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Abstract 

CRISPR (clustered regularly interspaced short palindromic repeats) based genome editing 

has become a popular tool for a range of disciplines, including microbiology, agricultural 

science, and health. Driving these applications is the ability of the “programmable” system to 

target a predefined location in the genome. A single guide RNA (sgRNA) defines the target 

through Watson-Crick base pairing, and a class 2 type II CRISPR associated protein 9 (Cas9) 

nuclease cleaves the target, resulting in a double-strand break (DSB). This activates DNA 

repair, and depending on the repair pathway initiated, can result in arbitrary 

insertions/deletions or a predefined variant. 

Despite the versatility and ease of design enabled by this RNA-guided nuclease, it lacks 

specificity, regarding off-target effects, and efficiency, regarding the rate of successful editing 

outcomes. The overarching hypothesis of my thesis is to solve the disadvantages of CRISPR 

systems by using machine learning to train generalisable models on existing and novel 

datasets. 

One pathway that demonstrates the need for prediction models is homology directed repair 

(HDR). HDR enables researchers to induce nearly any editing outcome, however, it is 

inefficient. And with an incomplete knowledge of its kinetics, no models existed for predicting 

its efficiency. I generated a novel dataset representing the efficiency of HDR. Using the 

Random Forests algorithm, I identified the sgRNA and the 3’ region of the template to 

modulate HDR efficiency. This novel finding relates to the kinetics of template interaction 

during HDR repair. 

Even with efficient gene editing, a potential problem is unwanted side effects, such as 

embryonic lethality. This can be solved by using CRISPR to create conditional knockout 

alleles, to control when and where knockouts occur. To investigate the efficiency of this 

process, I used statistical analyses and the Random Forest algorithm to analyse a dataset 

generated by a consortium of 19 laboratories. I identified the inherent inefficiency of this 

method as defined by the efficiency of two simultaneous HDR events. Other experimental 

variables, like reagent concentrations or technician skill level, had no significant influence on 

efficiency. Because of the unrivalled versatility of this method, I created a statistical model for 

forecasting the efficiency of this technique from a low number of attempts, aiming to overcome 

its inherent inefficiency. 

While Cas9 is the most cited CRISPR system, alternative CRISPR systems can further expand 

the gene editing repertoire. To support the uptake of the more-recent Cas12a, I performed a 
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comprehensive comparison between the two nucleases. I found support for Cas12a having a 

superior specificity. Despite this, editing outcome and efficiency prediction tools for Cas12a 

were scarce. Aiming to address this, I trained a Cas12a cleavage efficiency prediction model 

on representative data. This outperformed the current top model despite the dataset being 

300x smaller, demonstrating the importance of clean data. 

Altogether, this thesis improves the knowledge of different CRISPR gene editing techniques. 

These findings can enable researchers to design efficient experiments as well as provide 

researchers guidance where certain techniques may be inherently inefficient. As well as 

resulting in CUNE (Computational Universal Nucleotide Editor) and Cas12aRF, it also 

identifies the generalisability of prediction models due to the high degree of influence on 

efficiency by the sgRNA and repair template design. 

 



 

ix 

Abbreviations 

AUC ..................................... area under the curve 

Cas ...................................... CRISPR-associated protein 

CNN ..................................... convolutional neural network 

CRISPR ............................... clustered regularly interspaced short palindromic repeats 

crRNA .................................. CRISPR RNA 

CUNE .................................. Computational Universal Nucleotide Editor 

dCas9 .................................. dead Cas9 

DSB ..................................... double-strand break 

ES cells ................................ embryonic stem cells 

gRNA ................................... guide RNA 

GWAS .................................. genome-wide association study 

HDR ..................................... homology directed Repair 

ML ........................................ machine learning 

MMEJ .................................. microhomology-mediated end joining 

MSE ..................................... mean squared error 

NHEJ ................................... non-homologous end joining 

OOB ..................................... out-of-bag 

PAM ..................................... protospacer adjacent motif 

pre-crRNA ............................ precursor CRISPR RNA 

ROC ..................................... receiver operating characteristic 

sgRNA ................................. single guide RNA 

SNV ..................................... single nucleotide variant 

SRA ..................................... Sequence Read Archive 

ssODN ................................. single-stranded oligodeoxynucleotide 

TALE .................................... transcription activator-like effector 

TALEN ................................. transcription activator-like effector nuclease 

tracrRNA .............................. trans-activating CRISPR RNA 

ZFN ...................................... zinc finger nuclease 

 





 

xi 

Contents 

Declaration ............................................................................................................................................. iii 

Acknowledgements ................................................................................................................................. v 

Abstract ................................................................................................................................................. vii 

Abbreviations ......................................................................................................................................... ix 

Contents ................................................................................................................................................. xi 

Chapter 1 – Introduction ......................................................................................................................... 1 

1.1 Cleaving DNA to stimulate genetic modifications .................................................................. 1 

1.2 Customisable targeted systems for cleaving DNA .................................................................. 2 

1.3 Introducing CRISPR gene editing technologies ....................................................................... 3 

1.4 Limitations of CRISPR gene editing technologies .................................................................... 5 

1.5 Improving CRISPR targeting .................................................................................................... 6 

1.6 Machine learning .................................................................................................................... 8 

1.7 The uses and benefits of ML for CRISPR prediction .............................................................. 10 

1.8 Preprocessing ........................................................................................................................ 10 

1.8.1 Considerations in data labelling .................................................................................... 11 

1.8.2 Selecting features for a generalisable model................................................................ 13 

1.8.3 Translating data to machine-readable features ........................................................... 14 

1.9 Machine learning algorithms ................................................................................................ 15 

1.9.1 Linear regression and logistic regression ...................................................................... 16 

1.9.2 Support vector machines .............................................................................................. 16 

1.9.3 Decision trees ................................................................................................................ 17 

1.9.4 Random Forests and gradient boosted regression trees .............................................. 18 

1.9.5 Deep learning ................................................................................................................ 18 

1.10 Optimisations and insights .................................................................................................... 19 

1.10.1 Model hyperparameters ............................................................................................... 19 

1.10.2 Types of error ................................................................................................................ 20 

1.10.3 Quality datasets ............................................................................................................ 21 

1.11 Gaining insights from CRISPR ML models ............................................................................. 21 

1.12 Room for improvement ........................................................................................................ 22 

1.13 Research objectives .............................................................................................................. 22 

Chapter 2 – Methods ............................................................................................................................ 25 

2.1 Overview ............................................................................................................................... 25 

2.2 Chapter 3 methods ............................................................................................................... 25 

2.2.1 Curating data ................................................................................................................. 26 

2.2.2 Processing data for training and validation .................................................................. 26 

2.2.3 Machine learning and statistical analysis...................................................................... 27 



 

xii 

2.2.4 Model validation ........................................................................................................... 27 

2.2.5 Additional data .............................................................................................................. 27 

2.3 Chapter 4 methods ............................................................................................................... 27 

2.3.1 Processing data for training and validation .................................................................. 28 

2.3.2 Statistical analysis and ML ............................................................................................ 28 

2.3.3 Model validation ........................................................................................................... 29 

2.3.4 Success forecaster ......................................................................................................... 29 

2.4 Chapter 5 methods – off-target analysis .............................................................................. 29 

2.4.1 In vivo potential off-target analysis .............................................................................. 29 

2.4.2 In vitro off-target analysis ............................................................................................. 30 

2.5 Chapter 5 methods – editing outcome prediction ............................................................... 30 

2.5.1 Data acquisition ............................................................................................................ 30 

2.5.2 Aligning reads ................................................................................................................ 31 

2.5.3 Quantifying reads .......................................................................................................... 31 

2.5.4 Statistical analysis and validation ................................................................................. 32 

2.6 Chapter 5 methods – sgRNA efficiency ................................................................................. 32 

2.6.1 Downloading reads for model training ......................................................................... 33 

2.6.2 Aligning reads for model training ................................................................................. 33 

2.6.3 Inferring sgRNA efficiency for model training ............................................................... 33 

2.6.4 Model validation ........................................................................................................... 34 

2.6.5 Integrating samples with chromatin accessibility data ................................................. 34 

2.7 Common methods ................................................................................................................ 34 

2.7.1 Sequence processing ..................................................................................................... 34 

2.7.2 Machine learning .......................................................................................................... 35 

2.7.3 Validation ...................................................................................................................... 36 

2.7.4 Cross-validation ............................................................................................................. 36 

2.7.5 Feature importance ...................................................................................................... 36 

2.8 Visualisation .......................................................................................................................... 37 

2.8.1 Confusion matrix ........................................................................................................... 37 

2.8.2 Percentile rank .............................................................................................................. 37 

2.8.3 ROC curves .................................................................................................................... 37 

Chapter 3 – Unlocking HDR-mediated nucleotide editing by identifying high-efficiency target sites 
using machine learning ......................................................................................................................... 39 

3.1 Introduction .......................................................................................................................... 39 

3.2 Results ................................................................................................................................... 41 

3.2.1 An improved dataset of genome-wide HDR efficiencies .............................................. 41 

3.2.2 Validation of previous HDR model ................................................................................ 44 

3.2.3 A larger sample size enables a larger feature size ........................................................ 44 



 

xiii 

3.2.4 SNV-to-PAM distance is an important feature ............................................................. 45 

3.2.5 Global nucleotide composition is sensitive to noise ..................................................... 46 

3.2.6 Using machine learning to learn from the data ............................................................ 47 

3.2.7 Web service for predicting HDR efficiency ................................................................... 47 

3.3 Discussion .............................................................................................................................. 47 

Chapter 4 – The influence of CRISPR-Cas9 induced HDR on generating conditional knockout alleles 
using a 2-guide 2-oligonucleotide donor approach .............................................................................. 51 

4.1 Introduction .......................................................................................................................... 51 

4.2 Results ................................................................................................................................... 55 

4.2.1 Laboratory-specific confounding variable analysis ....................................................... 55 

4.2.2 Unlabelled confounding variable analysis .................................................................... 56 

4.2.3 Sample size effect on loxP insertion efficiency ............................................................. 57 

4.2.4 LoxP insertion efficiency modulates two-donor floxing efficiency ............................... 59 

4.2.5 The influence of simultaneous CRISPR targeting .......................................................... 61 

4.2.6 Distance between targets ............................................................................................. 61 

4.2.7 Machine learning .......................................................................................................... 62 

4.3 Limitations and improvements ............................................................................................. 65 

Chapter 5 – Generalisable Cas12a efficiency prediction ...................................................................... 67 

5.1 Introduction .......................................................................................................................... 67 

5.2 Results ................................................................................................................................... 70 

5.2.1 In silico Cas9 and Cas12a comparison ........................................................................... 70 

5.2.2 In vitro Cas9 and Cas12a off-target comparison ........................................................... 74 

5.2.3 Predicting CRISPR-Cas12a editing outcomes ................................................................ 77 

5.2.4 Cas12a efficiency modelling .......................................................................................... 84 

Chapter 6 – General conclusions .......................................................................................................... 91 

6.1 General overview .................................................................................................................. 91 

6.2 Contributions ........................................................................................................................ 92 

References ............................................................................................................................................ 95 

Appendix ............................................................................................................................................. 113 

 

 





Introduction 

1 

Chapter 1 – Introduction 

The ability to target precise DNA sequences is essential for a range of disciplines, from 

molecular biology to gene therapy. In molecular biology, the ability to knock out specific genes 

is essential for evaluating their function (Capecchi, 2005). In gene therapy, the ability to target 

specific alleles enables the ability to modulate gene expression (Danda et al., 2013) or the 

ability to insert novel DNA (Strecker et al., 2019). 

At its core, genome engineering has two requirements: 

• the ability to target a specific location and 

• the ability to introduce the required modification. 

These two steps are tightly coupled, with DNA targeting often resulting in inevitable 

modifications. An early example is a technique that was used to correct mutations through 

homologous recombination (Thomas et al., 1986). This was via a synthetic DNA template, 

homologous to the target. Because of this homology, the template’s presence was sufficient 

for recombination to occur between it and the target, although this occurred infrequently. Later 

experiments have demonstrated methods to stimulate homologous recombination or other 

mechanisms to markedly improve efficiency, such as by inducing DNA damage. 

1.1 Cleaving DNA to stimulate genetic modifications 

The first targeted genome experiment in mouse chromosomes to demonstrate this concept 

used a homing endonuclease, I-SceI, to target a specific genomic region (Rouet et al., 1994). 

I-SceI, like other homing endonucleases, has the ability to recognise and cleave DNA, based 

on nucleotide sequence, resulting in a double-strand break (DSB) (Plessis et al., 1992). 

Uncorrected, DSBs are deleterious, potentially resulting in large deletions or chromosomal 

translocations (Frankenberg-Schwager et al., 1985). Because of this, cells have mechanisms 

to detect and aim to repair DSBs, through endogenous repair pathways (Valerie & Povirk, 

2003).It is this repair event that was exploited to edit the target. Because, in mammalian cells, 

targeted DNA cleavage stimulated recombination with the synthetic DNA template by 2-3 

orders of magnitude (Elliott et al., 1998). 

Homology directed repair (HDR) is the pathway exploited to induce homologous 

recombination with a synthetic template. However, without the synthetic template, HDR is an 

error-free pathway, using endogenous homology like the sister chromatid to repair DSBs 

(Sargent et al., 1997). But while HDR enables versatile editing outcomes through a template, 

it is not the only pathway available to repair DSBs. One of the other repair pathways is 
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microhomology-mediated end joining (MMEJ). Like HDR, MMEJ relies on homology. 

However, MMEJ relies on 3 to 5 nucleotides of microhomology around the DSB, which leads 

to it being error prone and commonly associated with deletions (Sfeir & Symington, 2015). 

Another pathway is non-homologous end joining (NHEJ), which functions independently of 

homology, both local and otherwise. But like MMEJ, it is error-prone, and can result in small 

insertions or deletions (Sharma & Raghavan, 2016). 

With editing outcomes being dependent on repair pathway, the ability to influence which 

pathway cells utilise is essential for defining the outcome. However, equally important is the 

ability to define the genomic locus at which the desired outcome occurs. Because of this, the 

ability to target any location in the genome is essential for defining where the change occurs. 

1.2 Customisable targeted systems for cleaving DNA 

Homing nucleases like I-SceI, and restriction enzymes, target specific sequences in the 

genome (Belfort & Roberts, 1997). However, despite there being thousands of different 

systems (Roberts et al., 2007), meaning thousands of potential targets, the number of potential 

targets is limited in the context of genomes with billions of nucleotides. 

Over time, customisable targeting systems have emerged, such as zinc finger nucleases 

(ZFNs) (Durai et al., 2005; Porteus & Carroll, 2005; Urnov et al., 2005). These enable 

researchers to specify nearly any DNA target, rather than relying on a limited set of predefined 

targets. ZFNs, an engineered system, function by combining the non-specific cleavage 

domain of the restriction enzyme, FokI, with zinc finger domains, resulting in a custom targeted 

endonuclease. In theory, the design is straightforward, with each zinc finger domain interacting 

with three to four base pairs of DNA (Isalan et al., 1997), allowing ZFNs to be modularly 

designed (D. A. Wright et al., 2006). However, the modular design process of ZFNs has since 

been demonstrated to have a high failure rate, or a low efficiency (Ramirez et al., 2008). This 

is because adjacent zinc fingers have been demonstrated to interact with each other (Isalan 

et al., 1997), meaning that the actual DNA target can differ from the expected DNA target. 

While previously-established selection-based methods can allow researchers to select for 

optimal ZFNs (Hurt et al., 2003), such methods are expensive and time consuming. 

Aiming to address this problem, other groups investigated transcription activator-like effectors 

(TALEs) (Bogdanove et al., 2010; Christian et al., 2010). They hypothesised that TALEs, which 

are proteins secreted by Xanthomonas bacteria to alter host plant transcription (B. Yang et al., 

2006) could be engineered to function as a nuclease. This was achieved by binding TALEs to 

the FokI cleavage domain, resulting in TALE nucleases (TALENs) (Joung & Sander, 2013). 
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TALENs, like ZFNs, use a protein-guided system to direct the FokI endonuclease to a DNA 

target. But unlike zinc fingers which each target multiple base pairs, TALENs are guided by a 

set of tandem repeats which each contain two adjacent nucleotides that recognise one base 

pair of DNA (Boch et al., 2009; Moscou & Bogdanove, 2009). These findings resulted in 

ciphers that enabled the design of custom TALENs to target arbitrary targets (Christian et al., 

2010). 

Despite their versatility, ZFNs and TALENs do present certain challenges. One is in FokI, the 

cleavage domain commonly used with these systems. The challenge is that FokI must 

dimerise for cleavage to occur (Bitinaite et al., 1998). Because of this, ZFNs and TALENS 

usually function as heterodimers, requiring the targeting of two recognition sites for DNA 

cleavage to occur. This adds complexity to the system as for every cleavage event, two 

proteins must be engineered, and their precursors synthesised. Then if one of these has a low 

targeting efficiency, especially with the more challenging to engineer ZFN, DNA cleavage may 

not occur. Another challenge with TALENs is that costs can be expensive due to the custom 

repeats. Although alterations can be made to reduce costs by using naturally occurring TALE 

binding sites, or alternate cloning techniques (Cermak et al., 2011), this can introduce other 

limitations such as reducing the number of potentially targetable regions. 

A more recent customisable targeted nuclease that may solve the shortcomings of ZFNs and 

TALENs are the clustered regularly interspaced short palindromic repeats (CRISPR) systems 

(Jinek et al., 2012). 

1.3 Introducing CRISPR gene editing technologies 

CRISPR and CRISPR associated (Cas) proteins have evolved as prokaryotic adaptive 

immune systems (Terns & Terns, 2011). They function by integrating small pieces of invading 

phage DNA, known as protospacers, into repeat arrays, where they become spacers. These 

short spacer sequences serve as a memory of the organism from which they originated, 

defining it as a target. However, for targeting to occur, the spacer and repeat array must first 

be processed. Processing depends on the CRISPR system, with the following describing the 

class 2 type II Cas9 system. Firstly, repeat-spacer arrays are transcribed into long transcripts, 

with each containing multiple spacers. These transcripts are known as precursor CRISPR 

RNAs (pre-crRNAs). Subsequent processing by trans-activating CRISPR RNA (tracrRNA) 

results in cleavage of the pre-crRNAs by RNase III into CRISPR RNAs (crRNAs), with each 

containing a single spacer, flanked by the repetitive region. The final effector complex consists 

of the ribonucleoprotein complex Cas9-crRNA-tracrRNA, with the crRNA spacer sequence 

defining the target through Watson-Crick base pairing to be cleaved by Cas9 (Cong et al., 
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2013; Garneau et al., 2010; Mali et al., 2013). However, a noteworthy development was to 

synthesise a chimeric single guide RNA (sgRNA) , containing the essential components of the 

crRNA and tracrRNA (Jinek et al., 2012). 

 

Figure 1 – a representation of the interaction between the CRISPR-Cas9 complex and its DNA target. The sgRNA forms an R-
Loop with the DNA strand containing the complementary sequence, displacing the non-target strand. The two yellow triangles 
indicate the location of the DSB relative to the PAM. 

Common to different CRISPR systems is the protospacer adjacent motif (PAM) (Mojica et al., 

2009). The PAM is a short DNA motif present at the DNA target site, typically 3-5 nucleotides 

long (Shah et al., 2013), As the name implies, the PAM is adjacent to the protospacer, although 

whether this is upstream or downstream depends on the CRISPR system. For CRISPR-Cas9, 

the sequence of the PAM is NGG (where N can be any nucleotide), with the PAM being 

adjacent to the 3’ end of the protospacer (Figure 1). The PAM plays a critical role in target 

recognition. Recognised by the PAM-interacting domain of Cas9 (Nishimasu et al., 2014), 

PAM-recognition promotes local duplex melting of the double-stranded DNA around the PAM 

(Anders et al., 2014). This process enables the CRISPR-Cas9 complex to further perform 

guide recognition through R-loop formation between the spacer and target strand. The 

requirement of the PAM is important to prevent off-targeting and self-targeting. For example, 

despite the target sequence being present in the CRISPR array, as a spacer, by not being 

PAM-proximal it is not a valid CRISPR-Cas9 target. 

While Cas9 is the most cited nuclease, another frequently cited CRISPR system is the class 

2 type V Cas12a, formerly known as Cpf1 (Zetsche et al., 2015). Although Cas12a is an RNA-

guided nuclease like Cas9, the two CRISPR systems vary in several ways. Firstly, Cas12a 

does not require tracrRNA for processing of its pre-crRNA, making Cas12a easier to use. 
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Another difference is the resulting DSB, with Cas12a creating staggered cuts unlike the blunt 

ends induced by Cas9. This has been demonstrated to influence the repair outcome (Bothmer 

et al., 2017). Finally, the Cas12a PAM sequence is the T-rich 5’-TTTN-3’, adjacent to the 5’ 

end of the protospacer (D. Kim et al., 2016). This complements the Cas9 G-rich PAM 

sequence, enabling the targeting of regions where no suitable Cas9 sgRNAs are available. 

Although there are other differences in kinetics and activity, the availability of two differing 

CRISPR systems broadens the scope of gene editing with CRISPR. 

CRISPR systems have several benefits over other customisable targeting system. Unlike 

ZFNs and TALENs which recognise DNA nucleotides through zinc fingers or protein domains, 

CRISPR-Cas is RNA-guided through the spacer sequence. This eliminates the need for 

ciphers or selection-based methods for defining DNA targets. Also, unlike ZFNs and TALENs 

that utilise FokI, CRISPR-Cas9 functions with a single target site and does not require 

heterodimeric targeting. Lastly, CRISPR can be used for results other than cleavage. For 

example, impairing the cleavage domains of CRISPR-Cas9 results in the catalytically inactive, 

dead Cas9 (dCas9), which can be used to control gene expression via transcription and 

chromatin remodelling (Qi et al., 2013). Other CRISPR systems can be used for other 

applications including nucleic acid detection (Gootenberg et al., 2018) or CRISPR-based 

diagnostics (Gootenberg et al., 2017), with additional uses reviewed in (Knott & Doudna, 

2018). 

1.4 Limitations of CRISPR gene editing technologies 

Despite these benefits, CRISPR systems do have limitations. Three limitations are: 

• target availability 

• efficiency 

• specificity 

The first, target availability, results from CRISPR systems requiring the presence of a PAM for 

target cleavage. Because the PAM is a fixed sequence, not every sequence can be targeted. 

For example, with Cas9’s NGG PAM, only sequences with two adjacent G nucleotides are 

generally considered to be potential targets. However, Cas9 PAMs will occur every eight 

nucleotides of double-stranded DNA on average, meaning that targets are not rare. Also, the 

NGG motif is not the only PAM, with other CRISPR systems requiring different PAM 

sequences (Westra et al., 2013). The possibility to target different PAMs further expands the 

target repertoire. 
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The second limitation, efficiency, is the likelihood of observing the desired outcome at the 

target. The efficiency for a given crRNA or sgRNA can vary for different sequences (T. Wang 

et al., 2014), cell-lines (Mali et al., 2013) and organisms. Furthermore, efficiency can also be 

broken down into cleavage efficiency and the efficiency of the repair mechanism. Because 

different repair pathways can result in different outcomes, even if cleavage occurs, the 

resulting outcome may not be the desired outcome. For example, NHEJ events have been 

demonstrated to occur more frequently than HDR events in CRISPR-Cas9 experiments (Mali 

et al., 2013), limiting the efficiency of editing outcomes that require HDR. 

The third limitation, specificity, refers to cleavage events at targets other than the intended 

target. Unintended targets are referred to as off-targets (Cho et al., 2014). Off-targets are a 

problem because they can result in genes being unintentionally disrupted, or even 

chromosomal rearrangements such as translocations due to multiple cleavage events 

(Iarovaia et al., 2014). Off-targets can occur when the target sequence (protospacer and PAM) 

occurs elsewhere in the genome. Because the CRISPR-Cas system is RNA-guided, it has no 

way to differentiate between the intended target and off-targets. Off-targets can also occur at 

sequences that share homology with the target, albeit usually at a lower efficiency. This is due 

to alternative PAMs (Y. Zhang et al., 2014) and mismatch-tolerance (Anderson et al., 2015). 

But as well as off-targets, unwanted changes can also occur at the intended target (AYABE et 

al., 2019; Kosicki et al., 2018; H. Lee & Kim, 2018). Known as on-target effects, these changes 

can include large deletions, insertions, and chromosomal translocations leading to a loss of 

heterozygosity. On-target effects have recently been demonstrated to be a result of Cas9 

interfering with the MMEJ repair pathway (Kosicki et al., 2020). 

1.5 Improving CRISPR targeting 

Although these problems can be addressed by trialling different targets in vitro to identify 

optimal loci for targeting, they can also be addressed in silico by creating models from existing 

data. Through such models, it is possible to take a series of inputs to calculate an output (Cox, 

2006). Take, for example, identifying CRISPR targets. Targets will generally conform to two 

rules. The first being the presence of a PAM, and the second being homology between the 

crRNA spacer and the region adjacent to the PAM. If these two rules are true, then the output 

is true. Despite its simplicity, this rule based system is a general representation of the 

conclusions of the original publications (Gasiunas et al., 2012; Jinek et al., 2012). But because 

the crRNA is customisable, this model can be simplified further to identify CRISPR targets 

solely through the presence of an PAM. That is, if a 23-nucleotide sequence has a PAM at the 

3’ end, it is labelled as a target. This is an example of a binary classifier, as given a set of 

inputs, it will produce a binary output; true or false, target or non-target. However, because 
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the only input is the presence of a PAM, this classifier will not differentiate between efficient 

and inefficient sgRNAs. 

To differentiate between efficient and inefficient sgRNAs, the model can be extended to 

include additional rules. For example, with nucleosomes negatively influencing efficiency (Hinz 

et al., 2015), targets that lie within nucleosomes can be labelled as non-targets. Alternatively, 

because targets that lie on nucleosome boundaries can still be cleaved relatively efficiently, 

the rule can be altered to instead penalise targets proportionately to the number of overlapping 

nucleotides. This could be, for example, with a negative coefficient if the relationship between 

nucleosome overlap and efficiency is linear. More complex statistical models could take 

conditional probabilities into account, or model non-linear relationships. But now, instead of 

the model labelling sequences as a target or non-target, it will label sequences in a numerical 

range that represents efficiency. This is an example of a regressor. 

Statistical and rule-based models can also be implemented to consider off-targets. GT-Scan 

(A. O’Brien & Bailey, 2014) and Cas-OFFinder (Bae et al., 2014) are two computational tools 

which identify targets and rank them by their uniqueness in the genome. Such tools are built 

on empirical and theoretical evidence surrounding features that abrogate CRISPR cleavage. 

However, they only model a limited number of features. For example, they do not model the 

kinetics of target recognition (Rutkauskas et al., 2015), which could be used to quantify the 

cleavage efficiency of off-targets. In effect, these tools only quantify the uniqueness of targets 

based on DNA sequence, rather than quantifying the ratio of target cleavage to off-target 

cleavage. 

Models like these can enable researchers to identify optimal targets in silico. This is beneficial 

as it can result in less wasted time and resources trialling inefficient sgRNAs, which can save 

researchers time and money (Listgarten, 2017). Efficient CRISPR targeting can also minimise 

undesired results like somatic mosaicism (Yen et al., 2014). However, these rule-based and 

statistical models only capture a limited number of manually curated features, based on 

inferences made from experimental data. Because these models exclude variables that may 

modulate efficiency, their predictions will be non-optimal, which can lead to low prediction 

accuracy. However, manually constructing models to represent every single modulator, 

especially individual nucleotides, motifs, and combinations of these, can be an exponential 

task. Also, as more-complex systems are modelled, such models may fail to accurately 

represent the system (Breiman, 2001a), resulting again in a low prediction accuracy. 

Therefore, a solution is required to enable the accurate modelling of large and complex 

systems like sgRNA efficiency. 
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1.6 Machine learning 

Machine learning (ML) has enabled the ability to model complex datasets with minimal human 

intervention (Domingos, 2012). ML algorithms automatically train models on large amounts of 

data, without the need for researchers to analyse variables one at a time (Figure 2). Models 

can then be used to predict labels, like efficiency, for unknown data. They can also be used 

to gain insights into variables that modulate the label. ML is generalisable to many data 

modelling problems, and its applicability to biological problems has long been recognised 

(Tarca et al., 2007). Early uses ranged from identifying translation initiation sites in E. coli 

(Stormo et al., 1982), to microarray analysis (Dudoit et al., 2002). One of the reasons ML is 

used in these fields is the high dimensionality (large number of variables) of datasets. 

Because, where statistical modelling requires manual analysis of features to identify 

correlations or probabilities, ML can model these complex relationships automatically. This 

enables models to be trained quickly and to scale, enabling the ability to efficiently model large 

datasets with hundreds, thousands or even millions, of samples and variables. 

 

Figure 2 – an example binary classifier. Depicted horizontally from left to right is the training process. The machine learning 
algorithm produces a model from labelled data. Depicted vertically from top to bottom is the classification (or prediction) 
process. The trained model predicts labels for unlabelled data. Labelled data can also be classified to validate the model by 
comparing predictions to labels. 

The ability to scale is especially desirable in the health field as focus shifts from single genes 

to genomics and the environment (Khoury, 2003). Genomic data alone can result in datasets 

that contain millions or even billions of features. Modelling many features can also play into 

one of the strengths that some ML algorithms have; the ability to model interacting features. 

This is where one or more features, together, modulate the outcome. This can include 
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polygenic effects. For example, where traditional genome-wide association studies (GWAS) 

typically consider the influence of individual variants on the response variable (label), ML 

approaches can consider and model multiple variants on a genome-wide scale (Bayat et al., 

2020). 

As well as the health field, ML is also becoming more prevalent in the genome engineering 

field, with the first sgRNA efficiency prediction model published in 2014 (Doench et al., 2014). 

This model, trained using the logistic regression algorithm, predicts the cleavage efficiency of 

CRISPR-Cas9 using features like sgRNA sequence, targeted exon, and the position of the 

target in the gene. Since then, a slew of models trained using different algorithms, variables, 

and datasets have been released and published, all with the aim of computationally improving 

CRISPR genome engineering by predicting the most efficient sgRNAs. 

As well as predicting the efficiency of sgRNA designs, ML can also be used to predict off-

target efficiency (Listgarten et al., 2018). This is an improvement on previous rule-base off-

target approaches which simply identify sequence similarity. Because sgRNA efficiency for 

off-targets, like targets, depends on factors other than the number of mismatches. So, by firstly 

identifying similar sequences and secondly predicting their cleavage efficiency, hundreds of 

false positives can be eliminated when compared to pattern matching approaches. 

Despite the automatic nature of ML, producing a useful model still involves manual steps. This 

can include experimental design, identifying public data sources, preprocessing, analysis, or 

any combination thereof. Preprocessing in particular can have a significant impact on the 

generalisability of the resulting model (Kotsiantis et al., 2006). It includes tasks like data 

labelling, feature processing and normalisation. For preprocessing, as well as the other 

manual steps, cross-domain knowledge is useful to ensure data is represented appropriately. 

For example, ML algorithms generally assume a balanced dataset (Japkowicz, 2000). This 

can lead to difficulty when modelling experimental data which is unbalanced due to an 

inherently inefficient experimental design, or from failed tests being discarded. Unbalanced 

datasets can be addressed in preprocessing, but ideally experiments would be designed, and 

data collected, with the aim of producing a quality dataset. This aim can be more-readily 

achieved with the knowledge of what makes a good dataset. 

At the time of writing my thesis, there were 21 prediction tools utilising ML for CRISPR 

prediction. There are various reviews covering these tools, including a comprehensive 

comparison of performances and predictions (Bradford & Perrin, 2019) and a high level 

overview (Wilson, O’Brien, et al., 2018). However, missing was a point of reference relating 
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machine learning to genome engineering; a review to explain why prediction tools differ or 

share common ground. An example of this from another field is a review paper by Moen el al., 

which provides a technical summary of cellular image analysis, deep learning and why and 

how these two fields are relevant to each other (Moen et al., 2019). 

For the rest of my introduction, I aimed to fill this gap, using minimal jargon to provide context 

between ML and gene editing. Although this section also serves as a literature review of 

current genome editing prediction tools, my primary focus is on the details that make them 

work and their potential limitations. This includes, for example, algorithm choice, how models 

represent biological data, and problems with training datasets. 

1.7 The uses and benefits of ML for CRISPR prediction 

Despite computational CRISPR tools using a range of algorithms, datasets, and 

preprocessing techniques, one common theme is that nearly all recent tools use a model 

trained using ML. Using these models, each tool aims to enable more-effective CRISPR 

experiments by predicting certain aspects of experimental outcome, i.e. cleavage efficiency. 

With each tool making predictions from a set of input variables, no prior knowledge of cleavage 

efficiency is required for researchers to take advantage of trained models. 

The reason for using ML to model CRISPR cleavage is that this process is a highly complex 

interplay of influencing factors. As well as nucleotide sequence, this can include cellular 

environment and experimental conditions. ML enables capturing this complex interplay of 

inputs, automatically. Specifically, ML enables researchers to model systems like CRISPR, 

without specifying the relationship between target properties or experimental parameters 

(features) and the outcome (label). Instead, ML algorithms automatically learn relationships 

between features and labels, storing a representation of these relationships as a model. 

Subsequently, a model can be used to predict the outcome for experiments where the 

outcome is unknown, i.e. untested sgRNA designs. The primary benefit here is that ML 

enables researchers to predict the effectiveness of an sgRNA design in silico, rather than 

having to test every design empirically, saving effort and time. 

1.8 Preprocessing 

Even though ML implies automatic training, the data that ML algorithms learn from must 

generally be good quality and conform to certain assumptions. Therefore, before training, data 

should be processed. Preprocessing requires the researcher to make informed decisions and 

is one area where prediction tools differ. Preprocessing can also be an iterative process, with 

observations from modelling outcome leading to the researcher altering their preprocessing 
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process. Preprocessing includes tasks like labelling and feature selection, with steps taken 

depending on both aim and data. 

1.8.1 Considerations in data labelling 

Supervised ML algorithms train models from labelled data. In the context of CRISPR 

experiments, the label may be cleavage efficiency, the likelihood of seeing a desired mutation 

or the ability of CRISPR to control gene expression. So, one common step between all tools 

is to define an appropriate label. Labels can be represented discretely (e.g. high or low) or 

continuously (e.g. 0 to 1). The representation depends on various factors, such as the 

algorithm used, the data being modelled, and what the desired outcome is. For discrete 

variables, classification algorithms are used. This can be binary classification for two classes, 

or multiclass classification for more than two classes. For continuous variables, regression 

algorithms are used. 

The sgRNA cleavage efficiency, for example, is continuous as efficiency is on a range from 

0% to 100%. So, given a model trained using a regression algorithm, predicting the efficiencies 

for four unlabelled sgRNAs would result in each one being assigned a value in this range. For 

example, [0%, 80%, 90%, 100%]. With higher efficiencies being desired, the clear choice 

would be the sgRNA with a prediction of 100%. Continuous values like efficiency can also be 

represented discretely. In preprocessing, “< 50%” efficiency sgRNAs could be labelled “low” 

and “>= 50%” efficiency sgRNAs labelled “high”. In this case, the resulting model would 

classify the previous four targets as [low, high, high, high]. This removes the ability to 

discriminate between the top three targets as, now they are all simply “high”, rather than 80%, 

90% and 100%, however, despite this loss in information, classification can provide benefits 

over regression in certain cases. 

Firstly, classification is generally faster in training and predicting (Salman & Kecman, 2012). 

But perhaps more importantly, current regression models for CRISPR efficiency prediction do 

not achieve a high accuracy, with empirical observations of efficiency not necessarily 

correlating well with predictions (Wilson, Reti, et al., 2018). For example, an sgRNA predicted 

to be 100% efficient may be no more efficient, or even less efficient, than a target predicted to 

be 80% efficient. This is because the complexity involved in modelling biological systems can 

result in models with a limited sensitivity for prediction. This can be a result of inadequate 

datasets, missing features or false assumptions made in preprocessing. In this case, it can be 

beneficial to model sgRNAs with a “high” or “low” label. Although predictions will be less 

informative, prediction accuracy will be higher. Furthermore, this can prompt researchers to 
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trial different high-predicted sgRNAs, rather than basing their choice on the top result from a 

less-than-perfect-accuracy model. 

A common pitfall with CRISPR data is imbalance (Gao et al., 2019). Imbalance is when the 

positive editing results outnumber the negative results, or vice versa. This can result from 

researchers only publishing positive results for CRISPR experiments, or from results being 

overwhelmingly negative due to, for example, the low efficiency of HDR (Hruscha et al., 2013; 

Mao et al., 2008). One way to overcome data imbalance when training a classification model 

is by choosing an appropriate threshold when converting efficiency from a continuous value 

to a binary (high/low) value (Figure 3). For example, a threshold of 50% may seem like the 

obvious choice, but if only 2 out of 10 targets have an efficiency > 50%, then a classification 

model could classify all 10 targets as low-efficiency and still have an accuracy of 80%. One 

potential solution is to adjust the decision threshold (He & Garcia, 2009), for example, from 

50% to 20%. This results in an even number of high and low efficiency samples. However, 

now samples with an efficiency of > 20% are considered high efficiency, which may or may 

not be ideal. Another potential solution is to modify how targets are sampled. For example, 

rather than choosing targets randomly for training and testing, a bootstrap (sampling with 

replacement) method can be used to oversample the minority class, as demonstrated by 

CRISTA and DeepCRISPR (Abadi et al., 2017; Guohui Chuai et al., 2018). 

 

Figure 3 – this figure represents two potential decision thresholds (20% and 50%) for ten hypothetical sgRNA samples 
(coloured dots). Each sample has a DNA cleavage efficiency in the range of 0% and 100%. For a binary classifier, samples 
above the decision threshold are considered “high-efficiency” (orange) and samples below the decision threshold are 
considered “low-efficiency” (purple). The decision threshold can be arbitrarily set to any value between 0 and 100%, and an 
appropriate decision threshold can help keep data balanced. A threshold of 50% in the upper example results in two “highs” 
and eight “lows”. This can result in a poor-performing model as a resulting model could indiscriminately targets as low-
efficiency yet have a relatively good accuracy of 80% (eight out of ten are correct). However, a threshold of 20% results in 
five highs and five lows. Now if a model indiscriminately classifies all ten targets as low-efficiency it will have a more-
appropriate accuracy of 50%. 

The problem of imbalance is exacerbated for labels with more than two classes. One example 

is predicting editing outcome (i.e. insertion or deletion length), as attempted by FORECast 

(Allen et al., 2019) and SPROUT (Leenay et al., 2019). While this greatly increases the control 

over experimental outcomes, it also increases the number of distinct classes, which in turn 

requires an increase in training data size to adequately fit the model. For example, for binary 

labels (high/low) and a perfectly balanced dataset of 1,000 samples, each class has 500 

(1000/2) samples. If the same dataset is labelled according to the deletion length, from zero 
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to four nucleotides, for example, then the number of samples in each class would drop to 200 

(1000/5). Predicting other outcomes, like insertion length or other variants would drop the 

sample size of each class even further, potentially until classes contain only single samples. 

To combat this problem and still have enough samples for each of the combinatorial scenarios, 

FORECast is trained on more than 40,000 sgRNAs. However, where large sample sizes are 

not possible, an alternate solution is to limit the number of classes or to train multiple models. 

For example, rather than having a single model trained on data labelled for every type of 

editing outcome, SPROUT relies on multiple models, where one may model deletion length, 

and another may model insertion length. This allowed it to be successfully trained on 1,656 

sgRNAs. 

1.8.2 Selecting features for a generalisable model 

As well as being labelled, each sample must include features. Features are a set of data (i.e. 

genetic, epigenetic, or experimental) that are abstracted to a format suitable for training a 

model. The challenge is to include enough data for algorithms to produce accurate models, 

but without including data that is difficult/expensive to obtain, overly specific or irrelevant. The 

aim is to produce a model that can not only make correct predictions on the validation data 

but is also generalisable to data from other groups or laboratories. 

Used in every model mentioned throughout this review, is genetic data. This includes the 

sgRNA sequence, PAM, and/or adjacent nucleotides to the target. These features are used 

by every tool because efficient sgRNAs have been demonstrated to prefer certain nucleotides 

over others (Hsu et al., 2013). However, a secondary benefit is that sequence information is 

universal. That is, with the sgRNA sequence being essential for guiding CRISPR/Cas9 to a 

target, it is a property that will be known for previously conducted CRISPR experiments 

(resulting in more training data), as well as for future experiments. However, a difference 

between tools is the window size at the sgRNA target (23nt for ge-CRISPR (Kaur et al., 2016), 

26nt for WU-CRISPR (Wong et al., 2015) and 30nt for sgRNA design (Doench et al., 2014), 

CRISPRpred (Rahman & Rahman, 2017) and TUSCAN (Wilson, Reti, et al., 2018)). But 

regardless of this difference, because each of these tools only requires sequence information, 

they can predict sgRNA efficiency agnostic to cell type or species. 

With epigenetic modifications having been demonstrated to modulate CRISPR cleavage, 

sequence-only models can lack accuracy compared to models which include such features. 

For example, Chari et al., identified DNase-seq and H3K4 trimethylation data to modulate 

efficiency (Chari et al., 2015). However, while including epigenetic information improved their 

model accuracy, it had the consequence of making it not only species-specific but also cell 
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type-specific (Chari et al., 2017). They hence opted for using only sequence information in 

their sgRNA scorer and sgRNA Scorer 2.0 models (Chari et al., 2015, 2017). Azimuth (Doench 

et al., 2016) and CRISPRpred (Rahman & Rahman, 2017) also aimed to improve accuracy by 

including non-sequence features. This included positional features like “exon targeted” and 

“position of target in gene”. Doench et al. demonstrated these features to improve model 

performance over a sequence-only model (Doench et al., 2016). However, as with epigenetic 

information, this also had the consequence of decreasing generalisability. This is because 

genetic annotations were required to predict sgRNA efficiency. To account for this, Azimuth 

includes two models and falls back to the sequence-only model if positional information is not 

available. 

In the pursuit of finding features that add more information and increase accuracy, care should 

be taken to avoid including as much data as possible, regardless of relevance. Feature-sets 

should ideally include only properties that have a causal relationship to the label. This is 

because including irrelevant features (i.e. experiment ID in a tracking system) can be 

detrimental by increasing the noise and search space, thus potentially reducing model 

performance (Hall & Smith, 1999; Hughes, 1968; Trunk, 1979). 

1.8.3 Translating data to machine-readable features 

Once data has been identified for inclusion in training, it needs to be processed to meet certain 

criteria. This is especially true for sequence data because most ML algorithms cannot handle 

strings natively. For example, an algorithm may be able to identify that “CATA” is different to 

“CATT”, but not how it is different. To overcome this problem and to capture quantitative 

differences, sequence features therefore need to be “tokenised” (Figure 4). 
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Figure 4 – four different ways to encode the sgRNA nucleotide sequence. Demonstrated, are the four encircled nucleotides 
(CATA). a) as a string. This will not be compatible with many ML algorithms. b) as a list of characters. Here each nucleotide 
has its own “feature”. However, many ML algorithms require features to be represented as numbers. c) as a list of numbers. 
Here each nucleotide has been arbitrarily assigned a value from 0 to 3. However, algorithms that accept “continuous” 
features will consider T (3) to be more different from A (0), than T is from G (2) because of the larger difference in the 
arbitrarily assigned values. d) one-hot encoded. Here each nucleotide is represented as four list elements. One (and only 
one) of these elements is “hot” (i.e. 1) depending on the nucleotide. In this example, the first element being hot, i.e. [1, 0, 0, 
0], represents an A. In this representation, all nucleotides are represented as being equally different. 

Tokenisation generally involves breaking down an item, such as a string, into a more-generic 

format like an array of numbers. For example, each nucleotide in the DNA (or RNA) alphabet 

could be represented as a number from 0 to 3 (A=0, C=1, G=2, T=3). In this case “CATA” 

would become [1, 0, 3, 0] and “CATT” would become [1, 0, 3, 3]. This is effective because now 

any ML algorithm can see that only the fourth position has changed (0 to 3). However, this 

representation is not adequate for algorithms that expect continuous variables, because T (3) 

is more different to A (0) than T (3) is to G (2). Instead, strings can be one-hot encoded. One-

hot encoding represents nucleotides as 0s and 1s by using a separate token for each position 

in the sequence as well as for each possible nucleotide (Figure 4). 

The above processes can be extended to create additional features that represent, for 

example, nucleotide pairs. This simply entails creating an additional token for each 

permutation and combination of two nucleotides at each position along the sequence. Feature 

generation can also be driven by domain- or expert-knowledge. For example, a feature could 

be created to represent the nucleotides either side of the “GG” in the PAM (“NGGN” (Doench 

et al., 2016)), if this were empirically observed to influence efficiency. 

1.9 Machine learning algorithms 

Although a well-curated feature-set and carefully chosen labels is one requirement for training 

a well-performing model, so is an appropriate algorithm. There are too many different ML 
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algorithms to cover them all, so this section will provide an overview of algorithms frequently 

used in current CRISPR prediction tools. For comparisons of tools themselves, see Guo-hui 

2017 (Guo hui Chuai et al., 2017) and Cui 2018 (Cui et al., 2018), and for benchmarks see 

Yan 2018 (Yan et al., 2018). 

1.9.1 Linear regression and logistic regression 

Linear regression and logistic regression are two statistical models that model a linear 

relationship between features and a label. Linear regression is used by CRISPRscan (Moreno-

Mateos et al., 2015), and logistic regression is used by sgRNA design (Doench et al., 2014). 

Both are regression models, however linear regression predicts outputs onto a continuous 

range, whereas logistic regression predicts the probability of a binary output being true, on a 

scale from zero to one. This means that logistic regression is generally used for binary 

classification, i.e. true/false. Despite both algorithms modelling linear relationships. They can 

be extended to model non-linear relationships through data transformations. For example, 

Doench et al. observed a non-linear relationship between sgRNA GC content and efficiency, 

where a high or low GC content were correlated with a lower activity than a ~50% GC content. 

For this non-linear relationship, they created two disparate features (one for above 50% GC 

and one for below), which enabled the logistic regression algorithm to capture this non-linear 

relationship (Doench et al., 2014). However, this manual statistical analysis is exactly what 

machine learning aims to avoid, because it becomes less feasible when dealing with large 

datasets. It can also reduce model explainability. To avoid these manual transformations, non-

linear algorithms and models are available. 

1.9.2 Support vector machines 

One model that supports non-linear separation are support vector machines (SVMs). There 

are different SVM algorithms that can train SVM classifiers or regressors, allowing them to be 

used for continuous or binary values. In the CRISPR space, SVM models are used in sgRNA 

Scorer, ge-CRISPR, sgRNA Scorer 2.0, CRISPRpred, WU-CRISPR, TSAM and CRISPR-DT 

(Chari et al., 2015, 2017; Kaur et al., 2016; Peng et al., 2018; Rahman & Rahman, 2017; Wong 

et al., 2015; Zhu et al., 2019). The SVM algorithm is also used by sgRNA design for feature 

selection (Doench et al., 2014). Although SVMs are a linear classifier, they can efficiently 

model non-linear data by implicitly transforming features into a high-dimensional 

representation where a linear separation of samples is possible (Hearst, 1998). However, this 

can obscure which features contributed to the decision process, which can limit explainability. 

Black box models like this have been demonstrated as generally being more accurate than 

explainable, white box, models (Guohui Chuai et al., 2018; Dumais et al., 1998; J. Lin & Wong, 

2018; Pranckevičius & Marcinkevičius, 2017). However, this property is not absolute and 
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performance ultimately depends on the algorithm in question and the data being modelled 

(Amancio et al., 2014; Jia et al., 2013; Wilson, Reti, et al., 2018). 

1.9.3 Decision trees 

To address the issue of explainability, are tree-based methods, which stem from the decision 

tree algorithm. Decision trees also address another important property for the CRISPR space; 

the ability to capture higher-order interactions between features. In the context of sgRNA 

efficiency, this includes interacting features. That is, two or more features—nucleic, 

epigenetic, or otherwise—that if present together have a correlation with or influence the 

efficiency. Decision trees can model this process through the recursive partitioning process. 

This means that decision trees model data by iteratively splitting the dataset based on features 

that separate the data. The aim is to generate groups that are pure, i.e. groups that contain 

only high efficiency targets or only low efficiency targets. Consider the hypothetical example 

where sgRNAs with a G at position 20 (G20) and a <20% GC content have higher efficiencies 

than sgRNAs with either or none of these features. Because G20 cannot separate the data 

into pure groups, the recursive nature of training results in a new level being added to further 

separate the data, in this case based on <20% GC (Figure 5). Another benefit of tree-based 

methods is that they are applicable to both regression and classification (Loh, 2011). 

Furthermore, it is possible to interrogate tree-based models to identify which features have 

the most influence on efficiency prediction, hence making the prediction “explainable”. 
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Figure 5 – a hypothetical example of a decision tree trained on 10 samples. The first split is on an sgRNA GC content above 
or below 20%, which separates out two samples with a GC content above 20%. As both samples are “high efficiency”, it 
results in a pure node (orange). Of the eight sgRNAs with a GC content above 20%, three have a high efficiency and five 
have a low efficiency, so this node is impure (purple). The next split is on the presence (or absence) of a G at position 20 in 
the sgRNA. All three sgRNAs with a G have a high efficiency and all five sgRNAs without a G have a low efficiency. The 
resulting nodes are pure, so training concludes. This model would classify new sgRNAs as high if “the GC content is >= than 
20%” or “the GC content is < 20% and there is a G at position 20”. In reality, such a model would be much more complex 
with purity not being reached so early, or at all. 

1.9.4 Random Forests and gradient boosted regression trees 

Two tree-based algorithms used for predicting sgRNA efficiency prediction are Random 

Forests (used by CRISPRpred, CRISTA, TUSCAN, CRISPR-DT and CUNE) (Abadi et al., 

2017; A. R. O’Brien et al., 2019; Rahman & Rahman, 2017; Wilson, Reti, et al., 2018; Zhu et 

al., 2019) and gradient boosting (used by Azimuth and SPROUT) (Doench et al., 2016; Leenay 

et al., 2019). These algorithms are ensemble methods, meaning they create models consisting 

of multiple decision trees. This collection of trees can survey a larger search space and hence 

are superior to single trees by improving the generalisation or by reducing the error (Breiman, 

2001b). 

1.9.5 Deep learning 

Recent increases in compute power have enabled another group of ML, deep learning. This 

group includes algorithms that consist of multiple non-linear levels, such as convolutional 

neural networks (CNNs) (Bengio, 2009). CNNs have been demonstrated to be successful for 

image analysis, where the many interconnected levels allow for highly general models that 

can not only classify images, but also objects within images. The field of sgRNA efficiency 

prediction has recently started using deep learning with the development of tools like 
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DeepCpf1, DeepCRISPR, off_target_prediction and DeepCas9 (Guohui Chuai et al., 2018; H. 

K. Kim et al., 2018; J. Lin & Wong, 2018; Xue et al., 2019). However, deep learning is but one 

tool in the toolbox and finding the right algorithm remains critical as demonstrated by CRISPR-

GNL, a Bayesian ridge regression solution that outperforms its deep learning counterpart, 

DeepCas9 (J. Wang et al., 2020). 

However, a unique feature of deep learning is its ability to make preprocessing redundant in 

some circumstances. Algorithms like CNNs can decompose images containing objects at 

arbitrary positions/sizes/angles without the need for techniques like cropping, scaling and 

rotating; not only on the training set, but also for novel samples (Yann LeCun, 1995). Being 

able to uncover underlying patterns in arbitrary data, rather than requiring perfectly curated 

feature-sets is a useful capability in the CRISPR space.  

1.10 Optimisations and insights 

Despite algorithm choice being limited by the data being modelled, there will usually be 

multiple algorithms relevant to a given task. It is therefore important to compare the 

performance of models trained using different algorithms. However, even models trained by 

the same algorithm on the same data can differ, depending on options passed to the algorithm. 

Therefore, not only should models trained with different algorithms be compared against each 

other, but models trained from the same algorithm using different configurations, or 

hyperparameters. 

1.10.1 Model hyperparameters 

Hyperparameters, unlike model parameters (which are derived through training), are set by 

the researcher a priori. They modify how an algorithm learns from the data, and different 

configurations can result in improved, or worsened, model performance. Each algorithm has 

its own set of hyperparameters and each hyperparameter modifies a certain aspect of the 

training process. For example, the Random Forests algorithm includes “number of trees” and 

“maximum tree-depth”. Typically, altering a hyperparameter would alter the resulting model 

complexity. For example, where a high value for maximum tree-depth would result in a deep 

and complex tree, a low value for maximum tree-depth would result in a shallow and simple 

tree. 

By trialling different sets of hyperparameters, one can identify the configuration to result in the 

optimal model. Grid search algorithms are provided by ML libraries to trial different sets of 

hyperparameters. However, this process can be expensive regarding compute time, scaling 

with the number of hyperparameters being tested, as well as the number of options for each 
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hyperparameter. Therefore, understanding the influence of hyperparameters can result in a 

reduced search space. 

1.10.2 Types of error 

Two types of errors influenced by hyperparameters are bias and variance. Although the aim 

is to minimise these errors, decreasing one (i.e. bias) will usually result in an increase of the 

other (i.e. variance) (Hastie et al., 2009). This is because bias and variance are related to 

model complexity. A complex model will have a high variance, whereas a simple model will 

have a high bias. As mentioned in the previous section, adjusting the “maximum tree depth” 

alters the model complexity, and where a shallow tree will result in a high bias and low 

variance, a deep tree will result in a low bias and a high variance. The aim, therefore, is to find 

the sweet spot where both forms of error are kept to a minimum. 

These two errors have different consequences on the resulting model. A high bias (simple) 

model will perform poorly on all datasets. This includes training data, validation data and data 

from other sources. This is known as underfitting, and it arises because the model does not 

capture enough information. Conversely, a high variance (complex) model will perform well 

on the training data, and perhaps even the validation data if it is homogenous to the training 

data. However, a high variance leads to overfitting. This means that despite representing the 

data it was trained on well (or perfectly) it will not be generalisable to, for example, experiments 

from other laboratories. In other words, it captures information specific to the training dataset.  

As well as inappropriate hyperparameters, complexity in a model can be modulated by noise 

or outliers in the training data. Noise can include features that happen to have a correlation 

with sgRNA efficiency in the training data, but not in general. Outliers, on the other hand, are 

samples that are dissimilar from the group they belong to. For example, a negative target (low-

efficiency) that happens to have a sequence that is very different from other negative targets, 

in fact so much so, that it more closely resembles the sequence properties of positive targets 

(high-efficiency). This may be due to experimental error, missing features (like epigenetic 

information), or errors in preprocessing (such as representing different targets in different 

directions). In these cases, it may not be possible to train a model with a low bias or a low 

variance. 

Another way to improve the error is to use a different model. Ensemble models, for example, 

can inherently decrease one error without increasing the other (Breiman, 2001b; Friedman, 

2001). This is demonstrated by Random Forests, which typically consist of deep trees. Deep 

trees are complex with a high variance and low bias, making them prone to overfitting. 
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However, by bootstrapping (sampling with replacement) the data seen when training each 

tree, and by repeating this to train many trees, the resulting ensemble is a model with a low 

bias and low variance compared to any individual tree in the ensemble (Breiman, 2001b). The 

converse is achieved for gradient boosted regression trees. This model relies on an ensemble 

of simple (high bias, low variance) decision trees to result in a model with low bias and low 

variance (Friedman, 2001). 

1.10.3 Quality datasets 

Regardless of hyperparameters and other optimisations, algorithms must have access to a 

large and representative data set to train accurate models. For CRISPR experiments using 

the template-free repair pathways, large datasets are now available, with recently published 

datasets presenting 40,000 Cas9 samples (Allen et al., 2019) and 15,000 Cas12a samples 

(H. K. Kim et al., 2018). However, for other repair pathways (i.e. HDR), there is little data 

available, impeding the ability to accurately model these biological systems. 

1.11 Gaining insights from CRISPR ML models 

Training a model on irrelevant features can reduce a model’s performance, but prior to training, 

it is not always obvious as to which features are relevant. For example, which, if any, 

epigenetic regulation properties influence sgRNA efficiency and should be included in 

training? One way to identify influential features is to selectively train on different subsets of 

features and subsequently observe variations in the model’s performance as each feature is 

added. However, training models on different subsets of potentially thousands of features can 

be inefficient and time-consuming. More appropriate for identifying influential features are 

explainable models, such as logistic regression and tree-based methods (Breiman, 2001b; 

Ng, 2004). Such algorithms allow researchers to train a single model on all available features 

and subsequently rank features by their contribution to the model, or “feature importance”. 

Feature importance, as well as enabling researchers to only include relevant features, can be 

extended to “hypothesis generation”. Whilst a feature ranking highly is not necessarily 

indicative of its biological influence over sgRNA efficiency, it can promote the design of further 

CRISPR experiments to gather support for the generated hypotheses. For instance, features 

such as position-independent (di)nucleotide count, location of target within the gene, and 

melting temperatures of the target have been demonstrated to contribute to models and 

therefore may be involved in DNA cleavage efficiency (Doench et al., 2016). 
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1.12 Room for improvement 

The use of machine learning in CRISPR applications is evolving at a rapid pace, with multiple 

prediction tools being released every year. The broad availability of ML-based CRISPR tools 

has resulted in the need to empirically test CRISPR-Cas9 designs being replaced by in silico 

optimisation. In other words, researchers can design efficient sgRNAs algorithmically, 

optimising for maximum editing efficiency and minimum off-target effects. 

But although each model aims to improve CRISPR experiments, prediction models are not a 

one-size-fits-all solution; hence why there are currently 20+ models in production. For 

example, while some models are simple and generalisable across organisms and cell types, 

others are more complex, capturing data like epigenetic information. Where most models 

predict Cas9 cleavage efficiency, others predict Cas9 editing outcome or Cas12a cleavage 

efficiency. Furthermore, the performance of each model varies regarding accuracy and 

precision. While some models perform well on paper, performing well on in-house generated 

data, they will perform poorly on data generated from other groups. So, despite the 

proliferation of models, there is still much room for improvement when applying ML to CRISPR. 

1.13 Research objectives 

Despite the abundance of CRISPR publications, there are still gaps in the literature regarding 

mechanisms of action. This can lead to non-optimal experimental design, resulting in 

inefficient editing or off-target effects. Machine learning has enabled the ability to efficiently 

model large datasets to result in both insights and predictions, which has resulted in numerous 

prediction tools. However, there are still gaps with current tools not modelling aspects of 

genome editing like repair pathways. 

I aimed to identify features that modulate parameters like efficiency and specificity. This would 

involve using ML algorithms to model datasets and to gain insights. With data being one of 

the primary requirements for training ML models, this process was dependent on the 

availability of suitable datasets in the literature or the ability to create novel datasets where 

none exist. I aimed to release ML models into the public domain as design tools for use by 

researchers to enable more effective CRISPR experiments. 

The results of my work span chapters three to five, with each covering a unique aspect of 

CRISPR editing, from HDR to induce single nucleotide variants in Chapter 3, to the efficiency 

and generalisability of simultaneous HDR events in Chapter 4, to the specificity and efficiency 

of Cas12a in Chapter 5. The objectives of each chapters are as follows: 
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• In Chapter 3 I investigated the efficiency of the HDR pathway in CRISPR experiments 

from a dataset I curated. HDR enables knock-in experiments but is inefficient 

compared to other less-versatile repair pathways. With no prediction tools available for 

designing efficient HDR experiments, I aimed to train one using ML. 

• In Chapter 4 I explored the efficiency of using simultaneous HDR events to enable 

conditional knockouts. I aimed to identify whether the poor efficiency of this technique 

is a result of low HDR efficiency or other factors. Because the dataset included 

experimental data from 19 laboratories, I was able to test for the influence of 

laboratory-specific properties on efficiency. 

• In chapter 5 I focused on CRISPR-Cas12a as previous evidence suggested it to 

provide benefits over CRISPR-Cas9. I aimed to quantify the benefits of Cas12a 

through the analysis of in silico and in vivo results. I also aimed to enable more efficient 

CRISPR-Cas12a experiments by training prediction models for editing outcome and 

efficiency. 
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Chapter 2 – Methods 

2.1 Overview 

Here I describe methods for each of the chapters in my thesis. Despite each chapter 

containing different methods, there is some commonality between them. Firstly, regardless of 

the data source, the overarching aim of each section is to create a curated and comprehensive 

dataset. A dataset is defined as a collection of samples, where each sample are the editing 

results from a unique locus. Each sample is labelled and includes a set of features. The label 

is generally cleavage efficiency or homology directed repair (HDR) efficiency, and features 

include potentially predictive information like single guide RNA (sgRNA) sequence or 

chromatin accessibility. Each dataset enabled analysis and modelling of the respective 

CRISPR system using machine learning (ML). With the resulting models it possible to identify 

properties that may influence the efficiency as well as predicting the efficiency for novel 

targets. 

For each section in this chapter, implementation details can be found in the code repository. 

This is available at https://github.com/aydun1/aidan-anu-thesis with material from each 

chapter organised by directory. Code was written with reproducibility in mind and is distributed 

freely for non-commercial use. Code for data analyses was written in the Python programming 

language. Multiple Python libraries were used, including: 

• pandas, for data analysis and manipulation (McKinney, 2010; The pandas 
development team, 2020), 

• scikit-learn, for ML algorithms (Pedregosa et al., 2011), 

• SciPy, for statistical tests (McKinney, 2010), 

• statsmodels, for statistical modelling (Seabold & Perktold, 2010) and 

• seaborn, for data visualisation (Waskom et al., 2020). 

2.2 Chapter 3 methods 

This section outlines the steps taken for processing and modelling CRISPR-Cas9 HDR 

efficiency. The data that I aimed to model were experimental results from micro-injection 

sessions. Each session included attempts to induce a specific single nucleotide variant (SNV) 

in mouse embryos. These attempts were made through HDR, using a CRISPR-Cas9 sgRNA 

to induce a DSB with a single-stranded oligodeoxynucleotide (ssODN) donors to define the 

desired mutation. The source code is available in the “chapter3” directory. 

https://github.com/aydun1/aidan-anu-thesis
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2.2.1 Curating data 

Each microinjection session was stored in a separate document, so I manually collated the 

data into a spreadsheet. This resulted in a table, with one row per document. For each row, 

columns stored properties regarding the micro-injection session. I captured the following 

information for each session: 

• sgRNA sequence 

• ssODN sequence 

• distance of mutation from the PAM sequence 

• number of attempts 

• observed mutations 

Generally, each micro-injection session aimed to induce a mutation at a unique locus, although 

some sessions targeted the same locus. Therefore, to reduce the potential for “sampling bias”, 

I merged these sessions. This involved summing up the number of attempts and joining the 

list of observed mutations for every attempt at a specific locus, regardless of which session it 

was a part of. 

2.2.2 Processing data for training and validation 

To enable training a model for efficiency prediction, an efficiency value was required for each 

sample. With the aim being to investigate HDR efficiency, I defined HDR efficiency as the ratio 

of HDR to NHEJ. For example, a session with evidence of HDR, but no evidence of NHEJ is 

100% efficient. For this I used the number of times the desired point mutation was observed 

at a given locus (which indicates the cell repaired the DSB using HDR and the ssODN) divided 

by the total number of mutations (desired or otherwise). Dividing by the total number of 

mutations, rather than the total number of attempts removes “CRISPR cleavage efficiency” as 

a confounding variable. For this reason, I discarded samples with no mutations because if 

CRISPR fails to cleave the target, it is not possible to calculate the HDR to NHEJ ratio. Each 

sample now has a value from 0 to 1, where 1 indicates “100% HDR, 0% NHEJ”, and 0 indicates 

“0% HDR, 100% NHEJ”. 

To enable binary classification (high vs. low HDR), I divided samples into two groups based 

on HDR efficiency. I defined a threshold with the aim of producing balanced classes, i.e. an 

equal number of high- and low-efficiency samples). This threshold was the median HDR 

efficiency value, 0.199. 
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Because I aimed to create a generalisable HDR efficiency prediction tool, the focus was on 

nucleotide features. These features included the sgRNA sequence and the ssODN template 

sequence. I processed the sequence as per the “Sequence processing” section. However, to 

enable the analysis of different components (i.e. the 5’ region of the ssODN versus the 3’ 

region), each of these regions were processed separately.  

2.2.3 Machine learning and statistical analysis 

To model the data, I used the Random Forests algorithm, as per the “Machine learning” 

section. The primary metric I used for this chapter was the out-of-bag (OOB) error. This metric 

takes advantage of one of the properties of the Random Forest algorithm, bootstrap 

aggregating (bagging). With bagging, each tree is trained on only a subset of samples. 

Therefore, each tree can be tested on samples unseen to that tree. This is repeated for every 

tree throughout the training process. Finally, the average of the errors for each tree results in 

the OOB error. I partitioned the dataset using cross-validation as per the “Cross-validation” 

section for further validation of the generalisability of the models. I trialled different 

hyperparameters using a grid search to iteratively compare the performance of different 

combinations of hyperparameters.  

2.2.4 Model validation 

With a lack of HDR data in the literature, I validated the model with the highest performance 

on more-recent data. This data was generated after training the published model and included 

fifteen samples, generated in the same way as the published samples. The most recent 

sample in this validation set was from October 2018. This validation set is referred to as V1. 

To validate my model against this set, I compared predicted efficiencies to real efficiencies to 

calculate the accuracy, precision, and recall. 

2.2.5 Additional data 

Since publishing the original manuscript, more data had been generated. I used this data, 

dated 2019 and 2020, for an additional validation set (V2). It was processed in the same way 

as V1 and used to validate the published model using the same metrics. With two validation 

sets, I then trained new models on the published data and V1, validating the highest 

performing model on V2. 

2.3 Chapter 4 methods 

This section covers the analysis of datasets generated from multiple groups regarding the 

efficiency of two simultaneous HDR events. The curated dataset and source code are 

available in the repository with the prefix “chapter4”. 
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2.3.1 Processing data for training and validation 

For this section, the data was available in two spreadsheets, now available at (Gurumurthy et 

al., 2019). The first, published as “Supplementary Table 1” contained the sgRNA and ssODN 

sequences for each target. The second, published as “Supplementary Table 4” contained 

experimental results. 

To calculate the efficiency of two simultaneous HDR events, I used the “correctly targeted” 

column divided by the “live born pups” column in the latter spreadsheet. I also created a binary 

representation of this efficiency label by grouping targets into two classes, “positive” and 

“negative”. To create classes that were as balanced as possible, I assigned loci with one or 

more successes to the “positive” class, and loci with zero successes to the negative class. 

To calculate the efficiency of single HDR events, I used the number of cis loxP insertions 

divided by the “live born pups” column. I did this for each of the 5’ and 3’ target sites at each 

allele. To calculate the number of cis loxP insertions, I manually curated editing outcomes 

from the second spreadsheet. 

Most features were already suitable for modelling, being numbers. However, I processed the 

ssODN and gRNA sequences as per the “Sequence processing” section. For the ssODN, I 

did this for the 5’ and 3’ region separately. 

The features used in this section are: 

• sgRNA sequence x2 

• ssODN sequence x2 

• ssODN length x2 

• distance between targets 

• ssODN concentration 

• live-born mice 

2.3.2 Statistical analysis and ML 

To identify differences between two populations, I used the Mann-Whitney U test from SciPy. 

For more than two populations, I used the Kruskal-Wallis rank-sum test from SciPy. This tests 

whether one or more populations is different, but not which population(s) are different. So, 

when this test identified a different population, I iteratively removed one population at a time 

and tested the remaining populations until the test identified no significant differences. To 

compare the correlation between linear variables, I used the coefficient of determination (R2) 

from statsmodels.  
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To model the data, I used the Random Forests algorithm, as per the “Machine learning” 

section. Because of the unbalanced classes (a low number of 1s vs. 0s), I used a custom 

class_weights function. This was to compensate for classifiers being biased for the majority 

training class (Japkowicz, 2000). A biased classifier means that when predicting samples from 

a 50/50 distribution, a disproportionate number of samples will be assigned to the majority 

training class. By adding a weight to the minority class, such misclassifications carry a higher 

penalty which can result in an improved model (Chen et al., 2004). The custom class_weights 

function was specified as an input when defining a Random Forest model. 

2.3.3 Model validation 

As in the previous chapter, I used the OOB error to quantify the performance of each trained 

models. To identify important features, I used the “feature_importances_” property of the 

Random Forest model. I trained models using cross-validation as per the “Cross-validation” 

section. 

2.3.4 Success forecaster 

I created a statistical model to forecast the number of successful attempts. This considers the 

probability of two simultaneous successful events based on the observed probability of each 

single event. To consider forecasting from potentially low sample sizes, the confidence 

interval, with a confidence level of 95%, is included in the calculation. The full code is available 

in the repository. 

2.4 Chapter 5 methods – off-target analysis 

This section details the off-target comparison between Cas9 and Cas12a. Off-targets are 

genomic regions that are cleaved outside of the intended target. Due to mismatch-tolerance 

in the sgRNA, off-targets can exist even if the target sequence is unique in the genome 

(Anderson et al., 2015). Off-target effects can be minimised by considering the uniqueness of 

targets by using computational tools to identify potential off-targets. Post targeting, off-target 

cleavage can be identified using methods like GUIDE-seq (Tsai et al., 2015) and DISCOVER-

seq (Wienert et al., 2019). 

2.4.1 In vivo potential off-target analysis 

I analysed ten human genes, selected from the top ten most studied human genes by citation 

(Dolgin, 2017). I postulated this to be a more representative sample of real-world gene editing 

targets than randomly selected genes. I used a custom script to identify Cas9 and Cas12a 

targets in exons in each gene. Targets were identified based on the presence of PAM 

sequences. To identify potential off-targets, I used Cas-OFFinder (Bae et al., 2014). 
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GT-Scan (A. O’Brien & Bailey, 2014) is another tool which performs this function, however 

where Cas-OFFinder can identify potential off-targets with any number of mismatches, GT-

Scan is limited to three. However, I compared the output with up to three mismatches to ensure 

the results from Cas-OFFinder were equivalent to GT-Scan, which I developed for a previous 

research project. For GT-Scan I used the default settings. 

For my analysis of potential off-targets, I set “Mismatch Number” to five, because off-targets 

had previously been identified with up to five mismatches (Y. Fu et al., 2013). As input, I used 

the list of target sequences identified using my custom script. The output was a file containing 

every potential off-target for every target. To enable analysis of this file, I processed it using a 

custom script to create a summary for each target. The summary is in a tab-separated format, 

listing the number of potential off-targets with each number of mismatches (0 to 5) for each 

target. Due to the small size of this summary file, I used Excel to perform further analyses and 

visualisation on these results. 

2.4.2 In vitro off-target analysis 

Here I compared Cas9 and Cas12a off-targets using results from two previous GUIDE-Seq 

experiments. I acquired Cas9 data from (Kleinstiver, Pattanayak, et al., 2016) and Cas12a 

data from (Kleinstiver, Tsai, et al., 2016). I manually curated read counts for cleaved genomic 

sites from these papers into a spreadsheet. I grouped them by “target” and “number of 

mismatches” for plotting and analysis. I used Excel to analyse and visualise the data. 

To compare cleaved off-targets to potential off-targets, I used Cas-OFFinder to identify 

potential off-targets with up to five mismatches for each target. I also used this data to ensure 

that these experimental targets were not outliers when compared to my in vivo results. 

2.5 Chapter 5 methods – editing outcome prediction 

This section covers the process for analysing the mutational outcome from NHEJ with Cas12a. 

That is, the specific mutation arising from CRISPR-Cas at a target, be that a deletion, insertion, 

or single nucleotide change. The aim was to identify the feasibility for an outcome prediction 

model for Cas12a. The curated dataset and source code are available in the repository with 

the prefix “chapter5”. 

2.5.1 Data acquisition 

Here I used raw read data from (H. K. Kim et al., 2018). This data includes both lentiviral 

integrated target sequences (synthetic targets) and endogenous target sequences (genomic 

targets). The SRA accession number is SRP107920 with accession numbers for individual 
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runs available in Supplementary Table 1. The data includes both treated and control reads for 

each dataset. I used fastq-dump from the SRA toolkit to acquire read data from the SRA. The 

command to download the reads depended on the alignment type, with the following used for 

single alignments and paired-end alignments, respectively: 

fastq-dump SRRxxxxxxx 

fastq-dump -I --split-files SRRxxxxxxx 

2.5.2 Aligning reads 

To quantify the mutational landscape, reads needed to be aligned to a reference genome. For 

the synthetic reads, reads first needed to be trimmed of barcode and adaptor sequences. For 

this task I used a custom script. The endogenous reads were already trimmed. I aligned both 

sets of reads to the human GRCh38 genome using Bowtie 2 (Langmead & Salzberg, 2012). 

bowtie2 -x /genomes/ensembl.release-90/Homo_sapiens.GRCh38 -1 
SRRxxxxxxx_1.fastq -2 SRRxxxxxxx_2.fastq -S out_file.sam --very-sensitive -p 10 

I used SAMtools (H. Li et al., 2009) to convert the output from Bowtie 2 into a BAM file, sort 

the BAM file and index it. The result here was a BAM file sorted by genomic region, and a 

corresponding index file. 

I repeated this process for treated and control samples. 

2.5.3 Quantifying reads 

I used the computational tool GOANA (in review) to quantify the mutational landscape of the 

newly aligned reads. GOANA is a program which accepts aligned reads and outputs sgRNA 

efficiency and allele frequencies for a set of predefined locations. It retrieves the list of 

predefined locations from a BED file. However, rather than identifying mutant alleles based on 

variations to a reference genome, GOANA identifies mutant alleles based on variations to 

control reads. The control reads can be day zero reads or reads from untreated samples. The 

benefit of using control reads instead of a reference genome is that the chance of pre-existing 

differences to public reference genomes being incorrectly labelled as CRISPR-induced 

mutations is minimised. 

The output from GOANA lists alleles and allele frequencies for each genomic region. However, 

alleles can have more than one mutation (i.e. a single nucleotide change and a deletion or an 

insertion and a deletion) and it is the mutation frequency that I am interested in. But because 



Chapter 2 

32 

GOANA excludes alleles with a low read coverage by default, common mutations will be 

filtered out if they occur on the same allele as rare mutations. To mitigate this, the -mr 0 

argument instructs GOANA to include all mutant alleles, regardless of read coverage. 

python3 GOANA.py regions.bed control.bam treated.bam -o output.file -mr 0 

I used a custom script to parse the output and read it into a pandas DataFrame. For each 

target, I recorded: 

• sgRNA sequence and target-adjacent nucleotides 

• Target coordinates 

• Cleavage efficiency 

• Mutations 

2.5.4 Statistical analysis and validation 

To ensure the datasets were representative of CRISPR Cas12a editing in general, I compared 

the distributions of insertions, deletions, and single nucleotide variances. To identify significant 

differences between distributions, I used Cohen’s d (Cohen, 1977). This is a standardised 

measure of the difference between two means. As well as different editing outcomes, I also 

compared differences between insertions and deletions of different lengths. This was for the 

HT 1-1 dataset and the HEK-plasmid dataset. 

To train a model to predict editing outcome, I trained Random Forest models as per the 

“Machine learning” section. One difference from the previous sections is that I used multiclass 

classification. This enabled more than two discrete outcomes to be predicted, i.e. the single 

nucleotide variant (A, C, T or G) or deletion/insertion length (1, 2, 3, etc.). I trained models 

using cross-validation as per the “Cross-validation” section. However, as a multiclass model, 

to quantify the outcome I used one-vs-all metrics. This produces a score based on binary 

values, where the correct outcome is true, and incorrect outcomes (regardless of which 

incorrect outcome) are false. This produced a value for each class. For the one vs. all Receiver 

operator characteristic (ROC) curves, these values where averaged. 

2.6 Chapter 5 methods – sgRNA efficiency 

This section covers the process for modelling and predicting Cas12a efficiency from raw read 

data. This includes acquiring the data from public data sources, processing the data, and 

finally modelling the data. Because the data comes from different sources, this section also 

includes details on merging datasets. 
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2.6.1 Downloading reads for model training 

To train my models I used the monocistronic CRISPR/Cas9 library from (J. Liu et al., 2019). 

This is a pooled-library knockout screen with an SRA accession number of SRP181683. The 

data included reads at different timepoints (weeks 1 to 4), as well as reference reads. The 

data from SRA contained the time points in arbitrary concatenations so I downloaded the 

original files from the Google Cloud Platform (GCP). Here, each timepoint was stored across 

two files (part1 and part2). These files are listed as Mini-human in Supplementary Table 1. 

Because these files are hosted as “requestor pays”, downloading them requires a valid GCP 

account with billing enabled. 

gsutil -u username cp gs://sra-pub-src-3/file_path.fastq.gz /out_path 

2.6.2 Aligning reads for model training 

The first step for processing these reads was to align them to a human reference genome. 

Because of the short read-lengths (20nt), I created a custom version of the GRCh38 reference 

genome. This custom genome contained just the 20nt sgRNA sequences. The aim was to 

minimise the likelihood of the short reads aligning to incorrect regions. To create the custom 

genome I used a script to generate a FASTA file with an entry for each of the 2,061 targets 

from (J. Liu et al., 2019). I then indexed the FASTA file with bowtie2-build. 

bowtie2-build cpf1_mono.fa cpf1-mono 

Next, I aligned the reads from each timepoint to the custom GRCh38 genome using Bowtie 2. 

Each timepoint had reads in two files (part1 and part2). So, for each alignment I specified both 

files as a comma-separated list. 

bowtie2 -x /genomes/cpf1-mono -U 
timepointX.part1.fastq,timepointX.part2.fastq -S out_file.sam --very-sensitive -p 

10 

2.6.3 Inferring sgRNA efficiency for model training 

As a pooled-library screen, efficiency can be inferred from the log-fold change in read-count, 

for each CRISPR target, over time. The theory is that editing “essential genes”, i.e. genes that 

are required for cell-viability, will result in non-viable cells. This in turn will result in lower cell 

counts at later time points. Because of this, reads from targets with a low efficiency will be 

relatively high (with few edits to disrupt cell viability) compared to reads from targets with a 

high efficiency (with many edits to disrupt cell viability). In other words, there should be an 
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inverse correlation between sgRNA efficiency and change in read count over time. A 

confounding factor here is the “essentiality” of a gene. Because if edits do not reduce a cell’s 

viability, despite disrupting a gene, then reads from that target will be remain high, regardless 

of sgRNA efficiency. To minimise the effects of this confounding variable, I only included genes 

with a high Bayes Factor (BF). BFs are a statistical measure used to indicate the likelihood of 

a gene belonging to an essential or non-essential distribution, which can be calculated using 

computational tools like BAGEL (Bayesian Analysis of Gene EssentiaLity) (Hart & Moffat, 

2016). I downloaded BFs from “The Toronto KnockOut Library” (Hart et al., 2015) and merged 

them with CRISPR targets based on gene name.  

2.6.4 Model validation 

To validate the Cas12a efficiency model, I used the previous HEK-plasmid dataset. In addition, 

I downloaded the HEK-lenti and HCT-plasmid datasets, following the same methodology. I 

also aligned these reads, generated a BAM file and index, and quantified reads using GOANA, 

following the same methodology used for the HEK-plasmid dataset. 

2.6.5 Integrating samples with chromatin accessibility data 

An additional feature observed to modulate sgRNA efficiency is chromatin accessibility (Xu et 

al., 2015). Quantified by DNase hypersensitivity, chromatin accessibility indicates the 

accessibility of a target due to chromatin state. To incorporate this information into the 

datasets, I downloaded the following narrow-peak datasets from the ENCODE portal (Davis 

et al., 2018; The ENCODE Project Consortium, 2012): 

• ENCFF127KSH (HEK293T) 

• ENCFF912FSU (HCT116) 

These datasets specify regions of DNA that are DNase hypersensitive for the respective cell 

types (HEK293T and HCT116). To integrate this data with CRISPR targets, I use a custom 

script to identify whether CRISPR targets lie within DNase hypersensitive regions. The script 

assigns a 1 to targets that are in hypersensitive regions and a 0 to targets that are not. 

2.7 Common methods 

2.7.1 Sequence processing 

Most machine learning algorithms are unable to handle DNA sequences (strings) directly so 

therefore I tokenised the sequence for each sample into a format that is suitable for modelling. 

This is achieved using a custom function that is applied to each row in the DataFrame. The 

input is a DNA sequence, and the output is an array of numerical values. This array represents 
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the DNA sequence string using, for example, “global nucleotide” counts and “positional 

nucleotide” counts. Global nucleotides represent the count of each nucleotide in the string 

whereas positional nucleotides represent the nucleotide at each position (Table 1). As well as 

single nucleotides, I also include global/positional dinucleotides (i.e. AA, AT, CT, etc.) and GC 

content. 

 Sequence Type Features 

Positional nucleotides AAAG Binary {1A: 1, 2A: 1, 3A: 1, 4G: 1} 

Positional dinucleotides AAAG Binary {1AA: 1, 2AA: 1, 3AG: 1} 

Global nucleotides AAAG Discrete {A: 3, G: 1} 

Global dinucleotides AAAG Discrete {AA: 2, AG: 1} 

GC content AAAG Continuous {CG: 0.25} 

Table 1 – different tokenisation methods applied to the sequence “AAAG”. These methods enable machine learning 
algorithms to model nucleotide sequences. 

I processed individual sequences separately. So, for example, to model the sgRNA, ssODN 

and nucleotides adjacent to the target I would apply the above function to each of these 

components separately. This minimises the sequence of relevant components being diluted 

by irrelevant components. 

2.7.2 Machine learning 

To train models I used scikit-learn in Python. This consisted of three steps: 

1. defining a model, 

2. fitting the model on training data and 

3. predicting labels for test data. 

1) Defining a model involves specifying the algorithm and the hyperparameters. 

Hyperparameters are parameters that are user-specified when defining the model, as 

opposed to parameters that are learned by the ML algorithm from data. For example, “max-

depth” is a hyperparameter used by the “DecisionTreeClassifier” algorithm in sci-kit learn. As 

the name implies, it defines the maximum depth that the resulting decision tree may be trained 

to. Each algorithm has default values for hyperparameters, however by tuning the 

hyperparameters it may be possible to train an improved model. 

2) The “fit” step involves training the model on data. This process simply requires two lists, 

one of the labels from each sample and one of the features. This can be performed on the 

entire dataset or a slice of the dataset, with the latter being useful for model validation. 
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3) The “predict” step takes the trained model and predicts the label for unlabelled samples. 

Therefore, this process just requires a list of features as the input. For the final model, the 

output from this step is returned to the user. However, during model design, I used the output 

from this step for model validation. 

2.7.3 Validation 

To validate a model, or quantify its performance, prediction values are compared to truth 

values. For example, the predicted sgRNA efficiency to experimentally measured sgRNA 

efficiency. Every trained model was validated to quantify its performance and compared 

against other models. This is achieved through an accuracy or error score for which there are 

various measures that I use. For regression, an option is the mean squared error (MSE). This 

is the average of the squared differences between the prediction and truth values for each 

sample, where values closer to zero indicate predictions closer to the truth. MSE is a function 

included in the scikit-learn Python library which I call on the two lists of values, i.e. 

mean_squared_error(truth, predicted). However, to be able to calculate a prediction measure 

for a model, samples which were not included when training said model were required. One 

option was to divide the data into two discrete sets, a training set and a test set. However, 

another option was cross-validation. 

2.7.4 Cross-validation 

Rather than dividing samples into two discrete sets for validation, I used k-fold cross-validation 

to quantify the performance of models (Geisser, 1975). Using 5 folds cross-validation, data is 

partitioned across samples, into five groups, where each group contains one fifth of the 

samples. Subsequently I trained models on each combination of four groups, and test on the 

fifth. This allows us to evaluate the prediction error with better generalisation to novel data 

than a train/test set. For classification models I used “StratifiedKFold”(Pedregosa et al., 2011) 

to create the folds, as this preserves the distribution of positive and negative samples. Each 

time with the same algorithm with the same hyperparameters, however each trained on a 

different subset of data. Next, I validated each model on the slice of data that it was not trained 

on. This resulted in a score (such as MSE) for each model, on which I calculated the average 

to quantify the overall performance. 

2.7.5 Feature importance 

An additional use of some ML algorithms is the ability to identify which features are correlated 

with the label. For Random Forest models, after training a model, feature importances can be 

retrieved using the feature_importances_ parameter. This returns a list of features (be that 

nucleotides or reagent quantities) with an assigned weight value for each. 
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2.8 Visualisation 

2.8.1 Confusion matrix 

To visualise classification predictions, I used a confusion matrix. For two-class predictions (i.e. 

high/low) this is simply a 2x2 matrix where rows indicate prediction values and columns 

indicate truth values. In effect, this presents the number of true positives, false positives, true 

negatives, and false negatives. Here I used confusion_matrix from scikit-learn which takes a 

list of truth values and a list of prediction values. 

2.8.2 Percentile rank 

The percentile rank presents how ranked prediction values compare to ranked truth values. 

The percentile rank illustrates whether the ordering of predictions is correct. Here I used the 

percentileofscore function from the SciPy statistics module to calculate the percentile ranks 

prediction and truth values and subsequently plot the results with Matplotlib. 

2.8.3 ROC curves 

Receiver operator characteristic (ROC) curves plot the true positive rate against the false 

positive rate. It represents the discrimination ability of a model, i.e. a model’s ability to 

distinguish between high and low efficiency samples (Hanley & McNeil, 1982). The area under 

the ROC curve (AUC) provides a quantitative measure of this metric where 1 indicates a 

perfect discrimination and 0.5 indicates that predictions are random. I used roc_curve and 

roc_auc_score from the sklearn.metrics to compute these values. 
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Chapter 3 – Unlocking HDR-mediated nucleotide editing by identifying 

high-efficiency target sites using machine learning 

The CRISPR-Cas9 system enables researchers to introduce precise genomic changes 

through different means. In this chapter I investigated different methods, their efficiencies, and 

I trained a prediction model to improve the efficiency of using CRISPR to introduce precise 

single nucleotide variants. 

3.1 Introduction 

As well as inducing arbitrary mutations, CRISPR systems can be used to induce precise single 

nucleotide variants (SNVs). This is possible through different means, such as base editing, 

prime editing, or CRISPR-mediated homology directed repair (HDR). Base editing is an 

efficient method that relies on a cytidine (C) deaminase or adenosine (A) deaminase. These 

enzymes enable a limited range of changes by converting C•G to T•A, or A•T to G•C, 

respectively (Gaudelli et al., 2017; Zheng et al., 2018). By fusing one of these enzymes to a 

catalytically inactive Cas9 or a Cas9 nickase, the resulting fusion can induce deamination at 

the CRISPR target. Different groups have demonstrated efficiencies of 44% to 100% (M = 

82%) in mice, rabbits, rats and human embryos (Z. Liu et al., 2018; Y. Ma et al., 2018; Ryu et 

al., 2018; Zeng et al., 2018). Efficiency modulators include the sequence composition and the 

position of the SNV relative to the target protospacer adjacent motif (PAM). The position 

relative to the PAM is relevant because base editing is only efficient at a limited number of 

positions at the CRISPR binding site, known as an editing window (Komor et al., 2016). 

Different editing windows are possible through different systems (Jiang et al., 2018) or 

alternate cytosine deaminases (Cheng et al., 2019). However, where larger editing windows 

may enable more flexibility in potential targets, larger windows can have the side effect of 

more bystander mutations. Bystander mutations are mutations that result from deamination of 

other nucleotides within the editing window. As well as SNVs, resulting from deamination, 

bystander mutations can also include deletions (H. K. Lee et al., 2018). As well as the size of 

the editing window, the prevalence of bystander mutations also depends on the base editor in 

use (H. K. Lee et al., 2020). 

Although base editing is efficient, bystander mutations, the limited range of changes and 

limited number of targets can restrict its application. These three considerations mean that 

only a limited number of single nucleotide variants will be possible with base editing. For 

changes that are not possible with base editing, prime editing or CRISPR-mediated HDR may 

be more appropriate. Prime editing, like base editing, relies on a catalytically impaired Cas9 
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(Anzalone et al., 2019). It is less efficient than base editing but has the benefit of enabling 

specific base substitutions or small indels with minimal undesired effects. However, prime 

editing faces limitations when the aim is to make large changes (Anzalone et al., 2019). 

The third option is via CRISPR-mediated HDR. HDR is one of the endogenous DNA repair 

pathways that can result from CRISPR-induced cleavage. Generally, HDR repairs cleavage, 

or double-strand breaks (DSBs), using a homologous DNA template (Mao et al., 2008; Pardo 

et al., 2009). This means that HDR is usually an error-free repair pathway. However, by 

including a synthetic DNA template that is mostly homologous to the target, HDR can introduce 

any differences into the target through homologous recombination. Through the template, 

HDR is currently the most versatile editing solution as it allows researchers to make nearly 

any change, from SNVs, to insertions of thousands of nucleotides (B. Wang et al., 2015). 

One downside of HDR compared to base-editing is its relative inefficiency. This is because 

HDR is in direct competition with other repair pathways, including non-homologous end joining 

(NHEJ) (Mao et al., 2008; Sargent et al., 1997) and microhomology-mediated end joining 

(MMEJ) (J.-L. Ma et al., 2003). However, despite factors surrounding HDR kinetics remaining 

unknown, evidence suggests that the initial 5’ to 3’ resection of the blunt ends present at a 

DSB guarantees an outcome of HDR over the other repair pathways (Pâques & Haber, 1999; 

Valerie & Povirk, 2003). Another limiting factor is that HDR is restricted to the late G2 and S 

phase of the cell cycle (Symington & Gautier, 2011), limiting the opportunities in which it can 

occur. Finally, HDR can be negatively influenced by somatic or sporadic mutation in any of 

the genes involved in the HDR pathway. This includes genes involved in the 

MRE11/RAD50/NBS1 (MRN) complex, which are essential for resection (Taylor et al., 2009), 

as well as RAD51, BRCA1 or BRCA2 (Ransburgh et al., 2010; Stark et al., 2004). Therefore, 

HDR may not be possible when working on organisms or cell-lines with pre-existing mutations 

in these genes or when targeting these genes. 

Because of the versatility of HDR, the ability to computationally identify optimal targets would 

enable researchers to perform a wide range of changes more easily. But although 

computational tools existed for predicting CRISPR-Cas9 cleavage efficiency (Cong et al., 

2013; Haeussler et al., 2016; Stemmer et al., 2015), none existed for predicting the efficiency 

of CRISPR-mediated HDR. This absence of tools was possibly a result of unknown influencers 

of HDR efficiency, but also due to a lack of data regarding CIRSPR-induced HDR results. 

During my PhD, I identified factors that influence Cas9-mediated HDR efficiency using 

machine learning on a novel fit-for-purpose dataset (A. R. O’Brien et al., 2019). From these 
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insights, I trained a model using machine learning (ML) to enable researchers to identify the 

optimal sgRNA for inducing a specified SNV. This was released as CUNE (Computational 

Universal Nucleotide Editor) and was the first built for purpose tool to identify optimal HDR 

targets. Since then, I gained access to an additional collection of experimental data. 

Here, I extended on my work as enabled by the additional data. Using this data, I aimed to: 

• create a larger dataset of HDR experiments 

• validate my CUNE model on unseen samples 

• train a new model on the larger dataset 

• perform a feature comparison between models 

• release the optimal model in an update to CUNE 

Because my published model performed well on the published validation data (accuracy, 

0.773), I hypothesised the same would prove true using more-recent unseen data. Also, when 

training my published model, the small training sample size (30 loci) resulted in features like 

local nucleotide composition degrading model performance. I therefore hypothesised that the 

larger sample size enabled by combining the published data and additional data would enable 

further insights into features that influence HDR efficiency. 

3.2 Results 

3.2.1 An improved dataset of genome-wide HDR efficiencies 

I curated a dataset from 186 mouse editing experiments, conducted from 2015 to 2020. The 

aim of each experiment was to induce a single nucleotide variant (SNV) into mouse embryos 

using Cas9-mediated HDR. The target SNV, as defined by a single-stranded 

oligodeoxynucleotide (ssODN) sequence template, varied between experiments. For each 

experiment, from 1 to 34 (M = 6.15, SD = 4.50) mice were sequenced, and the resulting 

mutations recorded. Although there were 186 experiments, there were only 108 different 

SNVs. This is because although 68 target SNVs were the aim of just one experiment, the 

remaining 40 were the aim of two or more repeated experiments. Repeated experiments were 

combined in the preprocessing stage, leading to a unique set of ssODN/sgRNA combinations. 

These ssODN/sgRNA combinations are referred to as samples. After preprocessing, there 

were 63 samples. 

The published data contained 45 samples (30 train, 15 validation). The extra 18 samples made 

up the additional data. This equated to a 40% increase in sample size. In total, 536 mice were 

sequenced with each sample containing on average 8.51 mice (Table 2). Although samples 
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were not random, instead being chosen to induce desired SNVs, most target sites were in 

different genes with nearly all chromosomes being targeted at least once. The 63 samples 

covered 53 genes and 16 chromosomes with each sample including the following features: 

• sgRNA sequence 

• ssODN sequence 

• distance of SNV from PAM 

• methylation status 

  Published Additional Combined 

General Mice 429 107 536 

Samples (unique ssODN/gRNA combinations) 45 18 63 

Mice per sample (average) 9.53 5.94 8.51 

Genes 37 18 53 

Chromosomes 14 12 16 

ssODN 

  

  

Length (average) 158.77 137.89 152.76 

3′ arm length (average) 80.17 68.61 76.87 

5′ arm length (average) 77.60 68.11 74.89 

GC content (average) 52.98% 51.17% 52.40% 

Efficiency HDR (average) 0.286  0.37 0.327 

Table 2 – the additional dataset includes results from HDR experiments in 1,143 embryos. This includes 64 ssODN/gRNA 
combinations (with approximately 18.85 embryos each). The median HDR efficiencies are presented for each ssODN/gRNA 
combination for the published and additional data, being 0.286 and 0.5, respectively. Overlap between genes and 
chromosomes in each dataset is the reason for combined values not being a sum of the published and additional values.  

Although the published (45) and additional (18) datasets shared similarities, such as ssODN 

GC content, there were also differences. One difference was the distance of the SNV from the 

PAM. In the published dataset, the distance ranged from 9 nucleotides downstream to 30 

nucleotides upstream of the first sgRNA nucleotide (Figure 6a). In the additional samples, the 

range decreased to 3 nucleotides downstream and 18 nucleotides upstream. This means that 

every SNV in the additional dataset was within the target PAM or protospacer. The interquartile 

range of distances was also smaller and closer to the PAM. 
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Figure 6 - differences between the published and additional datasets. a) Distances are between the desired SNV and the 
PAM. A value of 0 represents the first nucleotide in the protospacer. Negative values extend downstream (3’) where positive 
values extend upstream (5’). Values from 0 to 19 represent the protospacer and -1 to -3 represent the PAM. b) the HDR 
efficiency is higher in the additional samples, with an average of 0.39 compared to 0.22. 

To label the samples, I calculated the HDR efficiency for each one. This value was calculated 

for each sample from the 8.51 mice included in each sample. To enable this, I labelled mice 

carrying the desired SNV as having been repaired via HDR, and mice carrying insertions or 

deletions (indels) as having been repaired via NHEJ or MMEJ. This was on the basis that the 

latter two repair pathways generate indels at DSBs, whereas HDR repairs DSBs according to 

a template (in this case the ssODN) (S. Lin et al., 2014). The efficiency value for each sample 

was the number of mice with HDR repairs divided by the number of mice with any mutation. 

So, for a given sample, if 5 mice presented the desired SNV, and 25 mice presented any 

mutation, the HDR efficiency would be 0.2. 

On the published training set of 30 samples, the median HDR efficiency was 0.20 (A. R. 

O’Brien et al., 2019). This value increased to 0.29 across the published 45 samples (Figure 

6b). On the additional 18 samples, this value increased further, to 0.39. The increase 

suggested later experiments were more successful. Although the latter efficiency value is 

greater than what is typically observed, previous HDR experiments have demonstrated the 

variable nature of HDR efficiency. Observations have ranged from 1 to 40% (Aird et al., 2018; 

Guo et al., 2018), or higher than 50% under certain experimental conditions (G. Li et al., 2017). 

The likely reason for the increased efficiency in the additional data over the published data is 

that previously successful experiments influenced later experimental design, leading to the 

greater rate of success. 
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Other differences between the published and additional datasets included the number of mice 

sequenced for each sample. This number was nearly halved on the additional data, dropping 

from 9.53 to 5.94 (Table 2). This supported my previous observation of later experiments being 

more successful. Because the aim of each experiment was to generate a mouse with the 

desired SNV, rather than to generate a dataset, a lack of the desired SNV would result in more 

editing attempts, and more mice, until a success was achieved. 

3.2.2 Validation of previous HDR model 

The model I trained for CUNE was trained on the sgRNA sequence and the 3’ ssODN arm (A. 

R. O’Brien et al., 2019). It was validated on data generated from the same group, but at a 

more-recent time point. This validation set, V1, included 15 samples. The prediction accuracy 

on this set was 0.733 (Table 3). I validated the model on additional data generated in 2019 

and 2020. This set, V2, included 18 samples. The prediction accuracy on this set was 0.667, 

which is equivalent to two thirds of the samples being classified correctly. The precision and 

recall were both 0.75, which is a lower precision than the published validation set, but a higher 

recall. 

Validation set Samples Precision Recall Accuracy 

V1 15 0.889 0.727 0.733 

V2 18 0.75 0.75 0.667 

Table 3 – validation of the model trained on the original HDR data, on the original test set (V1) and the additional test set 
(V2).  

3.2.3 A larger sample size enables a larger feature size 

To train CUNE, I inspected features on a case-by-case basis, i.e. first sgRNA and then ssODN. 

I trained models on these features to identify optimal models using the average out-of-bag 

(OOB) error using cross-validation. I included the sgRNA based on previous observations of 

it to modulate Cas9 activity (Wilson, Reti, et al., 2018). This was based on the hypothesis that 

while efficiently inducing SNVs requires control over the repair-pathway, it may still be driven 

by Cas9 activity. This proved to be the case with an sgRNA model trained on sgRNA global 

nucleotide composition resulting in the lowest cross validated OOB error of 0.250. 

The global nucleotide composition is a general representation for the nucleotide composition 

of a DNA or RNA sequence. It is a count of nucleotides (i.e. Ts, Gs, etc.), and adjacent 

nucleotides (i.e. TTs, GTs, etc.) across an entire DNA or RNA sequence. Because of this, the 

global nucleotide composition is to some extent, position agnostic. An alternative 

representation of a nucleotide sequence is the positional nucleotide composition. This results 

in an array representing the presence or absence of every nucleotide, and adjacent 
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nucleotides, at every position. Although the positional nucleotide composition can represent 

sequences in more detail, training a model on the positional nucleotide composition, resulted 

in the accuracy decreasing from 0.733 to 0.4 (Table 4). I hypothesised that the decrease in 

performance was due to the curse of dimensionality, a statistical phenomenon that makes it 

increasingly difficult for ML algorithms to find signal in the data due to a high sparsity (number 

of zeroes) (E. M. Wright & Bellman, 1962). 

Model Zero columns OOB error Precision Recall Accuracy Correct 

Local (published) 79 0.575 0.333 0.4 0.4 11/30 

Local (additional) 32 0.402 0.9 0.636 0.611 28/46 

Table 4 – cross validated scores of models trained on the sgRNA local nucleotide composition. This is a representation of the 
sgRNA sequence, where each feature indicates the presence (1) or absence (0) or a particular nucleotide at a particular 
position. For example, if a sgRNA has an A at position 5, the feature “5_A” would be “1”, “5_C” would be “0”, “5_G” would 
be “0”, and “5_T” would be “0”. The same is repeated for adjacent nucleotides (“AA”, “AC”, “CA”, etc.) There are 404 
possible positional (di)nucleotides features in a 20nt sequence. 

In support of my hypothesis, in the original training set, 325 possible nucleotide/dinucleotide 

combinations occurred one or more times. This meant that 79 (di)nucleotides out of a possible 

404 were not represented in the training set. However, in the new training set, 372 positional 

nucleotide/dinucleotides occurred one or more times. This meant that only 32 (di)nucleotide 

combinations did not exist in the new training set. The only way to reduce this number is 

through a greater distribution of sgRNA targets. In further support of the small sample size 

resulting in a poor positional nucleotide performance, a model trained on the new training set 

improved over the positional nucleotide model trained on the published data (Table 4). The 

accuracy improved from 0.4 to 0.611. However, despite this improvement, the model was still 

outperformed by the published global nucleotide model. With there still being 32 

unrepresented (di)nucleotides, a larger sample size would be required to effectively model 

local nucleotide composition. 

3.2.4 SNV-to-PAM distance is an important feature 

The distance between the cleavage-site and the desired SNV has been demonstrated to have 

inverse relationship to HDR efficiency (Inui et al., 2014; K. Wang et al., 2016). That is, the 

smaller the distance, the more likely the SNV would be integrated. Because of this, I 

hypothesised that by including this distance in training, it would result in an improved model. 

However, upon training a model on the original training set with distance as a feature, I 

observed no improvement in model metrics. I hypothesised that this was because the dataset 

was designed to capture a wide range of features that influence HDR efficiency (Miyaoka et 

al., 2016). And relative to other features, distance was a weak modulator of efficiency as 

editing may inherently fail at certain loci, regardless of distance. This was supported by the 
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distance being an unimportant feature in the feature importance list, relative to sgRNA 

nucleotides. The feature importance list is a property of Random Forests that ranks features 

by their “Gini impurity”. This is a metric on how well a feature can divide data on a feature into 

its correctly labelled groups. On the additional dataset, I once again observed the distance to 

have no influence on model metrics. However, of difference was the feature importance, where 

the distance ranked third in the model trained on the additional dataset. The high ranking, but 

lack of model improvements, provides support that distance does modulate efficiency, but with 

its power in this dataset being outweighed by the sgRNA sequence. 

3.2.5 Global nucleotide composition is sensitive to noise 

Models trained on the ssODN global nucleotide composition on the original dataset resulted 

in poor performance, with the lowest OOB error of 0.6. I had hypothesised that a model trained 

on the ssODN would be able to accurately differentiate between high- and low-efficiency 

targets, due to the key role of the ssODN in HDR. But this appeared to not be true. However, 

in this dataset, ssODNs are on average 159 nucleotides in length, compared to the 20-

nucleotide long sgRNAs. And the global nucleotide composition, which is a summary of an 

entire sequence, is only relevant if most of the sequence being modelled is relevant. For the 

ssODN, given its length, this may not be the case. For example, groups have investigated the 

influence of ssODN symmetry and arm length on HDR efficiency, drawing the conclusion that 

asymmetric ssODNs can improve HDR efficiency (Liang et al., 2017; Richardson et al., 2016). 

The consensus was that shorter 3′ arms and longer 5′ arms were optimal for efficient HDR. 

Furthermore, based on the kinetics of HDR, there may be other differences in arm importance. 

For example, after cleavage, 5’ to 3’ resecting occurs at the cleavage site, resulting in a 3’ 

overhang. This means that the 3’ arm (homologous to the PAM/non-target strand) of the 

ssODN is the first region to interact with the target DNA. Based on this information, I 

hypothesised the ssODN influence on HDR efficiency to be asymmetrical, rather than constant 

across the entire ssODN. To test my hypothesis, I trained models on ssODN arms separately, 

rather than the entire ssODN. This resulted in models where the 3′ arm does inform HDR 

efficiency, with an OOB error of 0.275, and the 5′ arm does not, with an OOB error of 0.792 

(Table 5). 

Model Region OOB error ROC Precision Recall Correct 

O1 Full 0.6 0.54 0.413 0.533 13/30 

O2 3′ 0.275 0.91 0.803 0.733 22/30 

O3 5′ 0.792 0.09 0.25 0.267 8/30 

Table 5 – metrics from three Random Forest models trained on the nucleotide composition of the ssODN. O1 is trained the 
full ssODN. O2 is trained on the 3′ arm, and O3 is trained on the 5′ arm (all homologous to the PAM strand). 
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3.2.6 Using machine learning to learn from the data 

Previously, I trained a model on the two feature sets that presented high performance. This 

included the global nucleotide composition of the sgRNA, and the global nucleotide 

composition of the 3’ ssODN arm. This was named the M1 (mixed) model and served as the 

production model for CUNE. On the V1 dataset, it presented a prediction accuracy of 0.733. 

With the newer and larger dataset, I aimed to train a better performing model. But, instead of 

manually training models on features that I hypothesised to modulate HDR efficiency, I took 

advantage of Random Forest’s ability to cope with high-dimensional data to train a model on 

the entire feature set. From this, the model with the optimal cross-validated score validated on 

the validation set, V2, with an accuracy of 0.833. From 11 positives, it correctly classified 9, 

and from 7 negatives, it correctly classified 6. This is an improvement on the original model, 

which presented an accuracy of 0.667 on V2. 

From this one model, it was also possible to identify the most-influential features. For example, 

in the top 100 features, 33 were 3’ ssODN features, 29 were sgRNA features, 19 were 5’ 

ssODN features and 18 were overall ssODN features. Furthermore, while 16 3’ ssODN 

positional nucleotides appeared in the top 100, zero 5’ ssODN positional nucleotides 

appeared. This supported my hypothesis that the 3’ ssODN arm is more influential in 

modulating HDR efficiency than the 5’ arm. 

3.2.7 Web service for predicting HDR efficiency 

Based on the original model, I created an online prediction tool: Computational Universal 

Nucleotide Editor (CUNE). CUNE enables researchers to identify the optimal way to insert a 

specific SNV at a genomic locus. Because base editing is generally more efficient than HDR, 

the service identifies which, if any, base editing system is applicable, using pre-established 

rules (Gaudelli et al., 2017; Y. B. Kim et al., 2017; Komor et al., 2016; Nishida et al., 2016; 

Renaud et al., 2016). However, because of the limited scope of base editing, CUNE will 

identify the optimal sgRNA to induce a given SNV. Based on this work, I will update CUNE to 

the new model trained on the larger dataset. 

3.3 Discussion 

I set out to understand the factors that govern HDR-mediated SNVs. I aimed to create a 

computational tool to make efficiency-improving recommendations for variables that are easy 

for the researcher to vary, such as ssODN and sgRNA design. This was especially relevant, 

as the currently known factors that govern efficiency, such as cell type and locus (Miyaoka et 

al., 2016), are usually fixed parameters for an experiment. 
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I trained models on different features to investigate how they each influence HDR efficiency. I 

chose to use the Random Forest algorithm as it enabled the quantification of the contribution 

of each input feature (feature importance), as well as the modelling of feature interactions, 

which provided insights into mechanisms. Random Forests are also resilient to overfitting 

(Breiman, 2001b), which was crucial for this training set as it contained more features than 

samples. 

I hypothesised that the ssODN nucleotide composition would be an influencing factor on HDR 

efficiency, due to Watson-Crick base pairing between the ssODN and the DNA target being 

essential for inducing HDR-mediated SNVs. While the nucleotide content of the ssODN 5′ arm 

was unimportant (O3), the content of the 3′ arm proved to be a major contributor to prediction 

accuracy (O2). The importance of the 3′ region was in agreement with the mechanism of HDR. 

For a cell to proceed with HDR, the 5′ strands at the DSB are degraded (Pâques & Haber, 

1999). This process, known as 5′ → 3′ resection, results in 3′ overhangs at the DSB (Figure 

7). Therefore, the 3′ region of the ssODN, being complementary with one of the newly formed 

3′ overhangs, is the first region of the ssODN to interact with and bind to the target. I propose 

that if this occurs, HDR will continue regardless of the 5′ sequence, which resulted in the poor 

predictive performance of the 5′ ssODN models. 

 

Figure 7 – an ssODN (blue/orange) annealed to 5′-3′ resected DNA (PAM strand). ssODNs with regions extending beyond 
the resected DNA may require further processing or strand-invasion of the DNA target. The sequence composition of this 
region (orange) has a strong impact on HDR-efficiency. 

Liang et al. observed the optimal length for a 3′ arm to be 30-35 nucleotides, which they based 

on the 5′ → 3′ resection at the DNA target typically creating overhangs of 30 to 40 nucleotides 

(Liang et al., 2017). They suggested that arms extending beyond this region are 

accommodated by further target resecting, 3′ ssODN trimming or strand invasion of the target, 

while shorter arms can anneal directly to the target. I hypothesised that the efficiency of this 

process is influenced by nucleotide composition, which I could investigate as the ssODN arms 

extended beyond the resected region (Figure 7). In support of the optimal length, I observed 

my prediction accuracy to temporarily plateau at 20 nucleotides, before continuing to improve 
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at 45 nucleotides, all the way to 60 nucleotides. This indicated HDR-efficiency is especially 

sensitive to the nucleotide composition of the region beyond the resected DNA (Figure 7). 

I hypothesised that the distance from the SNV to the PAM would contribute to my model’s 

accuracy, but this proved not to be the case. While I observed the expected inverse correlation 

between distance and HDR efficiency, as reported in previous literature (Bialk et al., 2015; Inui 

et al., 2014; Liang et al., 2017), it did not improve model prediction accuracy. This was likely 

a result of the unbalanced nature of this feature in the dataset. For example, Liang et al. 

observed HDR rates of below 5% at distances over eight nucleotides away from the PAM 

sequence and rates of 10% to 30% at, or fewer than, eight nucleotides away. Setting eight 

nucleotides as the high/low threshold, a balanced dataset would require 50% of the samples 

to be up to (and including) eight nucleotides away, with 50% of the samples being over eight 

nucleotides away. However, only 13 out of 63 (21%) of the samples were over eight 

nucleotides away, limiting the impact of this feature in modelling. This is a result from bias in 

experimental design, as sgRNAs were designed based on their proximity to the target SNV. 

The aim of this was to improve experimental outcomes, rather than to produce a balanced 

dataset. Another potential reason is the high variance in HDR efficiencies in each of these two 

windows. From inspecting samples with an SNV over eight nucleotides away from the PAM, 

the average HDR efficiency was 0.24, but the standard deviation was 0.20. And for samples 

with an SNV at eight or fewer nucleotides away from the PAM, the average HDR efficiency 

was 0.40 with a standard deviation of 0.29. Although the averages are as expected, 

demonstrating higher HDR efficiencies for samples with an SNV near the PAM, the high 

standard deviations contributed to the poor predictive power of this variable. 

This work resulted in the first computational method for designing efficient experiments for 

inducing SNVs using base editing and HDR. I have provided this as a web service, which can 

design sgRNAs and ssODNs to induce user-specified SNVs. In addition, the web service will 

also identify base editing targets using pre-existing rules. Also, with the availability of additional 

data, I was able to validate the published model on a second validation set. Although the 

published model classified most additional targets correctly, the accuracy value was lower 

than when validated on the original validation set (0.677 vs 0.733). This was likely due to an 

increase in the efficiency of experiments over time. 

Although it was possible to train an accurate model from the small dataset, further investigation 

into features that modulate HDR efficiency would require a bespoke dataset. I started the 

experimentation required to create such a dataset, designing ssODNs and sgRNAs for 159 

target sites. These components were synthesised for targeting in ES cells by Agilent (15K 
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oligonucleotide array). However, the experimental work is still ongoing. Experimental 

parameters for the ssODN and sgRNA design and their rationale included: 

• Eight different ssODNs per sgRNA to better quantify the independent influence of 

these two components on HDR efficiency. 

• Systematically designed SNV to PAM distances to enable this feature to be modelled. 

• Targets in different epigenetic states, to identify and model the influence of features 

like methylation on HDR efficiency. 

• ssODNs with changes other than SNVs, such as insertions or deletions, to enable 

modelling different HDR outcomes. 

As well as enabling insights into efficiency modulators, the larger dataset of over 150 sgRNAs 

and 1,000 ssODNs would increase model performance by providing a more diverse set of 

samples to model. 

Supporting the importance of more data, the model trained on the published dataset and the 

published validation data, and subsequently validated on the additional data, outperformed 

the original model. Although this model was trained on just published data, including the 

published validation set originally would have removed the ability to validate the published 

model on a validation set. The accuracy of the new model was 0.833 compared to the 

published 0.733. 
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Chapter 4 – The influence of CRISPR-Cas9 induced HDR on generating 

conditional knockout alleles using a 2-guide 2-oligonucleotide donor 

approach 

CRISPR-Cas9 enables the creation of animal models, which in turn supports functional 

genomic approaches to better understand human disease. However, inducing knockouts 

using CRISPR-Cas9 can result in embryonic lethality. In this chapter I explored the application 

of using CRISPR-Cas9 to flank a region with two loxP alleles using two sgRNAs and two 

single-stranded oligodeoxynucleotides. This technique, herein referred to as two-donor 

floxing, enables conditional knockouts based on development stage or location. 

4.1 Introduction 

The field of functional genomics is enabled by the availability of whole-genome sequencing 

data (Hieter & Boguski, 1997; Lander, 1996). The broad aim of functional genomics is to 

elucidate gene function on a genome-wide scale. Techniques range from comparative 

homology searches (Dehal et al., 2009) to reverse genetics (Bhadauria et al., 2009). Where 

the former relies on the availability of already-annotated homologous genes, the latter relies 

on the control of a gene, with the resulting phenotype being observed and annotated. Gene 

control can be transient, for example by epigenetically controlling gene expression with RNA 

interference, or permanent and even heritable, by through gene targeting and mutagenesis 

(Alonso & Ecker, 2006; Gilchrist & Haughn, 2010). Despite the method of gene control used, 

this enables the study of novel, unannotated genes. 

In this chapter I used mouse data as mice are often used in comparative genomic studies. 

Comparative genomics involves the comparison of common features between two genomes 

(Hardison, 2003). Rats and mice are most frequently used to study genetic disease (Rosenthal 

& Brown, 2007; Simmons, 2008). Of these rodents, the mouse was the first to have its genome 

sequenced, with the Human Genome Project including the mouse as one of its five key model 

organisms (Waterston et al., 2002). And with a high level of similarity between human and 

mouse genes (99% of mouse genes have a homologue in the human genome), paired with its 

small size and cost efficiency, the mouse is one of the more suitable species for performing 

comparative genomic studies (Vandamme, 2014; Waterston et al., 2002). 

When the aim is to understand genetic disease, rather than healthy individuals, appropriate 

mouse models must be used. Ideally, such mouse models would contain similar genetic 

perturbations as their human counterparts, with database tools assisting in identifying target 
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genes based on homology or ontology (Hyung et al., 2019; C. L. Smith et al., 2018). After the 

identification of a candidate target, the target must be altered as desired. Changes can be 

generated in mouse embryos through spontaneous, radiation, or chemically induced 

mutagenesis (Hardouin & Nagy, 2000; Justice et al., 2011). However, this non-targeted 

approach is dependent on large scale screens, selective breeding, and chance. Furthermore, 

certain changes may not be possible. Instead of relying on random mutagenesis, it is also 

possible to create transgenic mice with inserted DNA. The first example of this, from 1976, 

utilised viral integration (Jaenisch, 1976). However, despite the predefined genetic payload, 

the target was non-specific. That is, instead of the retrovirus having just one potential 

integration site, it had two. A method that enabled creating more precise transgenic mice 

involves modified embryonic stem (ES) cells (Capecchi, 1989; Gossler et al., 1986). Instead 

of editing the genetic material of the embryo directly, modified ES cells are injected into the 

blastocyst, resulting in a mouse with the desired mutation. However, this leads to the resulting 

mouse being mosaic for the original genotype and that from the ES cells. Of course, now 

precise changes can be induced using guided nucleases such as ZFNs, TALENs, and 

CRISPR. 

Although such technologies enable the efficient and precise editing of genes, a potential 

consequence of generating mice with germline mutations is genetic lethality (Bedell et al., 

1997). However, a concept that allows researchers to potentially overcome genetic lethality 

are conditional knockouts (Sauer, 1998). Conditional knockouts enable a researcher to 

designate a change to be either temporal (at a specified time or development stage), spatial 

(in a specified cell type), or a combination of the two (Schwenk et al., 1998). Enabling 

conditional knockouts is a technique based on Cre-loxP recombination (H. Gu et al., 1994; 

Tsien et al., 1996). As a site-specific recombination system, the presence of Cre recombinase 

catalyses recombination between two loxP sites (N. Sternberg & Hamilton, 1981). Therefore, 

in mice with a genetic region flanked by loxP alleles, the expression of Cre will result in the 

deletion of this flanked region. And until Cre is expressed, the flanked region will remain 

unperturbed (Figure 8). 



The influence of CRISPR-Cas9 induced HDR on generating conditional knockout alleles 

53 

 

Figure 8 – the rear mouse represents a floxed (loxP flanked) exon in the genome. Without Cre recombinase expression, the 
gene containing the floxed exon can be expressed per usual. The foreground mouse represents one with Cre recombinase 
expression. This leads to excision of the flanked exon through recombination. Expression may be tissue specific or specific to 
a particular stage of development, thus avoiding embryonic lethality. 

To use Cre-loxP for conditional gene knockouts, a gene must be floxed, i.e. the gene or a 

critical exon flanked by loxP sites. The process of introducing loxP sites is known as floxing 

(loxP flanking). Floxing has been demonstrated with the previously methods including ES cells 

(H. Gu et al., 1993; Hadjantonakis et al., 2008; O’Gorman et al., 1997), and more recently 

using targeted nucleases like ZFNs (Brown et al., 2013) and CRISPR (H. Yang et al., 2013). 

The latter targeted nuclease methods, now the gold standard, are known as two-donor floxing 

(H. Yang et al., 2013). This technique requires an ssODN for each of the cleavage sites 

induced by engineered nucleases, where each donor contains a copy of the loxP sequence, 

flanked by the target sequence. This enables the loxP sequences to be integrated into each 

of the target sites via homology directed repair (HDR). Because there are two targets, this 

process can be performed either sequentially or simultaneously. However, results from 

sequential injection have been mixed, ranging from a higher efficiency than simultaneous 

introduction (Horii et al., 2017) to almost inevitable failure at the secondary introduction 

(Gurumurthy et al., 2019). 

But regardless of the engineered nuclease and the technique used, two-donor floxing 

ultimately relies on the inefficient HDR mechanism to insert loxP alleles into targets. And 

because a floxed allele requires the insertion of two loxP sites, two separate HDR events are 

required for two-donor floxing, further reducing the likelihood of success. For an example using 

ZFNs, out of 80 live-born rats, while 48 (60%) had a single loxP insertion, only seven (8.75%) 

had both insertions (Brown et al., 2013). Higher efficiencies have been observed using 

CRISPR-Cas9, with a two-donor floxing efficiency of 16% (H. Yang et al., 2013), however, this 
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may be optimistic for real-world two-donor floxing experiments. Because, in Chapter 3, I 

observed an average HDR efficiency of 39%. Based on the postulate that each occurrence of 

HDR is an independent event (the success of one HDR event won’t influence the success of 

the other), the expected probability of two HDR events is P(39% and 39%), or 15.21%. 

However, as the two HDR events must be on the same allele, this probability is halved in 

diploid organism like mice and humans. This results in an expected probability of just 7.60%. 

Furthermore, this efficiency is for single-base payloads, i.e. a single nucleotide variant. 

Inserting longer payloads like loxP, which is 34 nucleotides (Hoess et al., 1982), has been 

demonstrated to be less efficient (K. Li et al., 2014; Liang et al., 2017). 

Based on the requirement of two simultaneous HDR events and large payloads, I 

hypothesised that two-donor floxing is less efficient than expected based on currently 

achievable levels of HDR efficiency. To test this, I have curated and analysed results from 

two-donor floxing experiments. Each two-donor floxing experiment was designed to test the 

outcome from using CRISPR-Cas9 to perform two-donor floxing of an allele in mice embryos. 

In total, there were experimental results for 54 unique genomic regions. The results from each 

experiment were generated by 19 laboratories across six countries, with each laboratory 

targeting at least one region. The six countries included Australia, Belgium, Canada, Japan, 

UK, and USA. Essentially, each experiment was a multiplexed CRISPR experiment with two 

different sgRNA/ssODN pairs, designed to target a region on either side of an exon. Each 

ssODN contained the loxP sequence, flanked by the target sequence, with the aim being to 

integrate the loxP sequence into the CRISPR-Cas9 target through homology-directed repair. 

Each microinjection experiment included a count of live-born mice and the resulting mutations 

at each of the two CRISPR-Cas9 target sites. Efficiency was defined by the number of 

successful floxing attempts divided by the number of live-born mice. A successful floxing 

attempt was defined by a loxP insertion at both CRISPR-Cas9 targets in cis (same allele). 

Mutations that were not counted as successes include single loxP insertions, simultaneous 

loxP insertions where either or both insertions are in trans, as well as indels and larger 

deletions. 

With the data generated by different laboratories, each with their own methodology and 

protocols, other variables were present with the potential to influence experimental outcome. 

These included reagent concentrations, ssODN lengths, the distance between target sites and 

technician skill level. Each of these had previously been demonstrated to effect experimental 

outcomes. Firstly, ssODN concentrations at the cleavage site have been demonstrated to 

correlate with efficiency by increasing availability of the template (Ling et al., 2020; M. Ma et 
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al., 2017). Secondly, ssODN lengths have been demonstrated to modulate efficiency (B. Gu 

et al., 2018), and decrease undesired mutations (Yoshimi et al., 2016). Thirdly, larger 

distances between target sites in multiplexed CRISPR experiments have been demonstrated 

to increase cleavage efficiency (Xie et al., 2015). And finally, technician skill level has been 

demonstrated to effect experimental outcome due to the high skill level required by 

microinjection (Hogan et al., 1994; K. R. Smith, 2012). If not considered, these variables each 

had the potential to confound my analyses. Instead, I aimed to investigate them to identify 

their influence over efficiency to test for the generalisability of prediction models. 

Although the results suggested that two-donor floxing is an inefficient technique, it is versatile. 

I therefore developed a method to minimise the number of failed attempts by forecasting how 

many attempts will be required for a successful outcome. I also found evidence supporting the 

generalisability of CRISPR prediction models. 

4.2 Results 

Two-donor floxing was unsuccessful at most targets, with only 12 out of 54 targets featuring 

at least one success. The average two-donor floxing efficiency was 2%. However, before 

testing the influence of loxP insertion efficiency on two-donor floxing efficiency, I analysed the 

data to identify any confounding variables. 

4.2.1 Laboratory-specific confounding variable analysis 

By virtue of being a multi-centre analysis, the data contained inter-laboratory variables that 

may confound results. Variables could be introduced by differences in experimental design or 

methodology between laboratories. One was the ssODN concentration. Despite having an 

interquartile range of 40 ng/μL across the dataset, the average interquartile range within each 

laboratory was just 1.29 ng/μL. The same phenomenon is observed with ssODN length, with 

an interquartile range of 25 nucleotides across the dataset, but an average interquartile range 

within each group of just 2.36 nucleotides. I used regression analyses to test for an influence 

of these variables on two-donor floxing efficiency. However, I did not identify any significant 

correlations (Table 6). The ssODN concentration had effectively zero correlation with 

efficiency. ssODN lengths presented some correlation with correlation coefficients of 0.15 for 

the 5’ and 3’ ssODN lengths, but these correlations were not significant (correlation coefficient, 

R = 0.15, P = 0.28). Of note are the identical values for 5’ and 3’ ssODN lengths. However, 

these are the same due to groups choosing similar lengths for the two CRISPR-Cas9 targets 

present at each allele. 
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 Correlation Coefficient (R) p-value 

5’ ssODN length 0.15 0.28 

3’ ssODN length 0.15 0.28 

ssODN concentration -0.02 0.92 

Table 6 – correlations between two-donor floxing efficiency and experimental parameters. The ssODN lengths present the 
highest correlation, although not at a significant level. 

Based on these observations, ssODN length and ssODN concentration were not significantly 

modulating two-donor floxing efficiency. However, although these variables were provided by 

each laboratory, which enabled them to be tested for their influence over efficiency, it was also 

possible that unlabelled variables were modulating efficiency. 

4.2.2 Unlabelled confounding variable analysis 

Unlabelled variables are variations between samples that exist but are not included, i.e. 

labelled, in the process of experimental design or data collection. They may be excluded due 

to oversight, a lack of quantification, or simply because they were deemed to be irrelevant. 

One such example is technician skill level. Although not present in this dataset, technician skill 

level is a variable that could modulate experimental outcome. In particular with this dataset, a 

hypothesis is that the skill level of the technician modulates efficiency due to the high skill level 

required by the microinjection technique used in these experiments (Hogan et al., 1994; K. R. 

Smith, 2012). 

Without skill level included as a variable, this hypothesis could not be tested directly. Instead, 

I tested it using a rank-based nonparametric test. This would identify any significant 

differences between distributions of efficiency results from each laboratory. Differences would 

support the hypothesis of skill level modulating efficiency, whereas no differences would refute 

it. This hypothesis was tested in the original publication, identifying no significant difference in 

two-donor floxing efficiency between any laboratories (Kruskal-Wallis rank-sum test, chi-

squared = 22, P = 0.16) (Gurumurthy et al., 2019). However, with the low two-donor floxing 

efficiency resulting in a low effect size between groups, with most (42/54) efficiencies being 

zero, it was possible that any significance was undetected due to a lack of statistical power. I 

hypothesised that although skill level was not demonstrated to modulate two-donor floxing 

efficiency, that the influence of skill would be present in the more variable loxP insertion 

efficiency. 

To test this, I performed the Kruskal-Wallis rank-sum test on loxP insertion efficiency. I 

calculated the loxP insertion efficiency for each target site from the number target sites with a 

loxP insertion divided by the total number of mice. Although there were differences present 
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between groups, with the experiments from the University of Adelaide having an average loxP 

insertion efficiency of over 40% (Figure 9), there were no significant differences between any 

one group and the rest (Kruskal-Wallis rank-sum test, chi-squared = 23, P = 0.155). 

    

Figure 9 – distributions of loxP insertion efficiencies, across laboratories. Targets are unique, with each university targeting 
one or more exons in different genes. According to the Kruskal-Wallis rank-sum test, there was no significant difference 
between any one group and the rest. This rejects the hypothesis that any one group belongs to a different distribution, 
suggesting that laboratory-specific variables are not modulating efficiency. 

The lack of significant differences between loxP insertion efficiencies from different groups 

provided support that differences in technician skill across these labs is not a modulator of 

efficiency. It also provided further support that ssODN length, concentration, or other 

laboratory-specific variables are not significantly modulating efficiency. Another observation is 

this data provides evidence for previous results to be overestimated. With a previous study 

observing a 16% efficiency for two successful events (H. Yang et al., 2013), here all but one 

group have an average efficiency for one successful event of below 20%.  

4.2.3 Sample size effect on loxP insertion efficiency 

For each of the 54 unique two-donor floxing targets, there were from 1 to 159 live-born mice 

(M = 31.28, SD = 32.87). The number of live-born mice is the sample size for each allele. It is 

an arbitrary value, decided upon by each laboratory. It could be based on a predefined goal; 
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but it could also be decided upon and depend on preliminary results. For example, an 

experiment could be stopped based on evidence for, or against, efficient two-donor floxing at 

an allele, or also based on a lack of any single loxP insertions. Despite its variable nature, the 

number of live-born mice was essential for calculating efficiency. For example, the number of 

mice with cis loxP sites divided by the total number of mice was used to calculate two-donor 

floxing efficiency. Because of its importance, I aimed to identify whether the number of live-

born mice was biasing the calculated efficiency values and if so, to set a threshold to minimise 

the margin of error. 

I hypothesised that at lower numbers of live-born mice that the calculated efficiency would not 

be representative of true efficiency. One reason was that fewer samples would result in a 

higher margin of error. When considering the entire distribution of loxP insertion efficiencies 

as the population (n = 108, M = 0.103, SD = 0.151), with 95% confidence the margin of error 

for loxP efficiency calculated from one live-born mouse was 0.296. The margin of error would 

decrease to 0.132 for five live born mice and to 0.094 for ten. However, while higher margins 

of error would lead to higher variances, efficiencies calculated from fewer samples were not 

significantly different from efficiencies calculated from more samples (Kruskal-Wallis rank-sum 

test, chi-squared = 8.9, P = 0.628) (Figure 10a). 

 

Figure 10 – a) demonstrates efficiency distributions for different numbers of live-born mice, in bins of ten mice. b) 
demonstrates the two significantly different distributions (P < 0.05). The range of 0% efficiency targets covers from 1 to 35 
mice, with one outlier. The range of above zero targets includes the same minimum but extends up to 109 mice, with one 
outlier. c) presents these two distributions with a power function fitted against the above zero efficiency targets. The grey 
curve (𝑥−1) indicates the minimum non-zero efficiency for a target of a given sample size. 

This result rejects the hypothesis that the efficiencies from different numbers of mice are 

different, despite the higher margin of error. However, there were several other observations 

that could be made about this data at low numbers of live-born mice. One observation was 

that loxP targets with 0% efficiencies were calculated from fewer live-born mice than loxP 

targets with efficiencies greater than 0% (Mann-Whitney U test, W = 350, P = 7.744e-9) (Figure 

10b). This is likely due to the low effect size of loxP insertion. With a mean efficiency of 0.103, 
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ten mice on average would be required to observe one success, raising the efficiency above 

0%. Another observation was that the shape of the efficiency distribution for low numbers of 

mice is bimodal, with the first mode at 0% and the second mode at a value above the mean 

efficiency value, depending on the number of live-born mice. I postulated that this bimodality 

was introduced by stopping experimentation early due to the observed result. As an analogy, 

the practise of stopping experimentation early is performed in randomised clinical trials 

(RCTs), with the aim of saving time and minimising cost. For RCTs stopped early due to 

efficacy, a review of 143 studies drew the conclusion that such trials should be viewed with 

scepticism due to implausibly large treatment effects (Montori et al., 2005). A later review 

suggested that while overestimation is present, it only becomes appreciable when true effect 

is close to zero (H. Wang et al., 2016). With the low effect size of inserting loxP alleles, this is 

likely what is observed in this dataset. 

Another possible reason for the two modes was the minimum non-0% efficiency value for each 

number of live-born mice. This value is the minimum efficiency a loxP insertion can be, without 

being 0%. This is a function of sample size. For example, with one mouse, the efficiency could 

be 0% (0 1⁄ ) or 100% (1 1⁄ ), giving a minimum non-0% efficiency of 100%. No values between 

0% and 100% were possible. With two mice, the efficiency could be 0% (0 2⁄ ), 50% (1 2⁄ ) or 

100% (2 2⁄ ), giving a minimum non-0% efficiency of 50%. This followed the curve 𝑛−1, where 

𝑛 is the sample size (Figure 10c). So, considering the 10% average efficiency of loxP 

insertions, for efficiencies calculated from one live-born mouse, nine out of ten alleles would 

be recorded as being 0% efficient. But one out of ten times the efficiency would be recorded 

as being 100%. Although the mean efficiency was still the expected 10%, the distribution 

would be bimodal with individual efficiency values being either underestimated or 

overestimated. To mitigate this propensity to underestimate or overestimate efficiency values, 

I excluded alleles with low numbers of live-born mice. A sample size of 20 resulted in a 

minimum non-0% efficiency value of 5%. This eliminated the bimodality that was present in 

the low live-born mice distribution. This sample size resulted in a confidence interval of 

11.92%, with a 95% confidence. Although a lower confidence interval would have been 

preferable, an unrealistic number of live-born mice would have been required for each allele. 

For example, a confidence interval of 5% would have required 84 live-born mice per allele. 

This would have eliminated 49 out of 54 alleles resulting in a sample size of just five. Selecting 

the 20 mouse threshold resulted in a sample size of 26. 

4.2.4 LoxP insertion efficiency modulates two-donor floxing efficiency 

With no evidence for laboratory-specific confounding variables, and low live-born mice 

samples removed, I investigated the influence of loxP insertion efficiency on two-donor floxing 
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efficiency. With the 26 two-donor floxing targets, there were 52 different CRISPR-Cas9 target 

sites. Across these 52 target sites, the average loxP insertion efficiency was 7.5%. Although 

low, this was not unexpected with the average efficiency of inserting a single nucleotide variant 

being 39%, from Chapter 3, and the efficiency of inserting longer payloads like loxP being 

lower than shorter payloads. With each two-donor floxing target having a 5’ and a 3’ target 

site, there was no significant difference in efficiencies between 5’ and 3’ target sites, with 

average efficiencies of 8.38% and 6.80% respectively (Figure 11). 

 

Figure 11 – box and whisker plots showing successful loxP insertion rates for each of the 26 loci. Each loci includes a 5’ and a 
3’ target. The “5’ and 3’” plot represents two-donor floxing efficiency. This plot demonstrates the low efficiency of two-
donor floxing relative to single loxP insertions. 

Reported in the original publication, loxP insertion efficiency mostly depends on loxP insertion 

efficiency at both the 5’ and 3’ target, with this variable explaining 80% of the variance from a 

regression analysis (Gurumurthy et al., 2019). Their observation supported the efficiency of 

two-donor floxing being a probabilistic event of two loxP insertion successes. To further 

support this hypothesis, loxP insertion efficiency would simply be a product of 5’ and 3’ loxP 

insertion efficiency. And with respective 5’ and 3’ efficiencies of 8.38% and 6.80%, the 

theoretical two-donor floxing efficiency was 0.56%. This is comparable to the observed 

average two-donor floxing efficiency of 0.90% (Figure 11). The increase in observed efficiency 

over theoretical efficiency is likely a result of the positive skew introduced by two-donor floxing 

efficiency having both its mode and minimum at zero. 
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4.2.5 The influence of simultaneous CRISPR targeting 

Although these observations supported my hypothesis that two-donor floxing efficiency is 

primarily a product of the success and efficiency of two independent HDR events, it was 

possible that multiple simultaneous CRISPR events were modulating the efficiency of one or 

both loxP insertions (Xie et al., 2015). 

Although there was a positive trend between 5’ and 3’ loxP insertion efficiencies for each two-

donor floxing target, it was not significant and the effect size was small (coefficient of 

determination, R2 = 0.08, P = 0.161). However, for cleavage efficiency, a regression analysis 

indicated that the cleavage efficiency of one target explained 20% of the variance of cleavage 

efficiency at the other target (coefficient of determination, R2 = 0.2048, P = 0.020). 

One possible reason for the correlation between simultaneous cleavage efficiencies is the 

proximal nature of targets. With one target being located close to another, they are more likely 

to share epigenetic properties than distal targets. This includes chromatin accessibility, which 

has been demonstrated to modulate CRISPR efficiency (Uusi-Mäkelä et al., 2018). To further 

test the hypothesis that proximal loxP insertions are not independent of each other, I 

investigated the influence of distance between targets on two-donor floxing efficiency. 

4.2.6 Distance between targets 

The distance between targets specifies how far apart the 5’ and 3’ CRISPR-Cas9 targets are 

for a given two-donor floxing target. The distance varies between two-donor floxing targets, 

as it is dependent on the length of the targeted region/gene/exon that is being floxed. Across 

the 54 two-donor floxing targets, the average distance between CRISPR-Cas9 targets was 

8,122 bases (SD = 25,407). Targets are one or more exons, including up to nine exons. Across 

these targets, those that presented at least one successful two-donor floxing attempt had a 

higher average distance between CRISPR-Cas9 targets than those that presented zero 

successes (Figure 12a); however, this was not significant (Mann-Whitney U test, W = 211.5, 

P = 0.271). From inspecting just the positive distribution (targets with at least one two-donor 

floxing success), there was a significant correlation between two-donor floxing efficiency and 

distance (coefficient of determination, R2 = 0.828, P = 7.70e-4) (Figure 12b). 
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Figure 12 – a) the distribution of distances across two-donor floxing targets with zero successes and two-donor floxing 
targets with one or more successes. A success is a mouse with both loxP sites introduced. The average in the latter group 
was higher, although not significantly (P = 0.271). b) In the latter group (one or more successes), there was a significant 
positive correlation between distance and two-donor floxing efficiency with a coefficient of determination of 0.828 (P = 
7.70e-4). 

These results provided evidence that longer distances between targets results in a higher two-

donor floxing efficiency, i.e. the efficiency of two simultaneous CRISPR-Cas9 cleavage events 

and HDR repair at both sites. A possible explanation for this is that successful cleavage of 

smaller regions is leading to deletion of the fragment between the CRISPR-Cas9 targets. For 

example, in previous multiplexed CRISPR-Cas9 experiments, a negative correlation had been 

demonstrated between distance and deletion efficiency (Xie et al., 2015). However, a more 

diverse set of samples would be required to investigate further. For example, it was not 

possible with this dataset to elucidate the influence of distance at distances outside those 

present in the dataset. Also, because distance is only significant at targets with at least one 

successful floxing attempt, and not significant across all targets, this indicates that targeting 

some alleles will fail regardless of distance. In other words, although distance may influence 

two-donor floxing efficiency, it is just one variable in the equation. 

4.2.7 Machine learning 

So far, my analyses had just considered the effect of single variables on loxP insertion 

efficiency and two-donor floxing efficiency. In this section I used machine learning to perform 

a multivariate analysis on the above properties. I also aimed to model the influence of 

nucleotide composition. For this task I used the Random Forests (Breiman, 2001b) algorithm 

to model the data. As another benefit, Random Forests can also model non-linear 

relationships. 
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With the low number of positives (two-donor floxing successes) and the low variance between 

positives, I aimed to train a binary classification model. To enable this task, I labelled samples 

with one or more two-donor floxing successes as true, and samples with zero two-donor 

floxing successes as false. Although the sample size of 26 was low, and the data was 

unbalanced with just eight positives (alleles with one or more two-donor floxing success), my 

aim was to model the data to identify features that modulate efficiency. I hypothesised that 

this would identify loxP insertion efficiency, based on previous evidence for its importance. 

The set of base features is listed in Table 7. Other features that were trialled includes the 

nucleotide content of the sgRNAs and nucleotide content of the ssODNs. These were global 

counts, identical to Chapter 3. So, for example, a feature was created for the count of each 

individual nucleotide, as well as adjacent nucleotides. This was performed for each arm of the 

ssODN, and for the sgRNA. Inclusive of the comprehensive set of nucleotide features, this 

resulted in 131 features. Exclusive, it resulted in fifteen. 

feature name importance 

3’ efficiency 0.1668 

5’ ssODN 3’ flank length 0.1092 

3’ ssODN 3’ flank length 0.0920 

5’ efficiency 0.0827 

5’ ssODN 5’ flank length 0.0719 

3’ ssODN 5’ flank length 0.0718 

Distance between targets 0.0690 

ssODN concentration 0.0612 

Live born mice 0.0564 

5’ ssODN 5’ flank GC 0.0459 

3’ ssODN 5’ flank GC 0.0424 

3’ sgRNA GC 0.0396 

5’ sgRNA GC 0.0369 

5’ ssODN 3’ flank GC 0.0274 

3’ ssODN 3’ flank GC 0.0268 

Table 7 – feature importance values from a Random Forest model for predicting two-donor floxing efficiency. Importance 
values are a weighted measure, summing to one. 

When including nucleotide features in modelling of two-donor floxing efficiency, performance 

was poor, with the bottleneck being the recall. With an average recall of 0.5 from five-fold 
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cross validation, positives were only being correctly identified 50% of the time. The rest of the 

time they were being misclassified as negative. Excluding nucleotide features from training 

resulted in an improved recall of 0.767. The improvement in recall from removing features 

highlighted the algorithm being unable to filter out noise due to the small number of samples. 

This was also observed in Chapter 3, and is likely a result of the curse of dimensionality, which 

is a result of a low sample size relative to the high number of features (E. M. Wright & Bellman, 

1962). 

Inspecting the importance of features used to train this model revealed similar insights to 

previous regression analyses. Features are presented in Table 7 alongside their importance 

values, which are weighted values, adding up to one. The feature with the highest importance 

is the efficiency of a cis loxP insertion at the 3’ CRISPR-Cas9 target. 5’ efficiency is also 

ranked highly but comes in at fourth. Second and third are ssODN length for 5’ and 3’ targets, 

respectively. However, of note is that for both ssODNs it was the 3’ arm providing the most 

influence on the outcome. The 5’ arms were fifth and sixth in the list, and contributed less 

information, in line with distance, ssODN concentration and live-born mice count. The GC 

content of the sgRNAs and ssODNs ranked the poorest, coming in at tenth to fifteenth. 

These findings supported my hypothesis that loxP insertion efficiency is the primary modulator 

of two-donor floxing efficiency, with the 3’ loxP insertion efficiency contributing 60% more 

information to the model than any other feature. Although the second and third features were 

the length of the 3’ arm of each donor, donor lengths have been demonstrated to contribute 

to insertion efficiency (Shy et al., 2016). Finally, it is possible that nucleotide features would 

have provided more information, as in Chapter 3 and the models referenced in Chapter 1, 

however it is likely that that the small number of samples, and the large number of variables 

introduced too much noise for the algorithm to model these features. 

Finally, I propose a method for forecasting the number of attempts required to achieve a 

success. Because despite its inefficiency, it is versatile. However, with an average loxP 

insertion efficiency of 10%, more than 100 attempts could be required to achieve just one 

simultaneous success. But with the average loxP insertion efficiency of 10%, and two target 

sites, a single loxP insertion should be observed for one in every five attempts. Therefore, the 

loxP insertion efficiency can be used to extrapolate the chance of a success. For example, if 

after ten attempts each target site has had zero successes, then with a 95% confidence the 

average number of attempts required will be 550. However, for one success at each site, this 

drops to 91, for two, 27 and for three, 11. Therefore if an allele has one or fewer successes at 
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both target sites after ten attempts, it should be reconsidered unless no alternative techniques 

or different alleles are available. 

4.3 Limitations and improvements 

These results again highlight the importance of large datasets. While statistical analyses 

uncovered robust evidence that loxP insertion efficiency is the primary modulator of two-donor 

floxing efficiency, Random Forest modelling failed to successfully model previously identified 

features like nucleotide composition. The small sample size led to a low coverage of possible 

nucleotide sequences, so this feature, while known to modulate insertion efficiency, was 

detrimental to model performance. Further exacerbating the issue of sample size, was the low 

number of live-born mice in many experiments. Due to their poor confidence interval, and 

tendency to under or overestimate efficiency, half of the 54 original samples had to be 

discarded. 

Despite the limitations, the ability to produce results suggests the plausibility of generalisable 

CRISPR efficiency modelling. As even though this data was generated by 19 different 

laboratories, each with their own variations in methodology and experimental design, it was 

possible to gain insights and to a lesser extent, model. Despite the inefficiency of two-donor 

floxing, the inefficiency was consistent across laboratories, and was modulated by the same 

features. Combined with the inability to model known features, this supports my conclusion 

from Chapter 1; the importance of large scale experiments for training prediction models. 
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Chapter 5 – Generalisable Cas12a efficiency prediction 

This chapter investigates the Cas9 and Cas12a CRISPR systems regarding efficiency and 

specificity. With a lack of computational tools for Cas12a, but with evidence of improved 

specificity over Cas9, I aimed to produce a quantitative comparison between the two systems 

to identify benefits of the latter. After which, I trained a Cas12a efficiency predictor to enable 

more effective use of this CRISPR system. 

5.1 Introduction 

Arguably the most widely used CRISPR system is CRISPR-Cas9, a class 2 type II system. As 

a class 2 CRISPR system, it is comprised of a single effector module that is capable of PAM 

recognition, R loop formation and target cleavage. This module, Cas9, is comprised of several 

functional domains, which each have specific functional roles in CRISPR interference. For 

example, to mediate double-strand break cleavage are the RuvC and HNH nuclease domains, 

which respectively nick the target and non-target strand of the DNA (Gasiunas et al., 2012). 

However, cleavage can only occur once activated, which requires the successful binding of 

CRISPR-Cas9 to its cognate target (S. H. Sternberg et al., 2014). 

Recognition and binding in type II CRISPR systems are enabled by two RNA molecules: 

CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA). Together, these form a 

chimeric guide RNA (gRNA). The gRNA recognises its target through base complementarity, 

and through Watson-Crick base pairing forms an R-loop with the target strand, displacing the 

non-target strand. Successful binding results in a conformational change in Cas9, activating 

the nuclease domains and enabling cleavage (Jinek et al., 2014). Here, the effector can cleave 

both DNA strands simultaneously (Gong et al., 2018). But as well as being essential for target 

cleavage, R-loop formation also helps to minimise unintended cleavage at sites other than the 

target. It achieves this by being intolerant to mismatches (Rutkauskas et al., 2015). The level 

of intolerance is not binary (match/no-match), instead depending on factors like the number of 

mismatches and their location in the target (Jinek et al., 2012; X. H. Zhang et al., 2015). This 

means that while some mismatches will abrogate target cleavage, others will not. For example, 

mismatches closer to the PAM are more likely to abolish targeting than PAM-distal 

mismatches; possibly due to the kinetics of CIRPSR-Cas9 binding. This is because R-loops 

form in a “zipper effect”, propagating linearly from the PAM. So, while mismatches 

encountered early are likely to prevent complete R-loop formation, mismatches encountered 

later are more likely to allow for a stable product (Rutkauskas et al., 2015). 
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Unintended targets that are cleaved, also known as off-targets, can lead to cell lethality due 

to gene knockouts or loss of heterozygosity due to chromosomal translocations or 

rearrangements (Cho et al., 2014). Because of this, in the field of precision genome 

engineering, mismatch tolerance is usually undesirable. This has prompted groups to 

investigate the specificity of other Class 2 CRISPR systems, like the type V CRISPR system 

and its effector molecule Cas12a, to identify whether they offer a greater mismatch intolerance 

to Cas9 (D. Kim et al., 2016). Cas12a, formerly known as Cpf1, is a class 2 type V CRISPR 

system. Like Cas9, Cas12a is a class 2 CRISPR system (single effector molecule) that is 

RNA-guided and induces a DSB at the target site (Zetsche et al., 2015). But despite these 

similarities, both the mechanism and structure of Cas12a differ from Cas9. 

One major difference is that while Cas9 has a cleavage domain for each strand of DNA (RuvC 

and HNH), Cas12a contains only one cleavage domain (RuvC). Cas12a instead uses its lone 

RuvC domain to cleave both strands of DNA, after successful R-loop formation (Swarts et al., 

2017). Strands are therefore cleaved sequentially, with Cas12a first cleaving the non-target 

strand and then the target strand (Swarts & Jinek, 2019). Possibly due to the sequential 

cleavage events, mismatches may lead to variations in cleavage kinetics, rather than outright 

abrogation of cleavage (Swarts, 2019). This can include the nicking of just the non-target DNA 

strand (B. X. H. Fu et al., 2019; Strohkendl et al., 2018). Upon successful cleavage, Cas12a 

results in staggered cuts, unlike the blunt ends that result from Cas9 cleavage. This is likely 

due to the conformational change required to allow the single cleavage domain to access both 

strands. The type of cut is relevant because it may influence repair outcome (Bothmer et al., 

2017). Another difference is in how each system processes the precursor crRNA (pre-crRNA). 

This step is required to form the mature crRNA that guides the Cas effector to a DNA target. 

However, while Cas9 requires the endogenous RNase III to be present in the host cell 

(Chylinski et al., 2013), Cas12a processes the pre-crRNA itself (Fonfara et al., 2016). And with 

Cas12a not requiring a trans-activating crRNA to perform this process, it results in Cas12a 

being an easier to use system than Cas9. Finally, Cas12a targets a different PAM to Cas9. 

Where Cas9 requires the GC-rich 5’-NGG-3’ PAM sequence at the 3’ end of the guide RNA, 

Cas12a requires the longer, AT-rich 5’-TTTN-3’ PAM sequence at the 5’ end of the guide RNA. 

This leads to a different landscape of genomic targets to Cas9. 

Regarding specificity, comparisons suggest that Cas12a is either comparable to, or more-

specific than Cas9 (Y. Kim et al., 2016; Kleinstiver, Tsai, et al., 2016). Conversely, it has been 

observed that Cas12a is less efficient than Cas9 (Alok et al., 2020; Bin Moon et al., 2018). 

Despite each system having advantages and disadvantages, it is possible to design guide 

RNAs using computational tools to optimise for specificity and efficiency. Such tools exist for 



Generalisable Cas12a efficiency prediction 

69 

both Cas9 and Cas12a, however, the landscape of published tools varies greatly between 

these two effectors. Regarding efficiency prediction, over twenty published tools exist for 

Cas9, whereas only two exist for Cas12a (H. K. Kim et al., 2018; Zhu et al., 2019). Some Cas9 

efficiency prediction tools, like sgRNA designer (Doench et al., 2014) and sgRNA Scorer 2.0 

(Chari et al., 2017), have been retrofitted with Cas12a support, however, this work is 

unpublished and therefore the data not shared. As well as efficiency prediction, it is also 

possible to predict the mutation that will result from CRISPR mutagenesis at a given target. 

But again, the publication landscape favours Cas9. Where for Cas9 three tools exist (Allen et 

al., 2019; Leenay et al., 2019; Shen et al., 2018), for Cas12a, none exist. The landscape for 

off-target tools is more similar between the two systems. Yet many of these tools simply 

identify and rank targets by how unique they are in the genome and don’t consider CRISPR 

kinetics (Bae et al., 2014; A. O’Brien & Bailey, 2014). 

This information makes apparent the large gap between Cas9 and Cas12a prediction tools. 

This is likely not because of lack of desirability, but because of a lack of data. For example, 

Cas9 datasets exist with up to 40,000 gRNAs (Allen et al., 2019). No public Cas12a datasets 

exist to rival this magnitude. However, new datasets are emerging, such as the 15,000 Cas12a 

guides used to train DeepCpf1 (H. K. Kim et al., 2018). On the basis that Cas12a offers 

benefits over Cas9, more work in this area would prove beneficial. So, to support further work, 

I performed a comparison between the two systems. 

I hypothesised that Cas12a provides benefits over Cas9, such as being inherently less 

susceptible to off-target effects. This is based on the observation that Cas12a kinetics can 

result in off-targets with mismatches having just one strand being nicked. Nicks can be 

repaired by the base excision repair (BER) pathway that leads to accurate repair (Dianov & 

Hübscher, 2013). Therefore, mismatched Cas12a targets may be less likely to exhibit off-

target effects than mismatched Cas9 targets, even if successful R-loop formation does occur. 

Also, Cas12a has a longer PAM sequence. The PAM sequence is an essential part of CRISPR 

targeting, and a longer sequence should lead to lower genome-wide PAM density. It has been 

observed that a lower PAM-density leads to a lower off-target binding affinity (S. H. Sternberg 

et al., 2014). 

I tested my hypothesis using computational tools to quantify the uniqueness of targets for each 

CRISPR system, across the genome. However, because CRISPR activity at off-targets 

ultimately depends on mismatch tolerance, and with not all mismatches abrogating cleavage, 

I further tested my hypothesis using experimental data from public datasets. 
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With Cas12a providing specificity benefits over Cas9, I aimed to fill the gap in prediction tools. 

I hypothesised that given the growing amount of public data; it will be possible to train a model 

using machine learning to predict Cas12a mutagenesis outcome. 

5.2 Results 

5.2.1 In silico Cas9 and Cas12a comparison 

To quantify benefits in Cas12a over Cas9, I performed an in silico comparison between these 

two CRISPR systems. Because my aim was to identify real world benefits, I selected ten 

human genes from the top ten most studied genes by citation (Dolgin, 2017). I postulated that 

selecting highly studied genes would provide more relevance than selecting random genes. 

This sample covered six chromosomes and features diversity across exon count, exon length 

and GC content, albeit with a GC rich bias (Table 8). 

 
Chromosome Exons AVE. Exon length  Examined bases GC content 

TP53 17 10 116.2 1362 54.4% 

TNF 6 4 173.5 774 59.7% 

EGFR 7 28 127.8 4137 53.8% 

VEGFA 6 6 80.0 600 50.2% 

APOE 19 3 316.3 1009 64.6% 

IL6 7 5 125.8 729 48.9% 

TGFB1 19 7 165.6 1299 60.5% 

MTHFR 1 11 177.2 2169 56.9% 

ESR1 6 8 221.5 1932 54.% 

AKT1 14 13 109.0 1677 59.9% 

Table 8 – from the top ten list of referenced human genes, these are the genes used for the in silico comparison of Cas9 and 
Cas12a. The examined bases column indicates the number of bases searched for guides. This includes coding regions from 
the exons, plus ten bases either side to allow for guides that are only partly in exons. 

The aim of my analysis was to quantify the distribution of targets for the two CRISPR systems, 

and the distribution of potential off-targets for these targets. I identified targets by the presence 

of a PAM, and quantified potential off-targets using GT-Scan (A. O’Brien & Bailey, 2014) and 

Cas-OFFinder (Bae et al., 2014). These tools identify potential off-targets according to 

sequence similarity. This was on the basis that the Cas9/Cas12a-gRNA ribonucleoprotein 

complex is intolerant to mismatches, so potential off-targets are sites in the genome that have 

an identical sequence to a target. My analysis also included sites with one to five mismatches, 

as up to five mismatch off-targets have been demonstrated for both CRISPR systems (Y. Fu 

et al., 2013). 
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5.2.1.1 Target distribution 

One observation from identifying targets in these ten genes was the order of magnitude fewer 

Cas12a targets than Cas9 targets. For Cas9, 16.1% of positions are targetable. For Cas12a, 

just 1.9% of positions are targetable (Figure 13a). This equates to a total of 2,506 Cas9 targets 

and 318 Cas12a targets. Although this means there are fewer targetable regions for Cas12a 

than Cas9 within these ten human genes, every gene had at least three Cas12a targets. 

However, it also implies that there are fewer Cas12a targets across the human genome. This 

would potentially result in the benefit of fewer Cas12a off-targets. 

 

Figure 13 – the availability and ratio of Cas9 and Cas12a targets differs between genes. a) Cas9 targets are inherently more 
abundant than Cas12a targets across the inspected regions. For Cas9, an average of 16.1% of 23nt windows are targetable 
(have a PAM) but for Cas12a, an average of just 1.9% of 24nt windows are targetable. b) The ratio of Cas9 to Cas12a 
correlates with GC content. