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Simple Summary: Cancer is a complicated disease that has a significant characteristic of evading
cell death (apoptosis). The induction of apoptosis in cancerous cells seems a promising procedure
to use as a cancer treatment. In the family of the tumor necrosis factor (TNF) proteins, there are
some ligands with the capability to induce apoptosis. Several recombinant TNF apoptosis-inducing
ligands have been designed over the years, and their characteristics have been improved. This review
provides an overview of the studies done in different stages of the TNF apoptosis-inducing ligands as
cancer treatments and the strategies to surpass their natural limitations to improve their effectiveness.

Abstract: Cancer is a complex disease with apoptosis evasion as one of its hallmarks; therefore,
apoptosis induction in transformed cells seems a promising approach as a cancer treatment. TNF
apoptosis-inducing ligands, which are naturally present in the body and possess tumoricidal activity,
are attractive candidates. The most studied proteins are TNF-α, FasL, and TNF-related apoptosis-
inducing ligand (TRAIL). Over the years, different recombinant TNF family-derived apoptosis-
inducing ligands and agonists have been designed. Their stability, specificity, and half-life have been
improved because most of the TNF ligands have the disadvantages of having a short half-life and
affinity to more than one receptor. Here, we review the outlook on apoptosis-inducing ligands as
cancer treatments in diverse preclinical and clinical stages and summarize strategies of overcoming
their natural limitations to improve their effectiveness.

Keywords: cancer; apoptosis; TNF family; death receptors

1. Introduction

Cancer is one of the leading causes of death globally; it is a complex disease that in-
volves bypassing growth suppressors, angiogenesis, metastasis, and apoptosis evasion [1].
The most common treatment courses include chemotherapy, surgery, and radiation [2],
which, in many cases, are not effective and can cause multisystemic toxicity. Therefore,
the need to improve cancer treatments necessitates the development of more specific and
sophisticated treatments that can target cancer cells with high selectivity without harming
the healthy ones.

Apoptosis evasion is one of the main hallmarks of cancer; its dysregulation is related to
overexpression of antiapoptotic genes or survival signals and downregulation/mutation of
proapoptotic genes [3]. Therefore, overcoming cell death resistance by triggering the apop-
totic pathways has been an area of interest in the development of cancer treatments. The
study of apoptotic mechanisms has brought to the spotlight a subgroup of the apoptosis-
inducing ligands. Those ligands belong to the tumor necrosis factor (TNF) family [4];
members of this family are naturally expressed by the immune system and possess tumori-
cidal activity [5]. These ligands can potentially be used as a cancer treatment.

This review provides an overview of the TNF family of receptors and their apoptosis-
inducing ligands as cancer treatments. Additionally, we describe several engineered death
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receptor agonists and how gene therapy may improve the apoptosis-inducing ligands’
efficacy.

2. Apoptosis

Apoptosis is a regulated cell death process that keeps the cell population balanced
in a living organism [6]. It is a mechanism that the immune system uses to prevent the
accumulation of damaged or infected cells. Both the intrinsic pathway, also known as
the mitochondria-dependent apoptosis pathway, and the extrinsic pathway can induce
apoptosis (Figure 1) [6–8].
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Figure 1. Simplified extrinsic signaling pathway from TNF-R1, Fas, DR4, and DR5.

The intrinsic pathway is activated when the outer membrane of the mitochondria is
permeabilized, releasing cytochrome c. Then, it binds to the apoptotic protease activating
factor 1 (APAF1), which leads to the formation of the apoptosome. The apoptosome recruits
caspase-9, which activates caspases-3 and -7, leading to cell death. Besides cytochrome
c, the mitochondria also release the second mitochondria-derived activator of caspase
(SMAC/DIABLO) and the serine protease HtrA2/Omi. These factors impede the inhibitor
of apoptosis proteins (IAPs), boosting the induction of apoptosis [6,9]. The mitochondrial
outer membrane permeabilization (MOMP) may occur because of different factors such as
the lack of growth factors, cytokines, or hormones; DNA damage; endoplasmic reticulum
(ER) stress; toxins; radiation; and viruses [10].

The extrinsic pathway’s activation requires the stimulation of death receptors (DRs);
these are transmembrane receptors that belong to the TNF receptor superfamily [8]. They
have a death domain (DD) that has a six-helical bundle fold as a structural characteristic [11];
this intracellular domain transfers the signal from the extracellular domain to the cytosol,
starting the recruitment of death-inducing signaling complex (DISC) [12]. This process
results in the autoactivation of procaspase-8 to caspase-8, leading to the activation of
caspases-3 and -7 and resulting in apoptosis [6,13].

Independently of which pathway is activated, both lead to the activation of caspases-3,
-6, and -7, which induce apoptosis [14]. Several members of the TNF superfamily were
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brought to the spotlight as cancer treatments because of their capability of specific apoptosis
induction in transformed cells [15].

Even though the DRs are well known for their apoptosis induction characteristics,
they may also trigger necroptosis. A regulated necrosis process mediated by the RIP kinase
family members can be induced, in some cell lines, under certain circumstances, such as
the use of caspase inhibitors [16], downregulation of cIAPs [17], and acidic extracellular
pH [18]. In this review, we will focus on apoptosis.

2.1. Apoptosis-Inducing Ligands and Their Receptors

In recent years, members of the TNF superfamily of cytokines, TNF-α, Fas ligand
(FasL), and TNF-related apoptosis-inducing ligand (TRAIL), have been studied for their
apoptosis induction capability when bound to their receptors that contain a DD [19]. The
most studied DRs from the TNF superfamily (TNFSFR) (Scheme 1) are TNF-R1 (DR1),
CD95 (DR2, Fas), TNF-related apoptosis-inducing ligand receptor 1 (TRAIL-R1, DR4), and
TRAIL-R2 (DR5) [20].
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Scheme 1. Tumor necrosis factor (TNF) apoptosis-inducing ligands and their receptors.

The death receptors are type I transmembrane proteins with cysteine-rich extracellular
domains. The DRs have been detected in a wide variety of healthy [17,18] (Figure 2) and
cancerous tissues either by assessing protein expression or RNA expression. It was found
that in some cases of clear cell renal cell carcinoma (ccRCC), TNF-R1 is upregulated [19];
however, in ovarian cancer, the expression levels were similar to the ones in healthy
tissues [20].
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Figure 2. Summary of the consensus normalized expression (NX) level of each death receptor in
healthy tissue. Information based on The Human Protein Atlas (https://www.proteinatlas.org,
accessed on 10th March 2021), which combines the data of three transcriptomic datasheets (HPA,
GTEx, and FANTOM5).

The analysis of Fas expression revealed its downregulation in some colon carcino-
mas [21], lung carcinomas [22], and gynecological cancer tissues [23,24]. At the same
time, DR4 and DR5 were found to be upregulated in pancreatic [25], colorectal [26], and
cervical [24] cancers. It is important to remark that level of receptor expression can vary
among patients with the same type of cancer (Figure 3), as Kawasaki et al. [27] and
Hwang et al. [28] found; those differences can be helpful in developing biomarkers of
resistance.

Interestingly, the TNF apoptosis-inducing ligands also bind to decoy receptors (DcRs).
These receptors are not able to trigger the apoptosis cascade, but they can activate survival
and migration signaling [29,30]; the identified DcRs are DcR1 (also known as TRAIL-R3 or
TRID), DcR2 (TRAIL-R4 or TRUNDD), DcR3, and osteoprotegerin (OPG) [31]. DcR1 and
DcR2 are membrane proteins, while DcR3 and OPG are soluble receptors [32].

TNF-α, FasL, and TRAIL are expressed mainly in immune cells, including granulo-
cytes, monocytes, T cells, B cells, dendritic cells, and NK cells [33]. Most apoptosis-inducing
ligands (e.g., TNF-α, FasL, and TRAIL) are transmembrane proteins that can be proteolyti-
cally cleaved and released in a soluble form. Both forms are present in noncovalent trimeric
forms [34].

https://www.proteinatlas.org
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March 2021) from the TCGA dataset.

2.1.1. Tumor Necrosis Factor-α (TNF-α)

TNF-α is a type II transmembrane protein with different biological roles: mediation
of the inflammatory response, regulation of immune cells, and cytotoxicity. TNF-α binds
to tumor necrosis factor receptor 1 (TNF-R1), also known as death receptor 1 (DR1), and
tumor necrosis factor receptor 2 (TNF-R2); both receptors are involved in prosurvival
signaling and proliferation by activating the NF-kB pathway. However, only TNF-R1 has a
death domain that can trigger apoptosis through caspase cascade activation under certain
conditions, such as the absence of the IAPs [35,36]. TNF-R1 can be found in basically all
the cell types (Figure 3); in contrast, TNF-R2 is mainly expressed in immune cells and
endothelial cells [37,38].

TNF-R1, TNF- R2, and TNF-α can be cleaved by the metalloprotease TNF-α converting
enzyme (TACE or ADAM-17), resulting in the soluble forms of TNF-α (sTNF-α), sTNR-
R1, and sTNR-R2 [39–42]; interestingly, sTNF-α can activate TNF-R1, but it is inferior in
activating TNF-R2 [5].

Recombinant TNF-α has been studied as a cancer treatment. Unfortunately, in clinical
trials, it showed systemic toxicity when administrated intravenously. Therefore, treatment
directed to a specific organ or an area of the body seems to be a better option [43].

2.1.2. Fas Ligand (FasL)

FasL (CD95L) is a type II transmembrane protein expressed in diverse immune cells,
like B, T, and NK cells [44]. It can interact with DcR3 and Fas receptors [45]. DcR3 is a
soluble secreted receptor from the TNF superfamily; when FasL binds to DcR3, it inhibits
FasL/Fas apoptotic activity, acting thus as a “decoy” [46]. However, when FasL binds to
Fas (also known as CD95, DR2), a type I transmembrane receptor, it starts the clustering of
the receptors and recruits the Fas-associated death domain (FADD)/caspase-8 complex,
leading to apoptosis [20,47]. Fas is present in a wide variety of cells (Figure 2).

