the set of
generated diagrams and guide the user to the most inter-
esting interactions in the source code. (Sect. 6).

Fig. 5 Sequence diagram for an execution path in Fig. 2

Fig. 6 Uninteresting sequence diagram for Fig. 2

• We illustrate the efficacy of our technique (Sect. 7) with
quantitative analyses and a case study to identify a secu-
rity vulnerability.

2 Program abstraction and code
hypergraphs

In this section, we describe an abstract model for programs,
formalize the notion of a code hypergraph, define a sequence
diagram in that context, and define terms related to the fea-
tures and quality of a given sequence diagram.

2.1 Program abstractionmodel

To define a framework for static generation of sequence dia-
grams not tied to a particular object-oriented language, we
introduce a typed control-flow graph (TCFG), an abstract
model that will serve as the basis for our analysis. The model
maintains both data flow (i.e., program points with state
information attributed to collecting semantics, alias analy-
sis, etc.) and control flow information (i.e., intra-procedural
instructions and inter-proceduralmethod calls). A program is
abstracted by a typed control-flow graph (Definition 1) con-
taining two types of edges: intra-procedural transfer edges
and inter-procedural call edges.

123

34 C. Alvin, et al.

Definition 1 (Typed Control-Flow Graph) A typed control-
flow graph for a program P is a control-flow graph GNT =
(NT , X ,C, n0) where NT is the set of program points
including type information for all variables, X is the set
of intra-procedural transfer edges, C is the set of inter-
procedural call edges, and n0 is the entry point of the
program.

For acyclic TCFGs, we assume the standard notion of
sequential ordering of instructions as induced by the directed
nature of the representative graph. When a loop is encoun-
tered in a TCFG, we treat the loop as a conditional branch by
taking it once; it is out of scope of this work to consider other
methods for handling loops (e.g., loop summarization, rank-
ing functions, etc.) We describe our approach in the context
of a simple object-oriented programming language with con-
ditionals, assignments, loops, references, and methods with
call-by-value.We omit the details of the language as the oper-
ational and denotational semantics are defined in the usual
way.

2.2 The code hypergraph

For a program P , we use a directed hypergraph [7] data struc-
ture where hypernodes (sets of nodes) capture the context
of interactions and directed hyperedges capture the interac-
tions of objects constituting P . The order of hyperedges in
a hypergraph captures the notion of causal ordering [1]; for
events (invocations or returns of methods)U and V , we write
U → V if event U is causally ordered before event V . In
our model, hyperedges consist of a set of origin nodes and a
single target node: a many-to-one relationship.

We formally introduce an abstract, many-to-one directed
hypergraph called an annotated hypergraphwhere all hyper-
edges are annotated according to the problem space.A simple
annotation may consist of a boolean expression indicating if
a hyperedge is to be considered (in)active; that is, all the con-
text information corresponding to the hyperedge is available
or not.

Definition 2 (Annotated Hypergraph) An annotated hyper-
graph is a directed hypergraph H (N , EA) where N is a set
of nodes and EA ⊆ 2N × N × A a set of directed anno-
tated hyperedges over a set of annotations A. Each directed
hyperedge e ∈ EA is defined as an ordered pair e = (S, t, A)

where S ⊆ N , t ∈ N , and A ∈ A.

Hyperedge annotations correspond to events in the pro-
gram. Given two hyperedges, EA = (S1, t1, A) and EB =
(S2, t2, B)with origin hypernodes S1 and S2, respectively, t1
and t2 target nodes, respectively, and annotations A and B,
respectively, we say A � B if t1 ∈ S2. We define → to be
the transitive closure of �. An important component of our
technique is the hyperpath construction; we define hyperpath
in the context of an annotated hypergraph.

Definition 3 (Hyperpath) Let H (N , EA) be an annotated
hypergraph, G ⊂ N , and g ∈ N . A hyperpath Y
(of length n) from G to g is a sequence of hypernodes
G0,G1,G2, . . . ,Gn−1 where G0 = G and Gn−1 = {g}
such that for each 1 ≤ i ≤ n − 1, there exists a hyperedge
(Gi−1, gi , Ai) ∈ E where gi ∈ Gi and Ai ∈ A.

The annotated hypergraph in Definition 2 is an abstract
structure that we instantiate to encode interactions, context,
and causal ordering through nodes and hyperedges. We call
the resulting hypergraph a code hypergraph. Before we for-
mally define a code hypergraph, we define the set of nodes
and hyperedges that will constitute it.

Nodes The nodes of a code hypergraph are of two types:
code object and (method) trace. A code object captures
the notion of an object in an object-oriented program. For
example, the middleButtonOnClick method takes a
parameter of object v of type View and is represented as
a code object in the corresponding code hypergraph in Fig. 4
(indicated by rounded edges). A trace is more than just a
basic block in a TCFG, it is a sequential set of instructions
corresponding to an execution path for an entire method.
For example, in Fig. 4, a trace node corresponding to one
path of the middleButtonOnClick method is com-
posed of instructions that would span many basic blocks in
a TCFG. That is, a complete code hypergraph for the source
code in Fig. 2 would contain 8 distinct trace nodes for the
middleButtonOnClick method consistent with the 8
unique execution paths.

Definition 4 (Code Object) A code object v of type T in an
object-oriented program P is an instantiated object variable
of type T . For code object v of type T , we sayDatatype (v) =
T .

The applications of our theory rely upon the capabilities
of a front-end tool. In this paper, we deferred to Soot [39]
to provide datatype information from polymorphic code and
dynamic bindings; Soot provides a querymechanism to iden-
tify the datatype of a particular object. The definition of code
object in Definition 4 captures the fact that our technique
relies on using a tool that provides a query mechanism for
static object type information. Thus, the quality of the pro-
posed procedures would suffer if the underlying analyzer is
lacking.

Definition 5 (Trace) For a method M with entry instruction
m0 and set of exit instructions Mexit , amethod trace is a path
in a TCFG consisting of intra-procedural instructions from
m0 to mexit for mexit ∈ Mexit .

With each node in a code hypergraph we associate one
of two categories Cats = {object, trace}; we define a
corresponding function cat that maps a node to its cat-
egory. We may then define a function trace to extract

123

Static generation of UML sequence diagrams 35

the trace nodes from a set of nodes N , trace (N) =
{n | n ∈ N ∧ cat (n) = trace}.

Hyperedges There are two varieties of hyperedges we
consider: call hyperedges based on method invocations and
return hyperedges that represent objects being returned from
non-voidmethods; our data-driven approach does not require
return edges for void methods as edges enforce the depen-
dence between control and information (objects).

Each call hyperedge is a many-to-one, annotated relation-
ship among nodes in the hypergraph and is constructed for
each method invocation. For a method invocation m in a
method trace t , a hyperedge is constructed with the set of
source nodes consisting of the node corresponding to t and
the set of nodes corresponding to the formal parameter types
of method m. The target of the hyperedge is a node corre-
sponding to a method trace for method m. We annotate this
node with the program state information for context as well
as the method name. For a set of annotated hyperedges EA,
CallEdges (EA) defines the set of call hyperedges.

As an example, Fig. 4 depicts a call hyperedgewith source
nodes consisting of two code objects (b and c) and a trace
node representing the execution path of SetUpperRight
Button. The target node of this call hyperedge is a trace
node for SetBtnColor. In general, a hyperedge consists
of n + 1 source nodes where n is the number of formal
parameters as well as one target node. Finally, the edge
is annotated with the name of the method being invoked
(SetBtnColor) as well as state information (σ6). For a
program P , we say a program state σ of a program P
is data store for all variables at a given execution point
in P .

Each returnhyperedge is a one-to-one relationshipbetween
an origin trace node and a target code object with an anno-
tation comprised of the method name for the origin node
and program state information for context. There are two
return hyperedges in Fig. 4 representing code objects being
returned. Specifically, getBlue returns a value which will
be assigned to variable c (in middleButtonOnClick)
indicated with a dotted line and annotated with
getBlueReturn and state information (σ3).

Definition 6 (Code Hypergraph) Let Π be the set of all
program states for a program P with TCFG T . A code
hypergraph corresponding to a TCFG T is an annotated
hypergraph H (N , EA) where, for each n ∈ N , n corre-
sponds to either a (1) code object or (2) a method trace
(acquired from an analysis of T). Each directed hyperedge
e ∈ EA is defined by the ordered pair e = (S, t, A) where
S ⊆ N and t ∈ N is a target set of instructions corresponding
to some method call. Each hyperedge annotation, A ∈ A, is
defined as a pair A = (m, σ) where m is a method in the
source code and σ ∈ Π . We say that a hyperedge (S, t, A)

is labeled by m if A = (m, σ) for some σ ∈ Π .

It is clear from Definition 6 that we can encode method
invocations and returns as events and thus as annotations of
hyperedges in a code hypergraph.

2.3 Sequence diagrams

A sequence diagram is an instance of the more general mes-
sage sequence chart. The literature (e.g., [1,14,25]) defines
a message sequence chart over a set of processes and an
alphabet as a tuple consisting of:

• a partitioned set of “send” and “receive” events,
• a mapping that maps an event to a process,
• a bijective mapping that matches a send message with a
corresponding receive message,

• a mapping that labels each event, and
• a partial order on the set of events.

Succinctly, a message sequence chart [1,14,25] can be
described as a set of partially ordered, labeled events over
a set of “processes.” We will define a sequence diagram as a
code hyperpath in a code hypergraph. A code hyperpath in a
code hypergraph H (N , EA), constructed from a TCFG T ,
is a hyperpath in H .

Lemma 1 Let H (N , EA) be a code hypergraph correspond-
ing to an acyclic TCFG T , then a sequential hyperpath Y in
H adheres to the sequential order of instructions induced by
T .

Proof Suppose Y does not adhere to the sequential order
of instructions induced by the TCFG T . We consider two
distinct cases.

Assume there exists two instructions i1 and i2 in a single
method in T such that i1 is a predecessor of i2 in T , but
i1 is not a predecessor of i2 in Y . In this case, both i1 and
i2 are instructions in a single method trace node in Y and
i1 will precede i2 by definition of a method trace. This is a
contradiction.

In the second case, suppose there exists two instructions
i1 in method m1 and i2 in method m2 in T such that i1 is a
predecessor of i2 and in Y i1 is not a predecessor of i2. In
this case, i1 and i2 are instructions that are contained in two
distinct method trace nodes in Y . That is, i1 is an instruction
in method trace node m1 for method f1 in Y ; similarly for i2
in nodem2 describingmethod f2. It must be the case that i1 is
a method invocation or must precede a method invocation of
f2 from f1. The definition of code hypergraph requires that
there exists a directed hyperedge e = (S, t, A) in Y where
m1 ∈ S and t = m2. It is now the case that, assuming all code
objects S \ {m1} have been initialized appropriately, i1 will
precede (or invoke directly) the call to method f2 executing
instructions, including i2. This is a contradiction. 	

123

36 C. Alvin, et al.

We now define a sequence diagram in terms of a (code)
hyperpath in a code hypergraph.

