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Abstract

Ultra-cold atomic gases are an ideal platform for precision measurement devices and ana-

logue quantum simulators, which will prove instrumental in unlocking the secrets of quan-

tum gravity and high-temperature superconductivity. However, current experimental tech-

niques cannot cool atomic gases to simulatenously both the low entropies and high particle

numbers necessary for these applications. A promising alternative is feedback cooling: us-

ing continuous-measurement feedback control to damp out energy fluctuations and cool a

gas. So far, feedback cooling has been primarily studied at zero temperature, with the only

finite temperature simulation achieved via a computationally expensive numerical method

restricted to bosons. This thesis develops a perturbative model for the feedback cooling of

a finite temperature condensed Bose gas using Bogoliubov theory, with the aim of deriving

dynamic equations for the system that are both analytically tractable, and allow for fast

numerical prototyping of new feedback control schemes. Using the measurement-feedback

model of Szigeti et al. [1, 2], we derive a low temperature perturbative model for feedback

cooling of a Bose gas in an arbitrary trapping and control potential. Using this general

model, we then derive a model for the dynamics of a Bose gas in a hard box trap be-

ing cooled with an energy damping control. We complete preliminary simulations of this

model in the no-backaction conditional measurement limit, damping out density fluctua-

tions in a gas of 90% condensate fraction and cooling it to 93.5±1%. We find that, in this

limit, the dynamics of the gas are largely independent of number but significantly depend

on the inter-particle interaction. We also find an optimal energy damping control strength

in this limit. However, our model is not very efficient for simulation, particularly for a

large number of particles and measurement strength. As an alternative, we propose an

approximation scheme in which steady-state analytic solutions could be obtained from the

model. Finally, we propose two methods to develop a Bogoliubov model for the feedback

cooling of fermions, which would be the first finite temperature model for the Fermi gas

case.
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Chapter 1

Introduction

The experimental realisation of Bose Einstein Condensates (BECs) at the end of the 20th

century [3, 4, 5] sparked an explosion in the study of ultra-cold atom physics. In the

years since, ultra-cold atoms of both Bose and Fermi species have found uses in a broad

range of disciplines of physics: as qubits in quantum computers [6], completing analogue

studies of quantum field theory in curved spacetime [7], and as platforms to build

Josephson junctions [8]. Perhaps the most exciting future application of ultra-cold Bose

gases is to enhance the precision of inertial measurements made by atom interferometers

[9], measurements necessry to complete tests of theories of quantum gravity [10]. On

the other hand, ultra-cold Fermi gases have the potential to be analogue quantum

simulators, enabling the study of exotic quantum phenomena including high temperature

superconductivity [11, 12].

However, atom interferometers and analogue quantum simulators are yet to be ap-

plied to their full potential. This is because the most common method for cooling

atomic gases to the ultra-cold (< 1µ K) regime a) discards most of the atoms which are

being cooled and b) relies upon the scattering properties of atoms, which are species

dependent [13]. In this thesis, we consider an alternative method which does not have

these limitations: continuous-measurement feedback control.

In Section 1.1, we review in detail the application of atom interferometers as preci-

sion measurement devices, and the potential improvement offered by larger atom number

BECs. Similarly, in Section 1.2 we discuss the potential use of ultra-cold Fermi gases

as anologue quantum simulators. To understand why these applications are yet to

be realised, we summarise current cooling techniques and their inherent limitations in

Section 1.3. We then present feedback cooling in Section 1.4 as an alternative procedure

to overcome these challenges. Finally, having motivated an interest in feedback cooling

and the study of ultra-cold atomic gases, we outline the structure of this thesis in Section

1.5.

1.1 Ultra-cold Bose gases: a platform for precision measure-

ment devices

It is impossible (even for theoretical physicists) to construct a complete description of

the universe without some measurement of the surrounding world, whether it be of

length, time, or any other quantity. From the fruitless hunt for a luminous aether by

Michelson and Morley [14], to the first observation of gravitational waves in 2016 [15],

3



4 Introduction

Figure 1.1: Space-time diagram of an atom interfereometer in the Mach-Zender configu-
ration. A colleciton of atoms is hit with a light pulse, so that some of the atoms travel
through a different region of the accelerating field ~a. After time T , a second pulse pro-
vides a momentum kick to the other atoms, and a third pulse recombines the atom, before
detection at an atom detector. For a reader unfamiliar with space-time diagrams, see Ref.
[17] for an introduction.

many ground-breaking discoveries in physics have been made using precise measurements

of distance with optical interferometers. Fundamentally, an interferometer measures the

phase shift of two waves which have interfered after travelling through two different paths

in space, guided by beamsplitters which separate the light based on its polarisation.

The discovery that matter can also behave as a wave - first proposed by De Broglie [16] -

has inspired the development of interferometers with a matter-wave source: atom inter-

ferometers. We provide a basic schematic for an atom interferometer in a Mach-Zender

configuration in Figure 1.1. In an atom interferometer, a coherent laser is the analogue

for the beamsplitter, shining upon a collection of atoms under some free acceleration

~a.1 This laser light stimulates either the absorption or emission of a photon, giving the

atom a momentum kick between one of two states. Two laser pulses, separated by a time

T , guide the two states through different paths in space-time, before a third laser pulse

recombines the two states. When the atoms recombine, the phase shift of their interfered

waves contains information about the accelerating field they passed through.2

1.1.1 Applications of precision measurement

Atom interferometers using Bose gas sources have the potential to be applied as inertial

sensors; devices which precisely measure accelerations and angular velocities [9]. These

inertial sensors have the potential to advance fundamental physics by completing tests

of the weak equivalence principle. The weak equivalence principle states that a body’s

1In a gravimeter, the atoms are in free-fall, and the acceleration g is due to the gravitational field.
2For a more detailed introduction to the mechanics of atom interferometers, the interested reader should

consult a text on atom optics, such as Ref. [18].
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inertial mass mi (the mass measured by resistance to acceleration) and gravitational

mass mg (the mass measured by gravitational attraction to other bodies) are equivalent

[17]. Whilst a key tenant of Einstein’s theory of general relativity in four space-time

dimensions, the equivalence principle theoretically breaks down in a higher number of

dimensions (i.e. mg/mi 6= 1) [19]. Some theories of quantum gravity, such as string

theory [20], require more than four space-time dimensions; so measuring violations of the

weak equivalence principle could be used to rule in or out candidate theories of quantum

gravity. The challenge, however, is that these violations are expected to be of the order

of 10−18 [21] — well beyond the 10−10 achieved by existing experimental techniques

[22]. One solution is atom interferometers using a BEC as the matter wave source:

at experimentally achievable sizes, they are predicted to observe changes in gravity

necessary to measure violations in mg/mi of the order of 10−15 − 10−17 [23]. Whilst this

is still below the precision desired, creating Bose gases of even larger number is a pos-

sible way to overcome that final hurdle (for reasons that will be discussed in Section 1.1.2).

Atom interferometers also have the potential to be a powerful tool in a number of

other low-energy tests of theories of quantum gravity — for a detailed review, see Ref.

[10].3. Beyond the realms of quantum gravity tests, atom interferometers have possible

applications to fundamental physics in the space-based detection of gravitational waves

[23, 27] and refining the definition of the kilogram [28].

Inertial sensors also have a number of potential practical applications outside of

fundamental physics. In particular, due to their ability to make precise measurements of

gravity gradients [29, 30], atom interferometers can make accurate density measurements

of the Earth’s crust. These density measurements are indicative of ore deposits which

could be used to optimise mineral discovery for resource companies, and are useful for

models of plate tectonics, magma flows, and other areas of geophysics. Devices mounted

in aeroplanes have demonstrated the feasibility of atom interferometry for these studies

[31, 32]. Measurements of gravity gradients are also a powerful tool in climate modelling:

they have already been used to measure the melting rate of icesheets in Greenland [33]

and study variation in groundwater levels in the Murray-Darling basin [34]. Additionally,

the precise measurements of accelerations possible with an atom interferometer have been

proposed to improve navigation technologies [35, 36], with applications to navigation of

aircraft [37] and missiles [38].

1.1.2 Atom interferometry and Bose-Einstein Condensation

Whilst exciting and diverse in scope, these applications require a precision beyond that of

the current generation of atom interferometers. There are three key limits to the precision

of an atom interferometer:

1. Particle number. Each measurement of the number of particles is uncorrelated,

so the sensitivity of the measurement of phase Φ is limited by shot noise. Shot

noise is proportional to the inverse square root of the number of particles N (i.e.

∆Φ ∝ 1/
√
N) [39], so increasing particle number increases the precision of the device.

3Particularly exciting are two independent proposals [24, 25] that use the interaction between two
adjacent atom interferometers to measure quantum mechanical contributions to the gravitational force
between masses. This effect is 1010 times smaller than that of a weak equivalence principle violation, so
would require even larger Bose gas sources [26].
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2. Separation time. A longer separation time T allows for a greater accumulation of

phase, so that the relative error ∆Φ/Φ is smaller [40].4

3. Momentum distribution width. A narrower distribution of atom momenta

means that the light pulses can give a momentum kick to more of the atoms [42].

This increases the contrast, and thus sensitivity, of the interferometer.

Atom interferometry is presently completed with (relatively) hot atoms, in the 10−100µK

temperature regime [30, 32]. However, these hotter sources have a broad momentum

width5 and low coherence times. Since their experimental realisation at the end of the

20th century [3, 4, 5], BECs have emerged as a possible alternative source for atom

interferometers. We review BECs in more detail in Chapter 2; but essentially, BECs are a

collection of ultra-cold (usually in the nanokelvin regime) atoms that are nearly all in one

low energy state. Crucially, BECs have a high coherence time and a narrow momentum

width because of their low temperature [43]. They are to cold atoms what lasers are to

light.

The disadvantage of BEC sources is that they are 25-50 times smaller in atom

number than hotter Bose gases. In the shot noise limit, ∆Φ ∝ 1/
√
N , so this size differ-

ence reduces the sensitivity of an atom interferometer by a factor of 10. The relatively

small size of BECs is a consequence of existing cooling techniques being non-number

conserving, as will be elaborated upon in Section 1.3. However, by generating larger

BEC sources, it will be possible to build atom interferometers with the higher sensitivity

needed for weak equivalence principle tests and other inertial sensing applications.

1.2 Ultra-cold Fermi gases: a platform for analogue quan-

tum simulation

Ultra-cold Fermi gases, on the other hand, have the potential to advance our ability to

simulate many-body quantum systems. The ability of computers to simulate classical

systems has proved a powerful tool for theoretical modelling in physics, biology, and

numerous other disciplines. However, classical computers can only simulate very small

quantum mechanical systems, because the complexity of a quantum system scales

exponentially with its size. Simulation of fermionic systems is particularly challenging;

the anti-symmetric nature of fermionic wavefunctions leads to oscillatory integrals which

cannot easily be solved numerically [44].

Feynman [45] proposed a simple solution: why not simulate quantum systems on a

platform that is itself quantum? Lloyd [46] subsequently proved6 that a set of qubits

(quantum bits) can overcome the scaling problem, and perform a digital simulation of

any Hamiltonian: functioning as a quantum computer. Whilst the development of a

universal quantum computer is a broad and active area of research (see Ref. [48] for a

4This is a particularly strict limit for some applications, such as in aircraft based navigation, where the
devices have to be very compact [36, 41].

5This simply follows from hotter sources being at a higher temperature, and thus having a wider energy
distribution.

6Technically, Lloyd’s proof was only for local systems. However, most systems of interest fall into this
class, and recent research has extended the result to other classes of Hamiltonians [47].
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detailed introduction), developments in useful7 quantum computers has been hindered

by the short lifetimes of qubits [50, 51] and difficulties in scaling beyond ∼ 50 qubits

[49]. An alternative, more immediately achievable, route to quantum simulation is to

construct a device which mimics the Hamiltonian of a system of interest. This process

is known as analogue quantum simulation — for a more detailed introduction, see Ref. [52].

Ultra-cold atoms in lattices are an ideal platform for analogue simulation. Firstly,

they are a relatively pure system: that is, they are free of unwanted dopants or defects,

and easily isolated from the environment [11, 12, 53]. Secondly, they can be easily

trapped and controlled in a variety of optical potentials [54, 55, 56] and their interaction

strength effectively freely manipulated by a Feshbach resonance [57, 58], meaning that

their Hamiltonian can be easily controlled. Finally, it is feasible to observe and study the

dynamics of an ultra-cold atomic gas, as there are a swathe of measurement techniques

for both Bose [59, 60] and Fermi [61, 62] species.

It is theoretically possible for ultra-cold Bose [63] and Fermi [64] atoms, acting as

an analogue quantum simulator, to realise their respective forms of the Hubbard model.

The Hubbard model describes particles in a periodic lattice, where particles hop between

fixed sites, and can interact with particles at the same fixed point. Further details of the

Hubbard model are not relevant to this thesis8, but what is crucial is that the Hubbard

model for fermions has emerged as a leading candidate to decribe the behaviour of high-

temperature superconductors [69, 70]. High temperature superconductivity is presently

unexplained by the standard Bardeen-Cooper-Schieffer theory of superconductivity [71].9

Being able to understand, and ultimately stably10 create, high-temperature superconduc-

tors would advance fields as diverse as quantum computing [49, 50] and Maglev train

technology [74]. To that end, analogue quantum simulations of the Hubbard model using

ultra-cold fermions have been proposed to study high-temperature superconductivity [75].

However, these simulations require fermions at an entropy per particle 2-4 times lower

than that achievable with current cooling techniques [13]. To understand why this limit

exists, we will now review existing cooling techniques for atomic gases.

1.3 Creating ultra-cold atomic gases

To reach the micro- or nano- kelvin regimes required for these diverse applications, a

number of procedures are used to cool atomic gases (see Refs. [13] and [76] for a detailed

review). The most common approach is to cool gases from room temperature to the

microkelvin regime using laser (Doppler) cooling, then reach the nanokelvin regime with

7In 2019, Google used a 53-qubit quantum computer to complete a calculation 1000 times faster than
possible on the worlds most powerful supercomputer [49]. However, the task completed has no known
application.

8For more details of the Fermi-Hubbard model, see Hubbard’s original paper [65] and the two concur-
rently published papers deriving the same model [66, 67]. For more details on the Bose-Hubbard model,
see Ref. [68].

9The standard theory of superconductivity is equivalently derived by Bogoliuobv in Ref. [72]. As will be
discussed in Chapter 2, Bogoliubov’s perturbative approach is only valid at low temperatures. It is therefore
not surprising that the cooper-pair description of superconductivity is insufficient for superconductors at
relatively high temperature (T ≈ 90K).

10There has been recent experimental realisation of a superconductor at room temperature (∼ 15◦C)
[73]. However, the device in question only enters the superconducting phase at ∼ 106 times atmospheric
pressure.
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(a) Removing hot tail from T = T0 distribution (b) T = T0 vs T = 0.3T0 distribution

Figure 1.2: Demonstration of the effect of evaporative cooling for a ensemble of atoms
obeying a Maxwell-Boltzmann distribution at T0 = mv20/2kB, where v0 is some energy
scale. In Figure 1.2a, all particles with v/v0 > 1.5 are removed (for atoms in a trap, this
is achieved by lowering the walls of the trap). This removes the hottest ∼ 1/3 atoms. The
remaining atoms collide, redistributing the leftover energy, and obey the new distribution
in Figure 1.2b. Note that this lower distribution is narrower, meaning that the distribution
of possible energy states is effectively lower - reducing the entropy of the atomic ensemble.

evaporative cooling. This two-stage process achieved the first experimental realisation

of BEC [3, 4, 5] and the creation of degenerate Fermi gases [77, 78]. We do not discuss

the details of laser cooling here, other than noting it can cool large numbers of atoms

(∼ 1010) from room temperature to the microkelvin regime with effectively no particle

loss (see Ref. [79] for a more detailed review). It is the next stage in the cooling process

— evaporating cooling — which is of interest to us.

An evaporative cooling scheme lowers the temperature of a gas by continuously re-

moving the highest energy atoms from the system. The remaining atoms then collide and

redistribute the remaining energy, lowering the temperature and entropy of the gas (as in

Figure 1.2). These details are sufficient to understand the two key limitations of evapo-

rative cooling11. Firstly, it is inherently non-number conserving — up to 99.9% of the

atoms are lost from the gas [82] — limiting the capacity of evaporative cooling to produce

large atom-number BECs needed for atom interferometry. Secondly, the procedure relies

upon strong inter-atomic scattering, so is highly species-dependent. This is particularly

problematic for fermions, which do not scatter strongly in the energy regime of evaporative

cooling [81].12 This means that evaporative cooling cannot cool fermions to the low

entropies needed for analogue quantum simulations of high temperature superconductivity.

One alternative to evaporative cooling, which is particularly useful for fermions, is

sympathetic cooling. In a sympathetic cooling scheme for fermions, a Fermi gas is

coupled to a Bose gas that is being cooled. The scattering between the fermions and

bosons exchanges heat, simultaneously cooling the fermions. Sympathetic cooling has

11A reader interested in a more thorough introduction to evaporative cooling should consult Ref. [80]
or Chapter 4.6 of Ref. [81].

12Specifically, at low temperatures, s-wave scattering dominates (this will be discussed in more detail
in Chapter 2). For fermions, the s-wave cross section at low energies vanishes, as a consequence of the
asymmetry of the fermionic wavefunction.
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experimentally reached the low microkelvin regime for Fermi gases [83, 84], however

cannot overcome the limits of evaporative cooling for fermions for a number of reasons

(for a detailed summary, see Ref. [85]). Firstly, it relies upon strong interactions

between the Bose and Fermi species being cooled. More critically, it requires continuous

cooling of the coupled Bose species, which is typically done by evaporative cooling.

In that case, the Fermi gas can only be sympathetically cooled for a short time be-

fore the Bose gas is completely depleted. Therefore, the most promising alternative

to evaporative cooling for fermions is still constrained by the limits of cooling for bosons.13

We are therefore motivated to develop an alternative technique to evaporative cooling;

in particular, one which is number-conserving and does not rely upon the scattering

properties of the atomic species being cooled.

1.4 An exciting alternative: feedback cooling

In this thesis, we consider continuous-measurement feedback control as a promising

solution to the limitations of evaporative cooling. In a feedback control scheme, a system

is measured to obtain an estimate of the system state. Based on that estimate, an

observer then perturbs the system to drive it towards a desired state. We theoretically

apply the principle of feedback control to a quantum gas, with the desired state being

the ground state. We refer to this control as feedback cooling, as the feedback control is

driving the gas to its minimum energy configuration and therefore cooling it.

The feedback control of quantum systems has grown into a broad field since emerging

three decades ago. A reader interested in a recent, detailed review of quantum control

should consult Ref. [86]; here, we focus on the application of quantum control to

cold atoms. The first studies were motivated by using BECs as a source for atom

lasers, and used perfect knowledge of the system state. In particular, Wiseman and

Thomsen developed a single-mode quantum model for a feedback control to damp number

fluctuations in a Bose gas [87, 88]. Feedback cooling - specifically using feedback control

to reduce the total energy of a Bose gas - was then first introduced by Haine et al., who

demonstrated with a mean-field model14 that a time-dependent feedback control could

damp out fluctuations in the density of a Bose gas [89]. Johnsson et al. demonstrated

the robustness of this model in the presence of experimental factors relevant to the atom

laser, such as continuous outcoupling of atoms from the BEC [90].

By assuming perfect knowledge of the system state, these models ignored a crucial

effect of quantum mechanics: that measuring a quantum system collapses it into a

random state. Thus, in a quantum feedback control scheme, obtaining an estimate of the

system state also alters that very state. This effect is termed measurement backaction,

and in closed-loop quantum feedback control leads to a trade-off between information and

unwanted changes to the state.

Wilson et al. first demonstrated the effectiveness of feedback cooling whilst ac-

counting for measurement backaction, damping out density excitations of a single (Bose)

13Indeed, similar limitations arise for boson-boson sympathetic cooling.
14A mean-field model approximates the full quantum state with a classical function. We discuss mean-

field theory in more detail in Chapter 2.
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atom in a harmonic trap. The authors used the model of Doherty and Jacobs [91], which

assumed measurement by an optical wavelength greater than the trap size — an assump-

tion that breaks down for a BEC of more than a few atoms. Szigeti et al. developed a full

quantum dynamical theory for a BEC under an experimentally realisable measurement of

number density [1], and subsequently demonstrated feedback cooling via simulation using

a mean-field approximation [2]. This model was then extended to Fermi gases, and feed-

back cooling completed using a mean-field approximation in a recent Honours thesis by

Goh [64]. The full quantum model of Szigeti et al. is reviewed in more detail in Chapter 3.

A mean-field approximation of the full quantum dynamical theory only considers

the average state, so it ignores a) quantum correlations between possible states and b)

the distribution of energy states present at finite (non-zero) temperature. Mean-field

models therefore only study feedback cooling of zero temperature energy fluctuations,

and neglect the finite temperature effects present in real atomic gases.

The first alternative to mean-field theory used to model the full quantum theory

of Szigeti et al. was the number-phase Wigner (NPW) simulation method developed

in Refs. [92, 93]. Essentially, the NPW method randomly samples particles from an

initial state distribution, evolves those particles under a full quantum model15 and then

averages the behaviour of those random samples. Hush et al. [94] implemented the NPW

method to feedback cool a BEC from a zero temperature initial state with quantum

correlations, and Taylor [95] used the NPW method to feedback cool a BEC initially in

a thermal state. Specifically, Taylor and unpublished work by Goh et al. demonstrated

that feedback cooling could increase the fraction of atoms in the condensate from ∼ 10%

to ∼ 90%. Despite these successes, there are three limitations to the NPW method:

1. It is a computationally intensive approach, which makes it inefficient for rapidly

characterising how different feedback control schemes behave at finite temperature.

2. It is a completely computational method, so is difficult to obtain intuition for why

different control schemes have particular behaviours.

3. There is no extension of the NPW method for fermions.

A reader interested in further details of the NPW method should see Ref. [92, 93], but

an understanding of the above limitations is sufficient to read this thesis. In particular,

these limits motivate developing a finite temperature model for feedback cooled atomic

gases that a) is analytically tractable for different feedback potentials and b) can model

fermions. The former will allow for the rapid proposal and prototyping of different

analytic forms for feedback control, which can then be fully characterised with the NPW

method.

A promising approach is the perturbation theory of Bogoliubov, which analytically

describes thermal excitations in low (but finite) temperature Bose [96] and Fermi [72]

gases. We provide a more detailed introduction to Bogoliubov theory in Chapter 2, but

the essential idea is that excitations are treated as perturbations around a mean-field.

Using Bogoliubov theory, Wade et al. modelled the use of feedback control to damp

15Specifically, it evolves the sampled particles under the stochastic master equation for the system, such
as the full quantum model of Szigeti et al. in Refs. [1, 2]. Stochastic master equations will be introduced
in detail in Chapter 3.
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individual excitations in a Bose gas [97, 98], and Hurst et al. modelled the feedback

control of excitations induced by measurement backaction [99]. Notably, Wade et al.

used Bogoliubov theory to develop analytic steady-state solutions for their feedback

control. Schemmer et al. then used a Bogoliubov approach to model the cooling of a

1D quasi-condensed Bose gas [100]. However, their approach considered a measurement

scheme where atoms are removed from the condensate and spatially measured, which is

not only experimentally challenging, but is also inherently non-number conserving.

These works demonstrate the capacity of Bogoliubov theory in extending models

of feedback control beyond mean-field theory. As a semi-analytic model that works

for both bosons and fermions, Bogoliubov theory has the potential to overcome the

limitations of the NPW method in modelling the feedback cooling of atomic gases.

However, it has not yet been used to model feedback cooling in an experimentally feasible

measurement scheme, such as phase-contrast imaging [5, 101]. In this thesis, we complete

the first investigation into the use of Bogoliubov theory to model the cooling of a Bose

gas with feedback control based on a phase-constrast imaging measurement scheme. As

well as developing an alternative to the NPW method with possible analytic solutions,

this thesis acts as a feasibility test for using Bogoliubov theory to model the feedback

cooling of finite temperature Fermi gases.

1.5 Outline of this thesis

The primary aim of this thesis is to derive a model for the feedback cooling of a Bose gas

using Bogoliubov theory. Broadly speaking, Chapters 2 and 3 contain the background

theory necessary to build our model. Chapters 4 and 5 then focus on derivation and model

building. Chapter 6 focuses on preliminary numeric simulation to validate the model. In

Chapter 7, we discuss the conclusions from this thesis, and propose avenues for future work.

More specifically, in Chapter 2 we present a pedagogical introduction to the quan-

tum field theory of cold atoms and Bogoliubov theory. We first recap the basics of bosons

and fermions, before introducing the quantum field theory needed to understand them.

We then introduce bosonic Bogoliubov theory. In Chapter 3, we review conditional mea-

surement theory, and place feedback cooling on an analytic foothold, in order to present

the full quantum model of Szigeti et al. [1, 2]. Using this conditional measurement theory,

we apply the Bogoliubov theory covered in Chapter 2 to develop a low temperature model

for the feedback cooling of a Bose gas in an arbitrary control and trapping potential in

Chapter 4. We then study this model for specifically the energy damping control in a

hard box trap in Chapter 5. Preliminary characterisation of this model is completed in

Chapter 6, via numeric simulation in the no-backaction conditional measurement limit.

Finally, we review the limits of our model in Chapter 7, and propose future approaches

for developing analytic solutions to our model and an equivalent model for Fermi gases.
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Chapter 2

Background I: An introduction to

cold atom physics

In this chapter, we present a pedagogical introduction to the techniques used in this

thesis to model cold Bose gases at non-zero temperature. We begin by summarising the

statistical properties of bosons and fermions in Section 2.1. In Section 2.2, we summarise

the techniques of quantum field theory necessary to then construct a quantitative model

of cold Bose gases in Section 2.3, where we introduce a zero temperature model for these

Bose gases. In Section 2.4 we then consider a first approach for modelling Bose gases at

finite temperature: symmetry-breaking Bogoliubov theory. This will prepare us to then

introduce number-conserving Bogoliubov theory in Section 2.5.

2.1 The statistical mechanics of bosons and fermions

In contemporary particle physics, all fundamental particles are classified as bosons or

fermions. This arises out of our understanding of quantum mechanics. Let us briefly

recap why, and qualitatively describe the differences between the two.

In classical mechanics, after observing two “identical” particles — those which share each

defining property such as charge or mass — we can map out their unique trajectories.

Conversely, in quantum mechanics there is always uncertainty in measurement, so an

observer cannot continually keep track of two particles. Instead, you have to measure

them at some point in time. Therefore, if two particles have the same value for every

defining quantum number (and are therefore identical), under measurement these particles

are indistinguishable.

To understand the consequences of this seemingly innocuous statement, let us con-

sider the position measurement of two identical particles with positions r1 and r2 and

wavefunction Ψ(r1, r2). As the particles are indistinguishable, exchanging their positions

cannot change the outcome of the measurement. Therefore, exchanging their position

must only change the wavefunction up to a global phase

Ψ(r1, r2) = eiαΨ(r2, r1), (2.1)

where α is a real constant, so that

|Ψ(r1, r2)|2 = |Ψ(r2, r1)|2 . (2.2)

13
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That is, the probability density function of the wavefunction (which is what quantum

mechanical observables are defined in terms of), is unchanged under particle exchange.

To see what values for α are possible, we can define the permutation operator P̂ which

exchanges the two particles as

P̂Ψ(r1, r2) = Ψ(r2, r1). (2.3)

Swapping the particles twice obtains the original state, so P̂ 2 = 1̂. Equivalently, ei2α =

1, which is solved by α = 0 or α = π. There are therefore two possibilities for our

wavefunction:

Ψ(r1, r2) = ±Ψ(r2, r1). (2.4)

The positive (symmetric) solution describes bosons, and the negative (anti-symmetric)

solution describes fermions. Bosons are particles with integer spin, and fermions have

half-integer spin1. If r2 = r1, the anti-symmetric solution to equation (2.4) must be

zero (i.e. Ψ(r1, r2) = 0). Thus, there is a fundamental difference between bosons and

fermions: identical bosons can be in the same state, where as identical fermions cannot.