Under normal circumstances, DcR3 is expressed in the brain, gastrointestinal tract,
ovary, kidney, and urinary bladder, but it is difficult to detect it in serum [48,49]. However,
in inflammatory diseases and cancer (e.g., breast cancer [50], renal cell carcinoma [51], and
pancreatic head carcinoma [52]), overexpression of DcR3 has been identified.

A soluble form of FasL (sFasL) can be produced either by proteolytic cleavage or
alternative splicing [44]. However, sFasL is not capable of activating Fas as the membrane-
bound FasL does because it is not able to induce DISC formation; instead, it can activate
motility signaling, and sFasL can possibly compete with FasL for receptor binding [5,44,53].

https://www.proteinatlas.org
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So far, recombinant FasL (rFasL) has not reached clinical trials because of the liver
toxicity induced by the systemic administration of rFasL in mice [54,55].

2.1.3. TNF-Related Apoptosis-Inducing Ligand (TRAIL)

TRAIL is a homotrimeric transmembrane protein type II. TRAIL is expressed on the
surface of T cells, macrophages, and NK cells; its principal role is to modulate the immune
response [56]. TRAIL binds to five receptors, three decoys (DcR1, DcR2, and OPG) and
two death receptors (DR 4 and 5). DcR1, also known as TRAIL-R3, is a GPI-anchored
protein lacking the intracellular and transmembrane domains [57], while DcR2 (TRAIL-R4)
has an intracellular portion containing a truncated DD [58]; both receptors are unable to
induce apoptosis after TRAIL binding. However, DcR2 activation by TRAIL triggers the
NF-kB pathway [29,58]. Osteoprotegerin (OPG) is a soluble receptor that can be released
by several types of tissues, including the cardiovascular system, gastrointestinal tract,
lungs, kidney, bones, and immune cells [59,60]. OPG binds to TRAIL and many ligands,
including another member of the TNF family, the receptor activator of nuclear factor-kB
ligand (RANKL) [61]. Although DR4 and DR5 share 60% homology and both can trigger
apoptosis [62], it has come to light that DR5 can trigger prosurvival, proliferative, and
migration signaling in some cancer cell lines when they are treated with sTRAIL [63,64].

TRAIL is a homotrimeric protein; a zinc ion stabilizes the trimeric conformation in the
Cys230 residue [65]. This conformation is essential for receptor recognition and apoptosis
induction [66]. When TRAIL binds to the DRs, it induces receptor trimerization, which
triggers the extrinsic apoptotic pathway [67,68]. TRAIL is known for apoptosis induction in
transformed cells while sparing the nontransformed ones. This characteristic has brought
TRAIL to the clinic as a cancer treatment [69].

Dulanermin is a recombinant human soluble TRAIL (sTRAIL, amino acids 114–281)
protein that was tested in several clinical trials alone or in combination with chemotherapy.
In phase I, it was tested as a treatment for advanced cancer [70] and metastatic colorectal
cancer [71], where dulanermin was declared safe. In phase II, dulanermin was assessed
as treatment of non-small-cell lung cancer (NSCLC) in combination with paclitaxel and
carboplatin (PC) with or without bevacizumab (PCB), where dulanermin did not improve
the efficacy of the treatment [72]. Later, in a phase III clinical trial, dulanermin was tested
in combination with vinorelbine and cisplatin in the same type of cancer. There was an
improvement in progression-free survival but not overall survival in the patients [73]. It
is thought that the limited efficacy is related to the short half-life of dulanermin (around
1 h) [70].

A circular recombinant mutant of human TRAIL known as circularly permuted TRAIL
(CPT) was developed; it consists of the N-terminal amino acids (121–135) fused with a
flexible linker to the C-terminal amino acids (135–281) of TRAIL. It has a longer half-
life compared to dulanermin. CPT has been tested in patients (phases Ib and II) with
relapsed or refractory multiple myeloma (RRMM), where in general it was well tolerated,
albeit elevation of liver enzymes was reported [74,75]. In RRMM, CPT was also tested
in combination with thalidomide and dexamethasone (CPT + TD); it showed a median
progression-free survival of 6.7 months in the CPT + TD group in comparison with the
3.1 months in the TD group [76].

3. Improving Receptor Specificity of the Apoptosis-Inducing Ligands

As mentioned before, the apoptosis-inducing ligands from the TNF superfamily
interact with more than one receptor. This promiscuous interaction, in some cases, can
block the activation of the apoptotic pathway [77], as in the case of TNF-α that induces
apoptosis via TNF-R1 and TNF-R2 and can lead to tumor progression [40,78], and TRAIL
also binds to decoy receptors (DcR1 and DcR2) that do not induce apoptosis [79]. Therefore,
many TNF-α and TRAIL mutants have been engineered (Table 1) by mutating a few amino
acids, thus improving the affinity towards one of their death receptors [80]. These proteins
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have been investigated in preclinical studies showing promising results. However, their
efficacy in clinical trials remains to be demonstrated.

Table 1. TNF-α and TRAIL mutants.

Based on Protein Format Modification Affinity Ref.

