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Comparative Effects of Event
Detection Methods on the Analysis
and Interpretation of Ca2+ Imaging
Data
Austin Neugornet1, Bernadette O’Donovan2 and Pavel Ivanovich Ortinski1*

1 Department of Neuroscience, School of Medicine, University of Kentucky, Lexington, KY, United States, 2 Department
of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC,
United States

Calcium imaging has gained substantial popularity as a tool to profile the activity of
multiple simultaneously active cells at high spatiotemporal resolution. Among the diverse
approaches to processing of Ca2+ imaging data is an often subjective decision of
how to quantify baseline fluorescence or F0. We examine the effect of popular F0

determination methods on the interpretation of neuronal and astrocyte activity in a
single dataset of rats trained to self-administer intravenous infusions of cocaine and
compare them with an F0-independent wavelet ridgewalking event detection approach.
We find that the choice of the processing method has a profound impact on the
interpretation of widefield imaging results. All of the dF/F0 thresholding methods tended
to introduce spurious events and fragment individual transients, leading to smaller
calculated event durations and larger event frequencies. Analysis of simulated datasets
confirmed these observations and indicated substantial intermethod variability as to the
events classified as significant. Additionally, most dF/F0 methods on their own were
unable to adequately account for bleaching of fluorescence, although the F0 smooth
approach and the wavelet ridgewalking algorithm both did so. In general, the choice
of the processing method led to dramatically different quantitative and sometimes
opposing qualitative interpretations of the effects of cocaine self-administration both
at the level of individual cells and at the level of cell networks. Significantly different
distributions of event duration, amplitude, frequency, and network measures were found
across the majority of dF/F0 approaches. The wavelet ridgewalking algorithm broadly
outperformed dF/F0-based methods for both neuron and astrocyte recordings. These
results indicate the need for heightened awareness of the limitations and tendencies
associated with decisions to use particular Ca2+ image processing pipelines. Both
quantification and interpretation of the effects of experimental manipulations are strongly
sensitive to such decisions.
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INTRODUCTION

Development of genetically encoded calcium indicators (GECIs)
has encouraged a bloom of research to capture the activity of
large cell populations at high spatiotemporal resolution. The
activity of diverse cell types can be examined using Ca2+ imaging
approaches. For example, amplitude and duration of neuronal
Ca2+ transients are typically interpreted as proxies for action
potentials (Ali and Kwan, 2020), and diverse features of astrocytic
Ca2+ have been proposed to play functional roles in neural circuit
regulation, behavior, and information processing (Guerra-Gomes
et al., 2017). Accurate identification of Ca2+ transients is critical
to facilitate understanding of dynamic behavior in individual
cells as well as circuit relationships that may arise from cell–cell
interactions. A variety of analytical approaches to process large
amounts of imaging data are available, but the extent to which
the choice of the analysis pipeline may impact interpretation of
the underlying data remains unclear.

Most “traditional” event identification methods are based
on transforming a fluorescence signal into dF/F0 and then
applying a threshold to find significant deviations from the
presumed background noise. Definitions of baseline F0 and
thresholding methods vary widely across studies. In our analyses,
we implement three common F0 definitions: an initial segment
of the fluorescence trace (F0 initial), often used in recordings
involving extracellular stimulations (e.g., Ellefsen et al., 2014;
Lock et al., 2015; Rahmati et al., 2016); a minimally variable
and dim segment (F0 minimal); and as a fit to the background
in a sliding window throughout the trace (F0 smooth), such
as implemented in a toolbox by Romano et al. (2017), SICT
(Mancini et al., 2018), or FluoroSNNAP (Patel et al., 2015).

Wavelet ridgewalking algorithms, as originally developed for
use in mass spectroscopy signal analysis (Du et al., 2006), have
been recently employed to find events in neuronal imaging
data (Prada et al., 2018). Wavelet ridgewalking algorithms make
minimal assumptions about the characteristics of events they
identify, requiring only that they are “peak-like” at some scale.
Events across a wide range of durations and amplitude scales can
be identified, even in the presence of high levels of noise. The
wavelet method lacks precise event shape, duration, or amplitude
requirements, increasing its versatility and potential to identify
morphologically diverse Ca2+ waveforms. This is of particular
importance for processing astrocytic data, as these cells are
known to exhibit highly heterogeneous Ca2+ signals (Shigetomi
et al., 2016; Verkhratsky and Nedergaard, 2018).

As Ca2+ imaging recordings capture activity within a broad
local network, they can be used to explore network structure
under a variety of paradigms. Graph theory has been developed
to quantify and examine network characteristics, describing
the organization of groups of objects of interest (nodes)
through their connections to each other (edges) (Bullmore
and Sporns, 2009). Graph theory is currently finding extensive
use throughout neuroscience, with particularly prominent
applications in neuroimaging and clinical psychiatry (Rubinov
and Sporns, 2010; Bassett and Sporns, 2017) based on evaluation
of pairwise connections between cells or brain areas (Sporns,
2018). Our analyses explore how detection of significant Ca2+

events at the level of single cells affects the analyses of network
activity based on graph theory methods. To determine the
impact of different analysis methodologies on interpretation of
experimental outcomes, we utilize a dataset of nucleus accumbens
shell imaging results from animals trained to self-administer
cocaine. The nucleus accumbens is involved in motivation
and drug-seeking behaviors. Multiple studies have shown that
cocaine self-administration alters neuronal activity in the nucleus
accumbens (Zhang et al., 2002; Pierce and Wolf, 2013; Calipari
et al., 2016) and impacts astrocyte morphology (Scofield et al.,
2016) with functional and behavioral consequences (Scofield,
2018; Kardos et al., 2019).

MATERIALS AND METHODS

Animal Training
Male Sprague–Dawley rats (Rattus norvegicus) weighing 225–
250 g were obtained from Taconic Laboratories. Rats were
individually housed with food and water available ad libitum
in their home cages. A 12/12-h light/dark cycle was used with
lights on 7:00 am–7:00 pm. All experimental procedures were
performed during the light cycle. The experimental protocols
were approved by the University of South Carolina and
University of Kentucky Animal Care and Use Committees.

Two cohorts of eight rats each were used for the experiments.
Both cohorts underwent jugular catheterization surgery: under
isoflurane anesthesia (1.5–2.5% isoflurane in O2), an indwelling
silastic catheter (SAI Infusion technologies, Lake Villa, IL,
United States) was placed into the right jugular vein and sutured
in place. The catheter was routed subcutaneously to a mesh
platform between the shoulder blades. Catheters were flushed
daily with 0.3 ml of the antibiotic timentin (0.93 mg/ml) dissolved
in heparinized saline. The catheters were sealed with plastic
obturators when not in use.

Following catheter implantation, rats were placed
in a stereotaxic apparatus under inhalational 1.5–
2.5% isoflurane. Genetically encoded calcium
indicator (GECI) GCaMP6f targeting either neurons
(AAV9.Syn.GCaMP6f.WPRE.SV40, Addgene 100837) or
astrocytes (pZac2.1.gfaABC1D.cytoGCamp6f.SV40, Addgene
52925) was injected bilaterally (2 µl/side) into the nucleus
accumbens (NAc) shell via a Neuros syringe (Hamilton)
targeting the following coordinates (relative to bregma): 1.0 mm
anterior, ±1.0 mm lateral, and 7.0 mm ventral. Rats began
behavioral training 14–20 days after viral microinjections.