Definition 7 (Hypergraph Sequence Diagram) Let
H (N , EA) be a code hypergraph. Also let m be a method
with entry point m0 and let mexit be an exit point of m. A
hypergraph sequence diagram for method m corresponds to
a hyperpath in H from the source hypernode of a hyper-
edge labeled m0 to the target node of a hyperedge labeled
mexit and is denoted byY (H ,m0,mexit). The set of sequence
diagrams Y(H ,m0,mexit) for a fixed pair of entry and exit
points, m0 and mexit , respectively, is the set of all Y (H ,m0,

mexit). Since a method has one fixed entry point and many
possible exit points (given by Mexit), the collection of all
such sequence diagrams (code hyperpaths) is given by Y =
⋃

mexit∈Mexit
Y(H ,m0,mexit).

We prove the equivalence of a message sequence chart
with our notion of a sequence diagram as a hyperpath.

Lemma 2 A hypergraph sequence diagram is a message
sequence chart.

Proof Let H (N , EA) be a code hypergraph. Also let m be
a method with entry point m0 to exit point mexit in H . Let
Y (H ,m0,mexit) be a hyperpath sequence diagram in H from
m0 to mexit . We verify Y satisfies the criteria for a message
sequence chart.

(1) A partitioned set of “send” and “receive” events. As
stated in Definition 6, a code hypergraph consists of
directedhyperedges that are annotatedwithmethod invo-
cations and return statements as events. The set of “send”
events S corresponds to method call invocation hyper-
edges in Y while the set of “receive” events R is the set
of hyperedges corresponding to method returns in Y . In
Y , each method invocation has a corresponding return;
therefore, |S| = |R|.

(2) A mapping that maps an event (method invocations) to
a process (object). Each hyperedge in Y consists of two
objects: the currently active object and the callee object.
It is clear that a uniquemapping exists that takes a hyper-
edge and returns the sourceobject; similarly for the callee
object.

(3) A bijective mapping that matches a send message with a
corresponding receivemessage.Eachmethod invocation
is encoded as a hyperedge in Y . Take a method invoca-
tion between m0 and mexit with method entry m′

0 and
method exit m′

exi t ; note m0 ⇒ m′
0 ⇒ m′

exi t ⇒ mexit .
Then, in order for Y to be valid, each such sub-hyperpath
Ys(H ,m′

0,m
′
exi t)must also be valid subhyperpaths in H .

That is, there exists a hyperedge in H corresponding to
themethod invocation aswell as a correspondingmethod
return. It is clear that such a bijection exists for mapping

a sequential hyperpath method invocation to a return in
Y .

(4) A mapping that labels each event. It is clear that each
hyperedge encodes a method invocation as an event in
Y ; hence, amapping exists thatwill label the set of events
in Y .

(5) A partial order on the set of events. It is clear that the
ordering of events encoded as hyperedges inY are reflex-
ive and antisymmetric. Let eA = (SA, tA, A), eB =
(SB, tB, B), and eC = (SC , tC ,C) be hyperedges in
Y such that, without loss of generality, A → B and
B → C . By assumption, tA ∈ SB and tB ∈ SC . That is,
we are guaranteed to invoke the instructions defined by
nodes tA, tB , and tC in that order. That is, the instruc-
tions in tC will be invoked only after the instructions in
tA. Hence, the partial order is maintained from the mes-
sage invoked by A through message B, and last through
message C . 	

To generate sequence diagrams, the code hypergraph is
extracted according to the discussion in Sect. 3wheremethod
m is a parameter specified by the user.

2.4 Characteristics of sequence diagrams

In this subsection, we formalize some properties of sequence
diagrams that will be used by the query-based refinement
interface for narrowing down the generated set of sequence
diagrams to those sequence diagrams that would be most
“informative” to the user.

Since it may be beneficial to structurally compare two
sequence diagrams, we define analogy of sequence diagrams
through causal ordering of method calls.

We use the term analogous to define a sequence dia-
gram S that is equivalent to a sequence diagram T in terms
of causal ordering. We formalize the notion of coarse and
strictly analogous sequence diagrams by viewing sequence
diagram hyperpaths as graphs.

Definition 8 (Coarse Sequence Diagram Homomorphism)
For code hypergraphs H (N , EA) and H ′ (N ′, EA ′), φ :
H → H ′ is a coarse sequence diagram homomorphism if
for 1 ≤ i ≤ k and v, vi ∈ N , for all 〈v1, . . . , vk〉 = v ∈ 2V

such that (v → v) ∈ EA, v and φ(v) are nodes in which
cat (v) = cat (φ(v)) ∈ Cats, v and φ(v) are sets of catego-
rized nodes and |v|c = |φ(v)|c3 for each category c ∈ Cats,
and there exists a hyperedge φ(v) → φ({v}) ∈ EA ′.

In Definition 8, we define coarse homomorphic sequence
diagrams by requiring (1) corresponding nodes be equivalent
for each diagram, (2) for each corresponding hyperedge the

3 |S| refers to the cardinality of a set S.

123

Static generation of UML sequence diagrams 37

number of origin nodes of each category are equivalent and
the target nodes of the hyperedge is of the same category, and
(3) each hyperedge has a corresponding hyperedge in both
sequence diagrams.

Definition 9 (Strict Sequence DiagramHomomorphism) Let
ψ : H → H ′ be a coarse sequence diagram homomorphism
between code hypergraphs H(N , EA) and H ′ (N ′, EA ′).
Then, ψ : H → H ′ is a strict sequence diagram homomor-
phism if for v ∈ N and v ∈ 2V such that (v → v) ∈ EA,
v and ψ(v) are code object nodes in which Datatype (v) =
Datatype (ψ(v)) and v andψ(v) are sets of code object nodes
such that for all i , Datatype (vi) = Datatype (ψ(vi)).

Definition9defines strict homomorphismamong sequence
diagrams by insisting the type of an object and its image
under ψ be the same type. We may now define a coarse and
strict sequence diagram isomorphism based on the structural
requirements of the coarse sequence diagram homomor-
phism.

Definition 10 (SequenceDiagram Isomorphism)φ is a coarse
sequence diagram isomorphism if (i) φ is a bijection, (ii) φ is
a coarse sequence diagram homomorphism, and (iii) φ−1 is
a coarse sequence diagram homomorphism. If φ is a coarse
sequence diagram isomorphism between H and H ′, we may
write H � H ′.We similarly define a strict sequence diagram
isomorphism based on strict sequence diagram homomor-
phism between H and H ′ and write H ∼= H ′.

Definition 11 (AnalogousSequenceDiagram) Sequencedia-
grams D1 and D2 are analogous if D1 � D2.

Depth of a Sequence Diagram As a metric for code com-
plexity, we define depth which relates the longest sequence
of causally ordered messages without returning. We call
O1, . . . ,On = {O}i an object sequence where for all 1 ≤
i ≤ n,Oi are code objects. The length of the object sequence
O1, . . . ,On is n. We define depth for a sequence diagram
independent of the hypergraph definitions.

Definition 12 (Depth of a Sequence Diagram) The depth of
a sequence diagram D is the greatest length d of the object
sequence O1, . . . ,Od in the diagram such that for each 1 ≤
i ≤ d − 1, there exists a message mi from Oi to Oi+1 and
for each 1 ≤ j ≤ d − 2, m j → m j+1 (m j causally precedes
m j+1) and there does not exist anymessagem either fromO j

to O j+1 or vice versa such that m j → m and m → m j+1.

As an example, the depth of the sequence diagram in Fig. 5
is depth 2; we observe a depth of 3 in the sequence diagram
in Fig. 21 when excluding the user.

Interesting Sequence Diagrams Not all sequence dia-
grams are of particular interest to a user. Requiring user
interaction for refinement from the set of all sequence dia-
grams corresponding to a program is not ideal in terms of

time and effort; therefore, we suggest a first step in formal-
izing the notion of an interesting sequence diagram to make
interactions with StaticGen more efficient.

Formally defining an interesting sequence diagram requ-
ires quantificationof somecharacteristic(s) of a sequencedia-
gram. For a code hypergraph H (N , EA), we defineMsg (H)

= |CallEdges (EA)|whereMsg : H → N. For a hypergraph
sequence diagram D in H (N , EA), we define Msg(D) =
Msg(H)D where the subscript denotes restriction to D and
note thatMsg is a measure that specifies the number of mes-
sages (method invocations) in the sequence diagram.

We define a binary relation � over the set of sequence
diagrams D where for D1,D2 ∈ D, D1 � D2 if and only if
Msg (D1) ≤ Msg (D2). � defines a partial order over the set
of all sequence diagrams D.

Theorem 1 � defines a partial order over the set of all
sequence diagrams D.

Proof � follows as a partial order over D since ≤ is a total
order over the natural numbers. 	

Before defining interesting for sequence diagrams, we
define a function top(S, k) that selects the maximal k ele-
ments from a partially ordered set S (ties broken arbitrarily).

Let DP be the set of all sequence diagrams for a pro-
gram P . For D ⊆ DP , let Msgs (D) = {u | ∃D ∈
D s.t. Msg (D) = u ∈ N} and let Msgs (D)k denote the
multiset of the k greatest elements of Msgs (D) where
1 ≤ k ≤ |D|. We define a function select : N → DP

that, for a u ∈ N, returns a sequence diagram D ∈ DP

such that Msg (D) = u. If there exists multiple D ∈ DP

with Msg (D) = u, ties are broken arbitrarily; select (u)

is undefined if there does not exist any sequence diagram
D ∈ DP such that Msg (D) = u. We define a function
top that, for a set of sequence diagrams D ⊆ DP and a
fixed number 0 ≤ k ≤ |D|, returns k sequence diagrams
in D having the greatest number of messages. Formally,
top (D, k) = {select (u) | u ∈ Msgs (D)k} where D ⊆ DP

and 1 ≤ k ≤ |D|.
Definition 13 (Interesting Sequence Diagram) For a pro-
gram P with the set of sequence diagramsDP with |DP | = n
and a fixed 0 < k ≤ n, DP is an interesting sequence dia-
gram if DP ∈ top (DP , k).

Consider generating a set of sequence diagramsD for the
code in Fig. 2. D would include eight sequence diagrams
from middleButtonOnClick (similar to Fig. 5); each
of these diagrams has 6 messages. However, our genera-
tion routine may also construct Fig. 6 as an element in D
corresponding to method onOptionsItemSelected in
Fig. 2. Thus, |D| = 9 with one diagram having 2 messages
and eight diagrams having 6 messages. The only way for the
sequence diagram in Fig. 6 to be considered interesting is if

123

38 C. Alvin, et al.

Algorithm 1 Construction of a Code Hypergraph from a
TCFG
1: procedure ConstructHypergraph(T : TCFG)
2: Code-Hypergraph H ;
3: NodesH, T ;
4: HyperedgesH;
5: return H
6: end procedure

k = 9; that is, the entire set of sequence diagrams D would
be considered interesting. The sequence diagram in Fig. 6 is
uninteresting for 1 ≤ k ≤ 8 since it has the lowest message
count compared to the other eight sequence diagrams.Hence,
the sequence diagram in Fig. 5 will be considered interesting
when k = 8 and, since ties are broken arbitrarily, may be
considered interesting when 1 ≤ k < 8.

While it is arguable that Definition 13may not be ideal for
every user, we believe that code complexity is often rooted in
the number ofmethod invocations [9] and thus the probability
is greater that a single trace can providemore information and
thus is more likely to expose bugs and vulnerabilities.