TNF-α

Mutant 471 1-7del + P8R/S9K/D10R [81]
mutant R32w R32w TNF-R1 [82]
Mutant M3 1-7del + S52I, Y56F TNF-R1 [83]

RGD-V29 includes cell adhesive sequence (R4,
G5, D6) + R29V TNF-R1 [84]

rmhTNF 1-7del + P8R/S9K/D10R/L157F [85]

TRAIL

TRAIL.R1-5 TRAIL
(aa 95–281)

Q193S/N199 V/K201R/Y213
W/S215N DR4 [86]

4c7 TRAIL
(aa 114–281)

G131R/R149I/S159R/
N199R/K201H/S215D DR4 [87]

rTRAIL DR4 S159R DR4 [88]
FLAG-Apo2L.DR5–8

Trp-213;
TRAIL

(aa 96–281)
Y189 N/R191 K/Q193R/H264R/

I266L/D267Q DR5 [89]

DHER TRAIL
(aa 114–281) D269H and E195R DR5 [90]

DR5-A TRAIL
(aa 114–281)

Y189 N/R191 K/Q193R/H264R/
I266L/D267Q/D269H DR5 [91]

DR5-B TRAIL
(aa 114–281)

Y189 N/R191 K/Q193R/H264R/
I266L/D269H DR5 [91]

TRAIL-Mu3 TRAIL
(aa 114–281)

aa 114–121 (VRERGPQR) were
replaced by RRRRRRRR DR4 and DR5 [92]

3.1. DR-Targeting Antibodies

The study of antibody-mediated therapies to treat cancer, where monoclonal antibod-
ies (mAbs) are designed to target a specific antigen [93], such as the death receptors [94,95],
has been going on for years. A well-designed mAbs can have high specificity, fewer adverse
effects than apoptosis-inducing ligands, and a half-life that can last weeks [95].

Although antibody targeting of TNF-R1 as cancer therapy seems promising due to its
proinflammatory signaling [96], diverse TNF-R1 antagonist antibodies (e.g., Atrosab) have
been designed as treatment of rheumatoid arthritis (RA) and multiple sclerosis, among
other autoimmune diseases [97,98]. Therefore, TNF blockers have been used to ameliorate
the immune-related adverse events in patients undergoing cancer treatment with immune
checkpoint inhibitors (ICIs) [99]. In patients with melanoma (phase Ib), it was found that
the TNF inhibitors (infliximab or certolizumab) can boost the antitumor effect of ICIs
(ipilimumab and nivolumab) [100].

A monoclonal antibody against murine Fas developed in the early 1990s showed
liver toxicity in mice after intraperitoneal administration [101]. Later, HFE7A, a mouse
anti-human Fas mAb, was designed to induce apoptosis in lymphocytes without showing
liver toxicity [102]. HFE7A was able to ameliorate the symptoms of lymphadenopathy in
mice by inducing apoptosis in T cells. Moreover, it induced apoptosis in synovial cells
from patients with rheumatoid arthritis [103]. However, the worrisome immunogenicity
of HFE7A led to the development of humanized antibody designs with improvements in
pharmacokinetics and lower immunogenicity [93].

Many DR4- and DR5-targeting antibodies have been designed for cancer treatment.
Mapatumumab (HGS-ETR1) is a fully human agonist monoclonal antibody (mAb) that
binds with high affinity to DR4 [104]. This monoclonal antibody was tested in several clini-
cal trials alone or with chemotherapy, showing that it was well tolerated [105]. However,
there was no response in advanced solid tumors [106], non-small-cell lung carcinoma [107],
and hepatocellular carcinoma [108].
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Of several monoclonal antibodies designed for targeting DR5, only five reached
clinical trials: conatumumab [109–113], lexatumumab [114,115], tigatuzumab [116–118],
drozitumab [119,120], and LBY135 [121]; however, none of them reached phase III clinical
trials. These antibodies showed a prolonged half-life in serum. Still, they failed to show
an antitumor effect, which may be related to their inability to induce the oligomerization
of death receptors [45]. A new generation of DR-targeting antibodies has been designed
to improve bioactivity, e.g., the bispecific antibody RG7386/RO6874813 that targets the
fibroblast-activation protein (FAP) and DR5 [122]. This FAP-DR5 antibody was recently
tested in a phase I study in patients with advanced or metastatic tumors (NCT02558140);
the results have not been published yet. Another example is the hexabodies, engineered
Fc fragments that boost IgG hexamers’ formation upon binding to the membrane-bound
antigen [123]. HexaBody-DR5/DR5 (GEN1029) is a mixture of two noncompeting DR5
antibodies with a hexamerization-enhancing mutation [124]; this antibody is being tested
in a phase I/II trial in patients with solid tumors (NTC03576131).

3.2. Trimer Conformation Plays a Crucial Role in Receptor Activation

As mentioned previously, the TNF apoptosis-inducing ligands are present as trimeric
transmembrane proteins that can be cleaved, resulting in soluble proteins [34]. These pro-
teins can interact with their respective receptors but sometimes cannot activate them [125],
as in the case of sFasL. Studies have shown that the re-enforcement or improvement of
the trimeric conformation improves the soluble protein’s activity [125]; the most com-
mon approaches use leucine zippers, His-tagged proteins, and covalent trimerization
domains [125].