This constraint is known as the Pauli exclusion principle. Qualitatively, this constraint is

the main reason Fermi gases are more difficult to theoretically study.2

The Pauli exclusion principle means that bosons and fermions produce vastly dif-

ferent physics. Using statistical mechanics (specifically the microcanonical ensemble),

the average number of non-interacting indistinguishable particles in an energy state εj
can be determined as a function of temperature T (see Chapter 14 of Ref. [39] for a full

derivation). Bosons obey the Bose-Einstein distribution

n̄
(B)
j =

1

e(εj−µ)/kBT − 1
, (2.5)

and fermions, constrained by the Pauli exclusion principle, obey the Fermi-Dirac distri-

bution

n̄
(F )
j =

1

e(εj−µ)/kBT + 1
. (2.6)

Here, µ refers to the chemical potential of the particles and kB is the Boltzmann

constant3. A full derivation of equations (2.5) and (2.6) can be found in Chapter

8 of Huang [39]. A comparison of each distribution at a range of temperatures

is included in Figure 2.1. In the high temperature limit (T � εj/kB), both distribu-

tions tend to n̄j → e−(εj−µ)/kBT ; the Maxwell-Boltzmann statistics describing an ideal gas.

As T → 0, the Fermi-Dirac distribution becomes the step function

n̄
(F )
j =

{
1 if εj < µ,

0 if εj > µ.
(2.7)

1The reason for this is is actually quite nuanced, and is a consequence of the spin-statistics theorem. A
reader interested in a technical discussion of this should turn to Chapter 5 of Ref. [102].

2That is why this thesis also functions as an important feasibility test for Bogoliubov theory as a finite
temperature description of feedback cooling for fermions. If the Bogoliubov approach is intractable for
bosons, it will certainly not be any easier for fermions.

3These results assume that the energy states are non-degenerate; that is, only one state corresponds to
each energy. We’ve made this assumption because we only care about the qualitative differences between
the two cases.
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(a) Fermi-Dirac Distribution (b) Bose-Einstein Distribution

Figure 2.1: Bose-Einstein and Fermi-Dirac distributions for the non-degenerate, contin-
uous energy spectra from equations (2.5) and (2.6). In a), as T → 0, the distribution
approaches a step function, with all particles occupying states below the Fermi energy
ε = µ. In b), as T → 0, the distribution approaches a delta function at ε = µ, indicating
that all particles occupy the ground state.

As can be seen in Figure 2.1a, each state below a particular energy (the Fermi energy

εj = µ) is occupied, and every state above this energy is empty. This creates a “Fermi

sea”, where all the fermions are packed as tightly as possible into discrete energy levels

in order to obey the Pauli exclusion principle. When T is small but non-zero, individual

fermions are excited to states above the Fermi energy, leaving a “hole” in the Fermi sea.

Associating each excited particle with the hole left behind — as a “particle-hole pair” —

is a useful qualitative understanding of thermal excitations in a cold Fermi gas.

The story is significantly different for bosons. As can be seen in Figure 2.1b, the

most densely occupied states are those close to the ground state. As temperature T

decreases, fewer and fewer particles inhabit the excited states. Once a critical temperature

TC is reached, particles begin to move into the ground state. Below this temperature, the

gas has formed a BEC: a state of matter where a singular energy state is macroscopically

occupied. This phenomenon was first predicted by Einstein in 1925 [103] based on

the statistical approach of Bose [104], before being experimentally observed in 1995 in

rubidium [3] and sodium [4]. For a gas of N non-interacting bosons in a three-dimensional

harmonic trap4, below TC the fraction of particles in the condensate (condensate fraction)

is [81]

NC

N
= 1−

(
T

TC

)3

, (2.8)

where NC is the number of particles in the condensate. Equation (2.8) indicates that

condensate fraction can be used as a proxy for temperature.

2.2 Important tools of quantum field theory

The statistical picture we have just painted describes the equilibrium properties of Bose

and Fermi gases. In this thesis, we are concerned with the dynamic properties of atomic

4Note that this corresponds to a discrete energy spectrum, unlike that plotted in Figure 2.1b.
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gases. To that end, it is necessary to introduce some tools of quantum field theory (QFT);

which, amongst other things, allows us to study quantum systems of a large number of

particles. A detailed introduction to QFT can be found in Refs. [105] and [106], and a

brief but useful summary in the context of cold atoms can be found in Ref. [107].

2.2.1 A brief review of second quantisation

When working with an arbitrary number of particles, specifying the individual state of

each particle as in Section 2.1 becomes laborious. However, as particles in quantum

mechanics are indistinguishable, the state of each individual particle no longer matters -

what matters is the number of particles in each mode. Each mode can have a discrete

(such as spin) or continuous (such as position) index, or can have both.

Specifically, QFT deals with Fock space. Conceptually, Fock space is the set of

states which are each occupied by a discrete number of particles5. We will first write

states in Fock space using Fock states, which are those with a well defined number of

particles nj in each mode single particle state |φj〉. Together, the set {|φj〉} forms the

single-particle basis. A Fock state is then written as |n1, n2, . . . 〉, and Fock states span

Fock space. We can therefore write a general state |Ψ(t)〉 as a sum of Fock states

|Ψ(t)〉 =
∞∑

n1,n2,···=0

Cn1,n2,...(t) |n1, n2, . . . , 〉 , (2.9)

where Cn1,n2,...(t) is the normalised weight of each of these states.

As our basis elements (Fock states) have a well-defined number of particles in each

mode, it makes sense to define operators which can change that number. These are the

annihilation (âj) and creation (â†j) operators, defined as

âj |n1, . . . , nj , . . . 〉 =
√
nj |n1, . . . , nj − 1, . . . 〉 , (2.10a)

â†j |n1, . . . , nj , . . . 〉 =
√
nj + 1 |n1, . . . , nj + 1, . . . 〉 . (2.10b)

These operators then obey[
âj , â

†
k

]
= δjk, [âj , âk] =

[
â†j , â

†
k

]
= 0. (2.11)

Note that crucially, if the vacuum state is defined as |0, . . . , 0〉,

âj |0, . . . , 0〉 = 0, (2.12)

so it is impossible to create a state with negative number. The creation and annihilation

operators are convenient for modelling the dynamics of a system, because they can be

used to write any operator6.

5More rigorously, Fock space is the Hilbert space spanned by N -particle states, including each possible
value of N . A Hilbert space is a vector space with a complex domain and an inner product.

6The nuances behind why this is the case are beyond the scope of this thesis, and cannot be accurately
summarised in a footnote. For a detailed discussion of why the claim is true, the interested reader should
see Chapter 4 of Ref. [106] or Chapter 1 of Ref. [108].
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As the set of single particle states |φi〉 and annihilation operators âi is an arbi-

trary basis, we can move to another discrete basis with modes |χj〉 and operators b̂j via

the following transformation

b̂j =
∑
i

〈χj |φi〉 âi. (2.13)

It is also possible to move into a continuous basis, such as the position basis

ψ̂ (x) =
∑
i

φi(x)âi. (2.14)

In the position basis, the annihilation and creation operators are referred to as field oper-

ators. A field operator ψ̂ (x) annihilates a particle at position x. It follows from equations

(2.11) and (2.14) that[
ψ̂ (x) , ψ̂† (y)

]
= δ (x− y) ,

[
ψ̂ (x) , ψ̂ (y)

]
=
[
ψ̂† (x) , ψ̂† (y)

]
= 0. (2.15)

Note that the preceding formalism is specific to bosons; fermionic creation and annihilation

operators obey anti-commutator relations. There is a more general formalism for particles

with multiple internal modes (such as different spin states); however, that procedure is

not relevant to this thesis.

2.2.2 Dynamics in quantum field theory

In quantum mechanics, we are ultimately concerned with the expectation values of oper-

ators. The expectation value of an operator Ô on a state evolves in time, and for a state

|Ψ〉 is defined 〈
Ô
〉

(t) =
〈

Ψ
∣∣∣Û †(t, t0)ÔÛ(t, t0)

∣∣∣Ψ〉 , (2.16)

where Û(t, t0) is the time evolution operator corresponding to evolving the state from t0
to t. For the expectation value to evolve in time, it follows that some combination of the

state and operator must also evolve in time. Two immediate choices are the Heisenberg

picture and the Schrödinger picture. In the Heisenberg picture, operators evolve in time

and states are static. In particular, operators are defined as Ô(t) = Û †(t, t0)ÔÛ(t, t0) and

obey the Heisenberg equation of motion

dÔ
dt

= − i
~

[
Ô, Ĥ

]
+
∂Ô
∂t
, (2.17)

where Ĥ is the system Hamiltonian. In this thesis, we only consider operators without

explicit time dependence, so ∂Ô/∂t = 0. Alternatively, in the Schrödinger picture, oper-

ators are static and states are defined as |Ψ(t)〉 = Û(t, t0) |Ψ(t0)〉 to evolve in time. In

particular, they evolve under the Schrödinger equation as

i~
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 . (2.18)

Importantly, both the Heisenberg and Schrödinger pictures return equivalent physics. In

this thesis, we use the Heisenberg picture to demonstrate why feedback cooling works in

Chapter 3 and justify our choice of Bogoliubov theory in Chapter 4, and the Schrödinger

picture in Chapter 4 to derive our model for an arbitrary trapping and control potential.
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2.3 Quantum field theory of cold atoms

We now have the tools of QFT necessary to understand the theory of cold Bose gases

and BECs. In particular, we can now introduce the standard cold atom Hamiltonian,

and consider dynamics of a collection of bosons. Little knowledge of atomic physics is

necessary to understand this thesis. A reader concerned with the details of atomic physics

relevant to cold atom physics, or interested in a more detailed introduction to the QFT

of cold atoms, should consult Ref. [81].

2.3.1 The cold atom Hamiltonian

In this thesis, we are concerned with cooling ensembles of atoms, which themselves are not

single particles. Instead, they are made up of protons, neutrons, and electrons - which are

all fermions. However, sufficiently low temperatures correspond to energy scales well below

the ionisation energy of atoms, so their component fermions are effectively bound together.

The atoms themselves can therefore be treated as single particles, and the parity of the

number of composite fermions determines if the atom is bosonic (even) or fermionic (odd)7.

Treating each atom as a single particle, we can now write a Hamiltonian for a col-

lection of cold bosonic atoms in terms of bosonic field operators ψ̂ (x). This thesis is

primarily concerned with the simplest dynamics for a collection of bosons, so does not

consider internal degrees of freedom such as spin8. Therefore, for a collection of bosons

each of mass m in a trapping potential Vext(x, t)

Ĥ =

Single-particle dynamics︷ ︸︸ ︷∫
dxψ̂† (x)

(
− ~2

2m
∇2

x + Vext(x, t)

)
ψ̂ (x)

+
1

2

∫
dx

∫
dyψ̂†(x)ψ̂†(y)Vint(x− y)ψ̂ (y) ψ̂ (x)︸ ︷︷ ︸

Inter-particle interactions

.

(2.19)

Each individual particle evolves due to its kinetic energy (−(~2/2m)∇2
x) and the trapping

potential (Vext(x, t)). Each particle at a position x interacts with a particle at position y

via the potential Vint(x−y). Qualitatively, this interaction is only strong when atoms are

close together. However, ultra-cold atomic gases are typically dilute, and the energy scales

are significantly small such that only the lowest order scattering effects (s-wave scattering)

contribute. Therefore, the standard approach in the literature is to approximate the

interaction as two atoms scattering off each other like billiard balls [43, 107]. That is,

Vint(x− y) is approximated by the contact potential

Vint(x− y) = gδ(x− y), (2.20)

7An actual proof of this is nuanced and well beyond the scope of this thesis, and indeed difficult to
find in the literature. However, the experimental observation of BECs [3, 4] is sufficient evidence that it is
possible for a collection of fermions to act as a boson.

8Our model therefore holds for a spin zero boson, or a spin polarized gas where the spin is fixed by a
strong magnetic field.
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where g is the interaction strength defined as

g =
4π~2a
m

. (2.21)

Here, a is the scattering length of the s-wave scattering. For a more detailed discussion

of the approximation in equation (2.20), the interested reader should consult Chapter 5

of Ref. [81].

The interaction strength g varies signficantly in the vicinity of a Feshbach reso-

nance, an inter-atomic coupling effect that arises at particular magnetic field strengths.9

By varying an external magnetic field, Feshbach resonances can be exploited to precisely

tune g for many atomic species [57, 58]. Therefore, in this thesis we essentially treat g as

a free parameter, and in particular only consider repulsive interactions (g > 0), where the

interaction between two atoms pushes them away from each other. Although attractive

interactions (g < 0) are experimentally possible [111], they are less experimentally

accessible than repulsive interactions, and most atomic species naturally10 have strong

repulsive interactions [3, 4].

Equation (2.19) is for a three-dimensional system; however, theoretical investiga-

tion is more tractable in one or two dimensions. For a harmonically trapped gas, with

a potential V (x) = 1
2m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, it is theoretically possible to confine the

gas to one dimension if the trap is much stronger along that direction than the other

two — in particular, if ωy, ωz � ωx [112].11 It is standard to assume that the gas is

in its ground state along the other two dimensions, so the dynamics of the system are

effectively confined to one dimension [115]. As this behaviour has been experimentally

observed [116, 117], it is standard to construct theoretical models for effective 1D Boses

gases as they are simpler to model and give a good approximation to 3D dynamics. That

is indeed the approach we take in this thesis. Under this approximation and equation

(2.20), our Hamiltonian becomes12

Ĥ =

∫
dxψ̂† (x)

(
− ~2

2m
∇2
x + Vext(x, t)

)
ψ̂ (x) +

g

2

∫
dxψ̂† (x) ψ̂† (x) ψ̂ (x) ψ̂ (x) . (2.22)

This effective 1D Hamiltonian will be the focus of this thesis. With this Hamiltonian, we

can begin to study the dynamics of an ultra-cold Bose gas.

9Feshbach resonances arise because of the Zeeman effect : when an external magnetic field is applied
to an atomic gas, the energy levels of the internal states shift [81]. This means that the energy levels of
a pair of individual atoms can become the same as the energy levels of a molecule of those two atoms
combined. When this degeneracy occurs, the two atoms can momentarily couple, which vastly changes
their scattering properties and thus the interaction strength g. This effect was first predicted by Feshbach
in Ref. [109] and is often experimentally manipulated in atomic physics [110].

10By naturally, we mean without manipulation of Feshbach resonances.
11This is only the condition for a non-interacting Bose gas. As repulsive interactions increase, atoms can

“pop out” into other dimensions. The conditions for creating a 1D Bose gas are therefore more complicated
in an interacting gas, but it is sufficient for this thesis to understand that is is still possible to construct
an effective 1D system with repulsive interactions [113, 114].

12Note that the interaction strength g in equation (2.22) now refers to an effective interaction strength
in 1D. Therefore, it is not equivalent to that defined in equation (2.21).
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2.3.2 Mean-field dynamics: the Gross-Pitaevskii equation

The evolution of the field operator ψ̂(x) can be found using the Heisenberg equation of

motion, equation (2.17). Under the Hamiltonian in equation (2.22), the field operator

evolves as

i~
dψ̂(x)

dt
=

[(
− ~2

2m
∇2
x + Vext(x, t)

)
+ gψ̂† (x) ψ̂ (x)

]
ψ̂ (x) . (2.23)

Hypothetically, solving this equation of motion would give the dynamics of the quantum

field of an ultra-cold Bose gas. However, even numeric integration is intractable for the

full quantum field. This is because ψ̂(x) lives in a Hilbert space which is a tensor product

of all its basis functions φi(x), and for more than a few modes this requires more bytes

of computing power than atoms in the observable universe. The exponential scaling of

quantum Hilbert spaces is an inherent challenge of QFT, and it is therefore necessary to

make approximations so that solving equations such as equation (2.23) is possible.

The simplest approach is mean-field theory. We only review the basics here; a

reader curious for a more general introduction should see Chapter 4 or Ref. [108], and

specifically in the context of cold atoms Chapter 6 of Ref. [81].

In a mean-field theory, we assume that the majority of the particles in a system

are in one particular state, such as a number state or a coherent state. A single function

φ(x) — termed an order parameter or a classical field — describes that state. Expectation

values of operators are then written in terms of that order parameter. For example, for

some state |Ψ〉 if we assume a) that there is always a basis where all particles are in a

single mode, and b) that single mode is a coherent state, we can prove (see Appendix

A.1)

ψ̂(x)|Ψ〉 = φ(x)|Ψ〉, (2.24)

where the order parameter φ(x) is some function defined in terms of the single-mode basis

and the eigenvalues of the coherent state. Equation (2.24) and its complex conjugate are

used to write the expectation value of any combinations of field operators; for example,

〈ψ̂(x)〉 = φ(x), and 〈ψ̂†(y)ψ̂(x)ψ̂(y)〉 = |φ(y)|2 φ(x).

Recall that in Figure 2.1b, we saw that as T → 0, the majority of atoms in a

Bose gas occupy one state, forming a BEC. In a coherent state approximation, we assume

that the system is in a coherent state of that single mode. Taking the expectation value of

equation (2.23), and applying the coherent state approximation (equation (2.24)) obtains

i~
dφ(x, t)

dt
=

[(
− ~2

2m
∇2
x + Vext(x, t)

)
+ g |φ(x, t)|2

]
φ(x, t). (2.25)

Equation (2.25) was first proposed by Gross [118, 119] and Pitaevskii [120], and is termed

the Gross-Pitaevskii Equation (GPE). Alternatively, readers may be familiar with equa-

tion (2.25) as the non-linear Schrödinger equation [121]. At dynamic equilibrium, the

condensate wavefunction φ(x) will only evolve by rotating in phase space [122]. Thus, the

condensate wavefunction is separable in time and position, and can be written

φ(x, t) = φ0(x)e−i
µt
~ , (2.26)
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where µ is the chemical potential. Substituting equation (2.26) into equation (2.25) obtains

µφ0(x) =

[(
− ~2

2m
∇2
x + Vext(x, t)

)
+ g |φ0(x)|2

]
φ0(x), (2.27)

known as the time-independent GPE (TIGPE). Some authors therefore refer to equation

(2.25) as the time-dependent GPE (TDGPE).

The GPE is our lowest-order description of the dynamics of a BEC. As the GPE

assumes effectively all of the atoms are in the condensate, it therefore assumes T = 0.

However, the GPE can provide a sufficient description as hot as half the critical tempera-

ture (T ≈ TC/2), provided the gas is weakly interacting [123, 124]. Even when multiple

energy states are occupied, the GPE can be an accurate description of the dynamics of

the lowest energy state [107].

Recall again Figure 2.1b, and observe that as temperature increases above T = 0,

a greater number of energy states have non-negligible occupation, so not all the atoms

are behaving in the same way. It is therefore no longer accurate to estimate the quantum

behaviour by a single order parameter. This means that the further we get from T = 0,

the mean-field dynamics described by the GPE break down, and a new theory is needed.13.

2.4 An introduction to symmetry-breaking Bogoliubov the-

ory

In this thesis, we model the finite (non-zero) temperature behaviour of ultra-cold Bose

gases, so the GPE alone is insufficient. Our model will be inspired by the approach of

Bogoliubov in his seminal work on superfluidity [96].

The key aim of Bogoliubov theory is to diagonalise the cold atom Hamiltonian in

order to obtain tractable equations of motion for the collective excitations of the gas.

In particular, these collective excitations are represented by quasiparticle modes. In

Section 2.4.1, we discuss in detail the two key assumptions of Bogoliubov’s original

theory; that it is a perturbation theory about the mean-field, and that it treats the

condensate as a classical field. We then work through the steps of diagonalising the cold

atom Hamiltonian in Section 2.4.2. We develop a further intuition for the properties of

Bogoliubov excitations by studying a particular analytic solution in Section 2.4.3, before

discussing the important effect of quantum depletion in Section 2.4.4.

In our summary of symmetry-breaking Bogoliubov theory, we only introduce the

basic tools relevant to this thesis. A reader interested in a more detailed introduction

should consult Ref. [107].

13A similar effect occurs when the repulsive interaction strength g increases: different particles can
couple to each other, and not all particles behave the same. Rigorously, increasing T and g induces
quantum correlations in the quantum field, so ψ̂(x) is no longer separable.
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2.4.1 A conceptual introduction

At low but non-zero temperatures, the majority of atoms in a cold Bose gas are in the

condensate, but the remaining particles occupy a small number of other low energy modes.

Let us describe the macroscopically occupied condensate by the annihilation operator â0
and all other modes by the field operator δ̂(x). We can separate out the condensate mode

from the rest of the field operator as

ψ̂(x) = χ0(x)â0 + δ̂(x), (2.28)

where χ0(x) is the wavefunction of the condensate mode. As the occupation of non-

condensate modes is small, δ̂(x) is small, and can be thought of as a perturbation about

the condensate wavefunction. Indeed by expanding the field operator in this way, we will

ultimately be able to complete a perturbative expansion of the cold atom Hamiltonian,

and obtain simple approximate dynamics for the excitations of the gas.14 But first, let us

turn our attention to the condensate.

Consider respectively the operation of â0â
†
0 and â†0â0 upon the state vector of a

Bose gas. Let us represent the state vector as |Nc, ~v〉, where NC is the number of particles

in the condensate, and ~v the state vector of particles in other modes. We therefore have

that

â†0â0 |Nc, ~v〉 = NC |NC , ~v〉 , â0â†0 |NC , ~v〉 = (NC + 1) |NC , ~v〉 . (2.29)

As NC � 1, NC+1 ≈ NC and therefore [â0â
†
0−â

†
0â0] |Nc, ~v〉 ≈ 0. Bogoliubov’s assumption

is then that [â0, â
†
0] = 0 and that the annihilation operator can be replaced by a complex

number. In particular, â0 =
√
NC ≈

√
N , so that equation (2.29) remains true. If χ0(x)

is normalised to
√
NC , the field operator for the Bose gas becomes

ψ̂(x) = χ0(x) + δ̂(x). (2.30)

The key concept of this procedure is that the condensate is treated as a classical degree

of freedom, unlike the excitations δ̂(x). Indeed, an equivalent model follows from defining

δ̂(x) as

ψ̂(x) =
〈
ψ̂(x)

〉
+ δ̂(x) = φ(x) + δ̂(x), (2.31)

where φ(x) is the mean-field (typically modelled by the GPE). It follows from each equa-

tions (2.30) and (2.31) that[
δ̂ (x) , δ̂† (y)

]
= δ (x− y) ,

[
δ̂ (x) , δ̂ (y)

]
=
[
δ̂† (x) , δ̂† (y)

]
= 0. (2.32)

From equation (2.31), it is also apparent that 〈δ̂(x)〉 = 0. This makes sense, because δ̂ is

a perturbation around a large value (the condensate wavefunction).

A clear consequence of the approximation NC ≈ NC + 1 is that the number of

particles in the condensate is fixed. This means that if an excitation is destroyed it does

not appear in the condensate, so the total number of particles in the gas is not fixed.

More rigorously, the classical field approximation fixes the phase of â0, and the field

14Readers unfamiliar with perturbation theory should see Chapters 6 and 9 of Ref. [125]. It is the
quantum mechanical analogue of the Taylor expansion.
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operator ψ̂(x) is no longer invariant under the U(1) gauge symmetry15 [107, 126]. We

will therefore refer to this approach as symmetry-breaking Bogoliubov theory.

The other significant consequence of approximating NC ≈ NC + 1 is that it re-

stricts the regime in which the symmetry-breaking Bogoliubov theory is valid. Rigorously,

the theory is only valid in the regime where NC/N � 1/N . For this reason, most

literature applying symmetry-breaking Bogoliubov theory to moderately sized BECs (104

- 106 atoms) does not consider below ∼ 90% condensate fraction.16

2.4.2 Diagonalising the cold atom Hamiltonian

We now have the tools to study the dynamics of the system using the Hamiltonian. We

will first simplify the cold atom Hamiltonian with a perturbation using the approximation

in equation (2.29). Then, we will introduce the Bogoliubov transformation in order to

diagonalise our Hamiltonian, since dynamics of operators are more tractable under a

diagonal Hamiltonian.

Perturbation Theory in δ̂(x)

The approximation NC ≈ NC + 1 effectively means that particles can move between

the condensate and some reservoir, so we are implicitly working in the grand canonical

ensemble17. This makes it necessary to introduce the term −µN̂ to the Hamiltonian,

where N̂ =
∫
dxψ̂†(x)ψ̂(x) is the number operator. This term accounts for the energy

change when a particle is exchanged with the particle reservoir, so the Hamiltonian in

equation (2.22) becomes

Ĥ =

∫
dxψ̂† (x)

(
− ~2

2m
∇2
x + Vext(x, t)− µ

)
ψ̂ (x) +

g

2

∫
dxψ̂† (x) ψ̂† (x) ψ̂ (x) ψ̂ (x) .

(2.33)

Substituting in equation (2.29) into equation (2.33), we obtain

Ĥ = H0 +
4∑
i=1

Ĥi, (2.34)

where

H0 =

∫
dx
[
χ∗0(x)ĥ0(x)χ0(x) +

g

2
|χ0(x)|4

]
, (2.35a)

Ĥ1 =

∫
dx
[
δ̂†(x)

(
ĥ0(x) + g |χ0(x)|2

)
χ0(x) + χ∗0(x)

(
ĥ0(x) + g |χ0(x)|2

)
δ̂(x, t)

]
,

(2.35b)
Ĥ2 =

∫
dx
[
δ̂†(x)

(
ĥ0(x) + 2g |χ0(x)|2

)
δ̂(x)

]
+
g

2

∫
dx
[
(χ∗0(x))2 δ̂(x)δ̂(x) + (χ0(x))2 δ̂†(x)δ̂†(x)

]
(2.35c)

15For an introduction to gauge symmetries in QFT, see Chapters 14 and 20 of Ref. [106].
16Technically, the regime of validity depends upon the particular system being studied. For example,

Hurst et al. in Ref. [99] consider a minimum condensate fraction of 99%.
17For a review of the details of the grand canonical ensemble, the interested reader should see Ref. [39].
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Ĥ3 = g

∫
dx
[
χ∗0(x)δ̂†(x)δ̂(x)δ̂(x) + χ0(x)δ̂†(x)δ̂†(x)δ̂(x)

]
(2.35d)

Ĥ4 =
g

2

∫
dxδ̂†(x)δ̂†(x)δ̂(x)δ̂(x). (2.35e)

Here, we have introduced the shorthand

ĥ0(x) = − ~2

2m
∇2
x + Vext(x, t)− µ (2.36)

Equations (2.35a) - (2.35e) are essentially an expansion of Ĥ in increasing order of the

small parameter δ̂(x). Whilst this Hamiltonian appears intractable, we can obtain simple

approximate dynamics by considering a perturbation theory in δ̂(x).

First, note that H0 is not operator valued (not an operator), so it is a constant

offset that we can minimise. We would normally do this using calculus; however, H0 is

not defined in terms of a continuous variable, but rather a function χ0(x). This means

that H0 is a functional. Fortunately, the rules of calculus for functionals are essentially the

same as regular calculus, except continuous variables are replaced by complex functions

(see Chapter 12 of Ref. [127] for more details). If H0 is a functional in χ∗0, the functional

derivative with respect to χ∗0 is

δH0 [χ∗0(x)]

δχ∗0(x)
=
(
ĥ0(x) + g |χ0(x)|2

)
χ0(x). (2.37)

H0 is minimised if the right-hand side of equation (2.37) is equal to zero, which is exactly

the TIGPE (equation (2.27)) for χ0(x).18 If χ0(x) obeys equation (2.27), because ĥ0
is hermitian, Ĥ1 = 0. Therefore, if we describe the condensate by the TIGPE, Ĥ2 is

the lowest order operator-valued contribution to the Hamiltonian, so in our perturbation

theory we approximate Ĥ ≈ Ĥ2.