Sequence diagrams can be used for debugging purposes,
but can also provide a metric for code coverage in testing.
We propose a definition that encompasses the notion of code
coverage [6] using sequence diagrams.

Definition 14 (Code Coverage) Let m be a method and
H (N , EA) be a code hypergraph. Also let T ⊆ N be the
set of all trace nodes for m. A hypergraph sequence diagram
D containing a trace node t ∈ T is said to method cover m
with coverage rate 1

|T | . For a decision instruction b inm with
|b| branches, a hypergraph sequence diagramD containing a
trace node t ∈ T is said to branch cover m with coverage rate
1
|b| . A set of sequence diagrams provides complete coverage
if the coverage rate is 100%.

3 Constructing the hypergraph

In this section, we describe in more detail how StaticGen
constructs a code hypergraph according to Algorithm 1. The
basic input is a set of codefiles in anobject-oriented language.
We assume that the code is processed by an intermediate
system [21,39] into a TCFG.

Nodes Given a TCFG T , we construct the nodes of the
code hypergraph H followed by the hyperedges. As in Def-
inition 6, there are two types of nodes in a code hypergraph.
With each node in a code hypergraph we associate one of two
categories Cats = {object, trace}; we define a correspond-
ing function cat that maps a node to its category. We may
then define a function trace to extract the trace nodes from a
set of nodes N , trace (N) = {n | n ∈ N ∧ cat (n) = trace}.

In Algorithm 2, if a particular node n ∈ T is a decla-
ration or a formal parameter, we add a corresponding code

Algorithm 2 Construction of Nodes for a Code Hypergraph
1: procedure Nodes(H : Code-Hypergraph, T : TCFG)
2: n : TCFG-Node;
3: for all n ∈ T do
4: if n.isT ypedNode() then
5: H .AddNode(n);
6: else if n.isMethod() then
7: C ← T .ConstructT races(n)

8: for all t ∈ C do
9: H .AddNode(t);
10: end for
11: end if
12: end for
13: end procedure

Algorithm 3 Construction of Hyperedges for a Code Hyper-
graph
1: procedure Hyperedges(H(N , E): Code-Hypergraph)
2: N : Hypergraph-Node;
3: m : String;
4: c : Method-Call;
5: r : Return-Type;
6: for all N ∈ N where cat (N) = trace do
7: for all c ∈ N do
8: m ← c.methodName()
9: C ← H .CollectT raceNodes(c,m)

10: S ← {N } ∪ ⋃
p∈c.Params H .GetNode(p)

11: for all t ∈ C do
12: r ← t .get ReturnObject()
13: if r �= null then
14: nr ← H .GetNode(r)
15: a ← m+ “Return”;
16: H .AddHyperedge({t}, nr , 〈a,∅〉)
17: else
18: H .AddHyperedge(S, t, 〈m,∅〉)
19: end if
20: end for
21: end for
22: end for
23: end procedure

object node to H . The code hypergraph in Fig. 4 is defined
with the code objects corresponding to formal parameters in
Fig. 2: v, b, and c. Figure 4 includes illustrative code objects
(goodId) declared in the corresponding code in Fig. 2 while
omitting some others (btnID, r, and id).

If node n defines a method prototype for m, we con-
struct all possible traces for m by a process that identi-
fies all possible naive execution paths for m over T (on
Line 7 using ConstructTraces). For each trace of
method m, we add the corresponding node to H (Line 8
to Line 10). Hence, the complete code hypergraph corre-
sponding to Fig. 2 would contain 8 trace nodes describing
middleButtonOnClick and a single trace node describ-
ing the single paths for each method get Red, getBlue,
SetBtnColor, and SetUpperRightButton.

Hyperedges We consider the two varieties of hyperedge
in turn: call hyperedge and return hyperedge.

123

Static generation of UML sequence diagrams 39

A call hyperedge captures the callee trace, context of a
caller through the set of input objects, and annotation of the
method. In Algorithm 3, we traverse H seeking the set of
trace nodes N . For each trace node N ∈ N with method
call c and method name m (Line 6 to Line 8), we construct
a hyperedge e for H . The source nodes for e consist of the
callee trace node t and the set of nodes corresponding to
the actual parameters in the method call c (Line 10). The
target node for e is a node corresponding to a trace of the
called method. The annotation for e consists of the method
name and a user-defined program state (default is empty) or
propagated from the previous hyperedge.

In the source code of Fig. 2, we observe that middle
ButtonOnClick calls several methods; most promi-
nent in our example are SetUpperRightButton and
getBlue. Thus, in the code hypergraph (Fig. 4), we observe
two corresponding call hyperedges for these method invoca-
tions.

We note that the functionCollectT raceNodes on Line 9
selects all applicable trace nodes that are consistent with the
class defining c and methodm; that is,CollectT raceNodes
will return all trace nodes in the proper class and all of
its super-classes, as applicable. Thus, due to restrictions
of the capabilities of a front-end static analysis tool, it is
possible that some trace nodes may not be collected by
CollectT raceNodes; thus, possible polymorphic execu-
tions may be omitted from the code hypergraph.

For non-void methods (Line 12 to Line 16, Algorithm 3),
we construct a return hyperedge r relating the current
trace node t and the object being returned from t (using
getReturnObject on Line 12) and adding to H . The
annotation for r does not correspond to any existing func-
tion, sowe append “Return” to the currentmethod namem (to
distinguish annotations accordingly) and a user-defined pro-
gram state. Figure 4 contains the annotated return hyperedges
getBlueReturn and getIdReturn since, respectively,
getBlue and getId return code objects.

Lemma 3 Every sequence diagram that describes a trace4

of a program can be mapped bijectively to a hypergraph
sequence diagram in the corresponding code hypergraph.

Proof Let H (N , EA) be a code hypergraph corresponding
to a program P . Letm : D → HD be amapping from the set
of sequence diagrams D to the set of hypergraph sequence
diagrams HD from H . Also let d1, d2 ∈ D be sequence
diagrams such that m (d1) = m (d2) ∈ HD. In both cases,
m (d1) andm (d2) are hyperpaths in H . Each such hyperpath
is unique in H and corresponds to a trace in program P .
It follows d1 = d2. Now, let h ∈ HD. Then, there exists
a hyperpath p corresponding to h in H . Since a hyperpath

4 A trace may or may not be executable, i.e., it is possible that a partic-
ular trace may never be executed.

corresponds to a trace t of program P , there exists a sequence
diagram d that describes t . That is, m (d) = h. It follows m
is bijective. 	

Lemma 4 Algorithm 1 constructs a code hypergraph con-
taining all hypergraph sequence diagrams that correspond
to sequence diagrams describing traces of a program P.

Proof Let H (N , EA) be a code hypergraph corresponding
to P . Line 7 in Algorithm 2 ensures that N contains all traces
of each method in P . For each method call in P , Algorithm 3
constructs a corresponding call hyperedge and return hyper-
edge maintaining sequential ordering of the instructions in
P by Lemma 1. Together, the nodes and hyperedges capture
all such traces of program P as the set of all hyperpaths in
H . It follows that H contains all such hypergraph sequence
diagrams describing P . 	

Remark 1 Based on Lemma 3, we have that any sequence
diagram d that corresponds to a trace T of a program P
gets bijectively mapped to a hypergraph sequence diagram
in the corresponding code hypergraph H . Lemma 4 states
that Algorithm 1 constructs a code hypergraph H that con-
tains all such hypergraph sequence diagrams corresponding
to sequence diagrams describing traces of P . Thus, any trace
of a program P has a corresponding hypergraph sequence
diagram in the code hypergraph constructed by Algorithm 1.

4 Refinement of code hypergraphs through
pebbling

In this section, we describe an important process for sub-
hypergraph identification using a process called pebbling
(Sect. 4.1) as well as the impact of this procedure on code
hypergraphs for generation of sequence diagrams (Sect. 4.2).

4.1 Sub-hypergraph identification through pebbling

As stated in Definition 2, each hyperedge is annotated with a
parameterized set of values A ∈ A defined in the generation
space. The code hypergraph of Definition 6 annotates each
hyperedgewithmethod name and program state information.
The codehypergraph constructed inSect. 3 is a detailed struc-
ture representing a set of input code. A naive generation of
sequence diagrams would produce an exorbitant number of
diagrams, possibly of great depth, length, and detail. For this
reason, we must have a method to either include or exclude
a set of nodes or a set of hyperedges; this inclusion process
we call pebbling. We more formally define this notion as a
pebbled hypergraph in Definition 15 as computed using the
pebbling process specified in Algorithm 4.

Definition 15 (Pebbled Code Hypergraph) Let H (N , EA)

be a hypergraph with NP ⊆ N a subset of hypernodes and

123

40 C. Alvin, et al.

Algorithm 4 Sub-Hypergraph Identification Through Peb-
bling
1: procedure Pebble(Hypergraph H (N , EA), NP ⊆ N , AP ⊆ A)
2: Hypergraph P; � Pebbled Sub-Hypergraph
3: Worklist W ← NP ;
4: while !W.empty() do
5: n ← W .dequeue() � Acquire a node
6: if n.pebbled() then continue
7: n.pebble(); � Mark the node
8: P.AddNode(n);
9: for all e ∈ n.edges do
10: � Consider allowable hyperedges
11: if e.annotation.consistentWith(AP) then
12: � If all origin nodes are pebbled,
13: � propagate target forward
14: if e.pebbled() and !e.target .pebbled() then
15: P.AddHyperedge(e);
16: W .enqueue(e.target);
17: end if
18: end if
19: end for
20: end while
21: return P;
22: end procedure

a subset of annotations AP ⊆ A. Then, HP
(
NP , EAP

)
is

a pebbled annotated hypergraph containing only reachable
nodes and hyperedges consistent with AP : NP and EAP ,
respectively. Similarly, a pebbled code hypergraph consists
of the reachable nodes and hyperedges from a code hyper-
graph.

Algorithm 4 is a modification of the classic marking algo-
rithm as first defined byDowling andGallier [13] for satisfia-
bility of propositional horn clauses. Pebbling is a linear-time
traversal over an annotated hypergraph that identifies the
sub-hypergraph [7] consistent with user specified informa-
tion. For example, if the user disallows library methods,
those hyperedges with annotations containing System. or
toString in Java, would not be allowed in the result-
ing pebbled code hypergraph. As described in Algorithm 4,
pebbling is a breadth-first traversal over an annotated hyper-
graph where we mark each node with a pebble once it is
visited (Line 7). Then, on Line 9 through Line 19, we use
the following rule for pebbling and propagation: if all ori-
gin nodes of a hyperedge are pebbled, we place the target
node of the hyperedge in the work list. As pebbling con-
tinues, we add all “unexpanded,” pebbled nodes (Line 8)
and hyperedges (Line 15) to the sub-hypergraph in prepara-
tion for the return of the pebbled version of the hypergraph
(Line 21).

For example, in Fig. 4, if we pebble the trace node
for middleButtonOnClick, we immediately pebble the
trace node for getBlue. In turn, we pebble the code object
node for c. Then, since both source nodes are pebbled, we
pebble the target trace node for SetUpperRightButton.