The activation of Fas by sFasL requires the oligomerization of sFasL [126]; with
this in mind, APO010 (MegaFasL) was designed. APO010 is a hexameric fusion protein
created by the fusion of the collagen domain adiponectin to two FasL extracellular domain
trimers [127]. This fusion protein has reached clinical trials (NCT00437736); the results
have not been published [128].

In the case of TRAIL, different approaches have been followed to help stabilize the
trimer conformation, from using a fused leucine zipper motif, the N-terminal of sTRAIL (LZ-
TRAIL) [129], to using a FLAG-tag that also helps in TRAIL purification [130]. Although
these TRAIL-tagged forms have stable trimeric conformations, they can form aggregates
that can induce toxicity to healthy human cells [131,132]. Another option is to stabilize the
trimeric conformation by covalent linkage of the monomers, creating a single-chain TRAIL
(scTRAIL) protein conferring an increase in activity and decrease in aggregates [133].

3.3. Fusion Proteins Improve Receptor Activation and Half-Life

Fusion proteins have been used to improve the activity of the soluble form of the
apoptosis-inducing ligands. For years, it has been known that soluble ligands have a
binding activity differing from that of membrane-bound ligands [134]. As described
previously, sFasL barely activates Fas [126], and sTRAIL can efficiently activate DR4 but
is not very efficient in DR5 activation [135]. Research has shown that genetically fusing
the soluble form of apoptosis-inducing ligands to Fc-domains of antibodies or single-chain
variable fragments (scFv) in a fusion protein overcomes the lack of activity [133,134].

Fusion proteins are molecules with multifunctional properties depending on the
moieties that conform to them [136]. A common approach is to fuse the apoptosis-inducing
ligands to an scFv. The scFv is a small fusion protein that contains the variable region of
heavy (VH) and light (VL) of the immunoglobulin; these two regions are bonded together
by a small and flexible linker [137]. This engineered antibody keeps the full antigen-
binding capacity, making it useful for cancer therapy because it can target specific antigens
expressed in transformed cells [138].
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3.3.1. TNF-α

Several fusion proteins containing TNF-α have been designed as a cancer treatment
(Table 2). A fusion protein composed of an scFv antibody from the high-molecular-weight
melanoma-associated glycoprotein gp240 (ScFvMEL) and TNF-α known as scFvMEL/TNF
was tested in murine models to assess the therapeutic effect, toxicity, and pharmacokinet-
ics [139]. The results showed a therapeutic effect at a dose of 2.5 mg/kg in athymic mice
with melanoma xenograft tumors; the maximum tolerated dose (MTD) was 4 mg/kg, and
the terminal-phase half-life was 17.6 h after IV administration [139].

Table 2. TNF-α fusion proteins.

Name Fusion Domain Format Ref.

anti-FAP-TNF FAP-positive tumor stroma humanized anti-FAP Fab + TNF [140]
sFv23/TNF HER2/neu scFv23 + TNF [141]

MFE-23:TNF-α carcinoembryonic antigen (CEA) scFvMFe-23 + TNF [142]

IL-12-L19-TNF-α T-cell-stimulating factor and scFv (L19)
against the EDB domain of fibronectin

Triple fusion protein: IL-12 + scFvL19 +
TNF-α [143]

scFvMEL/TNF gp240 antigen on human melanoma cells scFvMEL + TNF-α [139,144]
L19-TNF * EDB domain of fibronectin hmAb L19 + TNF-α [145,146]

* L19-TNF is in clinical trials.

Another TNF-α fusion protein is the IL-12-L19-TNFα a triple fusion protein containing
interleukin-12 (IL-12), an antibody fragment specific to fibronectin (L19) extra-domain
B, and TNF-α. It was tested in vitro, where it showed cytotoxic activity in murine L-M
fibroblast [143]. However, when tested in mice for biodistribution assessment, it was found
that the triple fusion protein was rapidly cleared from kidneys and liver, thus failing to
localize the tumor and showing no activity whatsoever. Its lack of effectiveness is related
to the large size of the protein (340 kDa), which affects its biodistribution [143]. In the same
study, the fusion protein L19-TNFα was tested, showing a better tumor uptake than the
triple fusion protein.

The fusion protein L19-TNFα was designed for localized administration and reached
clinical trials. L19 has an affinity for the EB-D domain of fibronectin, which is considered a
marker of angiogenesis in cancer patients [147]. It was tested in phase I/II clinical trials as
monotherapy for advanced solid cancer patients, where it showed its safety; however, it
did not show an objective tumor response [145]. Later, the fusion protein safety was tested
in combination with melphalan in isolated limb perfusions (ILP) in extremity melanoma
patients, showing promising results [146].

3.3.2. FasL

Although membrane-bound FasL can induce apoptosis, sFasL lacks the apoptotic
activity, which can be regained by fusing sFasL with an scFv. Different FasL fusion proteins
have been designed to improve FasL apoptotic activity. Those proteins (Table 3) have been
tested in preclinical studies showing promising results; for instance, the fusion protein sc40-
FasL was tested against tumor stroma in mice by intravenous administration, showing no
signs of systemic toxicity and preventing the growth of FAP-positive cells [148]. Moreover,
scFvRit:sFasL was studied as a treatment for B-cell leukemia. It triggered CD20 and Fas
apoptotic signaling in malignant B cells in samples from patients without showing systemic
toxicity in mice [149].
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Table 3. FasL fusion proteins.