The Bogoliubov transformation

Recall that that the goal of our perturbation theory is to diagonalise the Hamiltonian. In

order to do this, we will do this by representing collective excitations of the condensate as

effective particles, or quasiparticles. Mathematically, that goal is achieved by making the

linear transformation

δ̂(x) =
∑
j>0

[
uj(x)β̂j + v∗j (x)β̂†j

]
, (2.38)

where β̂j and β̂†j are quasiparticle annihilation and creation operators obeying[
β̂j , β̂

†
k

]
= δjk,

[
β̂j , β̂k

]
=
[
β†j , β̂

†
k

]
= 0. (2.39)

The functions {uj , vj} are normalised coefficients of the quasiparticle operators. In order

for both equations (2.32) and (2.39) to hold, these coefficients must obey the orthonor-

18Rigorously, we are assuming that a minimum solution exists, which is equivalent to assuming the
condensate has a fixed phase. Assuming the condensate has a fixed phase is exactly equivalent to breaking
the U(1) symmetry, as discussed in Section 2.4.1. Therefore, assuming a minimum solution exists is
consistent with the previous assumptions of the symmetry-breaking approach [107].
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mality conditions ∫
dx
(
u∗j (x)uk(x)− v∗j (x)vk(x)

)
= δjk, (2.40a)∫

dx (uj(x)vk(x)− vj(x)uk(x)) = 0. (2.40b)

Here, each quasiparticle pair β̂j and β̂†j represents the collective excitation of particles in

the Bose gas. The basis for those quasiparticles is not chosen until we specify a particular

form for the coefficients {uj , vj}.

Substituting equation (2.38) into equation (2.35c) yields, after some simplification,

the unwieldy expression

Ĥ2 =
1

2

∑
jk

∫
dx
[
vj(x)

(
L̂(x)v∗k(x) + C(x)u∗k(x)

)
β̂j β̂

†
k + h.c.

]
+

1

2

∑
jk

∫
dx
[
u∗j (x)

(
L̂(x)uk(x) + C(x)vk(x)

)
β̂†j β̂k + h.c.

]
+

1

2

∑
jk

∫
dx
[
vj(x)

(
L̂(x)uk(x) + C∗(x)vk(x)

)
β̂j β̂k + h.c.

]
+

1

2

∑
jk

∫
dx

[(
L̂(x)v∗k(x) + C(x)u∗j (x)

)†
uj(x)β̂j β̂k + h.c.

]
,

(2.41)

where L̂(x) = ĥ0 + 2g |χ0(x)|2 = L̂†(x) and C(x) = g (χ0(x))2 and we use h.c. to refer to

“Hermitian conjugate”. However, this substitution presents a sensible choice of basis for

the quasiparticles:

L̂(x)uj(x) + C(x)vj(x) = εjuj(x), (2.42a)

L̂(x)vj(x) + C∗(x)uj(x) = −εjvj(x), (2.42b)

where εj is the energy of the jth quasiparticle. These coupled equations are the Bogoliubov-

de Gennes equations. When substituted into equation (2.41), and using the orthonormality

conditions (equation (2.40)), one obtains (after some effort)

Ĥ2 =
∑
j>0

εj

[
β̂†j β̂j −

∫
dx |vj(x)|2

]
. (2.43)

Thus, Ĥ2 is diagonal in the Bogoliubov modes, up to an energy offset. Physically, this

means that Bogoliubov excitations behave as harmonic oscillator modes (to second order

perturbation theory). Moreover, it means that finding the commutator [Â, Ĥ] is simple for

any operator Â expressed in terms of the Bogoliubov modes. That makes computing the

dynamics of operators in the Heisenberg picture (using equation (2.17)) straightforward,

either analytically or numerically. This diagonalisation is at the heart of what makes

Bogoliubov theory so useful, and hence why it has been applied in fields beyond cold atom

physics as diverse as the study of black holes [128] and the structure of atomic nuclei [129].
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2.4.3 Analytic solutions to the Bogoliubov spectrum

In order to develop intuition for how Bogoliubov quasiparticles behave, it is instructive to

solve the Bogoliubov-de Gennes equations for {uj(x), vj(x)} and the Bogoliubov energy

spectrum εj . In particular, we will consider an analytic solution of the equations in

a “box” (infinite square well) potential. In Chapter 3, we will discuss this solution in

comparison with analytic solutions for the Bogoliubov-de Gennes equations in a harmonic

trapping potential19. More generally, solutions to the Bogoliubov-de Gennes equations

can be found via perturbation theory [130] and numeric integration [131]. For more

detailed reviews of approaches for solving for Bogoliubov modes in different traps, the

interested reader should see Refs. [132] and [133].

Solving the Bogoliubov-de Gennes equations requires having the form of χ0(x). As

χ0(x) obeys the TIGPE, we first must solve equation (2.27) for a given Vext(x, t). The

TIGPE is most simply solved by a uniform condensate. Consider the box potential

Vext(x, t) =

{
0, if − L/2 < x < L/2,

∞, if elsewhere.
(2.44)

We then solve the TIGPE by assuming that the kinetic energy of the atoms is small relative

to the interactions between them. This approximation holds when the number of atoms

is large, since more inter-atomic interactions can occur, and agrees well with experiment

[134]. Neglecting the kinetic energy, equation (2.27) becomes

|χ0(x)|2 =
µ− V (x)

g
. (2.45)

Equation (2.45) is known as the Thomas-Fermi approximation. For the box potential, it

is solved by

χ0(x) =

{√
µ/g, if − L/2 < x < L/2,

0, if elsewhere.
(2.46)

so the condensate is uniform. Because the wavefunction χ0(x) is normalised as∫
dx |χ0(x)|2 = NC ≈ N , so

√
µ/g =

√
N/L. For a uniform condensate, one set of

solutions to the system of equations (2.42) are the plane-wave solutions.20 In 1D, these

are

uj(x) =
1√
L

cosh rje
i 2π
L
jx, and vj(x) =

1√
L

sinh rje
i 2π
L
jx, (2.47)

where rj = ln
[
εj/ε

(0)
j

]
/2, and ε

(0)
j is the energy of a free quasiparticle. In particular,

εj =

√
ε
(0)
j

(
ε
(0)
j + 2gn

)
, and ε

(0)
j =

2π2~2j2

mL2
, (2.48)

where n is the density of atoms. We will often refer to equation (2.48) as the Bogoliubov

energy spectrum, and it tells us that each excitation behaves like a free particle with its

energy “dressed” by the interaction between atoms. This is a valuable feature of the

Bogoliubov approach: the basis choice inherently accounts for the interactions between

19Note that hereafter we use “trapping potential” and trap interchangeably.
20Technically, these solutions have continuous boundary conditions, so actually physically correspond to

a 1D ring of circumference L. We will discuss this subtle difference in more detail in Chapter 5.
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atoms. For the lowest energy excitations (ε
(0)
j � 2gn), the energy spectrum approaches

εj →
√

2gnε
(0)
j , resembling the dispersion relation of phonons in a crystal lattice [135].

This similarity further illustrates how the Bogoliubov modes are collective excitations of

our atomic ensemble.

2.4.4 Quantum depletion

The presence of interactions in the Bogoliubov modes makes it easier to study the effect of

interactions upon the behaviour of an atomic gas. In particular, recall from equation (2.8)

that condensate fraction is a useful proxy for temperature in a BEC. Using the plane-wave

solution in equation (2.47), it is possible to show that this proxy breaks down for g 6= 0.

Under the Bogoliubov approximation, the number operator is21

N̂ =

∫
dx

|χ0(x)|2 +
∑
j

|vj(x)|2


+
∑
jk

∫
dx
[(
u∗j (x)uk(x) + v∗j (x)vk(x)

)
β̂†j β̂k +

(
vj(x)uk(x)β̂j β̂k + h.c.

)]
.

(2.49)

Recall that 〈N̂〉 = N and that the condensate wavefunction is normalised to NC . At

T → 0, the population of real Bogoliubov excitations tends towards zero22, so equation

(2.49) can be solved for the condensate fraction

NC

N
≈ 1− 1

N

∑
j

∫
dx |vj(x)|2 . (2.50)

Note that vj 6= 0 for g > 0. That is, the condensate is not fully occupied at T = 0

for an interacting Bose gas. Physically, the weakly repulsive interactions between atoms

push some of them out of the ground state into Bogoliubov modes. This effect is termed

quantum depletion, and was first experimentally reported in Ref. [137]. The integral in

equation (2.50) can be evaluated in the box approximation, by making the low energy

approximation εj ≈
√

2gnε
(0)
j and only summing over modes satisfying ε

(0)
j � 2gn. This

gives

NC

N
= 1− 8

3
√
π

√
na3 = 1− 1

3~3

√
m3g3n

π4
, (2.51)

a result first obtained in Ref. [138]. The significance of equation (2.51) is that interactions

deplete the condensate. For a condensed Bose gas at a typical density (such as sodium

at 1014 cm−3) the depletion of the condensate is only 0.2% [137], but for a strongly

interacting gas it can be of the order of 20% [139]. Indeed, in liquid helium up to 90% of

the condensate may be depleted [140].

A clear consequence of quantum depletion is that, even at T = 0, the symmetry-

breaking approximation (NC + 1)/N ≈ NC/N may not hold for large g. In this thesis,

we are concerned with lowering the entropy of Bose gases by driving particles into the

21This is assuming that the condensate and excited modes are orthogonal. This is a standard assumption
which is safe for thermal excitations [136].

22That is, 〈β̂†j β̂k〉, 〈β̂j β̂k〉 → 0. For a more detailed discussion, see Chapter 8.1 of Ref. [81].
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condensate. As quantum depletion tells us the maximum occupancy of the condensate, it

quantifies what the lowest entropy state is.

2.5 Number-conserving Bogoliubov theory

Symmetry-breaking Bogoliubov theory has proved a powerful tool for modelling various

phenomena in ultra-cold Bose gases. When proposing the approach in Ref. [96],

Bogoliubov provided the first description of superfluidity as a phenomena of BECs23,

which successfully modelled the significant quantum depletion observed in Helium

II [140]. Beyond superfluidity, Bogoliubov theory has proved an accurate model for

Hawking radiation in analogue black holes made with BECs [142, 143], and models of

nuclear structure [144, 145]. Bogoliubov [72] developed an analogous symmetry-breaking

theory for fermions which successfully described superconductivity, verifying the theory

of Bardeen, Cooper and Schrieffer [71]. We will discuss the fermionic formulation of

Bogoliubov theory in the Outlook portion of Chapter 7.

However, symmetry-breaking Bogoliubov theory is fundamentally limited in its ap-

plication by the approximation that the condensate is classical. In particular, it does

not allow for dynamic changes in the number of condensed atoms, and is only valid for

regimes where T � TC , and where both g and n are sufficiently small such that quantum

depletion is negligible.

An alternative approach is number-conserving Bogoliubov theory. Number-conserving

approaches treat the condensate as a quantum degree of freedom, and in doing so

maintain the U(1) symmetry. This section will only introduce the core principles of

number-conserving Bogoliubov theory relevant to this thesis, but a reader interested in

further details should consult Chapter 8 of Ref. [146].

2.5.1 A new perturbation theory

Recall the diagonalisation performed in Section 2.4.2. If we näıvely instead use equation

(2.28), keeping the condensate as a quantum degree of freedom, the function C(x)

in equation (2.41) is replaced with C(x)â20. In that case, the Bogoliubov-de Gennes

equations do not diagonalise Ĥ2. It is therefore not possible to complete a perturbation

theory in δ̂ as before.

The key idea of number-conserving Bogoliubov theory is to perform a perturbation

theory in a fluctuation parameter proportional to â†0δ̂(x).24 This operator creates a

particle in the condensate when an excitation is destroyed, so it inherently conserves the

number of particles in the gas. Additionally, 〈â†0δ̂(x)〉 = 0, which can be shown using the

23Whilst Landau’s Nobel-Prize winning description of superfluidity had come six years earlier in Ref.
[141], it assumed a particular form of excitations (photons and rotons). Whilst not all superfluids are
BECs, Bogoliubov’s theory was the first to propose a model of superfluidity without strict restrictions on
the kinds of possible excitations.

24Although number-conserving Bogoliubov theory was not formally developed until the end of the 20th
century by Gardiner [147] and Castin and Dum [126], the idea for such a perturbation theory was actually
first proposed by Girardeau et al. nearly 40 years earlier [148].
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definitions

â†0 =

∫
dyψ̂†(y)χ0(y), and δ̂(x) =

∫
dy [δ(x− y)− χ0(x)χ∗0(y)] ψ̂(y), (2.52)

and assuming 〈ψ̂†(x)ψ̂(y)〉 = δ (x− y)25. The specific choice of fluctuation parameter

depends upon the number-conserving theory: S. Gardiner and Morgan define [149]

Λ̂C(x) =
1√
NC

â†0δ̂(x), (2.53)

whilst C. Gardiner [147] and Castin and Dum [126] define

Λ̂(x) =
1√
N
â†0δ̂(x). (2.54)

Technically, these two fluctuation parameters scale differently, but that does not affect the

results of the theory relevant to this thesis26 The Hamiltonian (equation (2.22)) is then

expanded in terms of the fluctuation parameter in decreasing powers of N as

Ĥ = NH0 +
√
NĤ1 + Ĥ2 + . . . (2.55)

where the first two terms (H0, Ĥ1) are the same as in the symmetry-breaking approach

(equations (2.35a) and (2.35b)) with δ̂(x) replaced by Λ̂C(x). All terms beyond Ĥ2 are

O(1/
√
N) and so are negligible. The difference in operator-valued terms is that Ĥ2 con-

tains an additional term27

Ĥ2 = Ĥ2

[
Λ̂C(x)

]
−
∫
dxdyΛ̂†C(y)Λ̂C(y)χ∗0(x)

[
ĥ0(x) + g |χ0(x)|2

]
χ0(x), (2.56)

where we have used the notation Ĥ2[Λ̂C(x)] to indicate equation (2.35c) with

δ̂(x) → Λ̂C(x). Note that, in a similar manner to Section 2.4.2, the additional

term in Ĥ2 vanishes when H0 is minimised and χ0(x) obeys the TIGPE.

The number-conserving Hamiltonian is then diagonalised by a set of modified Bogoliubov-

de Gennes equations. These equations include additional terms to equation (2.42), but

these additional terms vanish when the condensate is orthogonal to the excitations.28

In this thesis we will assume the excitations and condensate modes are orthogonal, so

we will use the symmetry-breaking Bogoliubov modes (solutions to equation (2.42)) to

approximate the number-conserving modes.

25This assumption corresponds to initially being in a state of fixed temperature [126].
26S. Gardiner and Morgan [149] explain the difference in scaling by defining the number of thermal

excitations NT = N − NC . As â0 ∝
√
NC and δ̂(x) ∝

√
NT , the parameter Λ̂C(x) ∝

√
NT always.

Conversely, Λ̂(x) ∝
√
NT (1−NT /N), which scales with

√
NT only if NT << N . Because this scaling is

not constant, S. Gardiner and Morgan prefer Λ̂C(x) because it makes their perturbation theory consistent
for all NT .

27There is an additional energy offset −g/2
∫
dx |χ0(x)|4, however this can be treated as a zero-point

energy and thus discarded.
28This is except for a missing energy ε0 for the condensate mode. The consequence of this is that

the phase of the condensate wavefunction χ0(x) spreads in time [150]. This is a physical difference to
the symmetry-breaking approach, where the condensate is assigned a fixed phase. However, this phase
spreading tends to zero as NC →∞ [126].
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The key takeaway of these approaches is that it is possible to construct a diagonal

Hamiltonian, which conserves number, if the condensate is treated as a quantum degree

of freedom. Specifically, if we write our wavefunction as in equation (2.28)

ψ̂(x) = χ0(x)â0 + δ̂(x), (2.57)

there exists a perturbation theory where (up to some constant)

Ĥ = ε0â
†
0â+

∑
j

εj β̂
†
j β̂j , (2.58)

where ε0 is the energy of the condensate mode and εj the Bogoliubov energy spectrum

from Section 2.4. Essentially, the condensate is treated as an additional harmonic oscillator

mode of freedom. With equation (2.58), we therefore have the tools needed to model a

Bose gas with the condensate as a quantum degree of freedom.



Chapter 3

Background II: Conditional

measurement theory and feedback

cooling

In this thesis, we model continuous-measurement feedback control as a technique for

cooling a finite temperature gas. Explicitly, this means that we are implementing a

control which depends upon an estimate of the system we are controlling. However,

measurement of a quantum system leads to backaction — spontaneous wavefunction

collapse due to the measurement made. As wavefunction collapse is random, the evolution

of the system will be unique to each trajectory — that is, each instance in which we study

it. Our feedback is therefore conditional : it depends upon the trajectory being considered.

In this chapter we introduce the study of systems that evolve under unique trajec-

tories: conditional measurement theory. To understand this theory, we first review open

quantum systems in Section 3.1 and then stochastic calculus in 3.2. In Section 3.3, we

introduce the conditional measurement theory of a system coupled to an unchanging

reservoir. In Section 3.4, we then provide an analytic introduction to feedback cooling

based upon a conditional measurement, and review two feedback controls which have been

used to achieve cooling in past literature. Implementing this understanding of conditional

measurement theory and feedback cooling, in Section 3.5 we are then prepared to review

the model presented by Szigeti et al. in Ref. [1] for the feedback cooling of an atomic gas

using phase-contrast imaging. The aim of this thesis is then to develop a low temperature

perturbative theory for this full quantum model.

3.1 Open quantum systems

When we first study quantum mechanics, we are often concerned with a quantum system

in isolation from the environment it lives in. In order to model the measurement of that

quantum system, we have to study both the system S and the device M used to complete

the measurement. Rigorously, before the measurement our system lives in a Hilbert space

HS and our measurement device in HM . When we use the device to measure our system,

they now both live in HS ⊗HM , the tensor product of their Hilbert spaces. The challenge

with such a description is that quantum Hilbert spaces scale exponentially with their

dimension, so the wavefunctions living in HS ⊗HM become intractable for systems with

more than a few dimensions.

31
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One approach is to ignore some degrees of freedom of the measurement device.

More generally, this approach is applied when a quantum system is entangled with some

large reservoir. Physically, ignoring degrees of freedom of the reservoir assumes it is

largely unaffected by interacting with the quantum system. This is analogous to, when

studying the gravitational interaction between the Earth and the Sun, ignoring the effect

upon the Sun’s dynamics. When we make this approximation, we are studying an open

quantum system.

In representing an ensemble of many quantum states, it is more efficient to intro-

duce the density matrix. In this section, we will use the density matrix to model a

quantum system coupled to a large reservoir. For a pedagogical introduction to open

quantum systems under continuous measurement, the interested reader should consult

Ref. [151]. For a more detailed introduction to open quantum systems more generally,

the reader should see Ref. [152].

3.1.1 The density matrix

Consider a quantum system which can be described by one particular state |Ψ〉 — this is

a pure state. For a pure state, the density matrix ρ̂ is defined

ρ̂ = |Ψ〉〈Ψ|. (3.1)

The density matrix is more generally used to describe mixed states; where a system can

be in a number of different states |ψa〉 in a different Hilbert space, each with probability

Pa. As they are probabilities, 0 ≤ Pa ≤ 1 and
∑

a Pa = 1. For a mixed state, the density

matrix is defined as

ρ̂ =
∑
a

Pa|ψa〉〈ψa|. (3.2)

The equation of motion for the density matrix is the master equation. In a closed system,

this is the von Neumann equation

dρ̂

dt
= − i

~

[
ĤS , ρ̂

]
, (3.3)

where ĤS is the closed system Hamiltonian. Note that ρ̂ is a matrix of states |ψa〉, so we

are implicitly working in the Schrödinger picture.

Equation (3.3) can be used to find the full dynamics of the system, or the evolu-

tion of the average of a particular operator 〈Â〉. To achieve the latter, we first derive

from equation (3.2)that1 〈
Â
〉

= Tr
{
Âρ̂
}

=
∑
a

Pa

〈
ψa

∣∣∣Â∣∣∣ψa〉 . (3.4)

1The proof follows from inserting the identity 1̂ =
∑
k |k〉〈k| into the right-hand side of equation (3.4),

where {|k〉} is some orthonormal basis.
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We then take the time derivative of equation (3.4) and substitute equation (3.3) to obtain

d
〈
Â
〉

dt
= Tr

{
Â
dρ̂

dt

}
= − i

~
Tr
{
Â
(
ĤS ρ̂− ρ̂ĤS

)}
= − i

~

〈[
Â, ĤS

]〉
,

(3.5)

where in the final step we used the cyclic nature of the trace.

3.1.2 System-reservoir coupling

The evolution of two interacting quantum systems A and B can be studied via the

density operator ρ̂AB, which evolves under equation (3.3) for a joint Hamiltonian ĤAB.

The evolution of A can be found by tracing over the possible states of B; that is,

dρ̂A = TrB{dρ̂AB}. However, the full evolution of ρ̂AB under equation (3.3) is typically

intractable.

In order to proceed further, we consider a particular case: a quantum system with

Hilbert space ĤS coupled to some reservoir with Hilbert space ĤR. We describe more

rigorously the approximations made upon the reservoir in a moment, but physically we

are treating the reservoir as a large quantum object which is unaffected by its interaction

with HS . We do this because we will be considering the measurement of a system with

light, of which is there is practically an infinite supply, or “reservoir”.

For a system coupled to a reservoir, it is possible to derive a tractable master

equation for the evolution of the system dρ̂S . The details of the derivation are beyond

the scope of this thesis (see Ref. [153] for a pedagogical introduction), but we make note

of the key assumptions:

1. The system and reservoir are always separable; that is, ρ̂SR(t) = ρ̂S(t)⊗ ρ̂R(t). This

is the Born Approximation.

2. The system S is Markovian; the dynamics are wholly determined by its present

state, and unaffected by its past history.

3. The reservoir is so large that it is statistically unaffected by the interaction with the

system; the most simple mathematical consequence of this is that ρ̂R(t) = ρ̂R(0).2

Using these approximations, the master equation for the system has the Linbladian form

dρ̂S
dt

= − i
~

[
ĤS , ρ̂S

]
︸ ︷︷ ︸

Hamiltonian Evolution

+
∑
a

D [ĉa] ρ̂S︸ ︷︷ ︸
Decoherence

, (3.6)

where D is the decoherence superoperator defined as

D [ĉ] ρ̂ = ĉρ̂ĉ† − 1

2
ĉ†ĉρ̂− 1

2
ρ̂ĉ†ĉ. (3.7)

2This is a rather broad conceptual summary of a number of mathematical approximations made. In
particular, see equations 5.1.14, 5.1.15, 5.1.16 and 5.1.18 of Ref. [152].
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Physically, the decoherence term models the change in order of the system due to the

interaction with the reservoir, and the ĉa are any operators in the combined Hilbert space

which contribute to this decoherence. With equation (3.6), we therefore have a tool for

modelling the average evolution of a system coupled to a large reservoir, without having

to model the evolution of that reservoir itself.

However, this thesis is not solely concerned with the interaction between a system

and a reservoir of light; we want to model the measurement of that light, to estimate

density of the system. As each measured photon is entangled with individual atoms in

our gas, measuring a photon induces wavefunction collapse of the entangled atom into a

random state.3 In order to model the random process of wavefunction collapse, we will

need the tools of stochastic calculus, which we introduce in the next section.

3.2 An introduction to stochastic calculus

The rules of regular calculus break down for processes which include random “kicks” in

the evolution of a variable. The techniques needed to successfully model these effects,

the tools of stochastic calculus, are briefly introduced in this section. For a pedagogical

introduction to the subject, the interested reader should consult Ref. [154]. Otherwise, a

succinct summary of useful results can be found in Refs. [155] or [156].

So far in this thesis, we have considered equations of motion which are determinis-

tic. That is, we have considered variables x which change with respect to a dynamic

variable t as

dx = f(x(t), t)dt, (3.8)

where f(x(t), t) is a continuous, differentiable function. We will now consider stochastic

differential equations (SDE) of the form

dx = f(x(t), t)dt+ g(x(t), t)dW (t), (3.9)

where dW (t) is a Wiener increment representing our noise, and g(x(t), t) is the magnitude

of that noise. In particular, a Wiener increment models white noise — noise which acts

completely independently of the past. Several examples of such noise are included in

Figure 3.1. By the Central Limit Theorem, the sum of many random variables from an

arbitrary distribution obeys a Gaussian distribution, so are defined by their mean and

variance. Therefore, we formally define Wiener increments by

E {dW (t)} = 0,

E
{
dW (t)2

}
= dt,

E
{
dW (t)dW (t′)

}
= dtdt′δ

(
t− t′

)
,

(3.10)

where E {·} is a stochastic average - an average over a large number of possible values for

a stochastic quantity4. Now that we have the form of dW (t), we may näıvely try and solve

3Note that we are therefore not completely ignoring the reservoir; we instead study an evolution con-
ditional upon a particular measurement record.

4Formally, E {A(t)} = limN→∞
∑N
n=1A(t)/N , for some stochastic process A(t).
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Figure 3.1: Four solutions to the differential equation dx = dW (t). The solutions are
completely uncorrelated and random. Any infinitely small region of each signal obeys
those same properties.

equation (3.9) by integrating

x(t) = x(t0) +

∫ t

t0

f(x(t′), t′)dt′ +

∫ t

t0

g(x(t′), t′)dW (t′), (3.11)

where t0 is some initial time. The problem with equation (3.11) is that there are many

ways to define the integral
∫
dW (t′). We can see this by defining the stochastic integral as∫ t

t0

g
(
x(t′), t′

)
dW

(
t′
)

= lim
n→∞

Sn. (3.12)

where Sn is the sum

Sn =

n∑
i=1

g (t∗i ) (dW (ti)− dW (ti−1)) , (3.13)

and ti−1 ≤ t∗i ≤ ti. That is, we have broken [t0, t] into n small regions {[t0, t1] . . . [tn−1, tn]},
and then summed over the function at some point within each region.5 Now suppose that

the point t∗i is always chosen as t∗i = (1−α)ti−1+αti for some real α which obeys 0 ≤ α ≤ 1.

If g(t) = dW (t), it is straightforward to show that

E {Sn} =
n∑
i=1

α (ti − ti−1) = α (t− t0) . (3.14)

Thus, the value of the stochastic integral depends upon which point in each small

interval we choose. This ultimately means that different rules, such as the chain rule

or product rule, are determined by which value of α is chosen. Note crucially that in

deterministic calculus, the integral is independent of α [157]. Conversely, in stochas-

tic calculus, α is chosen depending on which properties of differential equations are desired.

Choosing α = 0 corresponds to picking the lower bound on each interval, and is

referred to as Itô integration. Integrating in the Itô picture has the convenient property

5Note that equation (3.13) has the form of a Riemann sum.
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that

E
{∫ t

t0

g
(
x(t′), t′

)
dW

(
t′
)}

= 0. (3.15)

Equation (3.15) means that noisy terms disappear when taking the average of equations

of motion. This makes it possible to analytically compute the moments of the distribution

of a quantity. The downside is that the chain and product rules of regular calculus break;

instead we have for some functions h(x) and j(x)6

dh(x) =

(
∂h(x)

∂x
f(x(t), t) +

1

2

∂2h(x)

∂x2
g(x(t), t)2

)
dt+

∂h(x)

∂x
g(x(t), t)dW (t),

(3.16a)

d(h(x)j(x)) = dh(x)j(x) + h(x)dj(x) + dh(x)dj(x), (3.16b)

the Itô chain rule and Itô product rule respectively. In this thesis, we derive and

numerically integrate our finite temperature model in the Itô formalism.

An alternative formalism for the stochastic integral is Stratonovich integration, which

corresponds to a choice of α = 1/2. Using the same procedure to derive equation (3.16),

it can be shown that the Stratonovich formalism follows the chain rule and product rule

of deterministic calculus. It is possible to recast Itô equations of the form of equation

(3.9) into the Stratonovich form by introducing the Stratonovich correction. Specifically,

the equation of motion becomes

dx = f(x(t), t)dt︸ ︷︷ ︸
Deterministic

− 1

2
g(x(t), t) · ∇g(x(t), t)︸ ︷︷ ︸
Stratonovich Correction

+ g(x(t), t)η(t)︸ ︷︷ ︸
Noise (Stratonovich)

, (3.17)

where we use the notation η(t) to refer to noise in the Stratonovich formalism. In this

thesis, we derive and numerically solve Itô equations of motion. However, the merits and

detriments of the Stratonovich formalism will be discussed in detail as an alternative

method for more efficient numeric simulation in Chapter 6.