Lemma 5 (Correctness of Algorithm 4)Given a code hyper-
graph H (N , EA), Algorithm 4 returns a pebbled code
hypergraph HP

(
NP , EAP

)
.

Proof Given a code hypergraph H (N , EA) and a set of input
nodes NP , Algorithm 4 constructs a new code hypergraph P .
The loop from Line 4 to Line 20 requires the worklist queue
W to be empty. Each node that is added to W (Line 3 and
Line 16) is dequeued as node n on Line 5 and added to P .
The loop beginning on Line 9 then considers each hyperedge
e = (S, t, a) ∈ EA for which n ∈ S. If all S are pebbled
on Line 7, t is reachable and thus e is added to P and t is
added toW (and eventually added to P). P thus contains NP

and all reachable nodes from NP via the set of fully pebbled
hyperedges in P . 	

4.2 Pebbling a code hypergraph

Our generation framework for sequence diagrams is based on
the concept of “objects as messages.” That is, a method call
(message) will only be invoked when all of the constituent
actual parameters (objects) are in one-to-one correspondence
with the formal parameters are available to initiate the mes-
sage; that is, all origin nodes of a hyperedge have been
pebbled. The pebbling procedure described in Sect. 4.1 is
a general formalization of this notion, but with respect to
sequence diagrams, pebbling is a selection process where
only messages that are ready and able to be communicated
appear in the resultant sequence diagrams. Branches in the
original code may result in an object not being initialized,
or in general, an object is not ready for communication and
thus will not be pebbled.
Recursion and PebblingWe have mentioned a limitation in
our approach how intra-method loops are treated as condi-
tional expressions. However, we must also consider loop via
method calls: recursion. It is easy to conceive of an example
with three objects O1, O2, and O3 engage in the following
method calls:

main() → O1.a() → O2.b() → O3.c() → O1.a().

While the code hypergraph constructed from the TCFG
would encode this recursive instruction sequence as a cycle,
the resulting pebbled code hypergraph will be acyclic. We
refer to Algorithm 4 and argue informally that each node in
a code hypergraph will only be expanded once. Pebbling is
a worklist-based procedure that will add a node n to the list
for processing when it is “discovered” on Line 3 or Line 16.
When n is taken from the list on Line 5, it is first marked
(pebbled) on Line 7 and then “expanded.” If n is ever added
to the worklist again as being reachable via some hyperedge
on Line 16, the conditional on Line 6 will prohibit expansion
of n and inclusion of the hyperedge in the resulting pebbled

123

Static generation of UML sequence diagrams 41

Algorithm 5 Sequential Hyperpath Collection Construction
for a Method m
1: procedure Paths(H : Code-Hypergraph, m: Method, O: Objects)
2: Y ← ∅;
3: for all C ∈ H .CollectT raceNodes(m) do
4: Y ← Y ∪ PathsFromTraceH ,C,O;
5: end for
6: return Y;
7: end procedure

Algorithm 6 Trace Node-Based Hyperpath Construction
1: procedure PathsFromTrace(H : Code-Hypergraph, T : trace, O:

Objects)
2: Y ← {∅}; � Set of Paths
3: for all i ∈ T do
4: if i .is I nvocation() then
5: e ← H .get Hyperedge(i);
6: A ← O ∪ e.t ypeNodes;
7: Q ← PathsH , e.method(),A
8: else
9: Q ← {i};
10: end if
11: Y ← AppendPathsY,Q;
12: end for
13: return Y;
14: end procedure
15: procedure AppendPaths(Y: Path Set, Q: Path Set, A: Objects)
16: U ← ∅; � Path Accumulator
17: for all Y ∈ Y do
18: for all q ∈ Q do � Append Paths and Objects
19: Y .Path ← Y .Path + q.Path;
20: Y .O ← Y .O ∪ A ∪ q.O;
21: U ← U ∪ { Y };
22: end for
23: end for
24: return U ;
25: end procedure

code hypergraph. The result of this breadth-first procedure is
an acyclic code hypergraph.

For generation of sequence diagrams, we assume any
code hypergraph has been pebbled according to Algorithm 4
resulting in a pebbled code hypergraph.

5 Static sequence diagram construction

Sequence diagram generation consists of three phases:
(1) sub-hypergraph identification through pebbling [13] as
described in Sect. 4, (2) hyperpath identification, and (3)
converting from a hyperpath to a sequence diagram.

5.1 Hyperpath identification

For a givenmethodm, we can construct the corresponding set
of all paths in a code hypergraph H usingAlgorithm5 (which
relies uponAlgorithm 6).We note that this construction algo-
rithmmaintains the same information for a sequence diagram

as stated in Definition 7, but instead of maintaining a sequen-
tial hyperpath the result is an equivalent path consisting of
one-to-one edges and an associated set of objects. A method
has many associated traces so PathsH ,m in Algorithm 5
acquires all such traces and accumulates the set of all paths.
For each trace (acquired using CollectTraceNodes on
Line 3), we construct all paths. In this case, a path is a DAG
whose nodes are code instructions and edges are attributed
to the flow of control of the code. For a path P , we use an
object-oriented notation in which (1) P.Path refers to the
path associated with a trace path and (2)P.O is an associated
set of code objects.

Recall that a trace T is a sequential set of instructions.
In Algorithm 6, PathsFromTraceH , T loops starting on
Line 3 through the set of instructions in T using i as our
iterator representing an instruction seekingmethod calls. The
Boolean functionisInvocationonLine 4will return true
if the instruction is a method call. If the instruction in T is
a method call, hyperpath construction is recursive (Line 7)
by following the corresponding call hyperedge to the target
trace node, otherwise, we simply view the instruction i as
a singleton set (Line 9). Regardless of how instruction i is
processed,we append the new sets of paths (Q) to the old path
sets (Y) using procedure AppendPathsY , Q; this includes
the objects in a particular path (Line 20).We assume set union
with∪ operator maintains sequential ordering of instructions
and creates a directed edge from the last instruction of one
path to the first instruction of the other path.

Lemma 6 (Correctness of Algorithm 5) For a code hyper-
graph H and amethodm,Algorithm 5 collects all hyperpaths
for m.

Proof We consider a single trace node C for a method m as
it is clear that the loop beginning on Line 3 of Algorithm 5
collects all hyperpaths corresponding to traces of method
m. Algorithm 6 considers each instruction in C . In the base
case, if C contains no method calls, Y will contain a single
hyperpath consisting of a single node with no edges. In the
inductive case, if C contains a method call to a method μ,
we append all recursively constructed hyperpaths with μ as
root (Line 7) to each element of Y (Line 11). Each such
method invocation in C is expanded and appended similarly.
Algorithm 5 thus exhaustively constructs all hyperpaths for
m using a recursive, tree-style formulation. 	

5.2 Generating sequence diagrams from a
hyperpath

As described in Sect. 5.1, Algorithm 5 computes the set of
all paths corresponding to sequential hyperpaths, including
the associated objects with the path. Given a path, we con-
struct the associated sequence diagram using Algorithm 7.
The set of objects in the sequence diagram corresponds to

123

42 C. Alvin, et al.

Algorithm 7 Converting a Path to a Sequence Diagram
1: procedure PathToDiagram(P: Path)
2: D: Sequence Diagram;
3: D.O ← P.O;
4: for all i ∈ P do
5: if i .is I nvocation() then
6: D.addMessage(P.get Edge(i));
7: q ← PathToDiagramP.get Path(i);
8: D ← D ∪ q;
9: D.addReturnMessage();
10: end if
11: end for
12: return D;
13: end procedure

the set of objects in the path (Line 3). Messages in the
sequence diagram are constructed recursively; each method
invocation instruction results in a sub-sequence diagram,
q being constructed (Line 7) and appended to the main
sequence diagram, D (Line 8), including a return message
using addReturnMessage.

We consider the code hypergraph in Fig. 4 which depicts
a single hyperpath corresponding to the code in Fig. 2. In
this example, the consequent code objects in the hyperpath
is an anonymous object of type Main as well as a code
object of type Button (b); no methods act on code object
c thus it does not appear in the resulting sequence diagram.
To generate the set of method calls for the sequence dia-
gram, we begin with the dashed hyperedge into the trace
node for middleButtonOnClick. Considering each of
the instructions of this trace node in turn, we add mes-
sages in causal order: recursively following call hyperedges
to getBlue and SetUpperRightButton then subse-
quently following their respective return hyperedges. The
result is the sequence diagram in Fig. 5.

6 Interface for diagram generation

Statically generating sequence diagrams is a useful tool for
a programmer to perform software archeology. Whether the
user is examining a legacy system or their own code, the user
is a critical element in successful use of StaticGen. In this
section, we provide a user’s perspective to interacting with
our system to obtain a desired set of sequence diagrams.

A sequence diagram D has features such as: depth as
defined in Definition 12, number of messages (number of
call hyperedges), types of all code objects, method coverage,
and branch coverage. In this section, we describe the query
language, the interface for query-based refinement, and pro-
vide some examples.

6.1 Query over the language of sequence diagrams

We define a query over the language of sequence diagrams.
The language of sequence diagrams L is defined over the
alphabetΣ consisting of code objects andmethod traces. For
simplicity, we will refer to code objects as ci with i ∈ Z

+,
method traces asm j with j ∈ Z

+ with correspondingmethod
returnsm′

j . Hence, Σ = {c}i ∪{m} j ∪{m}′j for i and j finite
in Z+ and i ≥ 1 and j ≥ 1.

Lemma 7 A hyperpath Y in a code hypergraph H is a string
in L.

Proof It is clear that a topological sort of the graph corre-
sponding to Y results in a unique string s ∈ L. 	

We note that distinct orders of topological sorts on a DAG
corresponding to a hyperpath will result in distinct strings;
however, each such string is unique in L over the original
program. A query is defined over a set of sequence diagrams
D ⊆ L generated using the techniques described in Sect. 5;
however, generation can be more targeted. It is often cum-
bersome and unnecessary to generate all sequence diagrams
beginning at a main method in a program. Generation can
be performed on-demand beginning at any method reducing
the size of the corresponding hypergraph. In order to acquire
the initial set of sequence diagramsDS , wemay use the pred-
icate “start M ,” where M is a method dictating where the
resultant sequence diagram(s) will begin.

Query Operations. A query Q = {q}i over L consists of
a finite sequence of operations {q}i that refine the given set
of sequence diagrams D ⊆ L into the resulting set Q(D) =
F ⊆ D.

• For a method trace � ∈ Σ , “filter � D” prunes the
substring from � to �′ in each sequence diagram inD. This
removal process efficiently eliminates calls to library-
based functionality or method definitions that are not of
interest. For a set of code objects � ⊆ Σ , “filter
� D” prunes all characters c ∈ � from each string in D.
Removal of a code object allows the user to refine the set
of sequence diagrams by omitting specific variables.

• For a set of predicates R describing strings in L,
“remove R D” will remove all resulting sequence dia-
grams for which all r ∈ R evaluate to true. The
complementary operation “accept R D” will collect
all sequence diagrams for which all r ∈ R evaluate to
true.

• For an integer k, “top-interesting k D” returns
top (D, k).

123

Static generation of UML sequence diagrams 43

• “method cover p D” and “branch cover p D”
each return sequence diagrams ensuringminimal method
and branch coverage, respectively, for a lower bound per-
centage p.

We define a simple grammar for a query Q over L; the
terminal symbols include �, R, 0 ≤ p ≤ 1, and k ∈ Z

+ as
defined above.

Q(D) → D | filter � Q(D)

| remove R Q(D)

| accept R Q(D)

| top-interesting k Q(D)

| method-cover p Q(D)

| branch cover p Q(D)

The code hypergraph is a representation of all traces of a
program; it is thus a prohibitively large structure. We there-
fore give the user the power to define queries that will make
the analysis tractable and the resulting set of sequence dia-
grams more likely to be meaningful. For example, a user
may not want to dive into a complete analysis of a program
from a main method, instead they may begin their analy-
sis at any arbitrary method. Our solution is a set of modes
of refinement. A user-defined query is a tuple of refinement
modes or global query predicates. A refinement mode is of
the form 〈t,m〉 where t is a unique identifier for an object or
a method and m is a mode descriptor; we define each of the
mode descriptors below.

• Synthesis can be performed on-demand beginning at any
method using “start M ,” where M is a method from
which the resulting diagram(s) will begin.

• Since source code may contain method calls to library-
based functionality, “filter S” where S is a set of
methods or code objects, removes messages or objects in
a sequence diagram corresponding to all s ∈ S.

• Synthesis may result in a set of sequence diagrams. For a
set of predicates R, “remove R” will remove all result-
ing sequence diagrams for which all r ∈ R evaluate to
true.

• For a set of predicates R, “accept R” collects all
sequence diagrams for which all r ∈ R evaluate totrue.

Beyond refinement modes, global query predicates prune
the resulting set of sequence diagrams. Using our defini-
tion for interesting sequence diagrams, a user may use the
predicate “top-interesting d” where d is an integer
specifying the number of resulting diagrams. Similarly for
code coverage, we may refer to “function-cover p” or

“branch cover p” where p is a lower bound percentage
of the coverage desired.

6.2 Query language semantics

In this subsection, we formalize the query language seman-
tics by describing the denotational interpretation of the query
language and operations defined in Sect. 6.1.

WedefineD to be the set of string objects over the language
of sequence diagram strings L. These sequence diagram
string objects also maintain diagram information including,
but not limited to the number of messages, branch cover-
age, and method coverage. Our query language consists of a
set of predicates, R, over a set of set of sequence diagrams,
D. We use emphatic brackets � � to express denotations of
expressions in the query language. We first consider the set
of operations related to evaluating predicates. For the set
of predicates R, we evaluate a sequence diagram d ∈ D
to confirm if it adheres to a subset of predicates in R: we
define Eval : (D × 2R) → {true, f alse}. We then define
a function E which evaluates a given operation BoolOp,
E : BoolOp → Eval. Since our operations result in boolean
expressions, we define standard notions of logic-based com-
mands, BoolOp. For ε, ε′ ∈ Eval, d ∈ D, and predicates
R′ ∈ 2R :

– E� ε and ε′ �
(
d, R′) = E�ε�

(
d, R′) ∧ E�ε′�

(
d, R′),

– E� ε or ε′ �
(
d, R′) = E�ε�

(
d, R′) ∨ E�ε′�

(
d, R′),

– E� not ε �
(
d, R′) = ¬E�ε�

(
d, R′),

– E� t rue �
(
d, R′) = true,

– E� f al se �
(
d, R′) = f alse, and

– E� d �
(
d, {r} ⊆ R′) ∈ {true, f alse}.

The last expression is the boolean evaluation of a single
predicate over a single sequence diagram.

For languageoperation commandsOper,wedefine a func-
tion C : Oper → ((2D × 2R) → 2D), ensuring each query
operation takes a set of sequence diagrams and returns a
refined subset of sequence diagrams. We define sequential
execution of operations C�γ1; γ2�

(
d, R′) = C�γ1�

(
d, R′) ◦

C�γ2�
(
d, R′) with ◦ referring to function composition. We

then define a basic conditional operation: with ε ∈ Eval and
γ ∈ 2D, γ ′ :: = i f ε then γ . This expression is a tradi-
tional if-then statement where the missing “else” evaluates
to an empty set:

C� i f ε then γ �
({d}, R′) = C�γ �

({d}, R′)

if E�ε�
({d}, R′) = true, otherwise ∅.

Before we define the denotational semantics of the query
operations, we define two support operations. In some cases,
the user maywish to exclude elements of a sequence diagram

123

44 C. Alvin, et al.

such as a particular variable or method; the first support oper-
ation defines a means of such pruning mechanisms. Mutate
is a function that maps a mutation operation, MutOp to a
function that takes a sequence diagram and returns amodified
version of the sequence diagram:Mutate : MutOp → (D →
D). The second support function Property is a mapping from
a property operation PropOp that takes a sequence diagram
and returns a quantity related to the diagram (e.g., method
count, method coverage, etc.): Property : PropOp → (D →
R).

We may now define the denotational semantics of the
query operations.

To properly define filtration, we first define two mutation
operations, one for code objects and one for methods.

For a string s and two characters a, z, we assume
the standard substring operation substr(s, a, z) returns the
string beginning at a through all characters ending with
(and including) z. In the case where characters a or z
is not found in s, substr(s, a, z) returns an empty string.
We define a complementary operation rem_substr(s, a, z)
which returns the original string excluding all such sub-
strings substr(s, a, z). If substr(s, a, z) does not appear in
s, rem_substr(s, a, z) = s by returning the original string,
unmodified; rem_substr(s, a, a) = a deletes all occurrences
of character a from string s.

For a sequence diagram string d, a character m.a corre-
sponding to method m, and a character m.z corresponding
to the return of methodm, prune(D,m) = rem_substr(D,

m.a,m.z) ∈ MutOp removes method m from d.
Pruning a code object c from a sequence diagram is a

more involved process since it requires we prune c as well
as all methods that act on c. For a sequence diagram string d
and a character o corresponding to code object c, we prune
all methods mi 0 < i ≤ k that call a method defined by
code object c; we define functionally with a functional-style
pattern matching and list dissection.

prune(d, o) = rem_substr(d, o, o)
prune(d,m) = rem_substr(d,m.a,m.z)
prune(d,mH :: mT) = prune(prune(d,mH),mT)

prune(d, o) = prune(prune(d, o.mi), o, o)

The first function removes the actual code object c from
the diagram (invoked last). The second function removes
all occurrences of method m from the sequence diagram.
The third function iterates through all methods for which
code object c interacts. The final function invokes all method
removal and code object removal, respectively.

With prune defined, we may now filter a single dia-
gram with a set of predicates: γ :: = filter({d}, L) =
prune(d, L). Filtering many diagrams over a set of predi-
cates: γ :: = filter(D, L) = ⋃

d∈D filter({d}, �).

For clarity and simplicity, we define an evaluator to deter-
mine if a diagram d satisfies all predicates in a set R.

b :: = satisfies(R,d) =
∧

r∈R

E�d� ({d}, {r})

For a set of predicates R and a sequence diagram d, a
diagram is removed if remove(R,d) evaluates to true; that
is, diagram d does not satisfy all r ∈ R:
γ :: = remove(R,d) =
C� i f not (satisfies(R,d)) then {d} �

({d}, R′) .

Similarly, for a set of diagrams D, remove(R,D) =⋃
d∈D remove(R, {d}).
Similarly, accept(R,d) requires d satisfy all r ∈ R:

γ :: = accept(R,d)

= C� i f satisfies(R,d) then {d} �
({d}, R′) .

For a set of sequence diagrams D, accept(R,D) =
⋃

d∈D accept(R,d). We note that accept and remove
have similar, yet opposing goals where an accept com-
mand followed by a removewith the same set of predicates
results in an empty set:

remove (R,accept(R,D)) = ∅.

This observation is also true when remove precedes
accept: accept (R,remove(R,D)) = ∅.

Let D = {di } be a set of sequence diagrams ordered
by the number of messages: for all 1 ≤ i < j ≤ |D|,
Msg (di) ≤ Msg

(
d j

)
. In [11], the authors define the function

select(k, S)which returns the k-th largest element in a set
S. We modify this notion to define select(k,D) to return
the sequence diagram corresponding to the k-th largest num-
ber of messages of the sequence diagrams inD. We select the
top-k sequence diagrams:

top(D, k) = select(k,D) ∪
[if k + 1 <= |D| then top(D, k + 1)]

Hence, γ :: = top-interesting(k,D) = top(D, k)
results in the set corresponding to D restricted to the top-k:
{d ∈ D | d|D|−k+1,d|D|−k+2, . . . ,d|D|}.

Sequence diagram object representations maintain code
coverage metrics. For branch and method coverage, respec-
tively,

branch cover(p, d) =
C� i f d then {d} �(d, {d ∈ D | branch(d) > p})

and

method-cover(p, d) =
C� i f d then {d} �(d, {d ∈ D | method(d) > p}).

123

Static generation of UML sequence diagrams 45

Theorem 2 (Soundness and Completeness of Query Lan-
guage Semantics) For a set of sequence diagrams D over
the language of sequence diagram strings L and a set of
predicates R.

(A) Ford ∈ D andmethodm,filter results in a substring
d′ of d omitting m.

(B) For d ∈ D and code object o, filter results in a
substring d′ of d omitting all dependencies of o.

(C) For D′ ⊆ D satisfying all predicates in R, remove
results in the set D \ D′.

(D) For D′ ⊆ D satisfying all predicates in R, accept
results in the set D′.

(E) For 0 < k ≤ |D|,top-interesting returnsD′ ⊆ D
with

∣
∣D′∣∣ = k, the set of k sequence diagrams with the

greatest number of messages.
(F) branch coverage (resp.method coverage) for

p returns the subset D′ ⊆ D of sequence diagrams with
coverage greater than p.

Proof (C), (D), (E), (F) are clear by their definitions.
For (A), filter(d,m) prunes all occurrences of sub-

strings from the character corresponding to the invocation of
methodm to the character corresponding to the return fromm
from the string corresponding to d. Filtering of a code object
o in (B) prunes allmethods in o and allmethods strictly called
by o as well as the character corresponding to o. 	

6.3 Query interface to diagram generation

We present an interface where a user of StaticGen can
query over the set of sequence diagram features to obtain
a subset of sequence diagrams. Our methodology requires
manual input of the code as well as a query Q as previ-
ously described. Depending on the specification of Q, we
may omit, through the pebbling process, call hyperedges cor-
responding to method calls that may be removed. Given a
pebbled code hypergraph, we construct the corresponding
set of all sequence diagrams. We then filter the resulting
set of sequence diagrams related to method removal, cover-
age, or top into the desired set of sequence diagrams.

If the user wishes to refine Q into Q′, we may re-pebble
the code hypergraph and generate according to Q′. Our query
system provides continual refinement until the appropriate
set of sequence diagrams is acquired. That is, initially, a user
might simply request a set of interesting sequence diagrams.
Then, as the user becomes more familiar with the code base,
theymaydefine amore restricted query. This process of query
refinement can continue ad libitum.

Within the bounds of the user selected query, we prioritize
what the user sees by first eliminating strictly isomorphic
diagrams and diagrams which are “subsets” of other dia-
grams. We then determine the set of sequence diagrams S

Fig. 7 Example accept query for Fig. 2

that match the user’s query. Using a method coverage metric
for the code, we prioritize the diagrams into a list I using the
following greedy algorithm.

1. Select the most interesting sequence diagram s ∈ S that
adds the most new information (number of new methods
covered).

2. Remove s from S (S := S \ {s}).
3. Add s to I (I := I ∪ {s}).
4. Repeat steps (1) through (3) until the desired coverage

rate is acquired.

Using this construction, I is a minimal coverage set for
the input code and provides a desired viewing order with
the most unique information possible in the fewest views of
diagrams, assuming a quality user query.

6.4 Sample queries

Assume the user specifies as input the code base contain-
ing the source code in Fig. 2. To filter elements from the
set of resulting sequence diagrams, the user defines a query
Q with start being middleButtonOnClick and fil-
ters object r and its corresponding methods as well as the
setText method. The result is eight diagrams, seven of
which are strictly isomorphically unique, and one of which
is shown in Fig. 5. If we append to Q an accept predicate
with SetUpperRightButton(int), the only diagram
returned is shown in Fig. 5. As another example, Fig. 6 arises
from a query requesting the least interesting diagram from
analyzing all methods.

Queries can be used to select a more sophisticated set of
diagrams.Queries can choose to accept diagramswith certain
characteristics, for example the query in Fig. 7will reduce the
diagrams generated by the code in Fig. 2 to only the diagrams
containing the methods SetUpperRightButton(int)
or SetUpperLeftButton(int). In a larger example,
the complete package name of the method to be queried
would be required. Figure 8 will take the set of all pos-
sible diagrams, and remove any diagram that contains the
method SetUpperRightButton(int). In the remain-
ing diagrams, any calls to the method nextInt(int)
will be omitted from the diagram. This will also necessar-
ily remove any calls that nextInt(int) would make to
any other methods. The diagrams would appear as if the call
to nextInt(int) simply did not exist.

We also have the capacity to produce more sophisticated
queries by combining accept or reject criteria with the or and

123

46 C. Alvin, et al.

Fig. 8 Example reject and filter query for Fig. 2

Fig. 9 Example compound query for Fig. 2

and operations. In Fig. 9, we can see three methods that are
combinedwith the and operator. In order for a diagram to be a
member of the output set of this query, itmust pass each of the
components of that query. Therefore, it must contain both the
methodsSetUpperLeftButton(int) andgetRed()
and not have a call to the method getBlue(). This query
language allows the user to select a very specific subset of the
diagrams produced by the system. Additionally, the query
framework produces an output both as diagrams and as a
dataset of json files which can be used as another input to the
querying system, allowing that subset to serve as a starting
point for another round of querying.

6.5 Possible incompleteness of query language
features

The query language defined in this section is based on the
intuitive constructs that a software engineer may normally
be looking for while trying to understand a program. For
example, a software engineer may wish to use the tool for
the following use cases: (1) they may filter a set of sequence
diagrams based on some criteria, (2) remove sequence dia-
grams that they may not be interested in, (3) request a set of
sequence diagrams that satisfy certain criteria, and (4) want
to see the most interesting sequence diagrams that would
lead to better understanding of the code. The query language
attempts to formalize the intuitive notions of what a user
requires. However, we admit that, over time, the features for
which we have defined our query language should evolve to
meet the needs of future users.

7 Experimental analysis

In this section, we describe several analyses we used to eval-
uate the effectiveness of our tool, StaticGen. We begin by
describing our benchmark code (Sect. 7.1) as a basis for our
timing (Sect. 7.2) and effectiveness (Sect. 7.3) of the tool. In
Sect. 7.4, we then consider how StaticGen visualizes poly-
morphically defined methods and their invocations. Last, we
compare StaticGen to an existing tool (Sect. 7.5).

Timely generation of sequence diagrams depends on two
factors: (1) complexity of branching in the given code and
(2) user-defined queries to pebble the hypergraph and prune
the resultant set sequence diagrams. For our experiments,
we limit diagram generation to package prefixes. This limita-
tion allows the user to visualize internal package interactions
without dealing with bloat from exterior execution paths to
that package. We ran our generation algorithm on a desktop
with Intel Core i5-4460 at 3.2GHzwith 8 GBRAMon 64-bit
Linux Mint operating system.

7.1 Benchmark code

Our initial tests have focused on open-source Android byte-
code applications taken from [12,44] with wide-ranging
focus, including: ad blocking, email, and web browsing. The
bytecode was input into the Soot framework [39] which can
process bytecode or source code thus bringing the same capa-
bilities to bear, independent of input format. Table 1 lists the
projects and corresponding facts about each code base in the
chosen corpus, including the package we analyzed, the num-
ber of constituent classes, processing time, and the operation
count.

Soot analyzes bytecode by breaking down classes into
groups ofmethods, andmethods into groups of abstract state-
ments; the number of abstract statements is referred to as the
operation count. While operation count may not correspond
one-to-one with source lines of code, it does correspond to
essential logical statements executed by the processor, and
are a useful measurement of the complexity of the program
analyzed. The operation count for our corpus is shown in
Table 1.

As anothermeasure of complexity of our corpus, the target
Android code, we consider the histogram in Fig. 10 depicting
the mean depth of diagrams for non-library functionality for
each benchmark Android package. Our event-driven bench-
marks are generally shallow as is evident in Fig. 10; the
mean among all packages is 1.29 with standard deviation
0.92. We view the depth metric as a guide to the number
of corresponding sequence diagrams; the greater the depth,
the more diagrams should result. Figure 11 is a scatter-
plot of the relationship between mean depth and number
of diagrams generated. We see a linear model given by
y = 887.58x − 496.56, where y is the number of diagrams
generated, and x is the mean depth of the set of diagrams
for an Android package. The correlation is moderate with
correlation coefficient r2 = 0.5643.

7.2 Time and scope of synthesis

We measure tool efficiency by considering generation time.
Our reported execution times include Soot’s Simplification
[39] procedure, hypergraph construction, diagram genera-

123

Static generation of UML sequence diagrams 47

Table 1 Android application
corpus

Project name Package Class # Time (s) Op #

AdBlockPlus org.adblockplus. android 90 130.2 3481

APG org.thialfihar. android.apg.ui 16 396.4 863

ConnectBot org.connectbot 184 154.9 12102

CSipSimple com.csipsimple. service 78 593.2 3736

Fennec com.squareup. picasso 46 7.3 1468

Jitsi org.jitsi.service 110 10.2 2835

K-9 Mail com.fsck.k9. service 26 22.5 1595

Linphone org.linphone.core 52 23.8 2192

Orbot a.a.a.a 9 3.0 437

sipdroid org.sipdroid.net 6 4.4 641

AcDisplay com.achep. acdisplay.services 59 12.4 2588

AC Stopwatch com.achep. stopwatch 184 628.4 11426

Active Notify com.aky. peek.notification 119 69.2 6543

AdAway org.adaway 126 105.8 5386

AppOps com.ssrij.appops 15 2.09 116

Blackberry Unlocker ir.irtci 12 3.25 268

Better Battery Stats com.asksven. betterbatterystats 151 418.6 11612

Better Wifi On/Off com.asksven. betterwifionoff. data 10 3.0 310

Color Clock com.brianco. colorclock 17 2.9 316

Amaze File Manager com.amaze. filemanager. adapters 35 23.4 2730

Complete Linux com.zpwebsites. linuxonandroid 226 29.8 7407

CPU Spy Plus com.cpuspy 7 2.98 186

Desk Clock com 98 114.4 4965

Fifteen Puzzle com 37 8.4 2089

Fontster com.chromium. fontinstaller 112 112.1 4910

Halo Shortcuts com 23 3.9 450

Heads Up com.achep. headsup 20 9.2 1885

Jelly Bean Clock com 16 2.7 254

Fake GPS Path com.rc 33 3.1 783

Root Verifier com 11 1.7 72

1 2 3 4 5 6

0

10

20

30

40

50

Android Application Package

M
ea
n
D
ia
gr
am

D
ep
th

Fig. 10 Mean sequence diagram depth per android application package

0 1 2 3 4

0

1,000

2,000

3,000

4,000

Mean Diagram Depth

N
o.

Se
qu

en
ce

D
ia
gr
am

s

Fig. 11 No. generated sequence diagrams versus mean diagram depth
for the entire corpus

123

48 C. Alvin, et al.

0 5 10 15 20 25 30
0

2

4

6

8

10

Android Application Package

lg
(T

im
e
(s
ec
s)
)

Fig. 12 Time per android application package

0 5 10 15 20 25 30

2

4

6

8

10

12

Android Application Package

lg
(N

o.
Se
q.

D
ia
gr
am

s)

Fig. 13 Number of sequence diagrams per android application package

tion, and refinement. In Fig. 12, several Android packages are
processed quickly.However, themean of 96.78s and the stan-
dard deviation of 174.58s indicates more complex packages
result in greater time dispersion. For each Android package,
Fig. 13 describes the number of diagrams that give complete
method coverage. Some of the more complex packages skew
the distribution (std. dev. 1085.23 and mean 647.1) with a
strongly correlated linear model (r2 = 0.9082) comparing
the number of diagrams with respect to generation time. This
is strong evidence indicating our technique does not require
a significant amount of processing time for code bases with
large sets of sequence diagrams.

7.3 Evaluation of interestingness and filtering

We test the usefulness of our interestingness metric by
examining the possibility of using it in uncovering security
vulnerabilities in code in concert with diagram filtering. We
selected an independently studied example for assessing our
definition of interestingness. Both Livshits [26] and Sampaio

Fig. 14 BlueBlog [8] doGet function

Fig. 15 BlueBlog [8] doGet sequence diagram fragment

[40] used a web application named blueblog [8] in their cor-
pora of applicationswith security vulnerabilities. In addition,
[40] provided a software tool, ESVD [30], to analyze code
for vulnerabilities.

We focus on a vulnerability evident in the unsafe http
request in the code in Fig. 14 that was originally detected by
ESVD [30]. The value returned by the getServletPath
function is stored in the variable url and is not sanitized by
both branches.

As described in Sect. 2, we have a methodology to allow
us to select a subset of all sequence diagrams D and to rank
those diagrams by the number of methods present in the dia-
gram such that |D| = k where k is defined by user query.
Our methodology of selecting and filtering proceeds as fol-
lows. From all diagrams generated, we select D ∈ D (using
kI = 1) with the most messages adding D to our interesting
setDI . For all remaining diagramsD\{D}, wefilter each
diagram in D for code objects and methods found in D. We
repeat this process until k diagrams are acquired. This pro-
cedure thus selects diagrams by how much new information
they add.

Our experiment with blueblog defined k = 45. Without
any filtering, StaticGen generated 2800 diagrams from blue-
blog. The doGet method was the subject of the diagrams
ranked 22 and 32 of the 45 interesting diagrams; a fragment
of the rank-22 diagram is shown in Fig. 15. This example
shows that prioritizing novel information allows us to reduce
a set of diagrams while retaining information about code
paths that can possibly lead to a vulnerability. This reduced
set of diagrams can then be delegated to a human expert or
a vulnerability analysis tool for further analysis for security
vulnerabilities. It is possible that an excluded diagram may
contain the vulnerability; however, our queries focusing on
interestingness and filtration ensures each diagram provides

123

Static generation of UML sequence diagrams 49

Fig. 16 Polymorphic code example

novel information. The discarded diagrams, because they
have fewermessages than the selected ones, and because they
provide less novel information, would therefore less likely be
the ones that solely contain/reveal the vulnerability. Hence,
it is with low probability that a vulnerability is relegated to
the set of discarded diagrams.