Name Fusion Domain Format Ref.

sc40-FasL scFv against fibroblast activation protein (FAP) CD152 + FasL [148]
scFvCD7:sFasL scFv against CD7 (T-cell leukemia-associated antigen) scFv40 + FasL [150]
scFvRit:sFasL scFv against CD20 (Rituximab) scFvCD7 + sFasL [149]
CTLA-4-FasL Extracellular domain of receptor CTLA4 (B/) [151]

cc49scFv-FasLext scFv against human tumor-associated glycoprotein (TAG-72) scFvRituximab + sFasL [152]

3.3.3. TRAIL

The use of engineered antibodies in the format of an scFv is an explored approach to
create TRAIL fusion proteins with high stability and the capacity to activate the apoptotic
pathway [45]. The fusion of sTRAIL (20 kDa) with an scFv (30 kDa) helps to overcome the
short half-life of sTRAIL because the molecular weight of the homotrimeric scFv:sTRAIL
fusion protein, around 150 kDa [134,153], decreases the renal clearance and increases the
time in the circulation. TRAIL has been linked to different scFvs and antibodies (Table 4)
over the years. Most of the fusion proteins are in preclinical studies, like scFv-scTRAIL
and CD19-sTRAIL. scFv-scTRAIL is a fusion protein composed of an scFv against the
extracellular domain of ErbB2 genetically fused to three TRAIL protomers expressed as a
single polypeptide chain (scTRAIL). This fusion protein showed, in vivo, an increase in
the half-life and a higher apoptotic activity when compared with scTRAIL [154]. CD19L-
sTRAIL is a fusion protein that contains the ligand of the human CD19 receptor (CD19L)
genetically fused to sTRAIL. CD19 is a receptor expressed in B-cell precursor acute lym-
phoblastic leukemia. This protein was well tolerated in mice at doses between 32 fmol/kg
and 3.2 pmol/kg; it also showed apoptotic activity in C19+ xenograft mouse models at
doses in the fmol/kg range [155]. The TRAIL fusion proteins mentioned showed potential
as cancer treatments.

Table 4. TRAIL fusion proteins.

Name Target Antigen Combination TRAIL Format Ref.

scFvC54:sTRAIL EGP2 - sTRAIL [156]
scFv425:sTRAIL EGFR Iressa sTRAIL [157]

scFv425:sTRAILmR1-5 EGFR Cisplatin, valproic acid DR4-specific sTRAIL mutant [158]

scFv-scTRAIL ErbB2 - three sTRAIL monomers
(aa 95–281) [154]

Anti-MCSP:TRAIL MCSP Rimcazole sTRAIL [159]
scFv:G28-TRAIL CD40 - TNC-TRAIL (95–281); [160]

scFv:CD70-TRAIL
variants CD27 -

TNC-sTRAIL monomer (aa
99–281).

wt, DR4, and DR5-specific
[161]

scFvM58-sTRAIL MRP3 - sTRAIL [162]

CD19L-sTRAIL CD19 Radiation sTRAIL
(aa 114–281) [163]

scFv62-TRAIL Kv10.1 Doxorubicin Full-length TRAIL [164]

ss-TR3 Mesothelin - Covalent linked-TRAIL trimer
(Monomer aa 91–281) [165]

ABBV-621 Human IgG1-Fc

Venetoclax (DLBCL,
AML only), FOLFIRI +

bevacizumab
(KRAS-mutant CRC)

scTRAIL-RBD NCT03082209

TCN, trimerization domain; DLBCL, diffuse large B-cell lymphoma; AML, acute myeloid leukemia; CRC, colorectal cancer; RBD, receptor-
binding domain.

Another TRAIL fusion protein in clinical trials is ABBV-621. It is now in phase I study
as a therapy for patients with previously treated solid tumors and hematologic malig-
nancies (NCT03082209). ABBV-621 is a fusion protein that contains an immunoglobulin
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G1 (IgG1)-fragment crystallizable region (Fc) portion fused to a single chain trimer of
TRAIL subunits. This fusion protein was designed to maximize the clustering of TRAIL
receptors [94,166].

4. Gene Therapy

Gene therapy may deliver proapoptotic genes to express these proteins to induce
cell apoptosis [167,168]. The gene delivery can be through viral and nonviral vectors.
The viral vectors possess the natural advantage of gene delivery into a wide range of
host cells, promoting high transgene expression levels. The vectors can be genetically
modified to alter their cell tropism, modify or remove the ability to replicate, and deliver a
transgene with therapeutic properties [80,169–171]. Moreover, the transgene local effect can
be achieved with tissue-specific or tumor-specific and inducible promoters [172]. Hence,
gene therapy can be used for a local production of the apoptosis-inducing ligands, thus
avoiding systemic toxicity; moreover, it can improve the ligands’ pharmacokinetics by the
continuous production of the transgene [40].

Many viral vectors have been designed to deliver apoptosis-inducing ligands through-
out the years, but only a few reached clinical trials, such as the adenoviral vectors TNFer-
ade [173,174] and VB-111 [175,176].

TNFerade is a second-generation replication-defective adenovirus armed with human
TNF-α cDNA. The vector includes the radiation-inducible promoter early growth response
(Egf-1) upstream of the transcriptional start site of human TNF-α [177]. The Egf-1 promoter
is activated by radiotherapy, which is usually applied in the tumor’s localized area; this
helps regulate TNF-α’s transcription, keeping its activity restricted to a location and
avoiding systemic toxicity [178].

TNFerade was used in clinical trial phases I and II to treat different types of cancers,
where the patients tolerated the treatment well. However, in phase III, TNFerade was used
to treat advanced pancreatic cancer but was not effective [174,177,179].

VB-111 (ofranergene obadenovec) is a replication-defective adenovirus serotype 5
vector armed with a modified murine pre-proendothelin promoter (PPE-1) and human
Fas-chimera transgene. The modified PPE-1 promoter has a hypoxia-responsive factor and
three copies of the endothelium-specific element that increase the specificity for angiogenic
vessels—the vector was designed to target Fas-chimera transgene expression in angiogenic
blood vessels to induce apoptosis [180]. In a phase I clinical trial, VB-111 was tested in
patients with solid tumors, and safety and tolerability were established [175,180,181]. Then,
VB-111 was then tested in patients with recurrent glioblastoma (rGBM) in a phase I/II
(NCT01260506) study. The results showed that the patients primed with VB-111 alone and
then treated with bevacizumab (a monoclonal antibody against the vascular endothelial
growth factor (VEGF)) and VB-111 had significantly better survival and progression-free
survival [182].

Later, VB-111 was tested in combination with bevacizumab in a phase III study
(NTC02511405), where it did not show efficacy. It is essential to consider that the treatment
setting was different from the previous phase I/II study. In this trial, the patients had a
combinational treatment of VB-111 and bevacizumab. Coughesy et al. thought that the lack
of effectiveness in this trial was because bevacizumab antagonized VB-111 [176]. VB-111
is still a matter of study in combination with different drugs as treatment for colorectal
cancer (NCT04166383) and ovarian cancer (NCT03398655).

The adenovirus vectors can also be engineered as oncolytic viruses; they can replicate
selectively in cancer cells and kill them, releasing new viral particles that can infect neigh-
boring and distant cancer cells [172]. An example of an oncolytic adenoviral vector is the
H5CmTERT-Ad/TRAIL. This vector has six copies of hypoxia-responsive elements (HER)
upstream of a cancer-specific modified human telomerase reverse transcriptase (5CmTERT)
promoter, and it is armed with sTRAIL (114–281 aa). H5CmTERT-Ad/TRAIL was tested in
subcutaneous and orthotopic xenograft models of glioblastoma. It showed the capability
to replicate efficiently in normoxic and hypoxic conditions and a strong antitumor effect
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potentiated by sTRAIL, which helps with the viral distribution and apoptotic induction
in TRAIL-resistant glioblastomas [183]. H5CmTERT-Ad/TRAIL is a good candidate for
further investigation as glioblastoma treatment.

Another example of an oncolytic vector is the NDV/Anh-TRAIL [184]. This vector
was designed using the Newcastle disease virus (NDV) from the Anhinga strain, a single-
stranded nonsegmented negative-sense RNA virus with natural oncolytic activity. This
characteristic gives the NDV the capability to replicate in interferon (IFN)-deficient cells,
i.e., cancer cells [185]. NDV/Anh-TRAIL contains sTRAIL, which improves the apoptotic
capacity of the vector. The vector was tested as a treatment for hepatocellular carcinoma
in vivo and in vitro. It affected the cell viability of HepG2 cells, and it was well tolerated
without significant toxicity in the hepatocellular carcinoma mouse model leading to tumor
regression [184].

In the case of TRAIL, no gene therapy has reached clinical trials yet. However, several
viral vectors have been designed to increase TRAIL effectiveness and avoid repeated
administration [69]; those vectors are being studied in preclinical models (Table 5). The
most common viral vector used is the adenovirus (Ad). It can be engineered as a replication-
defective vector like the Ad-scFv425:sTRAIL; this vector contains the anti-EGFR single
antibody chain fragment (scFv425) fused to sTRAIL. In an in vitro test, the vector showed
potent apoptotic activity in transformed infected cells and noninfected EGFR-positive
cancer cells.

Table 5. Viral vectors armed with TRAIL protein for cancer treatment.

Vector Type TRAIL format Target/Aim Ref.

Ad/TRAIL-F/RGD Replication-defective adenovirus Pancreatic cancer
NSCLC

[186]
[187]

Ad/TRAIL-E1 Oncolytic adenovirus
NSCLC

Colon cancer
Gastric cancer

[188–190]

Ad-TRAIL Replication-defective adenovirus

NSCLC
Glioblastoma

Lung cancer cells
AML

[191,192]
[193]
[194]

Ad-stTRAIL Replication-defective adenovirus SS-ILZ-TRAIL (114–281
aa) Solid tumors [195]

Ad-scFv425:sTRAIL Replication-defective adenovirus scFv against EGFR +
sTRAIL Renal carcinoma [196]

Ad-IU2 Oncolytic adenovirus Full-length TRAIL Prostate cancer [197]
AAV-hTERT-TRAIL Adeno-associated virus HCC [198]

AAV/TRAIL Adeno-associated virus HNSCC [199]
Ad/gTRAIL Replication-defective adenovirus GFP-TRAIL Glioma [200]

AAV-TRE-TRAIL and
AAV-Tet-On Adeno-associated virus soluble TRAIL Breast cancer [201]

ZD55-TRAIL-(IETD)-
Smac Oncolytic adenovirus TRAIL-(IETD)-Smac Hepatoma [202]

Ad-KDRscFv:sTRAIL Replication-defective adenovirus scFv against VEGF +
sTRAIL (114–281 aa) Solid tumors [203]

Ad-TRAIL-MRE Replication-defective adenovirus

Bladder cancer [204]
Uveal melanoma [205]

Breast cancer [206]
Esophageal cancer [207]

Prostate cancer [208]
Lung cancer [209]

Ad-∆B/TRAIL plus Oncolytic adenovirus HCC [210,211]
AAV9-NSE-sTRAIL Adeno-associated virus Glioblastoma [212]

CD55-TRAIL-(IETD)-
MnSOD Oncolytic adenovirus TRAIL-(IETD)-MnSOD Lung cancer [213]

NDV/Anh-TRAIL Newcastle disease virus/oncolytic
virus Soluble TRAIL HCC [184]

rAAV2-sTRAIL 95-281 Adeno-associated virus Solid tumors [214]
H5CmTERT-Ad/TRAIL Oncolytic adenovirus sTRAIL (114–281 aa) Glioblastoma [183]

Oncopox-trail Oncolytic poxvirus Lung cancer [215]
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Additionally, Ad-scFv425:sTRAIL was tested in an established renal carcinoma xenograft
in nude mice. After an intraocular administration of 1010 viral particles (vp), the tumor
size decreased by around 90%. The fusion protein was detected in plasma 60 days after
infection with a concentration of around 200 µg/mL. It did not show liver toxicity, thus
proving to be safe for systemic administration [196].

5. Conclusions

As a cancer treatment, induction of cell death by apoptosis appears an interesting
pathway to follow. In search of apoptosis-inducing ligands, targeting the death receptors
(DRs) from the TNF superfamily seems the right approach. The cytokines from the TNF
superfamily, TNF-α, FasL, and TRAIL, can induce apoptosis by activating the extrinsic
pathway when they bind to DR1, DR2, DR4, or DR5 [216].

Although TNF-α was identified as promising cancer therapeutic and several agonists
were developed for that purpose, TNF-α antagonists have a greater value in treating
inflammatory and autoimmune diseases (rheumatoid arthritis) [96,217]. Recently, in a
phase Ib study, it was found that the TNF blockers (infliximab or certolizumab) helped to
mitigate the immune-related adverse events in melanoma patients undergoing treatment
with immune checkpoint inhibitors (ICIs) while enhancing their antitumor effect [100]. Out
of the TNF apoptosis-inducing ligands, TRAIL is a promising anticancer agent, mainly
because of its characteristic of selectively inducing apoptosis in cancer cells while sparing
the nontransformed cells. However, TRAIL’s short half-life has been a limitation for its use
in the clinic.

In clinical trials, some of the recombinant death ligands and agonists developed as
cancer treatments showed limited activity and, in some cases, systemic toxicity [43,70].
Therefore, gene therapy may be a useful tool to improve the activity of the apoptosis-
inducing ligands and eliminate systemic toxicity.

The use of viral vectors can improve the apoptosis-inducing ligands’ effectiveness;
using tumor-specific promoters can give a localized effect, thus averting systemic toxicity.
The transgene’s continuous production can help overcome the short half-life of the ligands
and avoid the need for multiple administrations. For instance, the use of Fas agonists in a
systemic administration can lead to liver toxicity, which may be prevented by localized
administration with adenoviral vectors and tumor-specific promoters. The drawback
of TRAIL’s short half-life can be overcome using an adenoviral vector, as Bremer et al.
demonstrated [196].

Although TNF apoptosis-inducing ligands have been designed as cancer therapies and
analyzed in preclinical studies showing promising results, only a few have reached clinical
trials. The majority of them faltered in the first stages of the studies, showing a lack of
effectiveness. Therefore, the use of gene therapy as a tool to improve the pharmacokinetics
and meet the need for better biomarkers of resistance, which help screen and select the
target population to design tailored anticancer approaches from single to combination
agents, may help overcome the lack of effectiveness during the clinical trials. Additionally,
the TNF apoptosis-inducing ligands’ effectiveness may also be boosted by using them in
combination with other anticancer therapeutics.

Considering that the gene therapy techniques are being developed and improved to
such an extent that vaccines against SARS-CoV-2 were developed in record time using
Ad5 [218] and lipid nanoparticles [219,220] as vectors, we expect a major step forward in
the field of cancer gene therapy based on all the developments over the last few decades.
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