The Itô differential equations considered in this thesis have multiple noise sources,

which have the form

dxj = Ajdt+

N∑
k

BjkdWk(t), (3.18)

where the index j is over the number of equations and N the number of noise sources.

The model of Szigeti et al., to be discussed in Section 3.5, will consider a sufficiently large

number of noise sources where we can instead consider an integral over possible noises

N∑
k

dWk →
∫
dxdW (x, t),

6In order to derive these results, estimate the change in a function h(x) as dh(x∗i ) = h(xi)− h(xi−1) at
a point x∗i in the interval xi−1 ≤ x∗i ≤ xi. A similar process to deriving the chain rule in regular calculus
is followed, except one must recognise that dW (t) is of the order of

√
dt. For more details and different

approaches, the interested reader should see Refs. [152] or [154].
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and equation (3.18) becomes

dxj = Ajdt+

∫
dxBj(x)dW (x, t). (3.19)

We now have the tools of stochastic calculus necessary to understand conditional mea-

surement theory and model continuous measurement.

3.3 Conditional measurement theory

In Section 3.1, we described a quantum system interacting with a reservoir, concluding

with a model for the dynamics which did not require studying the dynamics of the

reservoir. Ultimately, we want to use this interaction to obtain some knowledge about the

system, by measuring the reservoir (for a reservoir of light, we measure some photons from

it). However, the interaction between the reservoir and part of the system entangles them.

By measuring an element of the reservoir — say, a photon — we collapse the wavefunction

of that photon, but also the wavefunction of the entangled part of the system. This

measurement backaction is a stochastic process, so the evolution of the system is uniquely

determined by that measurement. That is, each experimental realisation (trajectory) of

a quantum system undergoing measurement is unique.

The goal of conditional measurement theory is to describe each of these single trajectories

of a quantum system. The idea that a quantum system can take a single trajectory

differs from traditional quantum mechanics, which says that you can only describe

ensemble averages of observables. We only consider the key elements of conditional mea-

surement theory here; a reader interested in a thorough introduction should see Ref. [158].

In conditional measurement theory, the density operator ρ̂ is actually the average

over all possible trajectories

ρ̂(t) = E {ρ̂c(t)} , (3.20)

where ρ̂c represents an individual trajectory of the system. The master equation for ρ̂c
depends upon the measurement considered. In this thesis, we assume homodyne detection,

where a particular quadrature7 (such as number or phase) of the optical field is measured

[159]. For more details on homodyne detection, see Ref. [160]. Under homodyne detection,

each individual trajectory evolves under the stochastic master equation

dρ̂c = − i
~

[
Ĥ, ρ̂c

]
dt︸ ︷︷ ︸

Hamiltonian Evolution

+
∑
a

D [ĉa] ρ̂cdt︸ ︷︷ ︸
Decoherence

+
∑
a

H [ĉa] ρ̂cdWa(t)︸ ︷︷ ︸
Innovations

, (3.21)

where dWa(t) is the noise associated with each ĉa, which obey E {dWa(t)dWb(t)} = δabdt.

The new term in the equation is referred to as the innovations term. Physically, the

innovations term represents the information about a system observable (ĉa + ĉ†a) obtained

by the continuous measurement. That information is wrapped up in the innovations

7The quadratures of an operator ĉa are essentially proportional to its real and imaginary components,
i.e. (ĉ†a + ĉa) and i(ĉ†a − ĉa). We will introduce quadratures in more detail, specifically for the Bogoliubov
modes, in Chapter 4.2.
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superoperator H, which is defined as

H [ĉ] ρ̂ = ĉρ̂+ ρ̂ĉ† − Tr
{(
ĉ+ ĉ†

)
ρ̂
}
ρ̂. (3.22)

For a full derivation of equation (3.21), see Chapter 4 of Ref. [158]. Note that taking the

expectation value of this stochastic master equation obtains equation (3.6), the Lindblad

master equation8. Why, then, should we be concerned with any individual trajectory ρ̂c?

The answer is that, in an experiment, we will only ever observe a particular tra-

jectory. As will be discussed in the following section, a feedback control depends upon

measured values of quantities in the system, so the Hamiltonian evolution is unique to

each trajectory. To fully characterise a feedback control scheme, we will therefore need

to study a large number of individual trajectories. In particular, we use the following

procedure to characterise a continuously-measured system undergoing feedback control:

1. Generate an initial state ρ̂(t = 0). In this thesis, the initial state will be a thermal

state of a particular temperature.

2. Make many (O(100)) copies ρ̂c of that initial state, and evolve each copy under

different random noise sources. This can be achieved by using a pseudo-random

number generator for the noise dWj(t).

3. Throughout the evolution, average particular observables across all trajectories. This

approximates their average value to within an uncertainty estimated by computing

the standard deviation across all trajectories.

In reality, when a feedback control is applied, it is done by looking at the filter π̂c, which is

the experimenter’s esimate of ρ̂c. The dynamics of the filter are different to the dynamics

of the trajectory; the filter dynamics depend on how well the system state is approximated

by the information obtained via measurement. In order to fully characterise a feedback

control, it would be necessary to complete a system-filter separation, where π̂c and ρ̂c are

modelled by two separate equations of motion. Such a separation will not be made in this

thesis; we will assume our filter π̂c perfectly estimates the trajectory ρ̂c. In Chapter 7, we

will propose a system-filter separation based upon that in Ref. [161]. For a more detailed

introduction to system-filter separation, the interested reader should consult Ref. [162].

3.4 An analytic perspective on feedback cooling

Now that we have reviewed conditional measurement theory, we are ready to introduce

how we model feedback cooling. In particular, we will review how a feedback control based

upon a conditional measurement is used to cool a gas, and introduce two control schemes

proposed in the literature to achieve feedback cooling.

3.4.1 Basic principles

Closed-loop feedback control is used to cool a trapped atomic gas by introducing an addi-

tional time-dependent potential, VC(x, t), termed the control potential. Introducing this

8To obtain this result, note that E {ρ̂cdWa(t)} = E {ρ̂c}E {dWa(t)} = 0. This is because the trajectory
ρ̂c is completely independent of any future value of dW (t), so the two are uncorrelated. A more rigorous
justification of this can be found in Chapter 4 of Ref. [155].
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potential is equivalent to making the transformation Vext(x, t)→ V0(x) + VC(x, t), where

V0(x) refers to the time-independent potential used to trap the gas. Our 1D Hamiltonian

becomes

Ĥ = Ĥ0 +

∫
dxψ̂†(x)VC(x, t)ψ̂(x), (3.23)

where Ĥ0 now denotes the cold-atom Hamiltonian introduced in equation (2.22) with a

trapping potential V0(x). The second term in equation (3.23) will be referred to as ĤC ,

or the feedback Hamiltonian.

In reality, what constraints are there on our control potential? Experimentally, at-

tractive (repulsive) dipole interactions between red (blue) detuned light and atoms are

used to prepare a broad range of trapping potentials [55]. Via the implementation of

digital micromirror devices [163], this detuned light can be varied on a time-scale faster

than the atom dynamics, and to a resolution finer than the size of density fluctuations in

the gas. Therefore, we will assume arbitrary spatial and temporal control over VC(x, t).

Although we are ultimately concerned with increasing the condensate fraction of

the gas, feedback cooling achieves this by damping out energy excitations. Feedback

cooling should therefore decrease the total energy in an atomic gas. In particular, we are

concerned with the energy in the absence of feedback: this will be the energy left in the

gas once feedback cooling is completed. That is, we are concerned with E0 = 〈Ĥ0〉. Using

the Heisenberg equation of motion (equation (2.17)), we obtain9

dE0

dt
= − i

~

〈[
Ĥ0, Ĥ

]〉
= − i

~

〈[
Ĥ0 + ĤC − ĤC , Ĥ0 + ĤC

]〉
=
i

~

〈[∫
dxψ̂†(x)VC(x, t)ψ̂(x), Ĥ

]〉
C

.

(3.24)

Note that we have introduced the subscript C to indicate that we are taking the conditional

expectation value, because VC(x, t) is computed in real time, depending upon the unique

trajectory of the quantum system. To continually decrease the energy of the gas, we are

concerned with picking a form for VC(x, t) such that this expression is negative. We now

review some control schemes which have been used to theoretically demonstrate feedback

cooling.

3.4.2 Picking a control

Feedback control was first used to model cooling by Haine et al. in Ref. [89]. The authors

simulated a mean-field model of a BEC using the GPE (equation (2.25)) and demonstrated

that energy could be removed from the condensate using moment control. Moment control

refers to a potential of the form

VC(x, t) =
∑
n

cnfn(x)
d 〈fn(x)〉C

dt
, (3.25)

9To go from the second line to the third, we use the fact that Ĥ (as does any operator) commutes with
itself.
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where the fn(x) are arbitrary functions of x, and cn are positive constants. Again, the

subscript C is used to indicate that the expectation value is computed uniquely for each

trajectory. The functions fn(x) are typically chosen as a single polynomial term, such as

fn(x) = xn, so that each term in the control corresponds to a particular moment of the

BEC density (hence the name). Substituting the moment control potential into equation,

(3.24)

dE0

dt
=
i

~
∑
n

cn
d 〈fn(x)〉C

dt

〈[∫
dxψ̂†(x)fn(x)ψ̂(x), Ĥ

]〉
C

= −
∑
n

cn

(
d 〈fn(x)〉C

dt

)2

.

(3.26)

As cn > 0, energy is driven out of the gas when the fluctuations d 〈fn(x)〉C /dt are

non-zero. The fluctuations d 〈fn(x)〉C /dt are the error signals of the feedback control.

Much of the early work in feedback cooling was done using moment control [164, 1, 2].

However, if there are no fluctuations in the moment being controlled (if d 〈fn(x)〉C /dt = 0)

the feedback no longer cools the gas, and the system is in a dark state. For a collection

of interacting atoms, the non-linear interaction term couples density moments of equal

parity10, which allows fluctuations in higher-order moments to be slowly damped as atoms

move between moments. However, this process takes place over timescales an order of

magnitude larger than to cool the lower-order density moments — so is not particularly

efficient [89].

Two recent theses by Goh [64] and Taylor [95] have shown that an alternative, the

energy damping control, can cool an atomic gas from any state that is not an eigenstate

of the Hamiltonian. Furthermore, the energy damping control can cool both Bose and

Fermi gases more effectively than the moment control. The energy damping control has

the form11

VC(x, t) = −kED∇x ·
〈
ĵ(x)

〉
C
, (3.27)

where kED is a positive real constant and ĵ(x) is the particle current defined as

ĵ(x) =
~

2mi

[
ψ̂†(x)

(
∇xψ̂(x)

)
−
(
∇xψ̂†(x)

)
ψ̂(x)

]
. (3.28)

We can understand what the energy damping control physically does by recalling the

continuity equation [167]

−∇x · ĵ(x) = −
∂
(
ψ̂†(x)ψ̂(x)

)
∂t

, (3.29)

where ψ̂†(x)ψ̂(x) is the density of the wavefunction. Thus, changes in the average density

of the gas are the error signals of the energy damping control. Substituting this control

10That is, odd density moments couple to odd density moments, and even density moments couple to
even density moments.

11The form of the energy damping control - being proportional to the spatial derivative of the particle
current - is inspired by a similar term which damps energy fluctuations in the stochastic-projected Gross-
Pitaevskii equation (SPGPE) [165]. The SPGPE is a finite temperature classical field model for the
dynamics of a Bose gas first presented in Ref. [166].
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into equation (3.24), we observe

dE0

dt
=
i

~

〈[∫
dxψ̂†(x)

(
kED

d 〈ρ̂(x)〉
dt

)
ψ̂(x), Ĥ

]〉
C

= kED

∫
dx
d
〈
ψ̂†(x)ψ̂(x)

〉
C

dt

i

~

〈[
ψ̂†(x)ψ̂(x), Ĥ

]〉
C

= −kED
∫
dx

d
〈
ψ̂†(x)ψ̂(x)

〉
C

dt

2

.

(3.30)

That is, as kED > 0, the energy damping control will always decrease the energy of the

gas if there are density fluctuations. This control does not rely upon fluctuations in any

particular moment of the density, which is why it is more effective than moment control.

Of course, moment control and energy damping control are not our only choices

for VC(x, t); for a thorough introduction to the different possibilities for the control of

an atomic gas, see Chapters 5 and 6 of Ref. [158]. Indeed, other controls have been

implemented to feedback cool a system. However, these have either been not physically

feasible [100], or designed for other physical systems such as a mechanical resonator [168]

or individual particles [169, 170] (as opposed to an ensemble of gaseous atoms).

We now have developed an understanding of how feedback cooling is achieved via

a control potential VC(x, t). With the conditional measurement theory introduced in the

preceding sections, we are now ready to introduce the stochastic master equation that

will be used in this thesis to build a model for a continuously-monitored BEC at finite

temperature.

3.5 Stochastic master equation for a BEC undergoing

phase-contrast imaging

In this thesis, we use the master equation first proposed by Szigeti et al. in Ref. [1]

and used in subsequent works [2, 94, 95]. We consider a Bose gas harmonically confined

at frequencies ωx � ωy = ωz, so that it has sufficiently thin width R⊥ in the y and z

directions to be considered effectively 1D (as discussed in Section 2.3.1).

The model of Szigeti et al. assumes measurement via phase-contrast imaging, an

experimentally successful scheme for performing continuous density measurements of

BECs [101, 5]. In a phase-contrast imaging scheme, coherent light highly detuned from

atomic resonance is shone upon a gas. As photons scatter off the gas, they pick up a

phase shift. Encoded in this phase shift is information about the density of the BEC,

which is extracted via homodyne detection of the number quadrature. This information

is used to update the filter π̂c and update the control potential VC(x, t). Phase-contrast

imaging is considered to be a non-destructive process, because the light is highly detuned

from resonance; so excitations are not induced. However, measurement backaction still

causes decoherence that heats the system, which must be accounted for in the model. A

diagram of this measurement-feedback process is included in Figure 3.2.
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Figure 3.2: Measurement-feedback scheme introduced in Ref. [1] and modelled in this the-
sis. Off-resonant laser light shines on a Bose gas in a time-independent trapping potential
V0(x) and time-dependent control potential VC(x, t). Some light scatters off atoms in the
gas, picking up a phase shift. This phase shift is then measured by homodyne detection,
and the gas density at a particular spatial resolution r is extracted from the phase mea-
surement. That number quadrature is used to make an estimate of the system density and
update the filter π̂c. In this thesis, we assume that π̂c = ρ̂c (the filter exactly approximates
the state). This state estimation is used to instantaneously update the control potential
VC(x, t).
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We assume that the filter π̂c exactly approximates the system trajectory ρ̂c so that

we can model the former with the latter. The full derivation of the filter equation that

leads to the stochastic master equation is beyond the scope of this thesis (the interested

reader should see the Appendix of Ref. [1]) and leads to the stochastic master equation

dρ̂c = − i
~

[
Ĥ, ρ̂c

]
dt︸ ︷︷ ︸

Unitary

+α

∫
dxD

[
M̂(x)

]
ρ̂cdt︸ ︷︷ ︸

Decoherence

+
√
α

∫
dxH

[
M̂(x)

]
ρ̂cdW (x, t)︸ ︷︷ ︸

Innovations

. (3.31)

The unitary term describes how the trajectory evolves under the cold atom Hamiltonian

and the damping from an arbitrary feedback control. The decoherence term models how

the laser light heats the system. The innovations term models the random information ob-

tained from the homodyne detection, and is used to update the filter π̂c. Before unpacking

the meaning of each term in equation (3.31), note that we use the notation introduced in

Refs. [64, 95] instead of that in Ref. [1, 2, 94], because the former separates the contribu-

tions of the measurement strength and measurement resolution (to be introduced shortly).

In equation (3.31), the parameter α denotes the measurement strength and is de-

fined as

α =
3Γ (5/4)

16
√

2π4

(
λ

R⊥

)3/2 Γsp

ωx

Ω2

∆2
. (3.32)

Here, Γ(x) is the Gamma function, λ is the wavelength of the measurement light, Γsp

is the rate of spontaneous photon emission12, Ω is the Rabi frequency, and ∆ is the

detuning of the laser from resonance. The Rabi frequency Ω characterises the coupling

between the initial and final state of an atom in the case of spontaneous emission [160].

Increasing α increases the information obtained from the innovations terms but also the

heating from the decoherence terms, so α is a parameter which should be optimised.

Fortunately, as the Rabi frquency can be easily controlled by varying laser intensity [171],

the measurement strength can effectively be treated as a free parameter.

The measurement operator M̂(x) is defined

M̂(x) =

∫
dyKr(x− y)ψ̂†(y)ψ̂(y), (3.33)

and represents a measurement of the gas density ρ̂(x). Note that the integral over the

measurement operator is the Linblad operator for this system; it arises in the limit of

many operators∑
a

D [ĉa] ρ̂c →
∫
dxD

[
M̂(x)

]
ρ̂c,

∑
a

H [ĉa] ρ̂c →
∫
dxH

[
M̂(x)

]
ρ̂c.

12Specifically, the rate at which photons are randomly emitted from atoms as the laser passes through
them (not resonant excitations), which changes the phase of the outgoing probe beam. The effects of
spontaneous emission will not be otherwise rigorously considered in this thesis, because whilst they are
unavoidable, they have been shown to have a negligible effect upon dispersive imaging techniques like phase
contrast imaging upon the typcial experimental-time scales relevant to applications of feedback cooling [60].
For a more detailed discussion on spontaneous emission, see chapter 18 of Ref. [160].
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Specifically, M̂(x) models a measurement of the convolution of the density with the mea-

surement kernel Kr(x)

Kr(x) =
1√
2π

∫
dk

(√
r

2Γ (5/4)
e−(rk)

4/2

)
eikx, (3.34)

and is normalised as
∫
dx |Kr(x)|2 = 1 by Plancherel’s theorem [172]. This definition

enforces that the measurement operator M̂(x) is Hermitian, symmetric and real. The

measurement kernel blurs the density measurement, modelling the physical limitation to

how accurately density can be measured. This limit is precisely modelled by the measure-

ment resolution r

r =
1

2L

√
R⊥λ

π
, (3.35)

which is the diffraction limit of an optical measurement. Note that by changing the

length of the trap and frequency of the laser, r can be varied (above the diffraction limit),

in order to optimise the feedback control.13

The full dynamics of equation (3.31) are intractable analytically or numerically. It

has been so far studied through mean-field approximations and the NPW method: in the

original paper [1], Szigeti et al. numerically integrated a mean-field model for a coherent

state of a single particle. However, as the measurement operator M̂(x) is defined in terms

of a number density measurement (equation (3.33)), the feedback actually drives the gas

towards a Fock state. In a subsequent work, Szigeti et al. successfully integrated equation

(3.31) with a Hartree-Fock mean-field approximation upon the trajectory ρ̂c. Similarly,

a Hartree-Fock mean-field model was used to integrate a similar master equation for an

ultra-cold Fermi gas [64]. The NPW method was used to study equation (3.31) at finite

temperature in Ref. [95].

In this thesis, we will derive and perform preliminary characterisation of a model

for solving equation (3.31) at low, finite temperatures. This aim will be achieved by

implementing the Bogoliubov perturbation theory introduced in Chapter 2.

13Note that the model of Szigeti et al. requires a non-zero r; at r = 0 (perfect measurement resolution),
the kernel Kr(x) becomes a delta function. This would then project the quantum state to a perfectly
localised state in position space, which corresponds to an infinite uncertainty in momentum. Setting r = 0
is therefore unphysical: the measurement backaction would become infinite, leading to an infinite energy
state.



Chapter 4

Deriving a finite temperature

model for feedback cooling

Having introduced in Chapter 3 the closed-loop feedback scheme we will study in this

thesis, we are now ready to model it at low temperatures by implementing the Bogoliubov

theory introduced in Chapter 2. In this chapter, we derive our full perturbative model for

an arbitrary V0(x) and VC(x, t). In Chapter 5, we will derive the model for a particular

V0(x) and VC(x, t).

The first portion of this chapter will be justifying the analytic tools used to build

our model. In particular, in Section 4.1 we motivate using a number-conserving Bogoli-

ubov theory, and in Section 4.2, we rigorously introduce the quadrature representation

for the Bogoliubov modes used throughout the derivation.

In deriving the full model, we break down the unitary evolution in equation (3.31)

as

− i

~

[
Ĥ, ρ̂c

]
dt︸ ︷︷ ︸

Unitary

= − i

~

[
Ĥ0, ρ̂c

]
dt︸ ︷︷ ︸

Cold atom dynamics

− i

~

[
ĤC , ρ̂c

]
dt︸ ︷︷ ︸

Feedback dynamics

, (4.1)

where we have separated out the dynamics due to the cold atom Hamiltonian and the

feedback potential. This is because the feedback is real-time, so it is not physically defined

in absence of the measurement. Thus, we will first derive the cold atom dynamics in Section

4.3, then the measurement dynamics in Section 4.4, and finally the feedback dynamics in

Section 4.5.

4.1 Choice of Bogoliubov theory

In developing a model of feedback cooling with Bogoliubov theory, one could either use

the symmetry-breaking or number-conserving approach. This thesis will use the latter,

and in this section we present a simple calculation to justify why. In particular, we will

show that in a symmetry-breaking approach, the feedback control cannot change the

average number of excitations in the gas.

In a symmetry-breaking Bogoliubov approach, the condensate is treated as a clas-

sical reservoir, which obeys NC ≈ NC + 1. The temperature of the gas is therefore

quantified by the average number of excitations 〈N̂T 〉. If the number of excitations is the

45
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number of non-condensate atoms, then〈
N̂T

〉
=
〈
N̂
〉
−NC

=

∫
dx
〈[(

χ∗0(x)δ̂(x) + h.c.
)

+ δ̂†(x)δ̂(x)
]〉

=

∫
dx
〈
δ̂†(x)δ̂(x)

〉
,

(4.2)

where we take advantage of the fact that 〈δ̂(x)〉 = 0. Let us now consider the evolution of

the number of excitations under the feedback Hamiltonian. From the Heisenberg equation

of motion (equation (2.17)), we have〈
dN̂T

〉
dt Feedback

= − i
~

〈[
N̂T , ĤC

]〉
, (4.3)

where we are only considering the effect of feedback on the number of excitations. We

expand the feedback Hamiltonian as

ĤC =

∫
dxVC(x, t)

(
|χ0(x)|2 + χ∗0(x)δ̂(x) + χ0(x)δ̂†(x) + δ̂†(x)δ̂(x)

)
, (4.4)

and so can calculate the relevant commutator〈[
N̂T , ĤC

]〉
=

∫
dx

∫
dyVC(y, t)

〈[
δ̂†(x)δ̂(x), |χ0(y)|2 +

(
χ∗0(y)δ̂(y) + h.c.

)
+ δ̂†(y)δ̂(y)

]〉
=

∫
dx

∫
dyVC(y, t)δ(x− y)

〈[(
χ0(y)δ̂†(x)− h.c.

)
+ δ̂†(x)δ̂(y)− δ̂†(y)δ̂(x)

]〉
=

∫
dxVC(x, t)

[
χ0(x)

〈
δ̂†(x)

〉
− χ∗0(x)

〈
δ̂(x)

〉]
= 0.

(4.5)

Here, we have gone from the penultimate line to the final line by again using that

the average of the fluctuation parameter 〈δ̂(x)〉 = 0 in a symmetry-breaking ap-

proach. It follows immediately from substituting equation (4.5) into equation (4.3) that

〈dN̂T 〉/dtFeedback = 0. Therefore, any arbitrary feedback potential cannot change the

average number of excitations. Note that in deriving this result, we did not use the

Bogoliubov transformation; it arises solely as a consequence of the symmetry-breaking

approximation (equation (2.30)).

The physical meaning of this result is that, in order to have particle exchange be-

tween the excitations and the condensate, the condensate cannot be treated as a classical

reservoir. Therefore, to model feedback cooling rather than control1, we must treat

the condensate as a quantum degree of freedom. We will therefore proceed with a

number-conserving approach.

1It is worth noting that Hurst et al. claim in Ref. [99] to have modelled feedback cooling with a
symmetry-breaking model. However, their use of the phrase “feedback cooling” has a different meaning to
that of this thesis - they use feedback control to damp out excitations induced by measurement of their
system. In fact, the average number of excitations does not change in their model, agreeing with the above
result.
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4.2 Introducing Bogoliubov mode quadratures

It is standard, in Bogoliubov theory, to introduce the Bogoliubov transformation in terms

of the creation and annihilation operators β̂†j and β̂j , as in Chapter 2.4. This is because

these operators natrually motivate the idea of quasiparticles as collective excitations of

the Bose gas. However, it is sometimes more useful to instead use the equivalent transfor-

mation

δ̂ (x) =
∑
j>0

[
f−j (x)X̂j + if+j P̂j

]
, (4.6)

where {X̂j , P̂j} are the dimensionless quadrature operators defined as2

X̂j =
1√
2

(
β̂†j + β̂j

)
, and P̂j =

i√
2

(
β̂†j − β̂j

)
, (4.7)

where j > 0. These are, respectively, the position and momentum quadratures of the

Bogolibuov operators. They are called so because these definitions are analogous to the

relationship between the position/momentum and creation/annihilation operators for the

quantum harmonic oscillator; their actual physical meaning depends upon the form of the

Bogoliubov modes. As a consequence of their definition, the quadrature operators are

Hermitian and obey [
X̂j , P̂k

]
= iδjk, and

[
X̂j , X̂k

]
=
[
P̂j , P̂k

]
= 0, (4.8)

and the coefficients f±j (x) are defined as

f±j (x) =
1√
2

(
uj(x)∓ v∗j (x)

)
. (4.9)

These quadrature coefficients obey a modified set of Bogoliubov-de Gennes equations

L̂(x)f−j (x) + C(x)f−j
∗
(x) = εjf

+
j (x), (4.10a)

L̂(x)f+j (x)− C(x)f+j
∗
(x) = εjf

−
j (x), (4.10b)

and it is straightforward to show that this is the same εj as in equation (2.42).

We are motivated to introduce a quadrature representation for the Bogoliubov excitations

for two reasons. Firstly, symmetrised pairs of these operators (i.e. (X̂jP̂k + P̂kX̂j)/2)

are real. Secondly, the quadrature representation is the most common notation for the

analytic solutions of a particular class of quantum systems. Specifically, we are referring

to systems described by linear quadratic gaussian control theory [158], which we discuss

in Chapter 7. The feedback and measurement terms in the model derived in this thesis

do not satisfy the properties of LQG control, however in Chapter 7 we will present a

possible approximation scheme in which they do. In order to set up future work under

that approximation scheme, we use the quadrature representation in this thesis.

2Technically, for a one-dimensional system, it is actually standard to use phase and number quadratures.
For a more detailed discussion of why, the interested reader should see Ref. [107]. However, in this thesis
we deal with an effective one-dimensional system, so the position and momentum quadratures in equation
(4.7) are suitable.
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4.2.1 Quadrature representation of the condensate mode

In a number-conserving Bogoliubov approach, the condensate is a quantum degree of

freedom described by the operator â0. That is, our field operator is defined as

ψ̂(x) = χ0(x)â0 + δ̂(x), (4.11)

where χ0(x) is the condensate wavefunction solved by the GPE. It is straightforward to

include a pair of additional, j = 0, quadratures

X̂0 =
1√
2

(
â†0 + â0

)
, and P̂0 =

i√
2

(
â†0 − â0

)
, (4.12)

which obey the commutation relations in equation (4.8) for j = 0 and commute with the

j 6= 0 quadratures. Rather than separating out the condensate mode from the Bogoliubov

excitations, we can then include the condensate as the 0th Bogoliubov mode. That is, our

wavefunction becomes

ψ̂(x) =
∑
j=0

[
f−j (x)X̂j + if+j P̂j

]
, (4.13)

where

f±j=0(x) =
χ0(x)√

2
. (4.14)

Note that the sum in equation (4.13) now starts at j = 0, rather than j > 0. Equation

(4.13) is equivalent to equation (4.11); it is simply a more efficient notation. Representing

the condensate and excitations with the quadratures for each mode, the diagonal cold

atom Hamiltonian (equation (2.58)) becomes

Ĥ0 =
1

2

∑
j=0

εj

(
X̂2
j + P̂ 2

j

)
, (4.15)

where ε0 is the condensate energy and all non-operator terms have been discarded as a

constant energy offset. It is also useful to write the wavefunction density ψ̂†(x)ψ̂(x) in the

quadrature representation

ψ̂†(x)ψ̂(x) =
∑
j,k=0

[
f−j
∗
(x)f−k (x)X̂jX̂k + f+j

∗
(x)f+k (x)P̂jP̂k +

(
if−j

∗
(x)f+k (x)X̂jP̂k + h.c.