7.4 Analyzing polymorphic code paths

An important characteristic to object-oriented languages is
dynamic dispatch through polymorphically definedmethods.
A sequence diagram, because it views the lifetimes and mes-
sages of different object instances, may not clearly explain
at what level inheritance a particular method is actually han-
dled. The UML language provides the ability to represent
these situations using a “scenario box” that lists all possi-
ble alternatives. While listing all alternatives may properly
convey operational semantics, it becomes cumbersome to
users and obfuscates code in large class hierarchies. Soot,
as an underlying component to StaticGen provides com-
plete datatype informationof eachobject:Datatype (obj) =
Derived in the code from Fig. 16. We recognize that static
analysis of code does have its limitations specifically with
polymorphic code, but we wish to present how StaticGen
handles basic polymorphism relying on Soot.

Sequence diagrams present object instances as having
a single name and a single type, while an object instance
passed to different methods may possess several names, and
its interactions may be guided by any of the types in its inher-
itance ancestry. StaticGen maintains a list of the names and
types used for a single object instance throughout a hyper-
graph traversal, and, when presenting that information as a
sequence diagram, presents what it sees as the most expres-
sive name and the most specific type. Generalizing the type
of an object has a corresponding loss in precision. Our hyper-
graph traversal represents method calls with their complete
names, including the package name, class name, method
name, and argument type signature. While an argument can
be made that sequence diagrams are not ideal for expressing

Fig. 17 StaticGen sequence diagram fragment of SuperTestMain
from Fig. 16

more complex polymorphic interactions, hypergraph traver-
sal can precisely handle all these interactions.

As a brief example of how StaticGen handles poly-
morphism, we consider the code in Fig. 16 and the cor-
responding sequence diagram in Fig. 17. In Fig. 16, a
simple inheritance is established with Derived inheriting
from BaseClass. In main, object obj is created with
Datatype (obj) = Derived and two methods are sub-
sequently called. Together these three method calls (new,
overridden, and unique) are reflected clearly in the
sequence diagram.

We consider these three calls in turn which corre-
spond directly to the sequence diagram Fig. 17. Since
constructors are not defined, yet exist in the bytecode, cre-
ation of object obj with new results in two subsequent
self-calls to super-constructors in BaseClass and class
Object. Next, overridden is called and handled in
class Derived. We observe a self-call to overridden
since Derived.overridden invokes a super call to
BaseClass.overridden. Last, unique is handled
entirely in BaseClass.

While StaticGen is effective for basic polymorphism
among classes and hierarchies, StaticGen relies on Soot
for pointer analysis. Consider a list of objects of type
BaseClass (List<BaseClass>) which may contain
both BaseClass and Derived objects. In the list struc-
ture, the contents become amorphous and the corresponding
sequence diagrams present more generic information.

7.5 Diver case study

Sequence diagram generation is not a new idea. In this
subsection, we compare StaticGen to an existing tool. Specif-

123

50 C. Alvin, et al.

Fig. 18 StaticGen sequence diagram fragment of addOption from
Fig. 19

ically, we compare a single run of our StaticGen to Diver
[32], an eclipse plug-in which generates sequence diagrams
from a trace of program execution. As described in related
work (Sect. 8), other sequence diagram generation tools
are described in the literature, but only a small subset of
these tools are actually accessible. These UML Case tools
[5,31,34,41,43] do not provide a query language that allows
refinement in the way StaticGen provides. Dynamic tools
[32] for generating sequence diagrams uncover sequence
diagrams that actually occur during execution. It is there-
fore interesting to compare the effectiveness of a static tool
like StaticGen with a dynamic tool like Diver. Our goal is
to show that our static analysis tool compares well to a
dynamic tool: static diagrams map to traces occur during
dynamic execution. Our Diver tests were executed on version
0.5.0.201209240108, downloaded from the github repository
[10] running Eclipse (Luna Service Release 1a 4.4.1) [16].
The target program was FindBugs [35]: a mature java source
code base easily accessible for analysis with both tools. For
full disclosure, it is important to state that the goal of our case
study comparison should not be taken as a full feature com-
parison or a recommendation to use StaticGen over Diver.
Our platform is an academic prototype while Diver is mature
(undergone significant revision and bug fixing over several
years). Additionally, we have extensive experience with our
own tool and only basic experience with Diver. The work-
ing Diver example was found first, and then we attempted to
replicate the same results using our tool (Fig. 18).

We focus on the addOption method in package edu.
umd.cs.findbugs.
config.CommandLine shown in Fig. 19. The sequence
diagram in Fig. 18 depicts the output fromDiver and its trace.
With Diver, there does not appear to be an obvious way to
save or export a specific diagram from a tracewithout provid-
ing the entire diagram. The Diver trace allows expansion of
called methods to the desired level in the resulting sequence
diagram.There are several similarities between theDiver dia-
gram in Fig. 20 and StaticGen in Fig. 18; clearly the order of
themethods are equivalent.StaticGenpreservesmore, but not
all, variable names (option and argumentDesc). Stat-
icGen also maintains individual objects thus differentiating
method calls to length on distinct objects; similarly for the

Fig. 19 addOption method from FindBugs [35]

Fig. 20 FindBugs addOption diver output

Fig. 21 FindBugs GUID2CommandLine diver output

two calls to put on Map. It can be argued that the default
Diver display is more compact; however, it is unclear in the
expansion in Fig. 20 whether Diver differentiates method
calls from distinct objects thus providing less accurate infor-
mation.

We detail some differences between our approach and
Diver. In package edu.umd.findbugs.gui2, we con-
sider the constructor of class GUI2CommandLine. The
diagram in Fig. 21 is the complete, allowable expansion of
this flow through Diver starting at the class constructor. For
the code in Fig. 22, StaticGen was able to visualize greater
depth into the static class constructor for the class Driver
(Fig. 23) in edu.umd.cs.findbugs.gui2. Generally,
in comparison, StaticGen can offer users a view of object cre-
ation from any level; StaticGen produced 55 total potential
execution path diagrams which we could query and sort.

123

Static generation of UML sequence diagrams 51

Fig. 22 Driver class static code

Fig. 23 StaticGen output of GUID2CommandLine from Fig. 22

8 Related work

In [22,23,29], Lo, et al., propose techniques for dynamic
specification mining by inferring sequence diagrams over
execution traces that include inter-object behavior and causal
ordering. Lo, et al. use a graph of symbolicmessage sequence
charts as an intermediate representation while we invoke a
hypergraph representation. Tools such as jTracert [5] and
Object-Aid [34] generate sequence diagrams directly from
application runtime while [34] uses the Eclipse IDE [15] to
reverse engineer all or part of a stack trace. Similarly, [17]
divides a long dynamic trace of a Java program into a series of
smaller diagrams culminating in a sequence diagram. Finally,
[47] describes an approach for generating sequence diagrams
dynamically using a k-tail merging algorithm that merges the
collected traces. The goal of merging by [47] is to construct a
single sequence diagram. Our technique does not limit gen-
eration to a single diagram, but generates a complete space
of sequence diagrams that is refined by query.

There are several tools that statically generate sequence
diagrams. Visual paradigm [43] is a simple tool for sequence
diagramgeneration that is in one-to-one correspondencewith
the source code without refinement. Other tools such as
eUML2 Modeler [41] and Visual Studio [31] generate dia-
grams statically, but also offer the ability for the user to refine
the diagram by selection or omission of methods. Similarly,
Architexa [4] generates sequence diagrams, but is completely
interactive with the user during construction. While all of
these tools are based on a static analysis of the target code,

none of these tools automate the refinement process based
on a query scheme over the set of all possible diagrams.

The Interaction Scenario Visualizer (ISVis) [18] employs
a combination of static and trace-based information and com-
municates the overall importance of visualizing source code.
Tonella and Potrich [42] described static extraction of UML
sequence diagrams from C++ code using partial analysis and
focusing, but do not perform analysis of intra-procedural
flow of control. The CPP2XMI tool [19] processes XMI
into sequence diagrams with no means of user-based refine-
ment as with StaticGen. I2SD [36] is a static generation tool
that leverages metadata through interceptors, whereas our
technique does not rely on such information. The RED tool
[37,38] was a significant step forward in reverse-engineering
diagrams bymapping reducible CFGs to interactions. In con-
trast, our use of an annotated hypergraph provides the means
to refine the object interactions, context, and causal ordering
based on user query; in some respects, our approach attempts
to fill the “exploration mode” described in [37]. In total, our
approach seeks to empower the user by supporting query-
based refinement over the set of all sequence diagrams. Every
sequence diagram that corresponds to a trace of a program
will be generated by StaticGen. However, a purely static tool
like StaticGen may generate interactions that may never get
executed. Any critical interaction (after refinement) uncov-
ered by StaticGen can be dynamically validated by a test case
extracted from the resulting sequence diagram.

In [27,28] authors present techniques for user-guided
specification mining over executions traces by proposing
approaches to filter mined sequence diagrams. We similarly
aim to support property discovery through an iterative and
interactive approach by incorporating a notion of interesting-
ness.

Graph/hypergraph exploration techniques have been used
previously for synthesis in other domains. Hypergraph peb-
bling techniques have been used for problem and solution
generation for High School Geometry [2,3]. Graph explo-
ration techniques have been used for generating target-
focused libraries for drug discovery in [33].

