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ABSTRACT Domestic load profiles in the residential sectors are being modified with the adoption of smart
home management systems and solar generation. In addition, houses with rooftop PV behave like local gen-
erators, contributing to the growth of the penetration of PV energy. Hence, the demand for power is declining
day by day. However, the increasing PV penetration causes technical challenges for the power system, such
as the ‘‘duck curve’’. This can be addressed through home energy management (HEM) techniques including
peak shaving, load shifting with smart home devices. In this regard, electric water heaters (EWH), with high
thermal mass and being ubiquitous, are attractive and low-cost energy storage systems. In this article, a case
study for one of the largest rural field smart energy technology demonstrators involving business, industries,
and more than 5,000 residences, located in Glasgow, KY, US, is presented. Furthermore, a HEM system,
which aims to minimize the total energy usage and peak demand by regulating the heating, ventilation, and
air-conditioning (HVAC) systems, water heaters, and batteries, thereby benefiting both the utility and the
consumer is proposed. This work also demonstrates the ability of EWH to provide ancillary services while
maintaining customer comfort. The minimum participation rates for EWH and batteries are calculated and
compared with respect to different peak reduction targets. Long term load prediction by considering different
fractions of smart homes for the utility is also provided.

INDEX TERMS Battery energy storage system (BESS), demand response (DR), electric water heater
(EWH), grid service, home energy management (HEM), home energy model, power system, smart home.

I. INTRODUCTION
The concept of smart homes is one of the enabling ideas
for building a pathway towards a sustainable power system
in the future by facilitating the participation of every power
generation entity. The futuristic smart homes not only inte-
grate information technology but also provide the opportu-
nity to incorporate other innovative technologies such as PV,
smart devices, and energy storage. Due to such technological

The associate editor coordinating the review of this manuscript and

approving it for publication was Alexander Micallef .

advancements, smart homes can enhance energy efficiency,
and improve both stability and reliability by allowing owners
to regulate electricity usage [1]–[3]. They can also change the
operations of utilities by minimizing both energy usage and
peak demand in the residences [4]–[7].

Smart homes reduce energy usage by lowering heat-
ing, ventilation, and air-conditioning (HVAC) demand via
improved building insulation and usage of intelligent control
techniques to automatically turn off idle devices [8]–[11].
Furthermore, smart homes have the authority to control the
appliances according to the command from the utility [12].
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With the growth of solar PV penetration, smart homes act as
prosumers by participating in the energy market [13]–[15].

Some technical challenges are associated with the high
penetration of PV in the residences, one of which is the
‘‘duck curve’’. This phenomenon occurs when the net power
demand fluctuates with a large deviation within a short
period, typically during the hours between the afternoon and
the evening [16]. For ensuring local voltage support, it is
necessary to maintain a minimum generation of electricity
by the utility plants. Hence, the reliability of the power
system is compromised when the generation of power is
minimized during the mid-day to allow high PV genera-
tion [17]. To match with the fast increasing power demand in
the evening, high-cost high-ramp rate generators are required
when PV generation becomes unavailable [18].

Ancillary services, such as those described in [19], are
provided in order to enhance the capabilities of the electric
power system. The addition of energy storage can allevi-
ate the ‘‘duck curve’’ through load shaving, peak shifting,
self-consumption of the local PV generation. Smart homes
can be used as virtual energy storage by utilizing various
thermal components such as the HVAC systems, electric
water heater (EWH) for circumventing peak demand [20].
Residence can support the ancillary services with its energy
flexibility, which depends on factors including the capacity
of the HVAC system [21]. The aggregated HVAC systems
can be used to improve power quality efficient in demand
response [22]. At the aggregated level, the HVAC systems can
be controlled in a sequential way to reduce the peak demand
while maintaining the user comfort [23].