In each cohort, four animals underwent cocaine self-
administration training and four others served as their yoked
saline counterparts. For self-administration training, rats were
placed in operant chambers (Med Associates) for 2 h/day
for 14–18 days during which time two levers (one “active,”
one “inactive”) were extended. For rats undergoing self-
administration training, an active lever press resulted in an
infusion of cocaine solution (0.21 mg cocaine/50 µl saline
over 2.8 s). Each infusion was followed by a 20-s timeout
during which lever pressing had no scheduled consequences.
All animals started on a fixed ratio (FR) 1 schedule that was
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increased to FR5 following acquisition of stable responding (<10
variability in active lever presses across three consecutive days).
The yoked saline animals received a saline infusion every time
their yoke counterpart received cocaine. There were no scheduled
consequences to lever pressing by the yoked saline animals.
Behavior results are shown in Supplementary Figure 1.

Ca2+ Imaging
After self-administration training, the cohort of animals
injected with the neuron-specific GCamp6f (hSyn animals) were
sacrificed by guillotine. The brain was excised and 300-µm-thick
slices were prepared using a vibratome (Leica VT1200S) in an ice-
cold artificial cerebrospinal fluid (aCSF) cutting solution in which
NaCl was replaced with an equiosmolar concentration of sucrose.
A total of 19 hSyn slices were imaged from seven different rats
(3 yoked saline and 4 cocaine) with each rat contributing 1–4
slices to the final dataset. The cohort of animals injected with
the astrocyte-targeting GCamp6f (GFAP animals) produced 22
slices from eight different rats with each rat contributing 2–3
slices. The aCSF composition was as follows (in mM): 130 NaCl,
3 KCl, 1.25 NaH2PO4, 26 NaHCO3, 10 glucose, 1 MgCl2, and 2
CaCl2, pH 7.2–7.4, when saturated with 95% O2 and 5% CO2;
osmolarity was 305–315 mOsm. After cutting, the slices were kept
in aCSF heated to 36◦C for 30–40 min, following which they were
maintained in aCSF at room temperature until transfer to the
recording chamber.

Two-minute videos of spontaneous activity in the NAc shell
were acquired with an ORCA-Flash 4.0 (V2) digital camera
during LED excitation (X-Cite XLED1, Excelitas Technologies).
Videos were taken at 512 × 512 pixels and collected with a 40×
objective (0.065 µm/pixel) at 25 frames per second.

Image Analysis
We used a slightly modified version of ABLE (Reynolds et al.,
2017) to segment our videos based on activity. The only changes
we made were to remove the thresholds (caps) for maximum
seed and final region of interest (ROI) size. For our dataset, we
used ABLE parameters: alpha = 0.1, lambda = 150 (following
Reynolds et al., 2017), and a radius of 20. Modified ABLE scripts
are available upon request. The background and neuropil signal
were identified for each ROI independently by finding the average
(mean) trace in a 60-pixel-wide “halo” around a given ROI,
excluding those points found to be in other ROIs. Individual
neuropil signals were subtracted from the corresponding ROI
traces. Once the ROIs were identified for a recording, those
same ROIs and associated fluorescent signal traces were used
for all subsequent method comparisons throughout the study.
Examples of ABLE-detected ROIs for both neuron and astrocyte
populations are presented in Supplementary Figure 2.

Event Detection
Events were identified from each ROI trace using either a dF/F0
thresholding method or continuous wavelet transform of each
trace followed by a custom-written ridgewalking algorithm. To
construct dF/F0 traces, we determined F0 by three different
methods: calculating the mean value of an initial window
on the trace which we will refer to as “F0 initial” (e.g.,

Ellefsen et al., 2014; Lock et al., 2015; Rahmati et al., 2016);
finding the smoothed 8th percentile point in a sliding window
producing a variable F0 time series, referred to as “F0 smooth”
(e.g., Patel et al., 2015; Romano et al., 2017; Mancini et al., 2018);
and calculating the mean value of a baseline segment found
by minimizing the quantity (trace variance + trace mean2)1/2

in a sliding window on the trace, which we call “F0 minimal.”
We then applied four different thresholding criteria to identify
significant activity within a dF/F0 trace: 2.5 standard deviations
above the mean of either the baseline (baseline SD) or the total
dF/F0 trace (trace SD) and p-value of <0.05 as determined by
z-test of either the baseline (baseline z-score) or the total dF/F0
trace (trace z-score). The possible combinations of choice of
F0 and thresholding criteria yielded 12 different dF/F0 event
detection methods. These methods were compared to a wavelet
ridgewalking algorithm that does not require definition of F0 to
identify significant events.

Before a wavelet ridgewalking algorithm is used for event
detection, a continuous wavelet transform (CWT) is applied to
a signal trace producing a two-dimensional sheet of coefficients
revealing localized “ridges” of local maxima (Figure 1A).
Significant events can be identified by the properties of these
ridges (Figures 1B,C), particularly ridge length. The CWT was
calculated using the jLab MATLAB toolbox (Lilly, 2019). We used
a generalized Morse wavelet with (shape) parameter gamma = 3
and initial (scale) parameter beta = 2 (before scaling). Wavelets
having gamma = 3, also called Airy wavelets, were chosen because
they have the smallest Heisenberg area (Lilly and Olhede, 2012).
We used a set of optimal scales/frequencies determined by jLab
scripts for time series of length N = 3001, the number of frames
in our videos. The completed CWT for a trace results in a two-
dimensional sheet of CWT amplitudes, as transform amplitudes
for wavelets of all scale sizes are calculated for each time point
in the trace. We then generate ridges along the scale dimension
using a custom-written MATLAB ridgewalking function. The
algorithm is as follows: (a) All local CWT amplitude maxima
for each scale are identified. These local maxima serve as new
ridge initializations and candidates for ridge extension. (b) The
local CWT amplitude maxima at the largest scale size are the
first ridge initializations. Progressing to smaller scales, local
maxima are linked into a ridge if they fall within the temporal
range determined by the central window for the wavelet of the
preceding scale size when the window is centered on the ridges
and ridge initializing maxima at that (larger) scale. If multiple
maxima at the smaller scale fall into the range determined for
a ridge, only the largest of the new maxima is appended to
the ridge. Others within the window initialize new ridges. If a
local maximum does not fall into any of the previous ridges’
or maxima’s windows, it also initializes a new ridge. (c) The
algorithm ends either after the maxima at the smallest scale have
been processed, at which point all local maxima at all scales
have been formed into ridges (or identified as single points), or
once a user-specified scale has been reached. Gaps in scale along
ridges are not allowed. Scale gaps terminate ridges. (d) Once all
ridges for a trace are identified, ridge significance is determined
by passing through at least 41 scales. Additionally, ridges whose
largest CWT maxima occur at or below the 10th scale size
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FIGURE 1 | Wavelet ridgewalking algorithm identifies neuronal events with high fidelity. (A) Continuous wavelet transform amplitude color map for an example trace
overlaid in white. The left y-axis is the wavelet scale, the right y-axis is the arbitrary units of trace fluorescence amplitude, and the x-axis is the recording frame. Color
scales are continuous wavelet transform (CWT) values with warmer colors representing larger CWT amplitudes. (B) Example trace with ridges generated by
ridgewalking algorithm overlaid in red. (C) Example trace with significant (kept) ridges overlaid.

are excluded as short noise. Noise parameters were explicitly
calculated by noise modeling. MATLAB scripts implementing
this algorithm are available upon request.

Noise Modeling
We generated 10,000 white noise time series using
pseudorandom number generators and subjected those time
series to the ridgewalking algorithm. We constructed empirical
cumulative density functions for ridge length and scale of
maximum CWT amplitude along a ridge (event size). We
repeated this analysis at several different combinations of noise
parameters. From these cumulative density functions, we were
able to determine thresholds yielding the desired exclusion rate.
For event size, we determined the 98% exclusion threshold
to be the 10th scale size. Thus, ridges whose maximum CWT
amplitude occurred at a scale less than or equal to 10 were
removed as “short noise.” This threshold was found to be stable
across parameters, including series length. For ridge length, we

chose a threshold length corresponding to 98% exclusion rate (41
scales). These length cutoffs were found to be robust across wide
regimes of noise variance and series lengths. Ridges were only
kept if they met both the ridge length and max CWT amplitude
scale size criteria.

Rasterization, Calculation of Activity
Features, and Network Measures
For dF/F0-processed ROIs, rasters were generated based on
one of four different thresholding methods as described above.
To create rasters from the wavelet ridgewalking-processed ROI
traces, we found the location in time and scale of the maximum
CWT amplitude along each significant ridge. Maximum CWT
amplitudes were used as event centers. Following rasterization,
event frequency was calculated as the number of unique
events found in the trace. The amplitude was taken as the
maximum dF/F0 value within an event window. For the wavelet
ridgewalking algorithm, each event had an associated F0 value
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calculated from the segment of the trace immediately preceding
the event. Each event trace itself was transformed to dF/F0 using
its unique F0, and the amplitude of an event was defined as
the maximum dF/F0 value within the event window. Duration
was calculated as the length of a rastered segment. For network
analyses, connectivity matrices for the ROIs in each video
were generated using the phi coefficient between ROI rasters.
The phi coefficient is essentially a correlation coefficient for
binarized data series, such as rasters. Phi coefficient values
were thresholded at 0.2. Any value below 0.2 was set to
zero. Connection matrices were binarized to unweighted and
undirected connection matrices. Network measures and distance
matrices were calculated using the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010). Specifically, we calculated the
global clustering coefficient, assortativity, density, modularity,
characteristic path length, and network efficiency for identified
networks. The global clustering coefficient represents how
common clustering is within a network where a “cluster” is
formed around a node when many of the nodes connected to
it are also connected to each other. Assortativity captures the
tendency of network nodes to be connected to other nodes with
similar numbers of connections. In an assortative network, nodes
with similar numbers of connections preferentially connect to
each other, while in a disassortative network, nodes preferentially
connect to others with dissimilar numbers of connections.
Density is a measure of the number of possible connections that
are found to actually exist between nodes; thus, in a very dense
network, most nodes may be mutually connected to each other.
Modularity captures the tendency of a network to be formed
of “modules” or subsets of densely interconnected nodes with
more sparse connections between these subsets. Characteristic
path length is the typical number of connections required to
link one node to another in a network. Network efficiency is the
inverse of the characteristic path length, reflecting the efficiency
of information transfer throughout a network along the extant
connections or paths between nodes.

Simulated Dataset Generation
Pseudoneuronal and pseudoastrocytic events of randomized
duration and frequency were embedded in a noise and data-
derived bleaching model. Pseudoneuronal events were either
peak values with exponential or linear decays. Peak amplitude
was fixed for all events to recreate the mean signal-to-noise
ratio (SNR) found in our biological datasets. Durations were
varied by changing the decay constant of the exponential or
increasing the base of the right triangle. Pseudoastrocytic events
were isosceles triangles to simulate astrocytic transients with
slower rise times and fixed peak values as for pseudoneuronal
events. Event duration was varied by increasing the length
of the triangle base. Noise was modeled as random white
noise. To model fluorescence bleaching, a linear regression
fit to each fluorescence trace was generated. Trace segments
determined by the wavelet ridgewalking algorithm to be events
were removed from the fit. We then found the mean slope
of all fits to all traces which was used to model bleaching
present in the simulated datasets. Experimental results also
determined the SNR in simulated data. SNR was determined

based on events identified by our wavelet ridgewalking algorithm.
Each trace background, defined as the portions of the trace
not indicated as part of an event, had the bleaching removed
by regression. The amplitude of each event was divided
by the background noise standard deviation of its trace to
determine an SNR for each event. The mean of these SNRs
(SNR = 69.9 ± 4.7) was used for modeling. All synthetic
time series were of identical length to our recordings (3,001
frames). We varied the frequency of events from 1 to 100 and
the duration of events from 1 to 500 frames. All codes are
available upon request.

Statistical Analysis
Analyses were done in Excel 2016 or GraphPad Prism 8. All data
are reported as mean± standard error of the mean and statistical
significance threshold was set at p < 0.05.

RESULTS

Wavelet Analysis Outperforms Other
Event Detection Methods
To quantify method performance, we calculated the probability
that any ROI displayed significant events in a given image frame
using each tested method. We reasoned that for spontaneous
neuronal activity, this probability should be stable across
time, and that deviations are likely caused by erroneous
event identification. Figure 2 illustrates the fraction of ROIs
determined to be active at a given time point in the trace.
Notice that the F0 initial and F0 minimal approaches produced
activation probabilities that varied widely across time for the
majority of applied thresholds (Figures 2A,B), while the F0
smooth method produced more stable probabilities (Figure 2C).
However, the performance of the F0 smooth method suffered
from a sharply defined degradation toward the end of the
trace. Additionally, thresholding by the trace z-score failed to
identify any significant events in F0 smooth traces. End-of-
time series degradation was likely due to declining number
of points in the sliding window required by the F0 smooth
algorithm. The wavelet ridgewalking algorithm also found
relatively stable event probabilities (Figure 2D) but did not
show the end-of-time series degradation. Overall, the choice
of thresholding criterion for the F0 methods led to as much
as a 7-fold difference in the fraction of signals considered
to represent significant Ca2+ transients (Figures 2A–C). This
caveat did not apply to the wavelet ridgewalking method where
the event detection criterion has been empirically determined.
The F0 smooth method with a baseline SD threshold and the
wavelet ridgewalking method produced event probabilities that
converged for a large portion of the time series (Figure 3A).
However, we found that while event probabilities were similar,
the events captured within the rasters were not the same. For
example, under conditions of high SNR (SNR = 27.6892), the
wavelet ridgewalking algorithm and F0 smooth found almost
identical events, but the F0 smooth method found those events
to be of shorter duration and fragmented some events. In the
example shown in Figure 3B, the F0 smooth method misses
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FIGURE 2 | Different event identification methods find different event probabilities. (A) F0 initial thresholding finds very different, temporally unstable firing probabilities
for each thresholding scheme, as does F0 minimal in panel (B). (C) F0 smooth thresholding identifies relatively stable firing probabilities, but the discovered rates vary
widely with the thresholding scheme. (D) Wavelet ridgewalking algorithm also produces relatively stable firing probabilities.

a large event toward the end of the time series, beyond the
range of optimal performance for this method. Figure 3C
shows an example trace with a lower SNR (SNR = 8.9381) and
events of shorter duration. In this example, wavelet analysis
outperforms the F0 smooth method, capturing all visible events,
while the F0 smooth method misses several. Under low SNR
conditions, both the wavelet ridgewalking algorithm and F0
smooth method identified what appeared to be false events
which, however, were not the same for the two methods
(Figure 3B, arrows). Figure 3D shows an extreme case: a trace
that displayed substantial bleaching over the time series and
without any recognizable events. For this trace, the wavelet
ridgewalking algorithm correctly output an empty raster, while
the F0 smooth method identified events throughout the trace.
This result demonstrated a particularly troubling quality for a
method to be used in an automated unsupervised pipeline, as
such a trace and the ROI associated with it would be kept
in the dataset when it should clearly be removed. Therefore,
the apparent similarity of performance between the wavelet
ridgewalking algorithm and F0 smooth method is misleading. It
is likely that the tendency of the F0 smooth method to falsely
identify events is balancing its propensity for missing true events
in such a way as to buoy its rasterization probability (under the
baseline SD thresholding criterion) to approximately that of the
wavelet ridgewalking algorithm.

Event Detection Methods Exhibit
Differential Performance on Simulated
Datasets
To more robustly quantify the fidelity with which different
methods capture underlying Ca2+ transients, we generated
model datasets with varying event numbers and widths (see
section “Materials and Methods”). Since the number and timing
of modeled events were predetermined, we could evaluate the
exact rate with which the respective event detection methods
were successful in capturing them. The results in Figures 4, 5
for right-triangle (pseudoneuronal) events and isosceles triangle
(pseudoastrocytic) events, respectively, show two measures of
performance across the four event detection methods: the plots
on the left visualize the percent of the rasters that fall outside
of the known event bounds (i.e., incorrectly identified events
or “false positives”); the plots on the right show the percent
of total event durations that are correctly captured by the
respective method. The ideal method would exhibit low values
on the left panels and high values on the right, indicating a
low rate of both false positives as well as a high rate of event
capture. In terms of false positives, we found relatively good
performance for all methods. F0 initial and F0 minimal methods
performed ideally (Figures 4Ai,Bi), while F0 smooth and wavelet
ridgewalking found some false events in the case of few actual
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FIGURE 3 | Wavelet analysis outperforms F0 smooth thresholding method for event identification. (A) Wavelet ridgewalking algorithm and F0 smooth thresholding
method produce similar raster probabilities. (B) In high signal-to-noise ratio (SNR) conditions, the two methods appear to identify almost identical events, but F0

smooth finds those events to be shorter than wavelet ridgewalking. (C) In lower SNR conditions, the F0 smooth thresholding method begins to fail, not identifying
short spike events that wavelet ridgewalking readily detects. (D) F0 smooth fails to identify “dead” ROIs whose traces contain no events, while wavelet analysis can
be used to discard them. Red arrows indicate false events captured by wavelet ridgewalking, blue arrow indicates a false event captured by the F0 smooth method.

events (Figures 4Ci,Di). In terms of events captured, F0 initial,
F0 minimal, and wavelet ridgewalking all outperformed F0
smooth (Figures 4Aii–Dii). Interestingly, F0 initial, F0 minimal,
and wavelet approaches were also noted to have well-defined
ranges of parameters beyond which their performance sharply
declined. For pseudoneuronal events, the F0 initial method
transition line between high and low performance follows a
curve from 20 events/trace at the smallest event width to 5
events/trace at the largest event width (Figure 4Aii). For F0
minimal, which has a broader range of high performance, this
transition follows a curve from 40 events/trace at the smallest
event width to 7 events/trace at the largest (Figure 4Bii). Wavelet
ridgewalking began to fail when there were more than 40 events
in a single trace of 3,001 frames. For right triangular events,
wavelet ridgewalking exhibited high performance through the
broadest ranges of event frequency and duration (Figure 4Dii).
We also modeled pseudoneuronal events with exponentially
decaying amplitudes (Figure 5). The results followed the same
patterns as observed for right triangular events (Figure 4),
though all methods captured less of the simulated events
(Figures 5Aii–Dii) and the wavelet ridgewalking algorithm in
particular exhibited a marked reduction in performance for
events of shorter duration (Figure 5Dii). We observed generally
similar patterns for pseudoastrocytic events modeled as isosceles

triangles (Figure 6). F0 initial and F0 minimal captured the
smallest fraction of false positives (Figures 6Ai,Bi) relative
to the F0 smooth and wavelet approaches (Figures 6Ci,Di).
The methods varied in the degree to which they successfully
captured events (Figures 6Aii–Dii), and the F0 minimal method
exhibited the highest overall performance for these data, with
near-perfect event identification across the majority of the event
frequency and duration space probed. These results support
marked differences in fidelity of event detection across the
examined methods.

Quantification Method Impacts the
Interpretation of Neuronal Ca2+ Data
We noticed a general susceptibility of the dF/F0-based event
detection methods to two types of errors: event fragmentation
and introduction of spurious events at time points that differed
between methods (Figures 7A–D). It is tempting to ascribe
the short fragments to noise and discard them; however, we
found that many of these fragments occur within visible event
boundaries (Figures 7B,D), indicating that F0-based approaches
would generally benefit from postprocessing to determine which
events to exclude and which to merge together for a faithful
reflection of neuronal activity. Additionally, the F0 initial and
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FIGURE 4 | Synthetic data for pseudoneuronal events with linear decay. The left-hand plots represent “false positives” or the fraction of rasters existing outside of
known event bounds, and the right-hand plots represent the “events captured” or the fraction of total event bounds that are covered by the rasters. (Ai,ii) Results for
F0 initial thresholded at 2.5 baseline standard deviations. (Bi,ii) Results for F0 minimal thresholded at 2.5 baseline standard deviations. (Ci,ii) Results for F0 smooth
thresholded at 2.5 baseline standard deviations. (Di,ii) Results for wavelet ridgewalking algorithm.

F0 minimum baseline methods appeared to introduce large-
scale time structure to rasters produced from our dataset
(cf. Figures 2A,B). Where we expected relatively stable event
probability for spontaneous transients, these methods exhibit
pronounced changes in event probability as time progresses.
These large-scale effects may be due to the selected methods’
inabilities to account for fluorescence bleaching present during
recording. The variability between methods that we observe

could introduce substantial uncertainty into the interpretation
of data related to frequency and duration of Ca2+ transients.
Figures 7E,F show the distributions of event durations and
event frequencies found by each of the tested methods. Most
methods found substantially different mean frequencies and
distributions. Even when the same definition of F0 is used,
the choice of threshold alters the distribution mean and shape.
We note that across the board, dF/F0 thresholding methods
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FIGURE 5 | Synthetic data for pseudoneuronal events with exponential decay. The left-hand plots represent “false positives” or the fraction of rasters existing outside
of known event bounds, and the right-hand plots represent the “events captured” or the fraction of total event bounds that are covered by the rasters. (Ai,ii) Results
for F0 initial thresholded at 2.5 baseline standard deviations. (Bi,ii) Results for F0 minimal thresholded at 2.5 baseline standard deviations. (Ci,ii) Results for F0

smooth thresholded at 2.5 baseline standard deviations. (Di,ii) Results for wavelet ridgewalking algorithm.

found shorter mean event durations and higher mean event
frequencies, both of which can be traced back to those methods’
tendencies to fragment events and misidentify spurious segments
as significant transients.

To further evaluate the extent to which the choice of event
detection algorithm impacts the interpretation of experimental
data, we compared the characteristic features of neuronal Ca2+

transients: amplitude, frequency, and duration of events. The data
were split into imaging sessions from animals trained to self-
administer cocaine and their yoked saline controls. Characteristic
features were examined at three population scales: individual
events across all ROIs (saline: Nevents = 5,454–287,100; cocaine:
Nevents = 9,353–408,411), mean values for each ROI across
all slices (saline NROI = 1,025; cocaine NROI = 1,556), and
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FIGURE 6 | Synthetic data for pseudoastrocytic events. The left-hand plots represent “false positives” or the fraction of rasters existing outside of known event
bounds, and the right-hand plots represent the “events captured” or the fraction of total event bounds that are covered by the rasters. (Ai,ii) Results for F0 initial
thresholded at 2.5 baseline standard deviations. (Bi,ii) Results for F0 minimal thresholded at 2.5 baseline standard deviations. (Ci,ii) Results for F0 smooth
thresholded at 2.5 baseline standard deviations. (Di,ii) Results for wavelet ridgewalking algorithm.

mean values for each slice across all animals (saline Nslice = 7;
cocaine Nslice = 12). The summary of our findings is represented
in Table 1. Significant differences between saline and cocaine
populations were determined by Mann–Whitney U tests. Most
methods found significant differences in event duration between
saline and cocaine self-administration conditions at the level
of pooled events. The significant differences found between

conditions declined at the next tier of analysis (pooled ROI
means) and vanished altogether at the level of pooled slice means.
Considering that the direction of changes among statistically
significant findings remained the same, this effect was likely
driven by diminishing sample size at progressively higher levels
of analysis. Encouragingly, all methods with the exception of F0
smooth under 2.5 times total trace standard deviation threshold
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FIGURE 7 | df/F0 thresholding methods fragment events with effects on Ca2+ activity measures. (A) A 1-min sample of neuronal trace, with example rasters
beneath. All F0 methods were thresholded at 2.5 times the standard deviation of the baseline. Note that, where wavelet finds continuous events, F0 methods have a
tendency to introduce fragments. Furthermore, in the case of F0 minimal, most of this trace is deemed active, with little to no segregation between events. (B) A
zoomed short segment of a neuronal trace with high SNR. Notice that even in high SNR conditions, fragmentation still occurs. (C) A 1-min sample of a low SNR
neuronal trace with example rasters beneath. All F0 methods were thresholded as in (A). With low SNR, there is increased fragmentation by F0 smooth and F0

minimal methods. F0 initial thresholding fails utterly for this trace. (D) A zoomed short segment of a neuronal trace with low SNR. F0 initial fails to identify this event.
(E) Distributions of mean event durations for presumed neurons from saline and cocaine self-administration groups as calculated by the various methods. The
number for each method indicates thresholding criteria as follows: 1, baseline sd*2.5; 2, trace sd*2.5; 3, z-score baseline p = 0.05; 4, trace z-score p = 0.05. Note
that the wavelet method finds events to be of longer duration due to lack of fragmentation effects. (F) Neuronal event frequency distributions. All F0 thresholding
methods identify several times more events than the wavelet ridgewalking method for the same traces.

found the same qualitative effect of cocaine self-administration:
increased event duration.

Some of the dF/F0 thresholding methods identified significant
decreases in event frequency associated with cocaine self-
administration at the level of the ROI means (Table 1). In
general, the dF/F0 methods found dramatically more events
than the wavelet method at both the cell population and slice
mean levels of analysis, which, combined with the event duration
results, supports our finding that dF/F0 thresholding methods
are capturing multiple short fragments of events compared with
wavelet analysis’ tendency to capture and represent events in
a single segment.

Relative fluorescence amplitude is one of the most widely
reported measures of Ca2+ activity. We found that most methods
with the exception of the wavelet ridgewalking algorithm
reported significant differences in event amplitude in the
cocaine self-administration group at the level of individual
events. However, the different methods disagreed on whether
cocaine self-administration leads to increased or decreased event
amplitude (Table 1). The results became more homogeneous
at the level of the ROI means, with cocaine self-administration
being found to produce higher-amplitude events, but the
quantitative value of this difference varied substantially. For
example, some negative mean amplitude values were reported

for the F0 initial method with a baseline z-score threshold, which
could be caused by failure to appropriately account for decreasing
fluorescence due to bleaching. Additionally, the scale of analysis
for the F0 smooth method under a 2.5 baseline standard deviation
method impacted the calculated amplitudes dramatically with
the mean amplitude of all ROIs being much higher than the
slice mean or events mean. This reflects a tendency to identify
a subset of ROIs to have sparse but very high amplitude events
compared to the general findings of this method. With few
exceptions, the effects of cocaine self-administration appeared
magnified when analyzed by the F0 methods relative to the
wavelet analysis at every scale.

We performed Kruskal–Wallis tests to determine which
methods produced the most disparate results. These analyses
were done only at the level of ROI means. For event durations,
we found that out of 66 pairwise comparisons, 59 differed
significantly from each other in both saline and cocaine self-
administration conditions, and those methods that were not
statistically different from each other were identical for the
saline and cocaine datasets (Supplementary Table 1). Similar to
event durations, event frequency data varied significantly across
most methods. Out of eight methods that produced similar
results in the saline group and seven methods that produced
similar results in the cocaine group, five were shared between
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groups (Supplementary Table 2). The differences in amplitude of
detected events were also significant across most of the methods
and 12 comparisons that did not reach significance were shared
between the saline and cocaine groups (Supplementary Table 3).

Quantification Method Impacts the
Interpretation of Astrocytic Ca2+ Data
Our synthetic data (Figures 4–6) indicated that differences
in kinetics of Ca2+ events may have an impact on the
relative performance of event detection algorithms. Therefore,
we compared the method performance when applied to the
analysis of astrocytic Ca2+ transients which are substantially
more heterogeneous than neuronal events and exhibit generally
slower rise and decay times. As for the neuronal recordings, we
began by analyzing the probability of astrocytic ROI activation
found by each method based on events pooled across saline
and cocaine conditions. The probability to detect an event
varied as a function of time for F0 initial and F0 minimal
approaches, although the magnitude of variation was less
than exhibited for neurons (Figures 8A,B). Once again, the
F0 smooth and wavelet ridgewalking algorithm displayed the
most stable performance across time. However, in the case of
astrocytes, activation probabilities were dissimilar between these
two methods, with the wavelet ridgewalking algorithm finding a
slightly increased probability of activation for astrocytes relative
to the F0 smooth algorithm (Figures 8C,D). Event fragmentation
and foreshortening of event duration caused by raster fragments
were also obvious with the astrocyte data (Figures 8E,F).

To examine how these discrepancies would impact the
interpretation of experimental manipulations, we compared
frequency, amplitude, and duration of astrocytic Ca2+ transients
in brain slices of animals trained to self-administer cocaine
and saline controls. The wavelet ridgewalking method identified
astrocytic Ca2+ transients as tending to be significantly longer
than those observed in neuronal recordings. The dF/F0 methods
found mean astrocytic calcium transients to have durations
that are of similar, larger, or smaller magnitude than those
found for neuronal transients, depending on the method
(Table 2). All methods identified significant differences in event
duration between the saline and cocaine self-administration
populations when all events from each condition were pooled,
and most methods converged on the same qualitative conclusion:
cocaine self-administration leads to shorter calcium transients
in astrocytes. The single exception was the F0 smooth method
used with a trace SD threshold which found that cocaine
exposure was associated with an increase in duration of astrocytic
transients. All significant differences for event duration between
the saline and cocaine groups vanished across all methods
when the populations of ROI mean durations or slice mean
durations were compared.

Three dF/F0 thresholding methods identified differences in
frequency between the total population of ROIs converging on an
increase in event frequency following cocaine self-administration
(Table 2). The other nine methods failed to detect any
significant frequency differences. With regard to event amplitude,
most dF/F0 thresholding methods found significant differences
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FIGURE 8 | Event detection methods find highly variable raster probabilities for astrocytic recordings. (A) F0 initial thresholding methods produce largely unstable
results with varying raster probabilities, as do F0 minimal thresholding methods in (B). (C) F0 smooth produces stable probabilities, but those probabilities vary
between thresholds. (D) Wavelet ridgewalking identifies stable raster probability that is slightly higher than found for neurons. Long duration of astrocytic events
makes them more likely to be cut off at the beginning and end of time series leading to a drop in probability of detection by wavelet ridgewalking. (E) A 1-min trace of
high SNR astrocyte fluorescence trace with example rasters beneath. Even in these high SNR conditions, the F0 thresholding methods introduce fragments. The F0

smooth method, which performed well identifying calcium transients in high SNR neuronal traces, does worse with astrocytic traces as seen in this example,
probably due to their relatively slower kinetics. (F) A 1-min segment of a low SNR astrocytic trace taken from above the calculated rasters. Once again, in low SNR
conditions, the F0 thresholding methods introduce multiple fragments.

between saline and cocaine self-administration condition at
the level of all events with some of the identified differences
contradicting qualitatively (Table 2). Only two methods found
significant differences in amplitude at the level of ROI mean
values: wavelet ridgewalking, which reported a significant
decrease in event amplitude in the cocaine group, and F0 initial
thresholded by baseline z-score, which reported a significant
increase in amplitude.

Implications for the Interpretation of
Network Structure
One of the advantages of Ca2+ imaging is that it allows
researchers to probe relationships between multiple cells
comprising a local network. We analyzed the impact of
event detection methods on neuronal network structure by
calculating the global clustering coefficient, assortativity, density,
modularity, characteristic path length, and network efficiency
for networks found in our slice recordings. Table 3 contains
the summary results for neuronal networks. While the majority
of methods found no significant differences for any of these
measures, the mean values varied widely across methods. For
example, network modularity, a measure of connection density
within versus outside of detected modules, was qualitatively
different between F0 minimal (baseline SD) and F0 initial
(baseline SD) with the former detecting a significant increase

and the latter reporting a decrease in modularity associated with
cocaine self-administration.

We also carried out the analysis of network measures for
astrocytic networks. The results are summarized in Table 4.
As with neurons, the mean values of the network measures
varied by method, and most methods did not find any
significant differences between the two populations. Looking
at the characteristic path length and global efficiency, network
measures with the strongest trends toward significance, we
found that the directionality of the relationship between the two
populations is opposite for the wavelet ridgewalking algorithm
and dF/F0 thresholding methods: wavelet ridgewalking reported
increased characteristic path length and thus decreased global
network efficiency associated with cocaine self-administration,
while all the F0 minimal methods and the F0 initial (z-test
thresholds) methods found the opposite.

Comparing across methods, we found significant differences
between dF/F0 methods and wavelet ridgewalking as well as
among the dF/F0 methods themselves for characteristic path
length. In the cocaine condition, all significant differences
were found to be between the wavelet ridgewalking algorithm
and dF/F0 thresholding methods. For network efficiency, there
were very few significant differences found in the saline
condition, but the wavelet ridgewalking results for the cocaine
self-administration population were found to be significantly
different from all but one of the dF/F0 methods analyzed
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TABLE 2 | Mean values of astrocytic calcium event measures found using each of the tested methods.

Wavelet F0 Smooth F0 Minimal F0 Initial

1 2 3 1 2 3 4 1 2 3 4

S C S C S C S C S C S C S C S C S C S C S C S C

DurationAll 111.14 105.3** 2.16 1.88**** 6.4 6.6**** 1.18 1.18**** 3.82 3.48**** 2.67 2.45**** 2.96 2.87**** 1.48 1.45** 6.36 6.07**** 3.07 2.98** 3.33 3.12**** 1.48 1.45**

DurationROI 62.11 57.61 3.31 2.8 9.65 9.03 1.53 1.46 10.18 8.8 8.3 7.31 9.82 6.96 8.74 7.61 7.5 6 8.46 6.98 5.94 5.34 8.74 7.61

DurationSlice 101.74 77.62 2.56 1.97 8.11 6.64 1.31 1.18 4.88 3.34 3.19 2.31 4.15 2.88 2.13 1.48 7.06 5.36 4.02 2.76 4.19 3.05 2.13 1.48

FrequencyROI 5.85 5.66 75.77 86.84 183.41 186.13 104.77 107.51 151.81 175**** 79.56 83.55 291 316**** 102.01 101.19 35.27 38.32** 16.3 17.1 212.92 224.8 102.01 101.19

FrequencySlice 6.29 5.28 86.48 89.53 178.49 190.48 99.12 109.91 162.23 179.67 84.19 85.32 291.46 328.72 94.84 104.69 35.46 33.99 14.48 16.28 217.44 232.08 94.84 104.69

AmplitudeAll 1.83 1.47 37.79 38.9**** 17.21 20.7**** 5.13 -17**** 18.77 33.4**** 15.76 27.7**** 1.67 16.2**** 1.21 6.9**** 3.86 4.1**** 5.97 7.8**** -1.59 -0.82**** -0.35 -0.13

AmplitudeROI 1.5 1.29* 526.96 884 17.5 20.55 19.03 -48.73 30.55 50.58 67.44 66.96 2.63 14.28 -1.1 7.59 4.91 4.47 6.1 5.52 -0.89 -0.53* -0.07 0.01

AmplitudeSlice 1.62 1.31 34.34 39.76 16.46 20.92 8.67 -16.33 18.46 41.24 15.47 34.2 3.24 17.73 1.14 7.2 3.87 4.98 5.76 7.4 -1.67 -1.26 -0.41 -0.25

*p < 0.05; **p < 0.01; ***p < 0.001. Significant differences were determined by Mann–Whitney U test. Shaded cells with bolded values indicate significantly different saline/cocaine group pairs.

TABLE 3 | Neuron network measures found using each of the tested methods.

Wavelet F0 Smooth F0 Minimal F0 Initial

1 2 3 1 2 3 4 1 2 3 4

S C S C S C S C S C S C S C S C S C S C S C S C

Clustering 0.263 0.281 0.552 0.43 0.716 0.718 0.22 0.291 0.833 0.823 0.839 0.832 0.834 0.806 0.586 0.638 0.276 0.397 0.303 0.417 0.882 0.856 0.586 0.638

Assortativity 0.48 0.36 −0.09 0.151 0.364 0.471 −0.124 −0.006 0.048 0.196 −0.039 0.153 0.076 0.18 −0.211 −0.146 0.379 0.432 −0.134 0.173 −0.103 −0.046 −0.211 −0.146

Density 0.036 0.06 0.265 0.174 0.244 0.255 0.359 0.308 0.541 0.455 0.582 0.488 0.499 0.417 0.164 0.195 0.051 0.094 0.331 0.306 0.684 0.639 0.164 0.195

Modularity 0.599 0.523 0.355 0.416 0.383 0.347 0.446 0.369 0.09 0.16**** 0.047 0.106 0.103 0.185 0.306 0.318 0.739 0.58* 0.475 0.424 0.067 0.076 0.306 0.318

Path length 4.283 3.925 1.579 1.911 1.983 1.954 1.208 1.333 1.637 1.86 1.777 1.64 1.989 1.875 2.169 2.058 2.448 2.281 1.348 1.59 1.356 1.439 2.169 2.058

Efficiency 0.295 0.333 0.742 0.68 0.674 0.669 0.896 0.839 0.76 0.713 0.752 0.761 0.7 0.699 0.566 0.601 0.586 0.63 0.842 0.786 0.839 0.813 0.566 0.601

*p < 0.05; ****p < 0.0001. Significant differences were determined by Mann–Whitney U test. Shaded cells with bolded values indicate significantly different saline/cocaine group pairs.
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(data not shown). Thus, we found that predominant differences
for characteristic path length and global network efficiency
were between the wavelet ridgewalking method and the dF/F0
thresholding methods, which was the case for most of the
network measures analyzed. For both neurons and astrocytes, the
differences between wavelet ridgewalking and dF/F0 thresholding
method network measures were exacerbated in the cocaine self-
administration population (data not shown).

DISCUSSION

Imaging Method
Widefield fluorescence microscopy allows the simultaneous
visualization of fluorescence from multiple sources across a
large area. Superior temporal resolution of widefield microscopy
has benefits for the interpretation of relationships between
dynamic events, such as intracellular Ca2+ transients. However,
widefield imaging is vulnerable to contamination by signals from
neighboring areas within the field of view as well as by signals
originating both below and above the optical imaging plane.
While the development of robust automatic image segmentation
was not the goal of this study, we attempted to minimize
signal contamination by using a modified version of the ABLE
algorithm (Reynolds et al., 2017). In ABLE, the initial “seed” ROIs
are evolved through algorithmic iterations based on correlated
activity between neighboring pixels to produce final ROIs each
of which contains all the pixels whose fluorescence activity was
significantly similar. Fluorescence from a single pixel is allowed
to contribute to any number of ROIs such that, ultimately,
uncorrelated signal is excluded while distinct cells remain
detectable even in the presence of structural overlap. However,
it must also be borne in mind that when discrete domains are
capable of generating isolated signals within the soma of a single
cell, as is the case for astrocytic Ca2+ (Semyanov et al., 2020),
the ability of the ABLE algorithm to identify signal overlaps is
offset by failure to predict which of those overlaps belong to
discrete cells and whether fluorescence spreading through the
cell soma is identified as a single or multiple ROIs. This caveat,
however, was not explicitly tested in our study. In the context
of an automated analysis pipeline, this activity-based approach
lends some confidence that only active pixels are included within
the ROI outlines and is distinct from approaches that identify
ROIs based on thresholds or watershed transforms applied to
an average or maximal imaged field (Wong et al., 2010; Shen
et al., 2018) or based on secondary fluorescent markers (Wardill
et al., 2013). To further reduce potential signal contamination, we
removed the local, rather than global, neuropil signal from each
individual ROI as has been done in previous studies (Keemink
et al., 2018; Pnevmatikakis, 2019; Soltanian-Zadeh et al., 2019).
We did not seek to remove the commonly observed bleaching
effects from the recordings, although various methods for doing
so have been implemented by other groups (Balkenius et al., 2015;
Shkryl, 2020). Our results indicate that wavelet ridgewalking
outperformed all tested dF/F0 thresholding methods in terms of
faithfully identifying events within our ex vivo recording data,
even in the presence of bleaching.
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We observed considerable variability in SNR in our
recordings, both within and between the imaged fields. The
SNRs of our data were in many cases below SNRs achieved with
single-photon or multiphoton confocal systems (Weisenburger
et al., 2017; Song, 2019). Our results highlight the sensitivity
of the various event detection methods to variability in SNR
(e.g., Figures 3, 7). In general, we found that the performance
of the wavelet ridgewalking algorithm was on par with or better
than the dF/F0 approaches at high SNRs. At lower SNRs, the
dF/F0 thresholding methods tended to identify an increasing
number of spurious events, while the performance of the wavelet
ridgewalking algorithm remained stable.

dF/F0 Thresholding
Our results indicate that the definition of F0 as well as the choice
of event detection threshold has major impacts on dF/F0-based
analyses. For example, event frequency differed by as much as
50-fold across detection methods and by as much as 15-fold
between different choices of threshold applied with identical
definitions of F0 (Figure 7 and Table 1). Similarly, a broad
range of values were found across the analyses of event duration
and amplitude. Amplitude-based approaches such as F0 must
take special care to ensure faithful detection of fluorescence
fluctuations in part because all other measures are linked to
amplitude by definition. In our analyses, we applied the tested
methods to traces with unstable fluorescence baselines common
in widefield imaging, and our recordings were taken under
spontaneous firing conditions. It is possible that further pre-
or postprocessing may cause the event identification methods
tested to converge on a common set of events and thus produce
more similar activity feature results. We did not undertake any
preprocessing beyond local neuropil removal and undertook no
method-specific postprocessing.

In studies that monitor Ca2+ activity triggered by external
stimuli (e.g., electrical stimulation, drug application, and
behavioral events), normalization of a recorded trace to the
fluorescence signal immediately prior to stimulation (e.g.,
Ellefsen et al., 2014; Lock et al., 2015; Rahmati et al., 2016)
presents a reasonable solution for amplitude-based detection, but
this cannot be applied to spontaneous fluorescence since imaging
starts at an undetermined point with regard to cell activity profile.
Moreover, quantification of frequency and duration is less likely
to benefit from stimulus-based approaches because they do not
solve the problem of event fragmentation that our results indicate
are common to F0-based approaches.

In the presence of fluorophore bleaching, identifying a
single section of trace to serve as a baseline F0 is particularly
problematic. Among the event detection methods tested, we
found that F0 minimal and F0 initial methods had the greatest
tendency to introduce large fluctuations in the probability
of identifying an event at a given time throughout a trace.
These results are unsurprising since both methods assume that
fluorescence in a fixed segment of time represents the baseline
activity level of the entire trace. Theoretically, F0 minimal should
be superior to F0 initial as it aims to minimize the likelihood of
categorizing active sections of the trace and high-frequency noise

as baseline. This was confirmed by simulated data (Figures 4–
6). However, in practice, we found that F0 minimal also tended
to overidentify events and did not adequately account for
bleaching or low-frequency oscillations (e.g., Figure 7). Wavelet
ridgewalking analysis avoids these problems by identifying events
independent of trace baselines. F0 can thus be determined for
each transient individually subsequent to event identification.
The section of trace associated with each particular transient can
then be transformed into dF/F0 to provide a relative amplitude as
we have done for our dataset.

In the context of an automated algorithm, there is in
general no reason that an event amplitude threshold should
be the sole determinant of significant events. The disparity in
the performance of different detection methods on biological
and simulated traces exemplify this issue. There is a clear
distinction between high and low performance for these methods
across the spectrum of event widths and frequencies in our
simulated data. For example, F0 initial and F0 minimal both
performed well with simulated data. Within their respective high-
performance domains, both methods captured nearly all of the
pseudoneuronal events successfully with minimal introduction of
falsely identified events. However, despite the encouraging results
with the simulated datasets (within their high-performance
regimes), both the F0 initial and F0 minimal performed poorly
with traces extracted from biological data. We believe this to be
due to a combination of signal-to-noise variability in biological
but not simulated data as well as the nature of “noise” in the
two types of data. Thresholds that rely on standard deviation
from the mean are predicted to perform well when the noise
has a regular/stationary distribution such as white or Gaussian
distributed noise. When the background noise is non-stationary
and cannot be approximated by such a distribution, the methods
may fail for all traces, as shown in our results based on biological
data (e.g., Figures 2, 7, 8).

Wavelet Ridgewalking
Wavelet ridgewalking avoids both the problem of defining
F0 and the problem of threshold selection. In addition, we
found that it was resilient to fluctuations in signal-to-noise
ratio and bleaching effects. However, our results suggest that
the performance of wavelet ridgewalking algorithms may be
limited by the frequency of Ca2+ transients. For example, in
our simulation of pseudoneuronal events, performance of the
wavelet ridgewalking algorithm degraded abruptly when there
were more than 40 events (of any duration) in the modeled time
series (Figure 4Dii). We have not explored the extent to which
the problem persists across a range of time series lengths, as all
simulated time series were constructed to be the same length
as our recordings (3,001 frames). The possibility that wavelet
ridgewalking algorithm-based event detection methods may fail
when trying to image cells with very high frequencies of calcium
transients should be kept in mind.

Technically, the wavelet ridgewalking algorithm employs
thresholds as well. In our analyses, we removed ridges below
a 98% confidence threshold as determined by white noise
modeling. However, this determination is not simply based
on amplitude but rather represents a 98% confidence that a
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particular transient is not the product of white noise fluctuations
regardless of transient shape, amplitude, or duration. Better or
more thorough noise modeling may improve the performance of
wavelet analysis further, as it is possible that noise artifacts are
identified as significant events because they do not conform to
the white noise assumptions.

Other Event Identification Methods
There are, of course, many other event detection tools available
for Ca2+ imaging data, some of them also incorporating
automatic ROI detection (e.g., CALIMA: Radstake et al., 2019;
CaImAn: Giovannucci et al., 2019). Our intent was not to provide
an exhaustive comparison between all available tools, but to
highlight limitations associated with the use of classic dF/F0
approaches, particularly relative to the wavelet ridgewalking
algorithm as an alternative. We avoided library look-up methods
(e.g., FluoroSNNAP, Patel et al., 2015) in our comparisons
because they require foreknowledge of event shape, which
may limit method versatility when applied to morphologically
heterogeneous Ca2+ transients such as those displayed by
astrocytes. Other nuanced methods, such as CNMF (constrained
non-negative matrix factorization), are gaining popularity.
CNMF (Pnevmatikakis et al., 2016) identifies ROIs, demixes
overlapping ROI components, and denoises and deconvolves
neuronal spiking activity from fluorescent traces in one fell
swoop. CNMF is optimized for two-photon or light sheet
microscopy and often has poor performance when used with
more complicated background signals (Barbera et al., 2016),
such as present in our recordings. CNMF-E is designed for
microendoscopic data, which displays a more complicated profile
of background signals (Zhou et al., 2018). Both CNMF and
CNMF-E are optimized for the detection of neuronal signals,
and it is unclear how well these methods could be adapted for
analysis of astrocytic calcium transients. Nevertheless, CNMF-E
should be appropriate for the analysis of widefield imaging data,
and it may be interesting to evaluate its performance relative to
wavelet ridgewalking in the future. Even in the absence of testing
the breadth of extant event detection methods, our findings
indicate that approaches relying on dF/F0 thresholding must be
subject to rigorous testing to justify the choice of baseline and
event threshold.

Consequences for the Interpretation of
Experimental Data
Our data indicate that the choice of an event detection algorithm
has a substantial impact on the interpretation of experimental
data both quantitatively and qualitatively. Quantitatively, the
measured values of amplitude, frequency, and duration calculated
from the same set of ROIs and traces varied significantly between
methods even when similar baselines or detection thresholds
were used (Supplementary Tables 1–6). These differences could
lead to conflicting or even opposite conclusions. For example,
in our dataset, cocaine self-administration was found to either
suppress or increase the amplitude of neuronal Ca2+ transients
depending on which approach was chosen to analyze the data.
Examples of values trending in opposite direction between
saline and cocaine groups could also be found in the analyses

of event duration and frequency, although among significant
findings, all methods agreed that event duration increased and
event frequency decreased in neurons following cocaine self-
administration. The convergent findings of decreased frequency
are consistent with the reports that action potential firing is
reduced after cocaine self-administration (Peoples et al., 2007;
Mu et al., 2010). Combined with an increased Ca2+ event
amplitude, this finding could be interpreted to indicate an
elevated number of action potential bursts in the NAc MSNs
on the background of general neuronal hypoactivity. This
interpretation would have to be modified if cocaine-induced
decrease in amplitude was concluded based, for example, on the
data from several F0 initial methods (Table 1).

The results from imaging of astrocytes support our main
conclusion: The effect of any experimental manipulation on
Ca2+ fluorescence can only be ascertained with confidence if
the analytical method used faithfully interprets the underlying
signal. Automated analysis of astrocytic Ca2+ transients is further
complicated not only by substantial variability in event shape but
also by ambiguities with respect to spatial distribution within the
soma of a single cell. Astrocytic Ca2+ transients are commonly
observed in multiple discrete or overlapping microdomains
within a single cell (Khakh and McCarthy, 2015; Agarwal
et al., 2017; Verkhratsky and Nedergaard, 2018). Combined
with the possibility that astrocytic Ca2+ may propagate across
cellular subdomains, this poses significant analytic challenges
especially since the mechanisms regulating spatial constraints
on microdomain signals remain unknown. These considerations
additionally pose the problem of image segmentation in stark
relief. Activity-based methods of ROI identification, such as
the one utilized in our study, may be effective in isolating
microdomain signals but might not attribute them to single cells.
The problem is amplified by extensive branching of astrocytic
processes which may result in small “specks” of activity dispersed
throughout the imaged field, a particular challenge in widefield
microscopy experiments.

The ability to evaluate activity across multiple cells
simultaneously afforded by Ca2+ imaging presents an
opportunity to examine interactions within cellular networks.
We analyzed functional connectivity between the ROIs in
our recordings, meaning that we identified connections
between ROIs whose rasters were significantly correlated in
time. This generates networks of ROIs that are linked by
similarities in their activity patterns. However, our approach
does not establish effective (causal) or structural (physical)
connections between the imaged cells though these are also
important for network function. These could be calculated
using a lagged phi coefficient, mutual information, or other
measures of connectivity and further enhanced by differential
labeling and multichannel fluorescence recording (Garofalo
et al., 2009; Zhou et al., 2009; Rubinov and Sporns, 2010;
Timme and Lapish, 2018). We acknowledge that the power
of our slice network analyses may be limited by a relatively
small number of slices represented in the saline and cocaine
datasets. Ultimately, the disparities in network analysis results
that we found here could be traced to the disparities in
Ca2+ transient identification between the methods used, as
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all networks were formed based on pairwise comparison of
the rasters via the phi coefficient. Beyond discrepancies in the
identification of specific events, the introduction of any non-
random structure to rasters by a particular method such as
exhibited in Figures 2, 8 will artificially increase correlation
values between rasters, leading to differences in network
measures. Effective Ca2+ transient identification is, therefore, the
crux not only of fluorescent signal activity analyses but for any
functional network analysis as well.
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