9 Conclusions and future work

This paper describes a framework for static generation of
sequence diagrams5 using a directed hypergraph to encode
message context, interactions, and causality. Based on a
user query, we prune the sequence diagram space through
a pebbling procedure to generate the desired set of sequence
diagrams. We showed that, in practice, our framework pro-
vides the basis for interactive software archeology as well
as an important tool for debugging legacy code. Future work

5 Scenario diagrams.

123

52 C. Alvin, et al.

will address how limitations of our tool manifest themselves.
This includes identification and elimination of impossi-
ble paths, formally handling immediate and non-immediate
recursion, loops, as well as performing further case study
analyses on non-Android codebases. In addition, we will
explore the use of StaticGen in understanding the impact
of service compositions [45,46] in Service-Oriented Com-
puting.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Inference of message
sequence charts. In: Proceedings of the 22nd International Confer-
ence on on Software Engineering, ICSE 2000, Limerick Ireland,
June 4–11, 2000, pp. 304–313 (2000)

2. Alvin, C., Gulwani, S., Majumdar, R., Mukhopadhyay, S.: Synthe-
sis of geometry proof problems. In: Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27–31,
2014, Québec City, Québec, Canada, pp. 245–252 (2014)

3. Alvin, C., Gulwani, S., Majumdar, R., Mukhopadhyay, S.: Syn-
thesis of solutions for shaded area geometry problems. In: Pro-
ceedings of the Thirtieth International Florida Artificial Intelli-
gence Research Society Conference, FLAIRS 2017, Marco Island,
Florida, USA, May 22–24, 2017, pp. 14–19 (2017)

4. Architexa.com: Introduction to architexa | sequence diagramgener-
ation (2015). http://www.architexa.com/support/videos/sequence-
diagrams. Accessed 2 Feb 2017

5. Bedrin, D.: jtracert (2015). https://code.google.com/p/jtracert/.
Accessed 2 Feb 2017

6. Beizer, B.: Software Testing Techniques, 2nd edn. Van Nostrand
Reinhold, New York (1990)

7. Berge, C.: Graphs and Hypergraphs. North-Holland Mathematical
Library, vol. 45. Elsevier, Amsterdam (1989)

8. Buren, R.: BlueBlog. https://sourceforge.net/projects/blueblog/.
Accessed 2 Feb 2017

9. Chidamber, S.R., Kemerer, C.F.: Ametrics suite for object oriented
design. IEEE Trans. Softw. Eng. 20(6), 476–493 (1994)

10. Chisel Group: Diver github (2016). https://github.com/
thechiselgroup/Diver. Accessed 2 Feb 2017

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

12. XDA Developers: List of all open-source Android apps (2013).
http://forum.xda-developers.com/showthread.php?t=2124002.
Accessed 2 Feb 2017

13. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the
satisfiability of propositional horn formulae. J. Log. Program. 1(3),
267–284 (1984)

14. Harel, D., Thiagarajan, P.: UML for Real: Design of Embedded
Real-Time Systems: Message Sequence Charts, 1st edn. Kluwer
Academic Publishers, Dordrecht (2003)

15. E.F. Inc. Eclipse (2015)
16. E.F. Inc. Eclipse luna (2016)
17. Ishio, T., Watanabe, Y., Inoue, K.: AMIDA: a sequence diagram

extraction toolkit supporting automatic phase detection. In: 30th
International Conference on Software Engineering (ICSE 2008),
Leipzig, Germany, May 10–18, 2008, Companion Volume, pp.
969–970 (2008)

18. Jerding, D.F., Stasko, J.T., Ball, T.: Visualizing interactions in pro-
gram executions. In: Pulling Together, Proceedings of the 19th
International Conference on Software Engineering, Boston, Mas-
sachusetts, USA, May 17–23, 1997, pp. 360–370 (1997)

19. Korshunova, E., Petkovic, M., van den Brand, M.G.J., Mousavi,
M.R.: CPP2XMI: reverse engineering of UML class, sequence,
and activity diagrams from C++ source code. In: 13th Working
Conference onReverse Engineering (WCRE2006), 23–27October
2006, Benevento, Italy, pp. 297–298 (2006)

20. Koskimies, K., Mössenböck, H.: Scene: using scenario diagrams
and active text for illustrating object-oriented programs. In: Pro-
ceedings of the 18th International Conference on Software Engi-
neering, Berlin, Germany,March 25–29, 1996, pp. 366–375 (1996)

21. Kroening, D.: goto-cc—a c/c++ front-end for verification (2015).
http://www.cprover.org/goto-cc/. Accessed 2 Feb 2017

22. Kumar, S., Khoo, S., Roychoudhury, A., Lo, D.: Mining message
sequence graphs. In: Proceedings of the 33rd International Confer-
ence on Software Engineering, ICSE 2011, Waikiki, Honolulu, HI,
USA, May 21–28, 2011, pp. 91–100 (2011)

23. Kumar, S., Khoo, S., Roychoudhury, A., Lo, D.: Inferring class
level specifications for distributed systems. In: 34th International
Conference on Software Engineering, ICSE 2012, June 2–9, 2012,
Zurich, Switzerland, pp. 914–924 (2012)

24. Labiche, Y., Kolbah, B., Mehrfard, H.: Combining static and
dynamic analyses to reverse-engineer scenario diagrams. In: 2013
IEEE International Conference on Software Maintenance, Eind-
hoven, The Netherlands, September 22–28, 2013, pp. 130–139
(2013)

25. Leucker, M., Madhusudan, P., Mukhopadhyay, S.: Dynamic mes-
sage sequence charts. In: Proceedings of the FST TCS 2002:
Foundations of Software Technology and Theoretical Computer
Science, 22nd Conference Kanpur, India, December 12–14, 2002,
pp. 253–264 (2002)

26. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java
applications with static analysis. In: Proceedings of the 14th Con-
ference onUSENIXSecurity Symposium—Volume14, SSYM’05,
p. 18. USENIX Association, Berkeley (2005)

27. Lo, D., Maoz, S.: Mining scenario-based triggers and effects. In:
23rd IEEE/ACM International Conference onAutomated Software
Engineering (ASE 2008), 15–19 September 2008, L’Aquila, Italy,
pp. 109–118 (2008)

28. Lo, D., Maoz, S.: Mining hierarchical scenario-based specifica-
tions. In: ASE 2009, 24th IEEE/ACM International Conference
on Automated Software Engineering, Auckland, New Zealand,
November 16–20, 2009, pp. 359–370 (2009)

29. Lo, D., Maoz, S., Khoo, S.: Mining modal scenario-based spec-
ifications from execution traces of reactive systems. In: 22nd
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2007), November 5–9, 2007, Atlanta, Georgia,
USA, pp. 465–468 (2007)

30. Luciano Sampaio: Early Security Vulnerability Detector. https://
marketplace.eclipse.org/content/early-security-vulnerability-
detector-esvd. Accessed 16 Oct 2016

31. Msdn.microsoft.com: Visualize code on sequence diagrams
(2015). https://msdn.microsoft.com/en-us/library/ee317485.aspx

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.architexa.com/support/videos/sequence-diagrams
http://www.architexa.com/support/videos/sequence-diagrams
https://code.google.com/p/jtracert/
https://sourceforge.net/projects/blueblog/
https://github.com/thechiselgroup/Diver
https://github.com/thechiselgroup/Diver
http://forum.xda-developers.com/showthread.php?t=2124002
http://www.cprover.org/goto-cc/
https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd
https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd
https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd
https://msdn.microsoft.com/en-us/library/ee317485.aspx

Static generation of UML sequence diagrams 53

32. Myers, D., Storey, M.-A.: Using dynamic analysis to create trace-
focused user interfaces for ides. In: Proceedings of the Eighteenth
ACMSIGSOFT International Symposium on Foundations of Soft-
ware Engineering, FSE ’10, pp. 367–368. ACM, New York (2010)

33. Naderi, M., Alvin, C., Ding, Y., Mukhopadhyay, S., Brylinski, M.:
A graph-based approach to construct target-focused libraries for
virtual screening. J. Cheminform. 8(1), 14:1–14:16 (2016)

34. Objectaid.com: UML explorer (2015). http://www.objectaid.com/
sequence-diagram. Accessed 2 Feb 2017

35. Pugh, B., Loskutov, A.: Findbugs, find bugs in java programs
(2015). http://findbugs.sourceforge.net/index.html. Accessed 2
Feb 2017

36. Roubtsov, S.A., Serebrenik, A., Mazoyer, A., van den Brand,
M.G.J., Roubtsova, E.E.: I2SD: reverse engineering sequence dia-
grams enterprise Java beans from with interceptors. IET Softw.
7(3), 150–166 (2013)

37. Rountev, A., Connell, B.H.: Object naming analysis for reverse-
engineered sequence diagrams. In: 27th International Conference
on Software Engineering (ICSE 2005), 15–21May 2005, St. Louis,
Missouri, USA, pp. 254–263 (2005)

38. Rountev, A., Volgin, O., Reddoch, M.: Static control-flow analysis
for reverse engineering of UML sequence diagrams. In: Proceed-
ings of the 2005ACMSIGPLAN-SIGSOFTWorkshoponProgram
Analysis For Software Tools and Engineering, PASTE’05, Lisbon,
Portugal, September 5–6, 2005, pp. 96–102 (2005)

39. Sable Research Group: Soot: a framework for analyzing and trans-
forming java and android applications (2015). http://sable.github.
io/soot/. Accessed 2 Feb 2017

40. Sampaio,L.,Garcia,A.: Exploring context-sensitive dataflowanal-
ysis for early vulnerability detection. J. Syst. Softw. 113, 337–361
(2016)

41. Soyatec.com: Soyatec–sequence diagram generation (2015).
http://www.soyatec.com/euml2/features/eUML2%20Modeler/.
Accessed 2 Feb 2017

42. Tonella, P., Potrich, A.: Reverse engineering of the interaction
diagrams from C++ code. In: 19th International Conference on
Software Maintenance (ICSM 2003), The Architecture of Existing
Systems, 22–26 September 2003, Amsterdam, The Netherlands,
pp. 159–168 (2003)

43. Visual-paradigm.com: Reverse engineering sequence diagram
from java source code (2015). https://www.visual-paradigm.com/
tutorials/seqrev.jsp. Accessed 2 Feb 2017

44. Wikipedia: List of free and open-source android appli-
cations (2015). http://en.wikipedia.org/wiki/List_of_free_and_
open-source_Android_applications. Accessed 2 Feb 2017

45. Yau, S.S., Davulcu, H., Mukhopadhyay, S., Huang, D., Gong, H.,
Singh, P., Gelgi, F.: Automated situation-aware service composi-
tion in service-oriented computing. Int. J. Web Serv. Res. IJWSR
4(4), 59–82 (2007)

46. Yau, S.S., Davulcu, H., Mukhopadhyay, S., Huang, D., Yao,
Y.: Adaptable situation-aware secure service-based (as/sup 3/)
systems. In: Eighth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC’05), pp. 308–
315. IEEE (2005)

47. Ziadi, T., da Silva, M.A.A., Hillah, L., Ziane, M.: A fully dynamic
approach to the reverse engineering ofUMLsequence diagrams. In:
16th IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS 2011, Las Vegas, Nevada, USA, 27–
29 April 2011, pp. 107–116 (2011)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://www.objectaid.com/sequence-diagram
http://www.objectaid.com/sequence-diagram
http://findbugs.sourceforge.net/index.html
http://sable.github.io/soot/
http://sable.github.io/soot/
http://www.soyatec.com/euml2/features/eUML2%20Modeler/
https://www.visual-paradigm.com/tutorials/seqrev.jsp
https://www.visual-paradigm.com/tutorials/seqrev.jsp
http://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications
http://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications

	Static Generation of UML Sequence Diagrams
	Recommended Citation

	Static generation of UML sequence diagrams
	Abstract
	1 Introduction
	2 Program abstraction and code hypergraphs
	2.1 Program abstraction model
	2.2 The code hypergraph
	2.3 Sequence diagrams
	2.4 Characteristics of sequence diagrams

	3 Constructing the hypergraph
	4 Refinement of code hypergraphs through pebbling
	4.1 Sub-hypergraph identification through pebbling
	4.2 Pebbling a code hypergraph

	5 Static sequence diagram construction
	5.1 Hyperpath identification
	5.2 Generating sequence diagrams from a hyperpath

	6 Interface for diagram generation
	6.1 Query over the language of sequence diagrams
	6.2 Query language semantics
	6.3 Query interface to diagram generation
	6.4 Sample queries
	6.5 Possible incompleteness of query language features

	7 Experimental analysis
	7.1 Benchmark code
	7.2 Time and scope of synthesis
	7.3 Evaluation of interestingness and filtering
	7.4 Analyzing polymorphic code paths
	7.5 Diver case study

	8 Related work
	9 Conclusions and future work
	References