)]
,

(4.16)

because both the feedback Hamiltonian ĤC and measurement operator M̂(x) are defined

in terms of this quantity.

4.2.2 Expectation values of interest

Our goal is to study how an atomic gas evolves under feedback by modelling the evolution

of the condensate fraction. At any time, the occupation of the condensate 〈N̂C〉 is given

by 〈
N̂C

〉
=
〈
â†0â0

〉
=

1

2

[〈
X̂0X̂0

〉
+
〈
P̂0P̂0

〉
− 1
]
. (4.17)

Therefore, to study the evolution of physical observables such as condensate fraction, we

will model the dynamics of symmetrised pairs of operators

•
〈
X̂jX̂k + X̂kX̂j

〉
/2 =

〈
X̂jX̂k

〉
,
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•
〈
P̂jP̂k + P̂kP̂j

〉
/2 =

〈
P̂jP̂k

〉
,

•
〈
X̂jP̂k + P̂kX̂j

〉
/2.

We do not model the averages {〈X̂j〉, 〈P̂j〉}, as it follows from the perturbation δ̂ having

zero average that 〈X̂j〉 = 〈P̂j〉 = 0 (see Appendix A.2 for a proof). For that reason, we

will write

1

2

〈
X̂jP̂k + P̂kX̂j

〉
=

1

2

〈
X̂jP̂k + P̂kX̂j

〉
−
〈
X̂j

〉〈
P̂k

〉
= cov

(
X̂jP̂k

)
, (4.18)

where cov(ŜT̂ ) is the symmetrised co-variance of two operators Ŝ and T̂ , defined as above.

Because the averages of the quadrature modes are zero, note that implicitly 〈X̂jX̂k〉 =

cov(X̂jX̂k) and 〈P̂jP̂k〉 = cov(P̂jP̂k). These symmetrised operators are matrices, where

physically:

1. The diagonal (j = k) elements of 〈X̂jX̂k〉 and 〈P̂jP̂k〉 correspond to the occupation

of each Bogoliubov mode;

2. The off-diagonal (j 6= k) elements of 〈X̂jX̂k〉 and 〈P̂jP̂k〉 correspond to the real

quantum correlations between Bogoliubov modes;

3. The off-diagonal elements of cov(X̂jP̂k) correspond to the imaginary quantum cor-

relations between Bogoliubov modes;

4. The diagonal elements of cov(X̂jP̂k) correspond to the quantum correlations within

each Bogoliubov mode.

We calculate the expectation value of a symmetrised operator 〈Â〉 = 〈ŜT̂ + T̂ Ŝ〉/2 from

the stochastic master equation by taking the trace of dÂρ̂c

d
〈
Â
〉
C

=− i
~

Tr
{
Â
[
Ĥ, ρ̂c

]}
dt︸ ︷︷ ︸

Unitary

+α

∫
dxTr

{
ÂD

[
M̂(x)

]
ρ̂c

}
dt︸ ︷︷ ︸

Decoherence

+
√
α

∫
dxTr

{
ÂH

[
M̂(x)

]
ρ̂c

}
dW (x, t)︸ ︷︷ ︸

Innovations

,

(4.19)

and using equation (3.4). We calculate the unitary terms using equation (3.5); that is

− i

~
Tr
{
Â
[
Ĥ, ρ̂c

]}
dt = − i

~

〈[
Â, Ĥ0

]〉
dt︸ ︷︷ ︸

Cold atom dynamics

− i

~

〈[
Â, ĤC

]〉
C
dt︸ ︷︷ ︸

Feedback dynamics

, (4.20)

where we separate out the cold atom and feedback dynamics, because the latter is condi-

tioned upon a particular measurement record. We now are equipped with the formalism

to derive our full model. In Section 4.3 we derive the cold atom dynamics; in Section 4.4

the measurement dynamics; and in Section 4.5 the feedback dynamics.
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4.3 Cold atom dynamics

The cold atom dynamics of an operator Â are found by computing

d
〈
Â
〉
Ĥ0

= − i
~

〈[
Â, Ĥ0

]〉
dt, (4.21)

where we use the subscript Ĥ0 to indicate the cold atom dynamics. For a symmetrised

operator, Â = (ŜT̂ + T̂ Ŝ)/2, we apply the commutator identity [ÂB̂, Ĉ] = Â[B̂, Ĉ] +

[Â, Ĉ]B̂ to obtain 〈[
Â, Ĥi

]〉
=

1

2

〈(
Ŝ
[
T̂ , Ĥi

]
+
[
Ŝ, Ĥi

]
T̂
)
− h.c.

〉
, (4.22)

for a Hamiltonian Ĥi, where we have used the fact that Hamiltonians and quadrature

operators are Hermitian. To compute the cold atom dynamics, we simply need to find

the commutator of the position and momentum quadrature operators with the cold atom

Hamiltonian. From the diagonal Hamiltonian (equation (4.15)) we obtain[
X̂j , Ĥ0

]
=

1

2

∑
a

εa

[
X̂j , X̂aX̂a + P̂aP̂a

]
= iεjP̂j , (4.23a)[

P̂j , Ĥ0

]
=

1

2

∑
a

εa

[
P̂j , X̂aX̂a + P̂aP̂a

]
= −iεjX̂j . (4.23b)

Substituting equation (4.23) into equation (4.22), we obtain the cold atom dynamics for

each symmetrised operator pair

d
〈
X̂jX̂k

〉
Ĥ0

=
[εk
~

cov
(
X̂jP̂k

)
+
εj
~

cov
(
X̂kP̂j

)]
dt, (4.24a)

d
〈
P̂jP̂k

〉
Ĥ0

= −
[εk
~

cov
(
X̂kP̂j

)
+
εj
~

cov
(
X̂jP̂k

)]
dt, (4.24b)

dcov
(
X̂jP̂k

)
Ĥ0

=
[εj
~

〈
P̂jP̂k

〉
− εk

~

〈
X̂jX̂k

〉]
dt. (4.24c)

For m Bogoliubov modes, the cold atom dynamics in equation (4.24) describe a set of

m+ 1 uncoupled harmonic oscillators.

4.4 Measurement dynamics

Observe from equation (4.19) that, in order to compute that decoherence and innovations

terms, we must first compute the measurement operator M̂(x), defined as

M̂(x) =

∫
dyKr(x− y)ψ̂†(y)ψ̂(y). (4.25)

Using the wavefunction density equation (4.16), we obtain

M̂(x) =
∑
a,b=0

[
M−ab(x)X̂aX̂b +M+

ab(x)P̂aP̂b +
(
Nab(x)X̂aP̂b + h.c.

)]
, (4.26)



§4.4 Measurement dynamics 51

where we have defined the measurement matrices

M±ab(x) =

∫
dyKr(x− y)f±a

∗
(y)f±b (y), (4.27a)

Nab(x) = i

∫
dyKr(x− y)f−a

∗
(y)f+b (y). (4.27b)

Note that we have not written the X̂aP̂b terms or their Hermitian conjugate in terms of

the symmetrised covariance. This is in order to make the derivation of the decoherence

and innovations terms clearer.

4.4.1 Decoherence terms

We now are able to derive the decoherence terms. Expanding the decoherence superoper-

ator, recognising that the measurement operator is Hermitian, and using the cyclic nature

of the trace, we obtain

Tr
{
ÂD

[
M̂(x)

]
ρ̂c

}
= Tr

{
ÂM̂(x)ρ̂cM̂

†(x)
}
− 1

2
Tr
{
ÂM̂ †(x)M̂(x)ρ̂c

}
− 1

2
Tr
{
Âρ̂cM̂(x)M̂(x)

}
=

〈
M̂(x)ÂM̂(x)− 1

2
ÂM̂(x)M̂(x)− 1

2
M̂(x)M̂(x)Â

〉
.

(4.28)

where we have obtained expectation values using equation (3.4). We then rewrite the

expression using commutators

Tr
{
ÂD

[
M̂(x)

]
ρ̂c

}
=

1

2

〈[
M̂(x),

[
Â, M̂(x)

]]〉
. (4.29)

For a symmetrised operator pair Â = (ŜT̂ + T̂ Ŝ)/2, we use the commutator identity

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂ to obtain

Tr
{
ÂD

[
M̂(x)

]
ρ̂c

}
=

1

4

〈
Ŝ
[
M̂(x),

[
T̂ , M̂(x)

]]
+ h.c.

〉
+

1

4

〈[
M̂(x),

[
Ŝ, M̂(x)

]]
T̂ + h.c.

〉
−1

2

〈[
Ŝ, M̂(x)

] [
T̂ , M̂(x)

]
+ h.c.

〉
,

(4.30)

where we have again used that the measurement and quadrature operators are Hermitian.

Therefore, by obtaining the commutator of each X̂j and P̂j with the measurement operator

M̂(x), we can compute the decoherence terms for each of our symmetrised operator pairs.

Computing each of these commutators, we obtain[
X̂j , M̂(x)

]
= 2i

∑
a

[
M+
aj(x)P̂a + Re [Naj(x)] X̂a

]
, (4.31a)[

P̂j , M̂(x)
]

= −2i
∑
a

[
M−aj(x)X̂a + Re [Naj(x)] P̂a

]
. (4.31b)

From equation (4.31), we then compute the second-order commutators [M̂(x), [X̂j , M̂(x)]]

and [M̂(x), [P̂j , M̂(x)]]. Substituting these commutators and those in equation (4.31) into

equation (4.30) for each symmetrised operator pair yields the full decoherence term for each
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symmetrised operator pair. The expressions are unwieldy, and so all three are included in

Appendix B.1.1. As an example, we include here the decoherence term for cov(X̂jP̂k):

d
〈

cov
(
X̂jP̂k

)〉
D

= 2αdt
∑
ab

∫
dx
[
M−ba(x)Re [Naj(x)]−M−ak(x)Re [Nba(x)]

] 〈
X̂jX̂b

〉
+ 2αdt

∑
ab

∫
dx
[
M+
ba(x)Re [Naj(x)]−M+

aj(x)Re [Nba(x)]
] 〈
P̂bP̂k

〉
− 4αdt

∑
ab

∫
dxRe [Naj(x)]M−bk(x)

〈
X̂aX̂b

〉
− 4αdt

∑
ab

∫
dxM+

aj(x)Re [Nbk(x)]
〈
P̂aP̂b

〉
+ 2αdt

∑
ab

∫
dx
[
Re [Nak(x)] Re [Nba(x)]−M−ak(x)M+

ba(x)
]

cov
(
X̂jP̂b

)
+ 2αdt

∑
ab

∫
dx
[
Re [Naj(x)] Re [Nba(x)]−M+

aj(x)M−ba(x)
]

cov
(
X̂bP̂k

)
− 4αdt

∑
ab

∫
dx
[
M+
aj(x)M−bk(x) + Re [Nbj(x)] Re [Nak(x)]

]
cov

(
X̂bP̂a

)
.

(4.32)

Here, the subscript D indicates the decoherence term. Whilst this full term seems in-

tractable, we will see in Chapter 5 that specifying a trapping potential V0(x) introduces

symmetries to the Bogoliubov modes which simplifies the measurement matrices, and in

turns simplifies each of the decoherence terms.

4.4.2 Innovations terms

We will now compute the innovations term for a symmetrised operator pair Â =

(ŜT̂ + T̂ Ŝ)/2. Expanding the innovations superoperator and using the definition of the

measurement operator:

Tr
{
ÂH

[
M̂(x)

]
ρ̂c

}
=

1

2

[(〈
ŜT̂ M̂(x) + M̂(x)ŜT̂

〉
−
〈
M̂(x)

〉〈
ŜT̂
〉)

+ h.c.
]

=
1

2

∑
ab

M−ab(x)
[(〈

ŜT̂ X̂aX̂b + X̂aX̂bŜT̂
〉
− 2

〈
X̂aX̂b

〉〈
ŜT̂
〉)

+ h.c.
]

+
1

2

∑
ab

M+
ab(x)

[(〈
ŜT̂ P̂aP̂b + P̂aP̂bŜT̂

〉
− 2

〈
P̂aP̂b

〉〈
ŜT̂
〉)

+ h.c.
]

+
1

2

∑
ab

Nab(x)
[(〈

ŜT̂ X̂aP̂b + X̂aP̂bŜT̂
〉
− 2

〈
X̂aP̂b

〉〈
ŜT̂
〉)

+ h.c.
]

+
1

2

∑
ab

N∗ab(x)
[(〈

ŜT̂ P̂bX̂a + P̂bX̂aŜT̂
〉
− 2

〈
P̂bX̂a

〉〈
ŜT̂
〉)

+ h.c.
]
.

(4.33)

Once again, we obtain expectation values from the trace by using equation (3.4).

From equation (4.33), it follows that our innovations term therefore depends upon the

expectation value of products of four operators. We could compute the dynamics of these

fourth order operators, but they would depend upon an innovations term in sixth order
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operators. So as to not require an infinite cascade of equations of motion, we need to

make an approximation upon our state to express these fourth order operators in terms

of second order operators.

Recall that Bogoliubov excitations, under the cold atom Hamiltonian, evolve under

a diagonal Hamiltonian as harmonic oscillator states. Eigenstates of the harmonic

oscillator obey Gaussian distributions [173]. For a reader unfamiliar with Gaussian

distributions we provide a short introduction in Appendix A.3, but it is sufficient here to

quote the result that they are defined solely in terms of their average and variance. In

particular, average products of four operators Ôi in a Gaussian state obey〈
Ô1Ô2Ô3Ô4

〉
=
〈
Ô1Ô2

〉〈
Ô3Ô4

〉
+
〈
Ô1Ô3

〉〈
Ô2Ô4

〉
+
〈
Ô1Ô4

〉〈
Ô2Ô3

〉
, (4.34)

if each operator has zero average, i.e. 〈Ôi〉 = 0. In Appendix A.2, we prove that this is

initially the case for our Bogoliubov quadratures.3 Our states are initially Gaussian, and

we will assume that they remain Gaussian under the evolution of the master equation4. We

also assume that the average of each Bogoliubov quadrature remains zero for the evolution

of the master equation, so that at all times we can express the fourth order products of

operators using equation (4.34)5. Under the Gaussian approximation, equation (4.33)

becomes:

Tr
{
ÂH

[
M̂(x)

]
ρ̂a

}
= 2

∑
ab

Re [Nab(x)]
[〈
ŜX̂a

〉〈
T̂ P̂b

〉
+
〈
ŜP̂b

〉〈
T̂ X̂a

〉
+ h.c.

]
+ 2

∑
ab

Re
[
M−ab(x)

] [〈
ŜX̂a

〉〈
T̂ X̂b

〉
+ h.c.

]
+ 2

∑
ab

Re
[
M+
ab(x)

] [〈
ŜP̂a

〉〈
T̂ P̂b

〉
+ h.c.

]
.

(4.35)

We then obtain the innovations term for each operator by substituting in particular Ŝ

and T̂ . Once again, the full innovations terms are unwieldy; we include all three matrix

equations in Appendix B.1.2. We include as an example here the innovations term for

3The proof follows from the definition that 〈δ̂(x)〉 = 0. Note that this does not mean we can make a
Gaussian approximation upon the perturbation operator δ̂(x) as well. The cold atom Hamiltonian is not
diagonal in δ̂(x), but only in our Bogoliubov modes.

4This is an exact claim for systems undergoing linear quadratic gaussian control, which will be intro-
duced in Chapter 7 and are discussed in more detail in Ref. [158].

5The validity of this approximation is discussed in Appendix A.2.
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cov(X̂jP̂k)

d
〈

cov
(
X̂jP̂k

)〉
H

= 4
√
α
∑
ab

∫
dxdW (x, t)Re

[
M−ab(x)

] 〈
X̂jX̂a

〉〈
cov

(
X̂bP̂k

)〉
+ 4
√
α
∑
ab

∫
dxdW (x, t)Re

[
M+
ab(x)

] 〈
P̂kP̂b

〉〈
cov

(
X̂jP̂a

)〉
+ 4
√
α
∑
ab

∫
dxdW (x, t)Re [Nab(x)]

〈
X̂jX̂c

〉〈
P̂kP̂d

〉
+ 4
√
α
∑
ab

∫
dxdW (x, t)Re [Nab(x)] cov

(
X̂jP̂d

)
cov

(
X̂cP̂k

)
+
√
a

∫
dxdW (x, t)Re [Nkj(x)] .

(4.36)

Here, the subscript H indicates the innovations term. The decoherence and innovations

terms derived in this section complete the measurement dynamics of our model.

4.5 Feedback dynamics

The feedback dynamics of an operator Â are found by computing

d
〈
Â
〉
C

= − i
~

〈[
Â, ĤC

]〉
C
dt, (4.37)

where we use the subscript C to denotes that these expectations are conditioned on the

individual trajectory, as the feedback Hamiltonian evolves under conditional expectation

values. We compute the commutator in equation (4.37) for a symmetrised operator Â =

(ŜT̂ + T̂ Ŝ)/2 using equation (4.22), similar to the cold atom dynamics. Assuming a

non-operator valued control potential, observe that[
Ŝ, ĤC

]
=

[
Ŝ,

∫
dxVC(x, t)ψ̂†(x)ψ̂(x)

]
(4.38)

=

∫
dxVC(x, t)

[
Ŝ, ψ̂†(x)ψ̂(x)

]
, (4.39)

where ψ̂†(x)ψ̂(x) is the wavefunction density. Therefore, we can compute the feedback

dynamics by finding the commutator of the position and momentum quadratures with the

wavefunction density. Specifically, we find[
X̂j , ψ̂

†ψ̂(x)
]

=
∑
a

[(
f+j
∗
(x)f−a (x)− h.c.

)
X̂a + i

(
f+a
∗
(x)f+j (x) + h.c.

)
P̂a

]
, (4.40a)[

P̂j , ψ̂
†ψ̂(x)

]
=
∑
a

[(
f−j
∗
(x)f+a (x)− h.c.

)
P̂a + i

(
f−a
∗
(x)f−j (x) + h.c.

)
X̂a

]
. (4.40b)

Defining the conditional feedback matrices

Rab(t)
(C) =

1

~

∫
dxVC(x, t)

[
f+a
∗
(x)f−b (x)− f−b

∗
(x)f+a (x)

]
, (4.41a)

Q±ab(t)
(C)

=
1

~

∫
dxVC(x, t)

[
f±b
∗
(x)f±a (x) + f±a

∗
(x)f±b (x)

]
, (4.41b)
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we then obtain [
X̂j , ĤC

]
= ~

∑
a

Rja(t)
(C)X̂a + i~

∑
a

Q+
aj(t)

(C)
P̂a, (4.42a)[

P̂j , ĤC

]
= −~

∑
a

Raj(t)
(C)P̂a − i~

∑
a

Q−aj(t)
(C)
X̂a. (4.42b)

The superscript (C) on the conditional feedback matrices is to indicate that we are mod-

elling real-time feedback, and these terms depend upon the trajectory of the system.

Substituting equation (4.42) into equation (4.22), and subsequently into equation (4.37),

we obtain the conditional feedback dynamics for each symmetrised operator pair

d
〈
X̂jX̂k

〉
C

=dt
∑
a=0

[
Q+
ak(t)

(C)
cov

(
X̂jP̂a

)
+Q+

aj(t)
(C)

cov
(
X̂kP̂a

)]
−idt

∑
a=0

[
Rka(t)

(C)
〈
X̂jX̂a

〉
+Rja(t)

(C)
〈
X̂aX̂k

〉]
,

(4.43a)

d
〈
P̂jP̂k

〉
C

=− dt
∑
a=0

[
Q−ak(t)

(C)
cov

(
X̂aP̂j

)
+Q−aj(t)

(C)
cov

(
X̂aP̂k

)]
+idt

∑
a=0

[
Rak(t)

(C)
〈
P̂jP̂a

〉
+Raj(t)

(C)
〈
P̂aP̂k

〉]
,

(4.43b)

dcov
(
X̂jP̂k

)
C

=dt
∑
a=0

[
Q+
aj(t)

(C)
〈
P̂aP̂k

〉
−Q−ak(t)

(C)
〈
X̂jX̂a

〉]
−idt

∑
a=0

[
Rja(t)

(C)cov
(
X̂aP̂k

)
−Rak(t)(C)cov

(
X̂jP̂a

)]
.

(4.43c)

The exact form of the feedback matrices is calculated using the Bogoliubov modes f±a (x),

which are determined by the trapping potential V0(x), and then integrating over a par-

ticular control potential VC(x, t). We now have a complete description of the feedback

dynamics of our model.

4.6 Chapter summary

In this chapter, we have derived a finite temperature model for the feedback cooling of a

Bose gas. In particular, we can model the dynamics of the Bose by integrating the coupled

matrix equations

d
〈
X̂jX̂k

〉
= dt

[εk
~

cov
(
X̂jP̂k

)
+
εj
~

cov
(
X̂kP̂j

)]
+ dt

∑
a=0

[
Q+
ak(t)

(C)
cov

(
X̂jP̂a

)
+Q+

aj(t)
(C)

cov
(
X̂kP̂a

)]
− idt

∑
a=0

[
Rka(t)

(C)
〈
X̂jX̂a

〉
+Rja(t)

(C)
〈
X̂aX̂k

〉]
+ d

〈
X̂jX̂k

〉
D

+ d
〈
X̂jX̂k

〉
H
,

(4.44a)
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d
〈
P̂jP̂k

〉
= −dt

[εk
~

cov
(
X̂kP̂j

)
− εj

~
cov

(
X̂jP̂k

)]
− dt

∑
a=0

[
Q−ak(t)

(C)
cov

(
X̂aP̂j

)
+Q−aj(t)

(C)
cov

(
X̂aP̂k

)]
,

+ idt
∑
a=0

[
Rak(t)

(C)
〈
P̂jP̂a

〉
+Raj(t)

(C)
〈
P̂aP̂k

〉]
+ d

〈
P̂jP̂k

〉
D

+ d
〈
P̂jP̂k

〉
H
,

(4.44b)

dcov
(
X̂jP̂k

)
= dt

[εj
~

〈
P̂jP̂k

〉
− εk

~

〈
X̂jX̂k

〉]
+ dt

∑
a=0

[
Q+
aj(t)

(C)
〈
P̂aP̂k

〉
−Q−ak(t)

(C)
〈
X̂jX̂a

〉]
,

− idt
∑
a=0

[
Rja(t)

(C)cov
(
X̂aP̂k

)
−Rak(t)(C)cov

(
X̂jP̂a

)]
+ dcov

(
X̂jP̂k

)
D

+ dcov
(
X̂jP̂k

)
H
,

(4.44c)

where the full decoherence and innovations for each symmetrised operator pair are found

in Appendix B.1. This general model, for an arbitrary trapping V0(x) and control VC(x, t)

potential, is the first key result of this thesis.

In the following chapters, we complete a preliminary examination of how well this

model can characterise a specific control potential VC(x, t) in a given trapping potential

V0(x). In Chapter 5, we consider a hard box trap and energy damping control, and sim-

plify the conditional feedback matrices and measurement dynamics for those potentials.

In Chapter 6 we perform preliminary simulations of the model for those potentials, and

discuss the limitations of solving the model via numeric integration.



Chapter 5

Finite temperature model of

energy damping control in a hard

box trap

In the previous chapter, we derived a model for the feedback cooling of a Bose gas under

continuous measurement in an arbitrary trap with any control potential VC(x, t). In this

chapter, we will apply that result to construct a model for feedback cooling with the

energy-damping control introduced in Chapter 3.4 in a hard box trap.

This chapter will achieve two aims. First, it will demonstrate how the general

model in Chapter 4 can be used to model specific trapping and control potentials. Second,

choosing these potentials will allow us to perform preliminary simulations of our finite

temperature model in Chapter 6. This will serve as the first step towards validating the

model derived in this thesis.

5.1 Trapping potential choice: the hard box trap

In Chapter 2.4.3, we introduced the plane-wave solutions to the Bogoliubov-de Gennes

equations for a box potential (equation (2.44)). Those solutions were in the coefficients

{ui(x), vi(x)}; the equivalent quadrature coefficients f
(R)
j

±
(x) are

f
(R)
j

±
(x) =

1√
2L

[
e∓rj cos

(
2π

L
jx

)
+ ie±rj sin

(
2π

L
jx

)]
. (5.1)

The solution in equation (5.1) has continuous (Neumann) boundary conditions:

f
(R)
j

±
(L/2 + δ) = f

(R)
j

±
(−L/2 + δ), and the solutions are non-zero at the boundaries

x = ±L/2. Therefore, these plane-wave solutions physically correspond to a Bose gas

in a 1D ring of circumference L (that is why we have introduced the superscript (R) in

equation (5.1)). The subtle difference between the solutions for a ring and 1D box trap

embedded in 3D space1 does not significantly effect equilibrium properties, which is why it

is the standard solution considered in the literature for studying a Bose gas at equilibrium.

However, if we consider a dynamic system, continuous boundary conditions mean

that excitations can move from −L/2 to L/2. This property is not physically sensible for

an effective 1D trapped gas under feedback control. In this thesis, we therefore introduce

1The reader may recognise this potential (equation (2.44)) as an infinite square well.
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a “hard box” solution, which is a linear superposition of ring trap modes for j > 0,

f±j (x) =

{
1√
L
e∓rj sin

(
2π
L jx

)
if − L/2 ≤ x ≤ L/2,

0 elsewhere,
(5.2)

where the condensate wavefunction is defined as uniform and discontinuous at the

boundaries (as before, in equation (2.46)). Observe that at x = ±L/2, the solutions in

equation (5.2) go to zero, so f±j (x) (the hard box modes) describe a 1D box which is

contained in a smaller part of 1D space.

Whilst it is experimentally possible to make BECs in either a ring [174] or a box

[175], it is typically easiest to prepare them in harmonic traps2. Whilst we will not model

a Bose gas in a harmonic trap in this thesis, we summarise the solutions of the Bogoliubov-

de Gennes equations for that potential for two reasons: a) to demonstrate that the hard

box trap has more analytically tractable solutions and b) justify why the box trap should

obtain qualitatively similar results. These reasons will motivate using the box trap, rather

than the harmonic trap, to derive analytically tractable equations of motion in this thesis.3

For a harmonic trap V0(x) = mω2x2/2, the Thomas-Fermi approximation (equa-

tion (2.45)) can be used to estimate the condensate wavefunction as

χ
(h)
0 (x) =

√√√√µ

g

(
1−

(
x

RTF

)2
)
, (5.3)

where RTF =
√

2µ/mω2 is the Thomas-Fermi radius. Integration of equation (5.3) and

the normalisation of χ0(x) to the number of particles can be used to obtain the relationship

between the chemical potential µ and the 1D interaction strength g

µ =
3

4

gN

RTF
. (5.4)

With the harmonic potential and corresponding condensate wavefunction, in 1D the

Bogoliubov-de Gennes equations become linear superpositions of Legendre’s differential

equation4 [177]. These are solved by

f
(h)
j

±
(x) = Pj(x/RTF )

√
j + 1

2

RTF

[
2µ

ε
(h)
j

(
1−

(
x

RTF

)2
)]∓1/2

, (5.5)

where Pj(x/RTF ) is the jth Legendre polynomial. Note that, like the hard box trap, the

harmonic trap has real Bogoliubov modes. The Bogoliubov spectrum for the harmonic

trap ε
(h)
j is given by

ε
(h)
j =

~
2

√
j (j + 1)

√
3N

mRTF
3 g, (5.6)

2Indeed, the first observation of a BEC by the Cornell group [3] was in a harmonic trap.
3We suggest working in the harmonic trap as a possible option for future work in Chapter 7.
4For a useful reference on the Legendre’s differential equation and the associated Legendre polynomials,

see Appendix C of Ref. [176].
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Figure 5.1: Condensate wavefunction χ0(x) in the Thomas-Fermi approximation for a
box trap (red) and harmonic trap (blue) with L = 2RTF . The wavefunctions are similar
towards the center of the trap (|x| � L), but differ at the edges of the trap |x| → L.
The difference has little qualitative effect on the equilibrium properties of the gas [178],
because the particle density is small towards the boundaries of the trap [179].

where we have chosen this form to illustrate the dependence on
√
g. Note that this is the

same dependency as the box trap solution in the low-energy regime. Indeed, in Figure

5.1 we plot χ0(x) in the Thomas-Fermi regime for both a box and harmonic trap for

L = 2RTF . The condensate wavefunctions are similar close to the centre of the trap,

but differ significantly at the boundaries (where the box trap solution is discontinuous

because of the Thomas-Fermi approximation). However, at thermal equilibrium the

particle density is negligible near the edges of the trap for both traps (see Ref. [179] for

more details)5, so the equilibrium properties of a Bose gas are qualitatively similar in

both a box and harmonic trap. In fact, in Ref. [178] it is found that the difference only

becomes non-negligible at temperatures within 0.01% of TC for the experimental values of

Refs. [3] and [4]. This is significantly hotter than the regime T � TC , so these differences

in the condensate wavefunction should not make a significant different to a Bogoliubov

theory. As plane-wave/sinusoidal solutions are more analytically tractable than equation

(5.5), Bogoliubov theory is often completed in ring/box traps with the expectation that

it will be qualitatively similar to harmonic traps.

In this thesis, we will study feedback cooling of a thermal gas in a hard box, with

the Bogoliubov modes given by equation (5.2). As we are modelling an effective 1D

system with a trap of finite length, the hard box solution is a more appropriate description

of the system than the ring trap solution.

Note that both f±j (x) and f
(h)
j

±
(x) are real. When finding the conditional feed-

back and measurement matrices in the box trap, we will note where a result holds true

5We plot the wavefunction density for a thermal state in a box trap in Section 5.3, demonstrating this
result.
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for any real solutions to the Bogoliubov-de Gennes equations, to indicate where it also

applies to the harmonic trap. This allows for extending the results of this thesis to the

harmonic trap, a possible avenue for future work discussed in Chapter 7.

5.1.1 Important quantities in the hard box trap

Having chosen a trapping potential, we can now approximate the ground state energy per

particle ε0 by substituting χ0(x) into the cold atom Hamiltonian (equation (2.22)) and

calculating 〈Ĥ0〉/N . For the box potential, this obtains

ε0 =
gN

2L
. (5.7)

Quantum depletion of the condensate (introduced in Chapter 2.4.4) actually shifts this

result by changing the effective interaction strength [81]. The corrected energy, to first

order, was first calculated in Ref. [138] to be ε0 = gN
2L

[
1 + 128

15
√
π

√
na3
]
. However, as

the correction term is negligible, we will use the approximation in equation (5.7) for the

ground state energy.

We will also include the condensate mode as the j = 0 Bogoliubov mode, by defining for

j ≥ 0

f±j (x) =
1√
L
e∓rj

[
sin

(
2π

L
jx

)
+
δj,0√

2

]
, (5.8)

where we now define rj piecewise as

rj =


1
2 ln

εj

ε
(0)
j

if j > 0,

0 if j = 0.
(5.9)

A piecewise definition is necessary as ε
(0)
j=0 = 0. Note that in equation (5.2) we have

normalised the condensate wavefunction χ0(x) by a factor of 1/
√
N , so that all Bogoliubov

modes have the same normalisation. Hence, all dimensionless parameters used in this thesis

will be defined in terms of this energy scale. Finally, the wavefunction density in the hard

box trap simplifies to

ψ̂†(x)ψ̂(x) =
∑
a,b=0

[
f−a (x)f−b (x)X̂aX̂b + f+a (x)f+b (x)P̂aP̂b

]
−
∑
a=0

f−a (x)f+a (x). (5.10)

Note that this wavefunction density depends only upon the occupation of each mode and

the real correlations between each mode.

5.1.2 Measurement dynamics in the hard box trap

For real Bogoliubov modes, the measurement matrices become

M±ab(x) =

∫
dyKr(x− y)f±a (y)f±b (y) = M±ba(x), (5.11a)

Nab(x) = i

∫
dyKr(x− y)f−a (y)f+b (y), (5.11b)
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where have noted that M±ab(x) is now symmetric. The form of the kernel means that

(even in the hard box approximation) analytically integrating these integrals is intractable,

except in the limit L → ∞. We will later compute them numerically when completing

simulations in Chapter 6. However, note that because the kernel is real, M±ab(x) is real

and Nab(x) is imaginary. Applying these properties, the measurement dynamics become

significantly more tractable. Specifically, the decoherence terms become:

d
〈
X̂jX̂k

〉
D

= 4αdt
∑
ab

∫
dxM+

aj(x)M+
bk(x)

〈
P̂aP̂b

〉
− 2αdt

∑
ab

∫
dx
[
M+
ak(x)M−ab(x)

〈
X̂jX̂b

〉
+M+

aj(x)M−ab(x)
〈
X̂bX̂k

〉]
,

(5.12a)

d
〈
P̂jP̂k

〉
D

= 4αdt
∑
ab

∫
dxM−aj(x)M−bk(x)

〈
X̂aX̂b

〉
− 2αdt

∑
ab

∫
dx
[
M−ak(x)M+

ab(x)
〈
P̂jP̂b

〉
+M−aj(x)M+

ab(x)
〈
P̂bP̂k

〉]
,

(5.12b)

d
〈

cov
(
X̂jP̂k

)〉
D

= −4αdt
∑
ab

∫
dxM+

aj(x)M−bk(x)
〈

cov
(
X̂bP̂a

)〉
− 2αdt

∑
ab

∫
dxM−ak(x)M+

ab(x)
〈

cov
(
X̂jP̂b

)〉
− 2αdt

∑
ab

∫
dxM+

aj(x)M−ab(x)
〈

cov
(
X̂bP̂k

)〉
.

(5.12c)

The innovations terms become:

d
〈
X̂jX̂k

〉
H

= 4
√
α
∑
ab

∫
dxdW (x, t)M−ab(x)

〈
X̂jX̂a

〉〈
X̂kX̂b

〉
+ 4
√
α
∑
ab

∫
dxdW (x, t)M+

ab(x)
〈

cov
(
X̂jP̂a

)〉〈
cov

(
X̂kP̂b

)〉
−
√
α

∫
dxdW (x, t)M+

jk(x),

(5.13a)

d
〈
P̂jP̂k

〉
H

= 4
√
α
∑
ab

∫
dxdW (x, t)M+

ab(x)
〈
P̂jP̂a

〉〈
P̂kP̂b

〉
+ 4
√
α
∑
ab

∫
dxdW (x, t)M−ab(x)

〈
cov

(
X̂aP̂j

)〉〈
cov

(
X̂bP̂k

)〉
−
√
α

∫
dxdW (x, t)M−jk(x),

(5.13b)

d
〈

cov
(
X̂jP̂k

)〉
H

= 4
√
α
∑
ab

∫
dxdW (x, t)M−ab(x)

〈
X̂jX̂a

〉〈
cov

(
X̂bP̂k

)〉
+ 4
√
α
∑
ab

∫
dxdW (x, t)M+

ab(x)
〈
P̂kP̂b

〉〈
cov

(
X̂jP̂a

)〉
.

(5.13c)

We therefore have the measurement dynamics of our model for any potential with real

Bogoliubov modes, such as the box trap.
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5.2 Control potential choice: the energy damping control

In Chapter 3.4, we reviewed two particular control choices; the moment control and the

energy damping control. Taylor demonstrated with the NPW method [95] that the energy

damping control is more effective than the moment control for cooling thermal states; so in

this thesis we model the energy damping control. In one-dimension, the energy damping

control is

VC(x, t) = −kED∂x
〈

~
2mi

[
ψ̂†(x)

(
∂xψ̂(x)

)
−
(
∂xψ̂

†(x)
)
ψ̂(x)

]〉
C

,

= − ~
2mi

kED

〈
ψ̂†(x)∂2x

(
ψ̂(x)

)
− ∂2x

(
ψ̂†(x)

)
ψ̂(x)

〉
C
,

(5.14)

where the subscript C indicates a conditional expectation value. This conditional ex-

pectation value is the error signal of our energy damping control in Bogoliubov theory.

Substituting our condensate wavefunction (equation (4.13)) into the error signal yields〈
ψ̂†(x)∂2x

(
ψ̂(x)

)
− ∂2x

(
ψ̂†(x)

)
ψ̂(x)

〉
C

= i
∑
jk

([
f−j
∗(x)∂2xf

+
k (x)− f+k (x)∂2xf

−
j
∗(x)

] 〈
X̂jP̂k

〉
C

+ h.c.
)

+
∑
jk

[
f−j
∗(x)∂2xf

−
k (x)− f−j (x)∂2xf

−
k
∗(x)

] 〈
X̂jX̂k

〉
C

+
∑
jk

[
f+j
∗(x)∂2xf

+
k (x)− f+j (x)∂2xf

+
k
∗(x)

] 〈
P̂jP̂k

〉
C
.

(5.15)

We don’t yet define our error signal using the symmetrised covariance, because that ex-

pression is (at this stage) less compact. In order to proceed further, we need the form

of the Bogoliubov modes, and thus must consider the trapping potential introduced in

Section 5.2.

5.2.1 Energy damping in the hard box trap

For a trap with real Bogoliubov modes, the error signal of the energy damping control

immediately simplifies to〈
ψ̂†(x)∂2x

(
ψ̂(x)

)
− ∂2x

(
ψ̂†(x)

)
ψ̂(x)

〉
= 2i

∑
jk

[
f−j (x)∂2xf

+
k (x)− f+k (x)∂2xf

−
j (x)

]
cov

(
X̂jP̂k

)
C
,

(5.16)

and the control potential becomes

VC(x, t) =
~kED
m

∑
jk

[
f+k (x)∂2xf

−
j (x)− f−j (x)∂2xf

+
k (x)

]
cov

(
X̂jP̂k

)
C
. (5.17)

Note that the conditional feedback matrix Rab(t)
(C) = 0 for real Bogoliubov modes, and

the other feedback matrix becomes

Q±ab(t)
(C)

=
2

~

∫
dxVC(x, t)f±a (x)f±b (x). (5.18)
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In the box potential, the Bogoliubov modes obey ∂2xf
±
a (x) = − (2πa/L)2 f±a (x), so

VC(x, t) =
4π2~kED
mL2

∑
j,k=0

(
k2 − j2

)
f−j (x)f+k (x)cov

(
X̂jP̂k

)
C
. (5.19)

Take a moment to note that, in the box trap, the error signal is proportional to the off-

diagonal element of the symmetrised covariance for the Bogoliubov quadratures. That

is, the energy damping responds to imaginary correlations between the different modes.

Integrating over products of four Bogoliubov modes, we obtain the feedback matrix

Q±ab(t)
(C)

=
2π2kED
mL3

(
b2 − a2

)
e∓(ra+rb)

[
era−rbcov

(
X̂bP̂a

)
C
− erb−racov

(
X̂aP̂b

)
C

]
.

(5.20)

It is also instructive to write the feedback Hamiltonian for the energy damping control in

the box trap

ĤC =
∑
a,b=0

π2~kED
mL3

(
b2 − a2

) [
e2racov

(
X̂aP̂b

)
C
− e2rbcov

(
X̂bP̂a

)
C

]
X̂aX̂b

+
∑
a,b=0

π2~kED
mL3

(
b2 − a2

) [
e−2rbcov

(
X̂aP̂b

)
C
− e−2racov

(
X̂bP̂a

)
C

]
P̂aP̂b.

(5.21)

We are therefore now fully equipped to model the dynamics of the energy damping control

in the box potential. In Chapter 6, we will complete preliminary numeric simulations of

this model. Firstly, we will review the particular kind of states we are ultimately interested

in cooling: thermal states.

5.3 Thermal states and the energy damping control

In this thesis, we have constructed a model for the feedback cooling of low temperature

Bose gases. States with a well-defined temperature are thermal states. For a rigorous

introduction to the quantum statistics of thermal states, see Chapter 2 of Ref. [152]; it is

sufficient for this thesis to understand that thermal states have a well-defined occupancy

of each possible energy level determined by the temperature T . Specifically, a set of

thermally occupied Bogoliubov modes obey (using the Bogoliubov mode representation)

[180] 〈
β†j β̂k

〉
= δj,kn̄j , (5.22)

where

n̄j =

{
1

exp(εj/kBT )−1 if j > 0,

NC if j = 0.
(5.23)

Note that for j > 0, n̄j is the Bose-Einstein distribution with (εj − µ) → εj . Crucially,

as the occupation of each mode is exactly defined by the temperature, there can be no

correlations between the modes; that is,〈
β̂j β̂k

〉
=
〈
β̂†j β̂

†
k

〉
= 0. (5.24)
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(a) Thermal states with varying T (b) Thermal states with varying g

Figure 5.2: Thermal state density wavefunctions for varying temperature and interaction
strength. In Figure 5.2a), temperature is varied at a fixed interaction strength g = 0.
At T = 0, the density is uniform. As T increases, the density symmetrically decreases
towards the centre and boundaries of the trap, whilst increasing away from those regions.
In Figure 5.2b), interaction strength is varied at a fixed temperature kBT/E = 125.
Increasing interaction strength has an almost identical effect to increasing temperature.

In terms of our quadrature operators, a thermal state is defined by〈
X̂jX̂k

〉
=
〈
P̂jP̂k

〉
= δjk

[
n̄j +

1

2

]
, and cov

(
X̂jP̂k

)
= 0. (5.25)

In a thermal state, in a hard box potential the average wavefunction density (equation

(5.10)) becomes

〈
ψ̂†(x)ψ̂(x)

〉
=

1

L

∑
a=0

(
sin

(
2π

L
ax

)
+
δa0√

2

)2 [(
n̄j +

1

2

)(
e2rj + e−2rj

)
− 1

]
. (5.26)

We plot in Figure 5.2a) the density function over a range of temperatures for fixed

g = 0, and in Figure 5.2b) the density function over a range of interaction strengths for

fixed kBT/E = 125, both for 100 modes.6 Observe that for a non-interacting gas, at

zero temperature the density is constant. In Figure 5.2a), as temperature increases, the

density symmetrically decreases near the boundaries and centre of the box, but increases

significantly between these two regions. From Figure 5.2b), it is apparent that increasing

the interaction strength has a similar effect to increasing the temperature, although the

curvature of the density is less sharp. This is because an increase in interaction strength

causes a greater occupation of higher order modes — this is the physical reason behind

quantum depletion at T = 0.

Crucially, it follows immediately from equation (5.25) that (in a trap with real

Bogoliubov modes) thermal states are dark states of the energy damping control (i.e.

VC(x, t) = 0), as there is no coupling between modes. This result actually also holds for the

ring trap modes f
(R)
j

±
(x), as the contributions from the integrals of four modes cancel out.

6Although it is not obvious from Figure 5.2, the wavefunction densities are in fact zero at x = ±L/2
because the condensate wavefunction is discontinuous at x = ±L/2. The wavefunction densities therefore
still satisfy the Dirichlet boundary conditions.
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If thermal states are dark states, how does energy damping cool them as demon-

strated in Ref. [95]? The measurement dynamics terms for the covariance (see equations

(5.12) and (5.13)) are initially zero in a thermal state. However, measurement backaction

can drive the evolution of off-diagonal terms in 〈X̂jX̂k〉 and 〈P̂jP̂k〉, which then drives the

evolution of cov(X̂jP̂k) and leads to a non-zero error signal. Physically, the measurement

backaction stirs up density fluctuations in the thermal state, which creates a spatially

dependent particle current (imaginary correlations) and the energy damping control

switches on. Therefore, measurement backaction is needed for feedback cooling to occur.

This is consistent with our understanding of conditional measurement; our feedback

cannot be defined unless we have made a measurement of the state.

5.4 Chapter summary

In this chapter, we have demonstrated how to use the results of Chapter 4 to derive a

model for a particular trapping and control potential. In particular, our Itô model for the

energy damping control of a Bose gas in a hard box trap is

d
〈
X̂jX̂k

〉
=

1

~
dt
(
εkcov

(
X̂jP̂k

)
+ εjcov

(
X̂kP̂j

))
+ dt

∑
a=0

(
Q+
ak(t)

(C)
cov

(
X̂jP̂a

)
+Q+

aj(t)
(C)

cov
(
X̂kP̂a

))
+ 4αdt

∑
a,b=0

∫
dxM+

aj(x)M+
bk(x)

〈
P̂aP̂b

〉
− 2αdt

∑
a,b=0

∫
dx
[
M+
ak(x)M−ab(x)

〈
X̂jX̂b

〉
+M+

aj(x)M−ab(x)
〈
X̂bX̂k

〉]
+ 4
√
α
∑
a,b=0

∫
dxdW (x, t)M−ab(x)

〈
X̂jX̂a

〉〈
X̂kX̂b

〉
+ 4
√
α
∑
a,b=0

∫
dxdW (x, t)M+

ab(x)
〈

cov
(
X̂jP̂a

)〉〈
cov

(
X̂kP̂b

)〉
−
√
α

∫
dxdW (x, t)M+

jk(x),

(5.27a)
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(5.27c)

We are now ready to complete a preliminary numeric study of this model in Chapter 6.



Chapter 6

Preliminary simulations of energy

damping control

In this chapter, we complete preliminary characterisation of the energy damping control

in the box potential using the model derived in Chapter 5. The simulations in this chapter

are completed for a limited number of particles (N ≤ 100) and in the no-backaction con-

ditional measurement limit (which we define in Section 6.1). This is because of the poor

scaling of the model with the number of Bogoliubov modes and measurement strength

(for reasons discussed in Section 6.4). Whilst operating in the no-backaction limit, we are

still able to characterise the behaviour of the energy damping control in our Bogoliubov

model, and perform preliminary scans of important parameters to understand their effects.

We discuss the simulation scheme in more detail in Section 6.1. In Section 6.2, we

carefully analyse a simulation with one particular set of parameters to develop a detailed

characterisation of the behaviour of the energy damping control in the Bogoliubov model.

We then provide a preliminary investigation into the effect of the non-measurement

parameters — the number of particles, the interaction strength, and the control potential

strength — upon our model in Section 6.3.

The simulations in this chapter were completed with a fixed-step Euler algorithm

for Itô stochastic differential equations using the XMDS2 open-source software package

[181]. These simulations were completed on the Gadi supercomputer at the National

Computational Infrastructure. Unless otherwise stated, we average over 240 different

trajectories.

6.1 The no-backaction conditional measurement limit

Simulating the model developed in Chapter 5 with a significant measurement strength

proved difficult, for reasons that will be discussed in Section 6.4. However, feedback

control is only ever defined for a single trajectory, so it is not physically sensible to

study our model for α = 0; that would be implicitly performing feedback on the

average of several trajectories. Instead, we complete simulations in the no-backaction

conditional measurement limit. In this limit, α → 0 and r → ∞. This corresponds

to a measurement so weak it has negligible effect, and a measurement resolution so

poor that it cannot resolve density fluctuations within the gas. This is achieved by

setting α/E = 10−15 and r/L = 100, where E is the natural energy scale of the

system and L the length of the trap. By working in the no-backaction conditional mea-

67
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Figure 6.1: The initial state (red) used in this chapter. The state is highly perturbed from
the symmetric thermal state (blue) for gN/EL = 5.0 and 90% condensate fraction, which
is a dark state of the energy damping control. Each state is normalised to the number of
particles N .

surement limit, we are effectively studying how our model behaves without measurement.1

Consider operating in the no-backaction conditional measurement limit with an ini-

tially thermal state. Because the backaction is so small, it takes a very long time for

non-negligible fluctuations about the thermal state wavefunction density to arise. It is

therefore more efficient to consider a different initial state. In particular, in this chapter

we take a thermal state and add a density fluctuation, as in Figure 6.1. Mathemati-

cally, these density fluctuations add off-diagonal terms to our position and momentum

quadratures. These real correlations between modes then drive imaginary coupling be-

tween the modes, and then provide a non-zero error signal for the energy-damping control.

The temperature of our gas is defined, by proxy, by the condensate fraction. As

established in Chapter 2, the Bogoliubov approximation is only valid in the limit

T � TC [107]. This corresponds to a large condensate fraction, i.e. NC � NT . We will

therefore perform the initial characterisation of our model with a condensate fraction

of 〈N̂C〉/〈N̂〉 ≈ 0.9, which satisfies this limit. This is the regime which was reached by

Taylor [95] with optimal energy damping control using the NPW method, so we know

that this is a feasible regime for the energy damping control.

6.1.1 Simulation Scheme

We measure the effectiveness of feedback cooling by studying the condensate fraction

〈N̂C〉/〈N̂〉, where 〈N̂C〉 is as defined in equation (4.17). The average of the wavefunction

1This is similar to how a mean-field model of feedback cooling was first studied by Haine et al. [89].
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density (equation (5.10)) is normalised to the average number of particles 〈N̂〉, so that

〈
N̂
〉

=

∫
dx

∑
a,b=0

[
f−a (x)f−b (x)

〈
X̂aX̂b

〉
+ f+a (x)f+b (x)

〈
P̂aP̂b

〉]
−
∑
a=0

f−a (x)f+a (x)


=

1

2

∑
a=0

[
e2ra

〈
X̂aX̂a

〉
+ e−2ra

〈
P̂aP̂a

〉
− 1
]
.

(6.1)

In theory, the sum above is defined for an infinite number of Bogoliubov modes. However,

Bogoliubov theory is only valid in the T � TC limit, which corresponds to a low-energy

limit. Therefore, the Bogoliubov basis is only appropriate for low-energy excitations (the

lowest energy Bogoliubov modes), so including an infinite number of Bogoliubov modes is

unphysical. Moreover, it is not practical for numeric integration. Instead, an appropriate

finite number of modes must be chosen. Note that, for a finite number of modes mt, the

number of excitations Nex is〈
N̂ex

〉
(mt) =

1

2

mt∑
a=1

[
e2ra

〈
X̂aX̂a

〉
+ e−2ra

〈
P̂aP̂a

〉
− 1
]
. (6.2)

In this chapter, we simulate with the smallest number of modes m such that

Nex(m)/Nex(100) < 0.0027. This means that the sum in equation (6.2) has converged

to within three standard deviations of what it would be for 100 modes.2 We take this

to mean that the number of modes m is sufficiently large to account for all of the non-

negligible excitations. We then define the initial condensate population as〈
N̂C

〉
=
〈
N̂
〉
−
〈
N̂
〉
ex

(m), (6.3)

where the thermal states of the quadrature modes are defined using equation (5.25).

It is most efficient to simulate in dimensionless quantities. These are defined by

the natural energy scale of the Bogoliubov mode energies εj , which is E = ~2/(mL2)3,

which in turn defines a time scale t0 = mL2/~. We can then define a dimensionless

interaction strength G and control strength KED through the parameters

G =
g

EL
, and KED =

kED
~L

. (6.4)

When we want to fix the interaction strength, we will fix GN , as the effect of interactions

scales linearly with both interaction strength G and number of particles N (if there are

more particles, there are more particles which can interact with each other). This means

we can study the effect of varying particle number independent of its effect upon the

interaction strength in Section 6.3.2.

2Here, we have assumed that 100 modes is a sufficiently large number of modes to approximate infinity.
This is because, over a wide range of parameter regimes, between 10 to 20 modes was sufficient for the
sum in equation (6.2) to converge. 100 modes is an order of magnitude larger, so we do not expect to ever
need more than 100 modes for equation (6.2) to converge.

3Note that this is a different natural energy scale to if we were working in a harmonic trap, as in Ref.
[64]. We could set L = 2RTF and defined the energy scale in terms of an effective trapping frequency ω.
However, RTF is defined in terms of µ, and thus g in the Thomas-Fermi regime. This would define our
energy (and therefore our time) scale in terms of g, a parameter we hope to vary.
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(a) Single trajectory (b) Average of 240 trajectories

Figure 6.2: Feedback cooling with GN = 5.0, KED = 0.1, N = 100.0, α = 10−15, r = 100.0
and m = 1, comparing one trajectory to 240. In Figure 6.2b, the solid line depicts the
mean trajectory, and the shaded region around it indicates twice the standard error in the
mean (95% confidence interval). This error is to small to be soon. Observe that a) there
is no significant difference between one trajcetory and 240 and b) the condensate fraction
oscillates from when cooling begins until the simulation has ended.

We are now ready to complete preliminary simulations of feedback cooling with

the energy damping control. We first study one simulation in depth to understand the

behaviour of the energy damping control at finite temperature.

6.2 Characterising feedback cooling in our Bogoliubov

model

To characterise how the energy damping control behaves in our Bogoliubov model, we

numerically integrate our model for G = 5.0, KED = 0.1 and N = 100.0, which requires

m = 5 Bogoliubov modes. We will use the condensate fraction as our metric for the

effectiveness of feedback cooling, and define the end of the simulation as when the

average condensate fraction has stabilised (we discuss this condition more in the following

paragraphs). In Figure 6.2a we plot the evolution of the condensate fraction in a single

trajectory, and in Figure 6.2b the evolution of the condensate fraction averaged over 240

trajectories. First, note that the error in the condensate fraction evolution is very small;

this is because we are working in the limit of minimal backaction. Because the backaction

is so small, there is no significant qualitative difference between an individual trajectory

and 240.

The gas cools from 90% condensate fraction to an average final condensate frac-

tion 93± 1%. Here, the final average condensate fraction is computed over the final time

“period” of the simulation (i.e. from t0 = 4.0 to t0 = 5.0)4, and the error computed

by twice the standard deviation in that interval.5 Whilst this is not as large as the

10% to 90% increase achieved in unpublished work by Goh et al., cooling is more

4Note that this is analogous to a “trapping period” in a harmonic trap.
5We use twice the standard deviation for a 95% confidence interval.
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Figure 6.3: Evolution of the conditional feedback matrix Q+
30(t)

(C)
, measuring the cor-

relations between the condensate and the third Bogoliubov mode. Solid lines depict the
mean trajectory, and shaded regions around them indicate twice the standard error in the
mean (95% confidence interval), however this error is negligible. Initially, the error signal
is zero, then rapidly increases in magnitude due to the initial density fluctuations. As the
gas cools, the error signal decreases in magnitude, before oscillating around zero.

challenging in our simulations because we are starting with a gas that is already very

close to T = 0. It is more useful to interpret the result here (a final condensate frac-

tion of 93±1%) as demonstrating that ∼ 30% of the thermal excitations have been cooled.

To understand how the energy damping cools these excitations, it is instructive to

study the error signal of the control. The error signal is best quantified by the conditional

feedback matrices Q±ab(t)
(C)

. We plot an arbitrary one of these, Q+
30(t)

(C)
(which

specifically quantifies the imaginary correlations between the third Bogoliubov excitation

and the condensate) in Figure 6.3. Initially, this error signal is zero, before rapidly

growing in magnitude. This indicates that the density fluctuations in the initial state (see

Figure 6.1) are driving coupling between the Bogoliubov excitations and the condensate

mode. The error signal then decreases in magnitude, which corresponds with an increase

in the condensate fraction (see Figure 6.2). The decrease in error signal indicates that

the energy damping has used the coupling to drive particles from the excited mode into

the condensate. Eventually, towards the end of the simulation, the error signal begins to

oscillate at constant amplitude around zero, at a time which corresponds to when the

average condensate fraction has stabilised.

We can see in the evolution of both the condensate fraction (Figure 6.2) and the

error signal (Figure 6.3) that the system eventually reaches a state where it is oscillating

around a stable value. Indeed, this oscillation is responsible for the large error in the

average final condensate fraction. Because the average condensate fraction and error

signal have stabilised but the oscillations persist, we conclude that the system has reached
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Figure 6.4: The initial wavefunction density (red), final wavefunction density (blue) and
wavefunction density of a thermal state at the average final condensate fraction (93%).
Shaded regions around the blue curve indicate the error in the final wavefunction density.
Observe that the feedback cools the wavefunction from a highly assymetric shape to a
symmetric wavefunction density. However, this final state is not a thermal state, as can
be seen by comparing the black and blue lines. This indicates that there are still real
correlations between the condensate and excitations in the limit cycle.

a limit cycle.6

Unpublished work by Goh et al., using the NPW method, has observed similar os-

cillations in the condensate fraction as the gas cools. We show in Section 6.3 that

these oscillations change in frequency and amplitude depending upon the dimensionless

interaction strength G, so we propose that these oscillations are a consequence of coupling

between the condensate and excitations at the final state of the Bose gas.

We investigate this claim further by plotting the initial and final wavefunction

density in Figure 6.4. The black dotted line is the wavefunction of a thermal state with

GN = 5.0 and 93% condensate fraction. The initial density is highly asymmetric, but

upon cooling takes upon a symmetric shape (the blue curve). This wavefunction density

is not the same as the wavefunction density for a thermal state at the same condensate

fraction (see the black dotted curve). The small deviations between the final state and a

thermal state indicate that there is coupling between the condensate and excited modes

at the end of the simulation. This coupling, if there is interactions between the atoms,

would lead to continued exchange of particles between the condensate and excited modes.

This continued exchange is balanced out by the response of the feedback control (see

Figure 6.3), which is what causes the system to reach a limit cycle, rather than a steady

state. Whilst beyond the scope of this work, it would be instructive in future to complete

6A limit cycle is a trajectory (or average trajectory) for a system where it continues to dynamically
change, but in a fixed periodic manner. For a more rigorous introduction to limit cycles, the interested
reader should see Chapter 7 of Ref. [121].
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a non-linear stability analysis of our system (equation (5.27)) to analytically study this

behaviour.7

From our initial characterisation, there are two key observations. Firstly, density

fluctuations (real correlations between modes) drives imaginary coupling between modes,

which then drives the energy damping control. Secondly, the energy damping drives

the system towards a limit cycle, where this is a small amount of coupling between the

condensate and the excitations. In this limit cycle, the interactions driving particles out

of the condensate is perfectly balanced by the energy-damping control.

6.3 Preliminary parameter scans

Having now characterised the energy damping control, we can study how the effectiveness

of feedback cooling varies with the number of particles N , interaction strength G, and

energy damping strength KED (in the no-backaction conditional measurement limit). The

validity of the results presented in this section are limited by a) operating in the no-

backaction limit and b) using a small number of Bogoliubov modes (m = 5). Validating

these trends beyond these limits is an avenue for future work.

6.3.1 Varying particle number

From equation (2.51), we expect quantum depletion to decrease the condensate fraction

of the system as N increases. To examine whether this is the case, we vary N between

10 and 100 for m = 5 Bogoliubov modes to test the dependence of our model on particle

number. We fix GN = 5.0 (equivalent to fixing the interaction strength per particle) so

that the effect of varying number is independent of varying the interaction strength. We

also fixed the energy damping strength per particle to KED = 10.0/N . We do this because

the overall energy of the system scales with particle number, and thus the magnitude of

the error signal. If we just fixed KED independent of the number of particles, the effect

of energy damping would be much stronger for a larger particle number. We investigate

KED and G in subsequent subsections; this section is concerned with whether solely N

has effects upon the dynamics or steady state, such as quantum depletion.

We plot the evolution of the condensate fraction for different N in Figure 6.5.

The dynamics and steady state behaviour of the gas do not (within error) change as

particle number varies. This indicates that in the no-backaction limit for a limited

number of particles, the system scales well with N (provided that the energy damping

control and interaction strength are scaled appropriately). Such as trend is somewhat

unexpected; we would predict the final condensate fraction to decrease with N due to the

effects of quantum depletion. However, as the dynamics do not change within the 95%

confidence interval, we conclude that (for GN = 5.0) we are not in a regime of significant

quantum depletion.

The negligible effects of quantum depletion are due to simulations being completed

for only a small number of particles N . We are restricted to this limit because a larger

number of particles requires a larger number of modes. For reasons that will be discussed

in Section 6.4.1, our simulation scales poorly with the number of Bogoliubov modes m,

7For more details on non-linear stability analysis, see Ref. [121]
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Figure 6.5: Feedback cooling with fixed KED = 10.0/N , GN = 5.0, α = 10−15, r = 100.0,
m = 5 and varying N . The 95% confidence interval around the average trajectory is too
small to be seen. The system dynamics are qualitatively unaffected by the number of
particles.

and we are restricted to the low particle number limit.

We conclude that our model (in the regimes considered in this chapter) is inde-

pendent of particle number N .8 To allow a greater variation in the interaction strength

G in the following section, we then fix N = 50.0 for the remainder of this chapter.

6.3.2 Varying interaction strength

Previous work has found that feedback cooling is significantly affected by interactions for

both bosons [2] and fermions [64]. We therefore wish to consider the effect of varying the

dimensionless interaction strength scaled by the number of particles GN . This is equiv-

alent to varying the interaction strength per particle. We fix N = 50.0, KED = 10.0/N

and m = 5. Note that we consider G = 0; our Thomas-Fermi approximation on the

condensate wavefunction is technically no longer valid at this interaction strength,

however it is useful to indicate the dependence of the oscillations (discussed in Section

6.2) upon the interaction strength.

In Figure 6.6a we plot the evolution of the condensate fraction for different GN .

In Figure 6.6b, the average final condensate fraction and its error are plotted (calculated

as before), and compared to the maximum possible condensate fraction due to quantum

depletion. Observe from Figure 6.6a that as the interaction strength increases, the final

condensate fraction decreases. This decrease becomes particularly significant for the

larger interaction strengths (GN ∼ O(10)). Indeed, this final average condensate fraction

is well below the limit imposed by quantum depletion (see Figure 6.6b). Physically, this

8Note that previous work in feedback cooling Bose gases at zero [2] or finite [95] temperature has not
explored the dependence of their model on particle number N , so there is no relevant comparison.
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(a) Condensate fraction evolution (b) Comparison to quantum depletion

Figure 6.6: Feedback cooling with fixed KED = 10.0/N , N = 50, α = 10−15, r = 100.0,
m = 5 and varying GN . In Figure 6.6a, solid lines depict the mean of 240 trajectories. The
95% confidence interval is too small to be seen. Observe that as the interaction strength
increases, a) final condensate fraction decreases, and b) the magnitude and frequency of the
oscillations in the condensate increase. In Figure 6.6b, the average final condensate fraction
is plotted as a function of interaction strength, and compared to the maximum possible
condensate fraction due to quantum depletion. The standard deviation in each average
condensate fraction is shown, a measure of the amplitude of the oscillations. The final
condensate fraction is well below the maximum possible value for all interaction strengths,
indicating (in the no-backaction regime) that quantum depletion does not significantly
affect the efficiency of feedback cooling.

trend is due to repulsive interactions forcing the atoms apart into different energy modes.

The standard deviation of the final condensate fraction, Figure 6.6b, is a measure

of the amplitude of the oscillations in the condensate fraction when the limit cycle is

reached. As the interaction strength increases, the magnitude of the oscillations increases.

Indeed at G = 0 there are no oscillations (although this is a tenuous part of the trend

as the Thomas-Fermi approximation breaks down in this regime). The frequency of the

oscillations also increases as G increases (see Figure 6.6a). Recall that the energy of

the condensate is proportional to G, and there appears to be a correlation between the

frequency of the oscillations and the energy of the condensate mode.

These results indicate that the oscillations are an interaction dependent effect, ver-

ifying the claim in Section 6.2. Recall we noted that, from the final wavefunction density

plotted in Figure 6.4, that there is some coupling between the condensate and excitations

at the end of the simulation. At a higher interaction strength, greater quantum depletion

leads to a greater of Bogoliubov modes, so this coupling can enable an even greater

amount of particle exchange between the excitations and the condensate. This is why the

magnitude of the oscillations (and thus, the radius of the limit cycle) increases. It is a

question for future research whether these oscillations are present in other regimes (e.g.

larger number of particles, or with non-negligible backaction).

For GN = 25.0, the final condensate fraction is below the initial condensate frac-

tion of 90%. This indicates that interactions can limit the ability of feedback to cool a
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Bose gas, even beyond that predicted by quantum depletion. Simulations at G ≥ 50.0

failed to converge, which may be due to either a physical reason or a numeric reason. As

the oscillation amplitude increases non-linearly with G, the oscillations may have become

too large for the condensate to be stable at G ≥ 50.0. Alternatively, a much larger

number of Bogoliubov modes may be needed to model these higher interaction strengths,

and so m = 5 modes was insufficient to model these higher interaction strengths. Due to

the poor scaling of the model with m (as will be discussed in Section 6.4), we were unable

to evaluate which of these reasons was the cause.

We conclude, at least in the low particle number, no-backaction conditional mea-

surement limit, that the dynamics of our model are significantly affected by G, and the

effectiveness of feedback cooling decreases as interactions increases. Note that this trend

is in contrast to that observed by Szigeti et al. in Ref. [2], where the authors found

that increasing interaction strength increased the effectiveness of feedback cooling. This

was because that study consider the moment control, which can only cool higher order

excitations by coupling them to lower order moments (as discussed in Chapter 3.4).

Therefore, interactions are necessary for the moment control to operate effectively. In

contrast, for the energy damping control studied in this thesis, stronger interactions tend

to push atoms further apart into different modes, hindering the cooling. Thus, the result

of this section demonstrates a significant difference between the energy damping and

moment controls.

6.3.3 Optimising energy damping control

Having developed an understanding of the effect of particle number and interaction

strength upon our model (in the no-backaction conditional measurement limit), we can

now attempt to optimise the energy damping control. Optimising control potentials was

one of the initial goals of developing the model in this thesis, and will characterise how

effective our feedback cooling scheme is. To minimise the effects of oscillations upon

optimising KED, we set GN = 1.0 and N = 50.0.9 Whilst the results of this section

are technically limited to the low particle number and no-backaction regimes, they will

hopefully provide an initial calibration of KED that can be used as comparison in future

work.

We vary the control strength per particle for m = 5 Bogoliubov modes. In Figure

6.7a the evolution of the condensate fraction is plotted for each energy damping control

strength. Qualitatively, the largest energy damping controls take the longest to reach the

limit cycle; but this may be a consequence of not exploring very low KED thoroughly.

The average final condensate fraction is plotted in Figure 6.7b. The largest condensate

fraction achieved is 93.5± 0.1%. The optimal value for KED lies somewhere in the range

between between 0.1/N and 2.5/N ; we cannot distinguish further due to the oscillations

in the condensate fraction. This suggests that these oscillations, if present in other

parameter regimes, may pose a challenge for further optimising the energy damping

control in future work.

Simulations of O(10) paths were also completed for G = 5.0, to confirm that the

9Note that because we are working with a weaker interaction strength, the Thomas-Fermi approximation
may be less valid.
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(a) Condensate fraction evolution (b) Average final condensate fraction

Figure 6.7: Feedback cooling with fixed N = 50, G = 1.0, m = 5, α = 10−15, r = 100.0
and varying KED. In Figure 6.7a, solid lines depict the mean of 240 trajectories. The
95% confidence interval is too small to be seen. The limit cycle is reached more slowly for
the stronger energy damping controls, but this is likely a consequence of mostly exploring
large KED over small KED. Observe that the final condensate fraction changes negligibly
for KED < 10.0/N . The maximum condensate fraction appears to be achieved for KED =
1.0/N , however this is not beyond the standard deviation (error) due to the oscillations
in the condensate fraction.

trends observed were independent of interaction strength. The optimum energy damp-

ing parameter agreed within a 95% confidence interval, confirming that fixing G to a

particular value did not affect our results. However, a detailed study of the effect of interac-

tion strength G on the optimal KED was not completed. This is an avenue for future work.

Physically, the energy damping control measures density fluctuations, and damps

in the opposite direction. Too large a KED overdamps these fluctuations, creating more

fluctuations in the opposite direction. Similarly, too small a KED cannot counteract these

density fluctuations. Therefore, the presence of an optimal energy damping control in

our model is validation that it behaves appropriately. Additionally, the presence of an

optimal energy damping control agrees qualitatively with the observations of Ref. [64].10

Whilst ideally, a quantitative comparison would be made between the results of

this section and the NPW method, Taylor [95] did not complete a parameter scan of

different energy damping strengths. A comparison between the optimal value of KED

here and that found by the NPW method is therefore an open question for future work.

6.3.4 Summary

We have now completed a preliminary characterisation of low temperature feedback cooling

in the no-backaction conditional measurement regime (for a limited particle number). The

results of this section are therefore confined to this regime, and require verification in the

presence of realistic measurement backaction. In Section 6.4, we will discuss the challenges

with exploring those regimes with the model developed in this thesis. Additionally, we did

10Note, however, that Ref. [64] was for a Fermi gas, and worked in a harmonic trap, so the results cannot
be quantitatively compared. We draw a qualitative comparison because it is the only known work where
different values of the energy damping control were scanned in order to feedback cool a gas.
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not study the cooling of initially thermal states. The effect of different parameters upon

the cooling of states may therefore change in future work with an initially thermal state.

Those caveats in mind, we found the following preliminary results in the no-backaction

conditional measurement regime:

1. Feedback cooling to 93.5±0.1% condensate fraction. Starting from a Bose gas

at 90% condensate fraction (the regime achieved by Taylor [95]), we feedback cooled

thermal excitations to increase the condensate fraction further. This demonstrated

that our Bogoliubov model can successfully describe the feedback cooling of a Bose

gas.

2. The energy damping control drives the system towards a limit cycle. The

final state of the system is not a thermal state; there is instead coupling between the

condensate and excited modes. The system oscillates about this final wavefunction

density, and preliminary evidence suggests that this driven by interactions between

the condensate and the excitations. However, future work is required to determine

if this is a consequence of our initial state or the regime simulated in.

3. When small, the number of particles does not qualitatively affect dynam-

ics. This is as long as the interaction strength and energy damping control are

scaled accordingly. However, this trend likely only holds in the limit of a small num-

ber of particles: we expect quantum depletion to change this trend for simulations

considering a larger number of particles.

4. Interaction strength significantly affects the dynamics of our model. In

particular, interactions seemed to be responsible for the oscillations present in the

condensate fraction. However, this may be because our model scales poorly with

the number of Bogoliubov modes m (as will be explained in Section 6.4), and more

Bogoliubov modes are needed to account for larger interaction strengths.

6.4 Limitations of the perturbative model for simulation

As noted throughout this chapter, our model does not integrate efficiently for a large

number of Bogoliubov modes m. We discuss why this is the case in Section 6.4.1. An

even more restricting limitation of model is that it does not simulate efficiently for large

amounts of stochastic noise. In Section 6.4.2, we discuss the challenges associated with

numerically integrating our model for a non-negligible measurement strength.

6.4.1 Scaling with number of Bogoliubov modes

Our simulations are restricted to a low number of Bogoliubov modes due to the order

of the terms being integrated11. From our full Itô model (equation (5.27)), we can

see that the least efficient terms are the decoherence and innovations terms, each of

O
(
D(m+ 1)4

)
. Here, m is the number of Bogoliubov modes and D the number of x grid

points numerically integrated over. By precomputing integrals over pairs of measurement

matrices, the decoherence terms become of order O((m + 1)4). In Appendix A.4, we

discuss in detail an approach using the convolution theory for Fourier transforms to

11This refers to the number of individual numbers the computer has to keep track of at any time. If
there are m Bogoliubov modes and one condensate mode, a term with two free Bogoliubov mode indices
— such as 〈X̂jX̂k〉 — is an (m+ 1)× (m+ 1) matrix, and has O((m+ 1)2).
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reduce the order of the innovations terms to O(D logD(m+ 1)2).

For the simulations completed in this chapter, it was found that the measurement

matrices M±ab(x) were negligibly changed by setting D ≥ 32, so simulations were set with

D = 32. For m ≤ 5, the innovations terms were the least efficient term in the stochastic

simulation. However, for more than five excited modes, the decoherence terms become

the least efficient, at order O((m + 1)4). Even increasing the number of excited modes

from five to six doubles the complexity — and thus the run time — of the simulation.

Therefore, the model does not scale efficiently with the number of excited modes.

6.4.2 Inefficiency of integration algorithms

Simulations were completed in the no-backaction conditional measurement limit because

the simulation performed very inefficiently for a large measurement strength α. Sim-

ulations in this chapter were completed using an Euler algorithm, which is achieved

in XMDS2 with a semi-implicit fixed-step algorithm with one iteration (see Ref. [182]

for more details). This means that in each time step dt, the Euler algorithm solves an

Itô integral, computing the deterministic dynamics to accuracy dt1 and the stochastic

dynamics to accuracy dt1/2 [181].

This means that an Euler algorithm has quite low accuracy for the determistic dy-

namics of a system of equations. In the presence of small stochastic noise (as in this

chapter), only a small number of steps are needed to simulate the deterministic dynamics.

However, as the stochastic noise increases, the deterministic dynamics become less stable

for a small time step, and a much larger time step is needed. The effect of this upon our

simulations is quantified in Figure 6.8. For a range of measurement strengths α, which

quantifies the size of our noise, we plot the number of steps needed in a fixed algorithm to

accurately compute a single time period t0 with a half-step error in the wavefunction norm

of 10−4. By half-step error, we mean the maximum change in a quantity by re-completing

the simulation with half as many steps.12 This choice of half-step error size is arbitrary;

it is to provide a fixed comparison for how many steps are needed. Observe in Figure

6.8 that as α increases, the number of steps required in the Euler algorithm increases

exponentially. The Euler algorithm is therefore not very efficient for stochastic simulation

beyond the no-backaction conditional measurement limit, and for measurement at the

strength simulated in previous feedback cooling literature [2, 64, 94, 95].

One alternative to an Euler algorithm is a Runge-Kutta algorithm. In XMDS2,

the fixed-step fourth-order Runge-Kutta (RK4) algorithm computes the deterministic

dynamics to accuracy dt4, and the stochastic dynamics to accuracy dt1/2 [181]. Integrating

with a fixed-step Runge-Kutta algorithm (or an adaptive equivalent13) therefore offers

more accuracy than the Euler algorithm. Indeed, previous work with the model of Szigeti

et al. has used Runge-Kutta methods [2, 64, 94, 95].

12For large α, the half-step error needed for safe deterministic dynamics actually decreases; so qualita-
tively, the estimate of the number of steps required for large α in Figure 6.8 is actually an underestimate.
This means that the number of steps actually required is even higher, and in reality the trend is even more
extreme.

13An adaptive algorithm computes the required step size at each point based upon a minimum half-step
error, so is faster for periods of the simulation (such as the final limit cycle) with smaller dynamic changes.
See Ref. [183] for a more detailed discussion of adaptive Runge-Kutta algorithms.
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Figure 6.8: Number of steps required for different α to simulate one time interval t0 within
half-step error in the norm of 10−4. The required number of steps required increases expo-
nentially beyond very small α (the no-backaction limit). The fixed-step Euler algorithm is
therefore inefficient for stochastic simulation of our model for measurement at the strength
simulated in previous feedback cooling literature [2, 64, 94, 95]. We estimate the error in
each value from the half-range of steps required to obtain the half-step error of 10−4.

However, a Runge-Kutta algorithm requires integrating our model in the Stratonovich

formalism (see Chapter 3.2), because Runge-Kutta algorithms implement the chain and

product rules of deterministic calculus. We obtain the Stratonovich equation of motion

for our system by implementing the Stratonovich correction, which for our model is found

by computing the matrix equivalent of equation (3.17). Alternatively, the Stratonovich

correction for an Itô master equation of the form of equation (3.21) is [94]∑
a

C [ĉa] ρ̂c,

where C [ĉa] ρ̂c is the Stratonovich superoperator defined as14

C [ĉa] ρ̂c = Tr
{(
ĉa + ĉ†a

)
ρ̂c

}
H [ĉa] ρ̂c −

1

2
H [ĉaĉa] ρ̂c + Tr

{
ĉ†aĉaρ̂c

}
ρ̂c − ĉaρ̂cĉ†a. (6.5)

Here, H [ĉa] ρ̂c is the innovations superoperator defined earlier. For the master equation of

Szigeti et al. this Stratonovich correction contains terms of the order of the measurement

operator squared, which in turn are summed over two Bogoliubov mode indices. This

means the Stratonovich correction contains terms of O(D(m + 1)6). Precomputing

integrals of measurement matrices can reduce the order of the Stratonovich correction to

O((m+1)6); however, this is (m+1)2 times worse than the complexity of the decoherence

terms.

14For a full derivation of equation (6.5), see the appendix of Ref. [95]. Note the sign error in front of
the last term between the penultimate and final lines of equation (B.11).
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Alternatively, carefully reordering sums can reduce the order of the stratonovich

correction to O(D(m + 1)3). However, this is still not less than the complexity of the

decoherence terms except for (m + 1) > D. This would require significantly more than

O(10) Bogoliubov modes, which likely no longer corresponds to T � TC , so we expect

the Bogoliubov approximation would break down.

Therefore, the Stratonovich correction is always significantly more complex than

either of the existing terms in the equations of motion. This meant integrating in the

Stratonovich formalism, even with a more efficient numeric algorithm, was not more

efficient than the Itô integration approach taken.

6.4.3 Summary of limitations to simulation approach

It therefore appears that the model developed in this thesis is not efficient for numeric

simulation, at least in the Itô formalism. The most obvious solution would be to find an

efficient way to numerically implement the Stratonvoich correction, likely by reducing its

complexity to a product of fewer Bogoliubov modes. This is a clear avenue for future

research.

Whilst making it more challenging to validate its accuracy and limits, the difficul-

ties in numeric simulation do not mean our model is useless. As will be discussed in

Chapter 7, there is a possible avenue to obtain tractable analytics from this model, which

will allow for rapid characterisation of different feedback controls without the need for

simulation. Those analytic solutions would be able to validated via simulations with

the NPW method, which is regardless a more accurate simulation scheme. However,

developing a more efficient scheme to simulate the Bogoliubov model is important if we

wish to use the Bogoliubov approach to model finite temperature Fermi gases.
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Chapter 7

Conclusions and outlook

In this thesis, we derived a model for the feedback cooling of a finite temperature trapped

Bose gas. By using the perturbation theory approach of Bogoliubov, we derived a model

for an arbitrary 1D trapping and control potential, before considering specifically the

energy damping control in a hard box trap. We completed preliminary characterisation

of our model via numeric simulation in the no-backaction conditional measurement limit.

More specifically, in Chapter 2 we reviewed the fundamental tools of Bogoliubov

theory, and in Chapter 3 introduced the full quantum model of Szigeti et al. for a

Bose gas undergoing continuous measurement. In Chapter 4, we then used a number-

conserving Bogoliubov theory to construct a perturbative model for the dynamics of

a finite temperature gas. We did this by deriving the equations of motion for sym-

metrised pairs of quadrature operators. In particular, we broke down the derivation

into the cold atom, measurement, and feedback dynamics. We derived the cold atom

and decoherence dynamics through commutator relations in the Schrödinger picture.

We derived the innovations terms by making a Gaussian approximation upon the

excitations and the condensate. Finally, the feedback dynamics were derived in terms

of a control potential, which was determined by the outcome of a conditional measurement.

In Chapter 5, we demonstrated the procedure by which our model could study a

control potential of interest in a given trapping potential. Specifically, we motivated

studying the hard box trap, which gave rise to sinusoidal solutions with Dirichlet

boundary conditions. In this trap, we modelled the energy damping control, which is

the present leading candidate for the feedback cooling of Bose gases. Our equations

of motion became significantly more tractable after choosing a trapping and control

potential. We found that thermal states — those with defined temperature — are dark

states of the energy damping control under the Bogoliubov approximation (in both a

box and harmonic trap), meaning that thermal states cannot be initially cooled by the

energy damping control. Rather, a conditional measurement is needed to first couple

the different excited modes, and allow the energy damping control to begin cooling the gas.

In Chapter 6, we completed preliminary numerical simulations of our Itô model in

the no-backaction conditional measurement limit (which necessitates not starting in a

thermal state). The scope of these simulations was limited by a) the poor scaling of the

model with the number of the Bogoliubov modes, and b) the inefficiencies in both Itô and

Stratonovich integrals to numerically integrate the model. However, we did demonstrate

feedback cooling from 90% to 93.5 ± 0.1% condensate fraction for an optimal energy

damping control (where condensate fraction was our proxy for temperature). These
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simulations were completed for N ≤ 100 particles, and in this low particle number limit

the dynamics were unaffected by the number of particles. We also found that the energy

damping control drives the system towards a limit cycle. This limit cycle occurs because

of the interplay between the energy damping control and the coupling between Bogoliubov

modes present after cooling. The amplitude of the limit cycle increased with interaction

strength, which we propose is because stronger repulsive interactions increased the ability

of the coupling to drive atoms out of the condensate. However, further simulations of the

model in a stronger measurement regime, and with an initial thermal state, are needed

to verify these results.

7.1 Limitations and future work

Let us now summarise and discuss the limitations of the model and results presented in

this thesis. We provide possible solutions to these challenges, and other options for future

research based upon this work.

7.1.1 Simulating beyond the no-backaction limit

In Chapter 6.4, we discussed in detail the challenges with numerically simulating our

model for non-negligible measurement. As concluded there, the best alternative will be to

develop an efficient scheme for calculating the Stratonovich correction, and integrating in

the Stratonovich formalism. Otherwise, integrating in the Itô formalism may be possible

with a different algorithm. Whilst the only algorithm for Itô integration in the XMDS2

package is a fixed-step algorithm [181], the SciML package developed by Rackauckas et

al. [184, 185] contains an adaptive algorithm for numeric Itô integration, which may be

more efficient.

It was not possible to validate the numeric results of this thesis with the NPW

method, which has not been used to explore the no-backaction regime.1 A less computa-

tionally intensive alternative for validating the results in the no-backaction limit would

be via simulations with the SPGPE [165, 166]. Ultimately, a comparison between the

Bogoliubov model and either of these methods will be necessary to fully characterise what

condensate fraction, interaction strength, and particle number regimes the Bogoliubov

model is valid in. This will indicate the validity regime for any analytic solutions (see

Section 7.1.2), and provide rough predictions for the validity of a fermionic Bogoliubov

model for feedback cooling.

7.1.2 Steady state analytic solutions

By diagonalising the cold-atom Hamiltonian, the Bogoliubov approach makes cold-atom

dynamics tractable and lends itself towards the development of analytic solutions.

Although (as seen in this thesis) the addition of feedback and measurement tend

to make the system dynamics less tractable, some classes of continuously-measured

1It is actually quite difficult for the NPW method to study the no-backaction regime. In the NPW
method, a quantum state is represented by random samples from the initial state distribution. Each of
these samples is given a particular weight ; how likely it is that the system is in that state. After each
subsequent measurement of the system, these weights are accordingly evolved, and their average converges
to the expected behaviour of the system. Without measurement, it is not possible to model the evolution
of the weights, and thus the evolution of the system.
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feedback-controlled quantum systems do have analytic solutions. One such system is

those undergoing linear quadratic Gaussian (LQG) control. LQG control theory describes

a system that is initially Gaussian, evolves under a quadratic Hamiltonian, and both

the feedback Hamiltonian and measurement operators are linear. LQG control theory

derives a steady-state analytic solution for such systems; the details of which are found in

Chapter 6 of Ref. [158] (for an excellent introduction in the simplest case of single-mode

systems, see Ref. [91]).

Observe crucially that Bogoliubov excitations obey a diagonal Hamiltonian, and it

is reasonable to approximate them as Gaussian states (see Chapter 4.4.2 of this thesis).

Therefore, a Bogoliubov theory for a linear feedback control and measurement scheme

very naturally gives rise to an analytic steady-state solution using LQG control theory.

Indeed, Wade et al. used LQG control theory to describe the control and entanglement

of individual Bogoliubov modes in Ref. [97, 98].

Note that, in this thesis, both the energy damping control Hamiltonian and mea-

surement operator are not linear. However, they may be linearised by making two

approximations upon our state. Firstly, by making the symmetry-breaking approximation

that the condensate is a classical degree of freedom, â0 would become a complex number

a0 and all terms representing the coupling between the condensate and an excitation

would become linear in the excitations (i.e. 〈X̂jX̂0〉 →
√

2Re [a0] 〈X̂j〉). Secondly, the

terms linear in the excitations are the lowest order terms in the fluctuation parameter δ̂,

in both the control Hamiltonian and the measurement operator. If δ̂ is sufficiently small,

we can then discard all terms quadratic in δ̂; that is, terms like 〈X̂jX̂k〉 for j, k 6= 0.

Both of these approximations would be safe in the regime that NT � NC .2 Under

this approximation scheme, the energy damping control Hamiltonian and measurement

operator respectively become (in the hard box potential)

Ĥ
(L)
C = kED

4π2~
mL3

∑
j>0

j2
〈
P̂a

〉
X̂a, (7.1a)

M̂ (L)(x) = 2
√

2
∑
j>0

M−j0(x)X̂j , (7.1b)

where we have introduced the superscript (L) to indicate that these operators are lin-

earised, and have discarded non-operator valued terms.3 From here, deriving the steady-

state solutions is an analytically involved process relying on the details of LQG control

theory, so is proposed as future work. The first goal of that work will be seeing how

well the steady-state solutions agree with simulation results (either from this model or

more precise ones such as NPW), and if they significantly vary between different traps.

Ultimately, this linearisation procedure could be used to rapidly find steady-state analytic

solutions for different control schemes, and therefore predict optimal parameter regimes.

In particular, in a potential with real Bogoliubov modes (such as a hard box or harmonic

2Note that we argued in Chapter 4.1 that a symmetry-breaking approach cannot describe the dynamics
of feedback cooling; but because we are proposing to use LQG control theory to study the steady-state
behaviour, the symmetry-breaking approximation should be safe here.

3We have also set the phase of the complex number a0 to 0. This is standard in the symmetry-breaking
approach, as discussed in Chapter 2.4.
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trap) the linearised control Hamiltonian for an arbitrary control potential VC(x, t) is

Ĥ
(L)
C = 2

∑
a

∫
dxV

(L)
C (x, t)f−a (x)χ0(x)X̂a, (7.2)

where V
(L)
C (x, t) refers to only the linear terms in the control potential.

7.1.3 System-filter separation

In this thesis, we assumed that our estimate of the system state (the filter π̂c) exactly

approximated the real value (the trajectory ρ̂c). In reality, the filter π̂c is only the

experimenter’s best guess, based on the signal from the homodyne measurement. As

detection is imperfect in a real experiment, the signal will not be quite the same as the

trajectory π̂c. Therefore, there are actually two master equations of interest: that for the

trajectory, dρ̂c, and that for the filter dπ̂c.

For the interested reader, we include a more detailed introduction to a system-

filter separation for our system in Appendix A.5, applying the system-filter separation

of Ref. [161] to the model in Ref. [1]. The key takeaway is that instead of evolving the

three matrices 〈X̂jX̂k〉, 〈P̂jP̂k〉 and cov
(
X̂jP̂k

)
, in a system-filter separation we evolve

matrices for both the system and filter master equations. For example, we evolve both

〈X̂jX̂k〉π̂c and 〈X̂jX̂k〉ρ̂c , so there are in total six coupled matrix equations. Note that

crucially in both the system and filter dynamics the feedback matrices are determined by

expectation values in the filter, as that is how the control potential is modified. Once the

aim of completing simulations with non-negligible measurement is achieved, implementing

a system-filter separation is an obvious avenue for future work. Given that Szigeti et al.

[186] and Taylor [95] have demonstrated that feedback cooling is still effective even with

a system-filter separation (albeit, the former for a non-interacting BEC), completing a

system-filter separation is an important step in testing the validity of our Bogoliubov

model.

7.1.4 Trap choice

In Chapters 5 and 6, we considered our model in a hard box trap. Future work should

consider a harmonically trapped gas, as it would be a) more realistic for experimental

implementation of feedback cooling and b) more easily comparable with previous work

in the field. The main challenge, for the development of analytic solutions (using LQG

control theory as proposed in Section 7.1.2), would be whether the control Hamiltonian

is still easily linearisable.

Future work should also consider Bose gases trapped in 2D or 3D traps. Whilst

presented in 1D in this thesis, both the Bogoliubov theory in Chapter 2 and the model

of Szigeti et al. in Chapter 3 are not limited to one dimension. As the higher dimensions

would be wrapped up in integrals over the measurement matrices and the number of

Bogoliubov modes is independent of dimension, our model should scale quite well to

higher dimensions. There are also existing numeric schemes for calculating Bogoliubov

modes in higher dimensions [131, 132]. On the other hand, the number of modes in

the NPW method scales as O(mn), where n is the number of dimensions [92, 93]. Our
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Bogoliubov model may therefore be more efficient for modelling 2D or 3D gases, which is

useful because real atomic gases are 3D.

7.1.5 Bogoliubov model for feedback cooling of finite temperature
fermions

A key motivation behind developing a Bogoliubov theory for the feedback cooling

of finite temperature Bose gases is that there also exists a Bogoliubov approach for

fermions [72]. Whilst there are possible approaches to develop a non-perturbative

finite temperature model for fermions by employing time-evolving block decimation4

[188, 189] or density matrix renormalisation techniques [190, 191], these approaches are

numerically challenging. A Bogoliubov theory would be a more straightforward first study.

The basics of fermionic Bogoliubov theory are similar to the bosonic case, so much

of the analytic work of this thesis applies. In particular, the fermionic cold atom

Hamiltonian is diagonalised by:

1. Using a perturbation theory about the mean-field to write the interactions term as

the sum of products of two operators rather than the one product of four operators

(see Ref. [192] or Chapter 44 of Ref. [106] for details)

2. Transforming the fermionic creation and annihilation operators via a fermionic Bo-

goliubov transformation [108]. Physically, each fermionic Bogoliubov mode corre-

sponds to creating a hole in the Fermi sea, and a particle in an excited state above

it. By using this particle-hole formulation, the fermionic Bogoliubov approach in-

herently conserves number.

The fermionic Bogoliubov modes now obey fermionic anti -commutator relations, and

their coefficients obey a modified set of orthonormality conditions.5 Because the fermionic

Bogoliubov transformation diagonalises the cold atom Hamiltonian, the Gaussian

approximation made in Chapter 4 still applies, and the decoherence terms are simply

calculated by replacing [M̂(x), [Â, M̂(x)]] with {M̂(x), {Â, M̂(x)}}. The key difference

is in the form for the density ψ̂†σ(x)ψ̂†σ(x); in the Fermi case, it takes on a spin dependence.

Alternatively, a 1D fermionic Bogoliubov theory can be constructed through the

process of bosonisation. The rigorous details of this approach can be found in Chapter 2

of [193]. In one dimension, particles are confined to a line so they cannot travel “around”

each other exchanging coordinates; thus, the Fermi sign problem [44] does not arise.

For this reason, particle-hole excitations essentially behave as density fluctuations with

bosonic commutation relations. In that case, the bosonic theory developed in this thesis

should describe the thermal excitations in the Fermi gas, except with the Bogoliubov

modes (including the ground state) f+a (x) and εa transformed to the appropriate spectra

for the fermionic system. Crucial to this procedure is that the dispersion relation of

excitations in the Fermi gas is approximately linear, so it only holds for a small number

of excited modes. The bosonisation procedure also has no higher-dimensional equivalent,

unlike the full fermionic Bogoliubov theory.

4This matrix method is compared to Bogoliubov approaches for bosonic systems in Ref. [187].
5Specifically, the orthonormality conditions for their co-efficients {uj(x), vj(x)} become∫
dx
(
u∗j (x)uk(x) + v∗j (x)vk(x)

)
= δjk and

∫
dx (uj(x)vk(x) + vj(x)uk(x)) = 0.
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7.2 Outlook

In this thesis, we developed a finite temperature model for the feedback cooling of Bose

gases using Bogoliubov theory. Our ability to fully characterise and validate this model

was limited by its inefficiency as a model for numeric simulation.

However, LQG control theory provides a promising route to derive steady state

analytic solutions to our model, with the ultimate goal of rapid analytic optimisation of

different control schemes. These analytic results could be validated either with a numeric

integration of the model in this thesis, or via the NPW method.

This thesis has also provided two possible directions for the derivation of a Bogoli-

ubov model for the feedback cooling of fermions. That future work would be the first

finite temperature model for the feedback cooling of fermions.

Both of these avenues forward — a pathway for achieving tractable analytic solu-

tions for the steady state behaviour of a Bose gas, and a finite temperature model for

the feedback cooling fermions — will ultimately aid in informing the first experimental

implementation of feedback cooling in coming years. That experimental milestone has

the potential to revolutionise the fields of atom interferometry and analogue quantum

simulation.
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Appendix A

Additional theory and working

A.1 Proof of equation (2.24)

Consider a wavefunction |Ψ〉. Let us make the Hartree approximation, that there is always

a basis where all the particles can pre written in a single particle state. In particular, in

this assuming our wavefunction takes the form

|Ψ〉 = |α1, α2, . . . 〉, (A.1)

where each |αj〉 is technically the sum of Fock states |αj〉 =
∑

kj
cj |kj〉. In this basis, our

field operator is

ψ̂(x) =
∑
j

uj(x)âj , (A.2)

where uj(x) is the spatial wavefunction for the mode annihilated by âj . We next assume

that each single particle state is a coherent state; that is, is an eigenstate of the annihilation

operator. In particular, we will write

âj |0, . . . , αj , . . . 〉 = αj |0, . . . , αj , . . . 〉. (A.3)

And thus, applying the field operator to the wavefunction |Ψ〉

ψ̂(x)|Ψ〉 =
∑
j

uj(x)âj |α1, α2, . . . 〉 (A.4)

=
∑
j

uj(x)αj |α1, α2, . . . 〉 (A.5)

=
∑
j

uj(x)αj |Ψ〉, (A.6)

and so if we define the order parameter φ(x) =
∑

j uj(x)αj , we have

ψ̂(x)|Ψ〉 = φ(x)|Ψ〉, (A.7)

as in equation (2.24).

A.2 Bogoliubov Modes have zero average

We will first prove that the Bogoliubov modes have zero-average in the Bogoliubov basis.

We will then discuss the ramifications of this for the average of the Bogoliubov modes in
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our model.

From the definition of δ̂(x), and using
〈
δ̂(x)

〉
= 0, we obtain

∑
a

(
ua(x)

〈
β̂a

〉
+ v∗a(x)

〈
β̂†a

〉)
= 0. (A.8)

Multiplying this equation by vb(x) and it’s complex conjugate by ub(x) obtains∑
a

ua(x)vb(x)
〈
β̂a

〉
= −

∑
a

v∗a(x)vb(x)
〈
β̂†a

〉
, (A.9a)

−
∑
a

va(x)ub(x)
〈
β̂a

〉
=
∑
a

u∗a(x)ub(x)
〈
β̂†a

〉
. (A.9b)

Adding equation (A.9a) to equation (A.9b) and integrating obtains∑
a

〈
β̂a

〉∫
dx (ua(x)vb(x)− va(x)ub(x)) =

∑
a

〈
β̂†a

〉∫
dx (u∗a(x)ub(x)− v∗a(x)vb(x)) .

(A.10)

By applying the orthonormality conditions (equation (2.40))1, we obtain∑
a

δab

〈
β̂†a

〉
= 0⇒

〈
β̂†b

〉
=
〈
β̂b

〉
= 0 (A.11)

As β̂b is an arbitrary Bogoliubov mode, it is true for all b. As the quadrature operators

are a linear sum of Bogoliubov modes, it immediately follows that 〈X̂j〉 = 〈P̂j〉 = 0.

The unitary dynamics of the averages 〈X̂j〉, 〈P̂j〉 is proportional to each other. Similarly,

it follows from equation (4.31) that〈[
M̂(x),

[
X̂j , M̂(x)

]]〉
= 4

∑
ab

[
Re [Naj(x)] Re [Nba(x)]−M+

aj(x)M−ba(x)
] 〈
X̂b

〉
+ 4

∑
ab

[
M+
ba(x)Re [Naj(x)]−M+

aj(x)Re [Nba(x)]
] 〈
P̂b

〉
,

(A.12a)

〈[
M̂(x),

[
P̂j , M̂(x)

]]〉
= 4

∑
ab

[
Re [Naj(x)] Re [Nba(x)]−M−aj(x)M+

ba(x)
] 〈
P̂b

〉
+ 4

∑
ab

[
M−ba(x)Re [Naj(x)]−M−aj(x)Re [Nba(x)]

] 〈
X̂b

〉
,

(A.12b)

so the decoherence terms of the averages are also proportional to the averages. Finally, we

know that the innovations term for each of the averages is proportional to the products

M̂(x)X̂j and M̂(x)P̂j respectively. Third order Gaussian moments factorise so that each

term is proportional to an average, as in equation (A.15). Thus, the innovations terms

for the averages are also proportional to the averages themselves.

Thus, all the dynamics of the averages are proportional to the averages themselves,

provided the Gaussian approximation is valid. In that case, the averages 〈X̂j〉, 〈P̂j〉

1Note that if we consider the condensate as the 0th Bogoliubov mode, then u0(x) = 1/
√
L and v0(x) = 0,

so the orthonormality conditions still hold.



§A.3 Gaussian Distributions 93

remain zero under evolution of the master equation if they are initially zero. Therefore,

the approximation that the averages are zero holds as long as the Gaussian approximation

holds.

A.3 Gaussian Distributions

Here, we provide a short summary of the relevant details of probability theory to introduce

Gaussian distributions. For a more detailed introduction to the Gaussian approximation

in quantum field theory, see Ref. [194] or Chapter 2 of Ref. [155].

Consider a random variable X, which obeys some probability distribution P (X).

The kth moment of this probability distribution,
〈
Xk
〉
, is the mean value of Xk. That

is, if we sampled from P (X) an infinitely large number of times and found Xk for each

sample, averaging each of these values would obtain
〈
Xk
〉
. Explicitly, the kth moment is

defined 〈
Xk
〉

=

∫ ∞
−∞

XkP (X)dX. (A.13)

It turns out that all the
〈
Xk
〉

fully characterise the probability distribution P (X). A

useful intuition for this is a series expansion of a function f(x) =
∑∞

n=0 anx
n; if you know

all the an, you have a complete description of f(x). Now consider a Gaussian probability

distribution

P (X) =
1

σ
√

2π
exp

[
−(X − µ)2

2σ2

]
, (A.14)

where µ and σ are the mean and variance respectively defined µ = 〈X〉 and σ =
〈
X2
〉
−

〈X〉2. Thus, the first two moments of the Gaussian distribution (〈X〉 and
〈
X2
〉
) fully

describe P (x). Using equation (A.13), it is therefore possible to define every moment of a

Gaussian distribution in terms of µ and σ. The general form of the higher order moments

is intractable, but is simple for lower order moments. For example, for a vector of random

variables X, where Xj is the jth element, third order moments obey [195]

〈X1X2X3〉 = 〈X1〉 〈X2X3〉+ 〈X2〉 〈X1X3〉+ 〈X3〉 〈X1X2〉 − 2 〈X1〉 〈X2〉 〈X3〉 . (A.15)

Higher order moments become even more tractable when 〈Xi〉 = 0, because moments of

odd order vanish. The remaining even moments of order 2N obey [155]

〈XaXbXc . . . 〉 =
(2N)!

N !2N
{〈XaXb〉 〈XcXd〉 . . . }sym , (A.16)

where {·}sym is the symmetrised form of that product. In particular, fourth order moments

obey

〈X1X2X3X4〉 = 〈X1X2〉 〈X3X4〉+ 〈X1X3〉 〈X2X4〉+ 〈X1X4〉 〈X2X3〉 . (A.17)

which is the result quoted in Chapter 4.4.2.
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A.4 Reducing the order of decoherence and innovations

terms

When simulating equation (5.27), we estimate the behaviour of the system by averaging

over hundreds of individual trajectories ρ̂c. Each individual trajectory essentially

integrates the evolution of three matrices, 〈X̂jX̂k〉, 〈P̂jP̂k〉 and 〈cov(X̂jP̂k)〉. Each of

these matrices has complexity O
(
m2
)
, where m is the number of Bogoliubov modes. The

complexity of each term in each equation of motion dictates how fast it will simulate.

The harmonic and feedback terms are of complexity O
(
m2
)

and O
(
m3
)

respec-

tively. The innovations and decoherence terms each involve integrals over some variable

x, which are numerically integrated by summing a grid of D points. In the form presented

in equation (5.27), the innovations and decoherence terms are both O
(
Dm4

)
, so are

the highest complexity terms in our simulation. By precomputing integrals over pairs

of measurement matrices (i.e.
∫
dxM+

ab(x)M−cd(x)), we reduce the complexity of the

decoherence terms to O
(
m4
)
. We compute each measurement matrix by applying the

convolution theorem. Recall that a convolution (f ◦ g)(x) of two functions f(x) and g(x)

is defined

(f ◦ g) (x) =

∫
dyg(x− y)f(y). (A.18)

Convolutions obey the useful property under the Fourier transform F {·}:

F {(f ◦ g) (x)} (kx) =
√

2πF {f(x)} (kx) · F {g(x)} (kx). (A.19)

The convolution theorem is therefore useful for integrals which are of the form of equation

(A.18), such as the measurement matrices (equation (4.27). Using the convolution theorem

M̃±ab(kx) =
√

2πF {Kr(x)} (kx)F
{
f±a (x)f±b (x)

}
(kx) (A.20)

where M̃±ab(kx) is the Fourier transform of the measurement matrix. Note from equation

(3.34) that the measurement kernel is naturally defined in Fourier space as

K̃r(kx) =

√
r

2Γ (5/4)
e−(rkx)

4/2, (A.21)

where K̃r(kx) is the Fourier transform of the measurement kernel. Pre-computing the

measurement matrices is therefore most efficient in Fourier space. Using equation (A.20),

we compute the innovations terms more efficiently by defining

W±ab(t) =

∫
dxdW (x, t)M±ab(x) =

∫
dkxF {dW (x, t)} (kx)M̃±ab(kx), (A.22)

where the second equation is computed in kx space. This is straightforward to do using

the Fourier transform of a real Wiener process in kx-space, denoted η(k, t) [155]

F {dW (x, t)} (kx) =
1

2
(i− 1) (η(kx, t) + iη(−kx, t)) . (A.23)

By using equation (A.22), we make each innovations term of complexity O
(
m4
)
. Com-

putationally, Fourier transforms have complexity O (D logD) when using the fast Fourier



§A.5 System-Filter Separation 95

transform [181], so W±ab(t) has complexity O
(
D logDm2

)
. Unless we are working with an

extremely large grid size or only one or two modes, logD � m2, this series of computations

reduces the maximum complexity of the simulation by a factor of D.

A.5 System-Filter Separation

In a real experiment, the experimenter’s best guess of the system state π̂c (the filter) will

not be the same as the actual trajectory ρ̂c. This is because any experimental measurement

is imperfect. In Ref. [161], Szigeti et al. derive the master equation for the filter π̂c for

the case of a trajectory undergoing a homodyne measurement (the model discussed in

Chapter 3.3). Here, we apply that system-filter separation to the measurement-feedback

scheme used in this thesis (from Ref. [1]). Recall that a trajectory ρ̂c evolves under the

stochastic master equation

dρ̂c = − i
~

[
Ĥ, ρ̂c

]
dt+ α

∫
dxD

[
M̂(x)

]
ρ̂cdt+

√
α

∫
dxH

[
M̂(x)

]
ρ̂cdW (x, t). (A.24)

The filter therefore evolves under the master equation

dπ̂c = − i
~

[
Ĥ, π̂c

]
dt+ α

∫
dxD

[
M̂(x)

]
π̂cdt

+
√
α

∫
dxH

[
M̂(x)

]
ρ̂c

(
dỸ (x, t)− α

〈
M̂(x) + M̂ †(x)

〉
π̂c

)
,

(A.25)

where dỸ (x, t) is the corrupted measurement signal, and the subscript π̂c indicates that the

expectation value is computed with respect to the filter π̂c. The corrupted measurement

signal is the signal used by the experimenter to compute the filter π̂c, and is defined

dỸ (x, t) = dY (x, t) +
√
νdW (ν)(x, t), (A.26)

where dY (x, t) is the measurement signal (uncorrupted) and dW (ν)(x, t) a Wiener process

with an associated strength ν. By this definition, the corrupted signal is the actual signal

from the system with some associated random noise. The measurement signal is defined

dY (x, t) = α
〈
M̂(x) + M̂ †(x)

〉
ρ̂c

+ dW (Y )(x, t), (A.27)

where we have used the superscript Y on the Wiener process to indicate that it is associated

with the measurement signal. So physically, the system-filter separation works like this:

a measurement of the system is made causing some backaction; the experimenter sees

that measurement corrupted by some noise; and the experiment makes an estimate of the

system, in order to change the control potential. As ν → 0, π̂c → ρ̂c; the filter converges

to the system. In this thesis, we have effectively assumed ν = 0. Note that as α→ 0, the

measurement signal dY (x, t) depends only upon noise. That is, if effectively measurement

is made, the experimenter just sees the background noise in the homodyne detector.
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Appendix B

Full Itô model measurement terms

B.1 Full Itô model: decoherence and innovations terms

In this appendix, we present the full decoherence and innovations terms of the low tem-

perature Itô model for our feedback controlled system.

B.1.1 Decoherence terms

The decoherence terms are

d
〈
X̂jX̂k

〉
D

= 4αdt
∑
ab

∫
dxM+

aj(x)M+
bk(x)

〈
P̂aP̂b

〉
+ 4αdt

∑
ab

∫
dxRe [Naj(x)] Re [Nbk(x)]

〈
X̂aX̂b

〉
+ 2αdt

∑
ab

∫
dx
[
Re [Nak(x)] Re [Nba(x)]−M+

ak(x)M−ba(x)
] 〈
X̂bX̂j

〉
+ 2αdt

∑
ab

∫
dx
[
Re [Naj(x)] Re [Nba(x)]−M+

aj(x)M−ba(x)
] 〈
X̂bX̂k

〉
+ 2αdt

∑
ab

∫
dx
[
M+
ba(x)Re [Nak(x)]−M+

ak(x)Re [Nba(x)]
]

cov
(
X̂jP̂b

)
+ 2αdt

∑
ab

∫
dx
[
M+
ba(x)Re [Naj(x)]−M+

aj(x)Re [Nba(x)]
]

cov
(
X̂kP̂b

)
+ 4αdt

∑
ab

∫
dx
[
Re [Naj(x)]M+

bk(x) +M+
bj(x)Re [Nak(x)]

]
cov

(
X̂aP̂b

)
,

(B.1a)
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d
〈
P̂jP̂k

〉
D

= 4αdt
∑
ab

∫
dxM−aj(x)M−bk(x)

〈
X̂aX̂b

〉
+ 4αdt

∑
ab

∫
dxRe [Naj(x)] Re [Nbk(x)]

〈
P̂aP̂b

〉
+ 2αdt

∑
ab

∫
dx
[
Re [Nak(x)] Re [Nba(x)]−M−ak(x)M+

ba(x)
] 〈
P̂bP̂j

〉
+ 2αdt

∑
ab

∫
dx
[
Re [Naj(x)] Re [Nba(x)]−M−aj(x)M+

ba(x)
] 〈
P̂bP̂k

〉
+ 2αdt

∑
ab

∫
dx
[
M−ba(x)Re [Nak(x)]−M−ak(x)Re [Nba(x)]

]
cov

(
X̂bP̂j

)
+ 2αdt

∑
ab

∫
dx
[
M−ba(x)Re [Naj(x)]−M−aj(x)Re [Nba(x)]

]
cov

(
X̂bP̂k

)
+ 4αdt

∑
ab

∫
dx
[
Re [Nbj(x)]M−ak(x) +M−aj(x)Re [Nbk(x)]

]
cov

(
X̂aP̂b

)
,

(B.1b)

d
〈

cov
(
X̂jP̂k

)〉
D

= 2αdt
∑
ab

∫
dx
[
M−ba(x)Re [Naj(x)]−M−ak(x)Re [Nba(x)]

] 〈
X̂jX̂b

〉
+ 2αdt

∑
ab

∫
dx
[
M+
ba(x)Re [Naj(x)]−M+

aj(x)Re [Nba(x)]
] 〈
P̂bP̂k

〉
− 4αdt

∑
ab

∫
dxRe [Naj(x)]M−bk(x)

〈
X̂aX̂b

〉
− 4αdt

∑
ab

∫
dxM+

aj(x)Re [Nbk(x)]
〈
P̂aP̂b

〉
+ 2αdt

∑
ab

∫
dx
[
Re [Nak(x)] Re [Nba(x)]−M−ak(x)M+

ba(x)
]

cov
(
X̂jP̂b

)
+ 2αdt

∑
ab

∫
dx
[
Re [Naj(x)] Re [Nba(x)]−M+

aj(x)M−ba(x)
]

cov
(
X̂bP̂k

)
− 4αdt

∑
ab

∫
dx
[
M+
aj(x)M−bk(x) + Re [Nbj(x)] Re [Nak(x)]

]
cov

(
X̂bP̂a

)
.

(B.1c)
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B.1.2 Innovations terms

The innovations terms are

d
〈
X̂jX̂k

〉
H

= 4
√
α
∑
ab

∫
dxdW (x, t)Re

[
M−ab(x)

] 〈
X̂jX̂a

〉〈
X̂kX̂b

〉
+ 4
√
α
∑
ab

∫
dxdW (x, t)Re

[
M+
ab(x)

] 〈
cov

(
X̂jP̂a

)〉〈
cov

(
X̂kP̂b

)〉
+ 4
√
α
∑
ab

∫
dxdW (x, t)Re [Nab(x)]

〈
X̂jX̂c

〉
cov

(
X̂kP̂d

)
+ 4
√
α
∑
ab

∫
dxdW (x, t)Re [Nab(x)] cov

(
X̂jP̂d

)〈
X̂kX̂c

〉
−
√
α

∫
dxdW (x, t)Re

[
M+
jk(x)

]
,

(B.2a)

d
〈
P̂jP̂k

〉
H

= 4
√
α
∑
ab

∫
dxdW (x, t)Re

[
M+
ab(x)

] 〈
P̂jP̂a

〉〈
P̂kP̂b

〉
+ 4
√
α
∑
ab

∫
dxdW (x, t)Re

[
M−ab(x)

] 〈
cov

(
X̂aP̂j

)〉〈
cov

(
X̂bP̂k

)〉
+ 4
√
α
∑
ab

∫
dxdW (x, t)Re [Nab(x)]

〈
P̂jP̂d

〉
cov

(
X̂cP̂k

)
+ 4
√
α
∑
ab

∫
dxdW (x, t)Re [Nab(x)] cov

(
X̂cP̂j

)〈
P̂kP̂d

〉
−
√
α

∫
dxdW (x, t)Re

[
M−jk(x)

]
,

(B.2b)

d
〈

cov
(
X̂jP̂k

)〉
H

= 4
√
α
∑
ab

∫
dxdW (x, t)Re

[
M−ab(x)

] 〈
X̂jX̂a

〉〈
cov

(
X̂bP̂k

)〉
+ 4
√
α
∑
ab

∫
dxdW (x, t)Re

[
M+
ab(x)

] 〈
P̂kP̂b

〉〈
cov

(
X̂jP̂a

)〉
+ 4
√
α
∑
ab

∫
dxdW (x, t)Re [Nab(x)]

〈
X̂jX̂c

〉〈
P̂kP̂d

〉
+ 4
√
α
∑
ab

∫
dxdW (x, t)Re [Nab(x)] cov

(
X̂jP̂d

)
cov

(
X̂cP̂k

)
+
√
a

∫
dxdW (x, t)Re [Nkj(x)] .

(B.2c)
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