Electric water heaters are also capable of providing ancil-
lary services due to the large thermal mass of the water
tank, as well as their presence in most households [24], [25].
The EWH can preheat the water to a much higher tem-
perature while assuring the safety with the help of mixing
valve technology [26]. Most EWH manufacturers provide
the CTA-2045 modules in their new products or offer refur-
bishments to enable real-time communication and control
[27], [28]. Previous research published by the extended group
of authors showed that a smart homemay achieve comparable
functionality with a smaller battery energy capacity, provided
that special EWH and associated controls are incorporated
in a hybrid energy storage system [29]. The article included
a systematic sizing procedure for such a home-based hybrid
energy storage system and modeled it with a co-simulation
framework for building energy use and electric power flow in
distribution systems. In previous research, EWHs were used
to regulate the frequency in an electric power distribution
system [30]. Another research study showed that the aggre-
gated EWH load can be controlled to contribute to shifting the
system peak load [31]. Communities with large penetration
of controllable EWH have, in principle, the potential for
providing ancillary services.

This article is a substantially expanded follow up of a
previous conference paper by the same research group, which
showed that the increasing penetration of PV and HEM

changes the aggregated load at the community level in the
long term [20]. This work studies the capability of EWH to
realize peak reduction based on the experimental data from
ultra smart homes (USH) in the SET project. Water heating
schemes are proposed to achieve different peak reduction tar-
gets while guaranteeing the customer comfort. The minimum
participation rates for EWHare calculated and comparedwith
that of the BESS.

Accurate prediction of the long term load can help utilities
to better design the capacities of the infrastructure. This arti-
cle also studies the long term total load profile for the utility
considering the trends for increasing percentages of smart
homes and the PV penetration in the residential community.
It is demonstrated that with an appropriate HEM system,
the ‘‘duck curve’’ at the power system level can be alleviated
even when PV penetration is fairly high.

For distributed energy resources, including the afore men-
tioned demand response (DR) controllable EWH and HVAC,
PV generators, and battery energy storage systems, further
studies are required in order to fill in the research gap, develop
specific controls, and establish methodologies for optimal
sizing and for systematically quantifying the benefits and
improvements, as later showed in the current paper. The
major contributions of the article include: 1) proposal of a
HEM algorithm which mitigates the ‘‘duck curve’’ caused
by high PV penetration in a large community utilizing the
building thermal properties; 2) prediction of the long term
residential load for a large community with new technology
penetrations based on the experimental data from one of
the largest field demonstrator in the rural US; 3) quantifi-
cation of the capability of using EWH to provide ancillary
services.

The arrangement of the following article is as follows. The
technology demonstrator and analysis framework is intro-
duced in Section II. The home energy usage modeling, and
HEM algorithm is described in Section III. In Section IV,
the aggregated electric energy storage including batteries and
water heaters are studied. The case studies for peak power
reduction and long term impact of technology penetration are
presented in V and Section VI, respectively. The conclusions
are drawn in Section VII.

II. TECHNOLOGY DEMONSTRATOR AND ANALYSIS
FRAMEWORK
This article utilizes the experimental data from Smart Energy
Technologies (SET) project in Glasgow, KY, a city for
which utility services are provided by the municipal Electric
Plant Board (EPB) in partnership with the Tennessee Valley
Authority (TVA) [32]. Currently, this project is one of the
largest rural field demonstrators in the US with high effi-
ciency. The proposed software framework is implemented to
model this entire advanced community that includes residen-
tial, business, and industrial sectors. The model incorporates
a HEM system that allows regulating the residential EWH,
HVAC, and BESS to reduce the peak demand and energy
usage.
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Building upgrades along with controllable and highly effi-
cient devices are employed by the residential homes studied
in this SET project (Fig. 1). According to the current data,
over 300 homes out of around 5,000 from Glasgow, KY,
are participating in the project. As a consequence, around
600,000 kWh of energy is being saved annually. All the
residences participating in this SET project receive mea-
sures to improve energy efficiency such as efficient HVAC
systems, better insulation, etc. Due to such improvements,
energy usage is reduced in some of the SET homes, although
all of them are single-family houses with comparatively
larger space. Furthermore, programmableWiFi-enabled ther-
mostats, heat-pump EWH, and a residential BESS allow the
SET homes to perform real-time HEM.

FIGURE 1. Aerial view of Glasgow, KY, the location of the studied SET,
along with pictures of smart devices for home energy management:
thermostat, EWH and BESS, which are programmable and enabled by
WiFi or Ethernet. The data acquired has a resolution of up to 1 minute
and is available for both home owners and the utility.

Although the total power demand of the Glasgow EPB
service includes business, industrial, and residential sectors,
the system modeling presented in this study mainly empha-
sizes the residential sector and the aggregated effects of
regulating single SET homes. The residential community
includes five types of houses: non-SET conventional homes,
residences with HVAC, EWH, and BESS control (HEB),
the HEB house with improved Insulation (HEB_I), and the
HEB, HEB_I house with local solar PV panels (HEB_PV,
HEB_I_PV), respectively, as illustrated in Fig. 2. Apart from
Non-SET conventional homes, the rest of the four types
are SET homes. The residences in the SET project work
as controllable loads with the integration of smart devices,
bi-directional communications, and integrated management.
It allows the houses to interact with the grid dynamically,
and improves the coordination; leading to load shifting,
peak demand reduction, and energy saving. The ultra smart
homes (USH) with the Solar Integration System (SIS) moni-
tor the residential power flow and upload real-time data. The
available data from 148 USHs includes the net power flow
from the grid, the power and state-of-charge (SOC) of the
BESS.

Another set of data with the daily power profile for more
than 5,000 residences is provided by the utility. The data
includes the electricity usage at 15-minute intervals for each

FIGURE 2. The proposed system model includes five types of SET homes,
each type being representative of thousands of individual houses. In the
study, the load data for the business and industrial sectors is provided by
experimental measurements.

FIGURE 3. Schematic representation of the INSPIRE+D proposed
simulation software framework, solely based on freeware, capable of
running thousands of house energy models in parallel and concurrently
performing power flow optimization.

individual home on example summer and winter days. The
data serves as the baseline case, which presents typical power
demand for the distribution system where most of the resi-
dences are conventional houses without PV. For the purpose
of the computational study, the solar PV system for each
house is sized in order to meet the NZE requirements, i.e.
the energy used over one year has to be equal to the energy
generated by the PV system.

The simulation for the power system formed by the SET
community including over 5,000 homes is realized by an
innovative, first of its kind, software framework ‘Integrated
Network simulation for Smart Power-flow In Residences
using EnergyPlus and OpenDSS’ (INSPIRE+D), as shown
in Fig. 3. INSPIRE+D incorporates freeware such as Ener-
gyPlus, BEopt, OpenDSS, and Python, and is capable of both
power flow analysis at the system level, and house energy
modeling along with HEM at the single house level [29].
Its scalability allows the simulation of thousands of different
house models in parallel, utilizing a high-performance com-
puting (HPC) system with thousands of cores.

VOLUME 9, 2021 19347
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III. HOME ENERGY MODELING AND MANAGEMENT
The net load for a residence with HEM_I_PV is the result
of the combined power for HVAC, EWH, other loads, BESS,
and PV, as illustrated in Fig. 4. The net load for a HEM house
at time t is calculated as:

PtH = PtE + P
t
HVAC + P

t
O + P

t
B − P

t
PV , (1)

wherePH is the residential net power flow;PE ,PHVAC ,PO,PB
and PPV are the powers of the EWH, the HVAC system, other
loads, the BESS and PV, respectively. It may be noted that for
the BESS, positive and negative powers indicate charging and
discharging, respectively.

FIGURE 4. The proposed home energy management scheme for the SET
homes. Solar PV and BESS are integrated into a Solar Integration System
(SIS). HVAC and EWH load demands are controlled through temperature
set points.

The water tank temperature is limited as follows,

T tS −1TD ≤ T
t
E ≤ T

t
S , (2)

where TS is the set point of the EWH; 1TD, the dead band
of the EWH, which is set to 18F, T tE the temperature of
water in the EWH tank. T tE is updated automatically by the
house energy model. The water heater power is decided by
the nominal power and its status from the following,

PtE = PE,N · S tE , (3)

where PE,N is the nominal power of the EWH. The status of
EWH, S tE , is decided by the water temperature in the tank, set
points and the dead band as per the following,

S tE =


0 = OFF, T tE > T tS ,
1 = ON , T tE < T tS −1TD,
S t−1E , other .

(4)

The set point, T tS , for the EWH determines the required ON
and OFF switching and the resultant power flow according
to (2) – (4).
The high specific heat capacity of water, negligible heat

loss, and mixing valves enable advanced controls, e.g., post-
poned electric heating load while sustaining the comfort of

the consumers [33]. The effect of the EWH controls are
exemplified in Fig. 5 for three EWH working schemes and
their corresponding tank temperatures. Peak power due to
EWH operation occurs in the morning without adopting any
control mechanism. To avoid this morning peak, EWH is
controlled to operate in the early morning and at midnight
in the HEB-type homes without any PV generation system.
The residences that include PV shift the EWH load to the
afternoon to absorb the surplus PV generation.

FIGURE 5. Water temperature in the tank and instantaneous power of
EWH. HEB homes shift the EWH load to the morning and the evening.
When equipped with solar PV, SET homes shift the EWH load to the
afternoon to absorb surplus PV generation.

The HVAC power is represented as a function of the ther-
mostat set point temperature change by the following,

PtHVAC = f (1T tR). (5)

Consumer comfort is taken into account by limiting the
heating and cooling set points:

T tH ≤ T
t−1
R +1T tR ≤ T

t
C , (6)

where TR, TH , and TC stand for the room temperature, set
points for heating and cooling, respectively. Previous research
works show that the room temperature is influenced by fac-
tors including outdoor and ground temperatures, floor space,
human activities and the heat radiation from indoor appli-
ances [34].

The EnergyPlus software is employed to model the houses
and quantify the results of the HVAC and EWH control.
It may be noted that the user can over-ride the HEM controls
if desired. The SET homes with the HEM system have lower
HVAC loads on both the studied summer and winter days due
to the improved insulation. The example control of HVAC in
a winter day is presented in Fig. 6. By adjusting the mid-day
temperature set point to a lower value, the HVAC power of the
HEM house decreased significantly. In the afternoon when
the SET house owner is away, the thermostat set point (TS ) is
set low in order to reduce the HVAC load. TS is changed back
at 17:00 before the house owner returns home.
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FIGURE 6. Simulated HVAC power demand for a typical home on an
example winter day. A house of the conventional type (denoted by a
suffix ‘C’) without HVAC control has higher HVAC power in the afternoon.
In a HEB-type home, the capability of changing the heating set point (TS ),
leads to lower HVAC power in the afternoon when the owner is away.

The net power flow of the NZE house is thus defined as a
function of the HVAC set points, water heater set point, and
the BESS power, as below,

PtH = f (PtB,T
t
S ,T

t
H ,T

t
C ). (7)

Based on the previous equations (1)-(7), and substantially
following the concepts described in [35], a HEM algorithm
has been developed and implemented at residence level in
order to meet the power use limit set forth by the system
operator utility via control signals during a DR event. Power
in excess of the limit is firstly to be supplied, if available, by a
BESS. Should such required supply exceed the maximum
power of the BESS or should its state of charge be lower than
admissible, appliances will be controlled to sequentially con-
tribute to the power demand reduction, as briefly described in
the following.

The energy used by the EWHwill be reduced during DR by
lowering the corresponding set point as exemplified in Fig. 5.
In case the instantaneous power demand still exceeds the
limit, the HVAC energy use is reduced by changing the
set point for heating or cooling, depending on the season,
as shown in Fig. 6. Changes may be performed incrementally
until the utility-set upper power limit is meet andmaking sure,
as a priority, that the minimum user comfort requirements
are met.

The controllability of BESS provides enhanced flexibility
to the HEM system because the charging and the discharging
operations do not impact the comfort of the residents. The
example effect of the BESS control from Fig. 7 illustrate the
HEM functions for smoothing the residential energy demand
and reducing peak power.

IV. AGGREGATED ELECTRIC ENERGY STORAGE:
BATTERIES AND WATER HEATERS
The data from all 148 USHs on an example summer day
includes the power and SOC of BESS, and the net power
flow from the grid for each house at 1-hour time-steps. In
Fig. 8, the BESS measured power plotted during an example

FIGURE 7. Simulated net power demand for a single-family house. The
demands for HEB and HEB+PV houses are shaped by controlling the
HVAC, EWH and BESS.

FIGURE 8. The BESS charging power for all the 148 ultra smart homes on
the example summer day. The negative value in the afternoon indicates
the BESSs are discharging. BESSs were charged in the middle of the night.

day is adapted to the typical use of electricity in the Southeast
region [36], and includes charging periods at night, when the
load is typically low, and discharging periods in the after-
noon, during typical high demand. The experimental SOC
data presented in Fig. 9 shows a maximum of 94% for all
BESSs. There is only one single data point that is below 20%.
Therefore, in this work, the maximum and minimum SOC of
all the BESSs are regarded as 94% and 20%, respectively.

The SOC of most BESSs remained at the maximum until
around 2pm. Corresponding to the BESS discharging oper-
ation, the SOC dropped to a minimum at 6pm. The BESSs
were fully charged late at night, completing the operation
cycle for a typical summer day. Based on the measured
power and SOC for the BESS, BESS energy capacities for
all 148 USHs are calculated and the average is 16.2kWh. The
measured net power flow from the grid for each USH house
in Fig. 10 shows that during the typical peak hours in the
afternoon, almost all the USHs achieved near zero power due
to controlled battery discharge operation. Also observed is the
high power in the early morning and late night. Thus, it can
be concluded that the BESS operation has a great impact on
the net power flow at the system level.
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FIGURE 9. The SOC of BESSs from the 148 USHs on the example summer
day. The measured data shows that the SOC could be regarded within
[20%,94%]. The BESSs were charged in the middle of the night and
maintained at the maximum SOC until around 2pm. The BESSs discharged
for the afternoon peak and the low SOC remained until 9pm. The BESSs
were charged afterwards and prepared for the next day.

FIGURE 10. The net power from the grid for all the 148 USHs on the
example summer day. The experimental data shows low net power at
around 2pm–5pm. The power in the midnight was high due to BESS
charging.

The measured net power and BESS charging power for
each of theUSHswere added together to produce correspond-
ing aggregated curves, as shown in Fig. 11. The curve labeled
as Ref loads USHs represents the difference between the net
grid power and BESS charging.

A new load aggregated curve corresponding to resistive
EWHswas calculated and later used in the study to replace the
experimental heat pump water heater loads. The aggregated
resistive EWH load typically has morning and evening peaks,
with an average peak power of around 1.5kW [37]. The aggre-
gated EWH power-time curve can be substantially defined by
its major turning points for which the mathematical deriva-
tive, i.e. ramping rate, changes drastically. In the example
shown in Fig. 12 these turning points occur at approx. 5,
7, 12, 15, 19 and 22 o’clock. For example, a morning peak
was exhibited around 7am, and a evening peak 7pm. The
baseline (BL) aggregated EWH curve from Fig. 12 stands for
the aggregated EWH power for all 148 USHs without power
shaving. A white noise with signal-to-noise ratio of 20 was
added to the BL curve. This value is based on the typical

FIGURE 11. The aggregated power for all the 148 USHs based on the
experimental data. The negative BESS charging power indicates the
discharging operation at the peak hours. The aggregated net grid power
at midnight was increased by the BESS charging.

FIGURE 12. The power draw for EWH schemes including preheating and
load shaving for different peak reduction targets labeled as percentage.
The same amount of electricity for water heating was allocated at
different times for the example day. The load shaving control was applied
only to reduce the total evening peak.

results reported by previous studies [37], which considered
the naturally random user behavior on 75 different water
heaters, which is approximately half the number of the units
considered in our study.

A mixing valve technology allows the water temperature
in the tank to be as high as 145F, increasing the thermal
capacity of the EWHs. The hot water at the EWH exit is
mixed with cold water in order to provide the user expected
comfortable temperature. Four power shaving schemes were
studied for different peak reduction targets and are shown
in Fig. 12. The EWHs under all the schemes used the same
amount of daily electricity and the same daily hot water draw.
The peak shaving was realized by shifting the electricity used
by EWH from the evening to the morning. It is worth noting
that when the peak reduction target was 20%, the minimum
aggregated EWH power was zero, meaning all EWHs were
turned OFF during the peak period. It is possible that the 20%
peak reduction target was not achieved even when all EWHs
were turned OFF.

A first order equivalent EWH model was proposed to esti-
mate the average water temperature in the tank for different

19350 VOLUME 9, 2021



H. Gong et al.: Peak Reduction and Long Term Load Forecasting for Large Residential Communities

water heating schemes, as follows:

C
dθT (t)
dt
= P(t)

−
1
R
[θT (t)− θA]− ρcpW (t)

[
θT (t)− θW ,C

]
, (8)

where C is the equivalent capacitance, defined as follows:

C = V · ρ · cp. (9)

Other parameters are listed in Table 1.

TABLE 1. Parameters for the Equivalent EWH Model.

It was assumed that the average tank temperature for the
BL case is 125F at all time. With known power P(t) and tank
temperature θT (t) from the BL case, the daily hot water draw
W (t) is calculated by solving (8). The same daily hot water
draw is used to calculate the average tank temperature for
different water heating schemes shown in Fig. 12. The results
in Fig. 13 show that when the water was preheated to a higher
temperature in the morning, the EWH had more standby
loss and lower temperature in the tank at the end of the
day. Considering the benefits from peak reduction, the heat
loss from preheating is worthwhile. In the case of 20% peak
power reduction, the maximum average temperature reached
approximately 140F, which can be realized through mixing
valves. The lowest tank temperature for all the cases was
119F, which is satisfactory according to a study from the
Department of Energy [38].

V. REDUCTION OF PEAK POWER STUDY
In order to achieve higher peak power reduction, it is consid-
ered that all the heat pump EWH in the homes are replaced by
equivalent resistive EWH. The Ref load USHs with the resis-
tive EWHwere calculated by subtracting the heat pumpwater
heater load from the measured load data (Fig. 14). The heat
pump load was estimated as a constant value of 20kW. The
USH loads with EWH which represent the aggregated load
for a community where all houses have resistive EWH, were
calculated by adding the estimated equivalent aggregated
resistive EWH load to the Ref load USHs curve from Fig.14.

The EWH power was shaved in the evening in order to
reduce the peak demand, as shown in Fig. 15. The USH
loads incl. EWH curve represents the baseline case where no
peak reduction was applied. With peak reduction, the power
in the evening was shifted to the morning. The aggregated

FIGURE 13. The calculated average temperature for all the 148 USHs with
different water heating schemes. Preheating in the morning led to higher
temperature in the tank, resulting in more standby loss and lower tank
temperature at the end of the day when the same amount of electricity
was used for heating. Results show that the proposed heating schemes
maintain the water temperature within the comfort and safety tolerances.

FIGURE 14. The aggregated EWH and residential loads. The experimental
heat pump water heater load in the Ref load USHs curve was replaced by
the BL aggregated EWH curve. The curve of USH loads with EWH stands
for the aggregated residential loads where all USHs used purely resistive
EWHs.

FIGURE 15. The aggregated total USH loads with different water heating
schemes. Peak reduction was realized by shifting the water heating load
in the evening to the early morning. It is worth noting that shaving the
EWH loads reduced the peak demand by approximately 18% maximum in
this example, missing the real target of 20%.

water heating loads for different peak reduction targets were
calculated in the previous section and presented in Fig. 12.

Ultra-smart homes can provide ancillary services by turn-
ing OFF the EWHs. The minimum participating rate of EWH
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FIGURE 16. The aggregated total USH loads with peak reduction achieved
by BESS. Only the discharge operation of BESS are shown.

was estimated with the average EWH power of 1.5kW during
the peak time. The minimum participation rates for USHs
to turn OFF EWH were 17%, 32%, 48%, 62%, for 5%,
10%, 15%, 20% peak reduction targets, respectively, as listed
in Table 2. In the extreme case for 20% peak reduction target,
even all the EWHs were turned OFF at the critical hour,
the power was only reduced by 18%, missing the 20% target.
This is due to the fact that EWH can only shave its own
power but can not supply other loads, unlike BESS. With
all the EWHs turned off, further reduction in peak power
is not feasible. Even with these limitations, EWH is still an
attractive candidates for providing ancillary services due to
its near ubiquity and low additional cost.

The same peak reduction was achieved by the BESS and
results are shown in Fig. 16. All the BESSs were charged
during the late night and early morning. When the load
shaving control process started, all BESSs had the maximum
SOC. In Fig. 16, only the discharging power is plotted. With
the BESS controlled to provide ancillary services, both the
maximum power and available energy were taken into con-
sideration. The BESS power was estimated 4.8kW with the
nominal voltage of 48Vdc and charging rate of 100A. The
average BESS energy capacity was 16.2kWh and the SOC
can vary from 94% to 20%. Therefore, the BESSs have the
capability to provide approximately 12kWh energy on an
average.

With the peak reduction target set to 5%, a total energy
of 12kWh and a maximum power of 30kW were needed to
be provided by the BESS. At least seven USHs were required
to provide a peak power of 30kW, even one BESS would be
enough to provide the required energy of 12kWh. The shaved
energy during the peak hour were 12kWh, 49kWh, 114kWh,
210kWh for 5%, 10%, 15%, 20% peak reduction targets,
respectively.Meanwhile, the shaved power levels were 35kW,
70kW, 105kW, 134kW for the same peak reduction targets.
Therefore, the minimum participation rates of BESS were
decided by the shaved power as 6%, 11%, 15%, 21% for the
peak reduction targets, respectively, as listed in Table 2.

It is shown that both BESS and EWH can provide ancillary
services. Higher participation rates of EWH were required

TABLE 2. The Minimum Requirement for USH Participation.

to realize the same peak reduction target. In this article,
the maximum peak reduction achieved by the EWHs was
18% on the example summer day.

VI. LONG TERM IMPACT OF TECHNOLOGY
PENETRATION STUDY
In Table. 3, case studies based on different penetration of
technologies, i.e., house types, are demonstrated. The experi-
mental data provide the baseline case (BL) and stands for the
current field situation where only around 300 out of around
5,000 homes are SET, and do not possess PV installations.
In the second case, HEM control is not included. The net
power flow curves of both the aggregated and the baseline
case are similar, which validates the model. The improved
insulation increases the efficiency of HEM_I homes, which
causes a reduction in the total energy usage for case 2.
Cases 2 to 5 present the gradual shift to futuristic high energy
efficiency and distributed PV generation community. The
simulation of the distribution power system for each case
study was performed based on a modified IEEE 13-node test
case, and solved by OpenDSS.

TABLE 3. Case Studies With Different Percentage Distributions of House
Types in the Community Power System.

The case studies were performed on two preselected rep-
resentative days in Glasgow, KY—1/19/2017 (Winter) and
7/20/2017 (Summer). In Fig. 17 (a), the aggregated residen-
tial power demand peaks in the morning and the evening on
the winter day is shown. On this winter day, the residential
load drops in the afternoon because of the solar irradiance,
which brings heat into the room through walls and win-
dows. The net power flow decreases in the afternoon due
to high PV penetration, leading to a major ‘‘duck curve’’
profile (Fig. 17 (a)).

The HEB_I type homes with improved insulation con-
tribute to residential load reduction. From Fig. 17 (a), it can
be seen that even when as few as 25% of the houses are
of the HEB_I type, the power usage reduces substantially.
From Fig. 17 (b), a similarity can be observed for the studied
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FIGURE 17. Aggregated residential net power flow without HEM for the studied (a) winter and (b) summer day,
respectively. A high penetration of solar PV exacerbates the "duck curve’’.

FIGURE 18. Aggregated residential net power flow with HEM for the studied (a) winter and (b) summer day, respectively.
The proposed HEM reduces the peak demand and alleviates the "duck curve’’ effect.

summer day as well. The SET homes function like thermal
and electrical energy storage systems with the proposed HEM
control, which reduces the peak power flow in the morning
and the evening in both cases as shown in 18 (a)). HEB_I
homes featured in case 2, have lower energy usage compared
with the baseline case, even though they do not accommodate
any PV generation. Case 2 with 50% penetration of SET
homes, allows the opportunity to shift the peaks and bring
down the ramp rates due to the combined operation of the
BESS, and the controllable HVAC and EWH loads. On the
other hand, 50% penetration of SET homes having the energy
storage capacity supported by controllable loads and BESS
is not sufficient for case 3 to absorb all the surplus PV
generation and supply the total evening demand. Hence, case
3 demonstrates a significant ‘‘duck curve’’ effect. In case 4,
the ‘‘duck curve’’ effect is alleviated to a certain extent due
to the combined effects of a higher percentage of SET homes
and reduced PV penetrations.

The PV generation from case 5 is similar to case 3, how-
ever, case 5 requires 100% SET homes in the power sys-
tem. It is noteworthy that, the power usage, peak demand,
and peak to peak value for case 5 features the lowest val-
ues. The study carried out on the summar day (7/20/2017)
can also be explained by applying similar observations,
as shown in Fig. 18 (b). The above results clarify that high

PV penetration would not form any challenges for the utility
grid with the usage of appropriate HEM systems.

VII. CONCLUSION
A co-simulation framework is developed in this article to
analyze one of the largest rural field demonstrators for
smart energy technologies, which is situated in Glasgow, KY,
US. The community comprises more than 5,000 residential
homes with 300+ smart homes along with additional business
and industrial sectors. The simulated and the experimental
data obtained from the case studies presented in this article
demonstrate the declining trend of total power demand with
the long-term growth of high PV penetration in smart homes.
This study also highlights the case studies for SET smart
homes that utilize solar PV, and cause the ‘‘duck curve’’.
In this article, a smart HEM system is proposed with an
aim to reduce residential peak demand by carrying out a
combined optimal control of the EWH and HVAC set points.
The aggregated residential load in long term is predicted in
this article based on different penetrations of smart homes in
a community.

The capability of EWH to provide ancillary services was
studied based on the experimental data from 148 smart
homes, including the net power flow from the grid, power
and SOC of BESS for each house. The EWHs achieved peak
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reduction at the aggregated level by shaving the water heating
load while maintaining the tank temperature at acceptable
levels. The minimum participation rates of EWH and BESS
were calculated and compared. This article demonstrates that
EWH is an attractive candidate for providing ancillary ser-
vices, especially considering its near ubiquity and relatively
low additional cost.
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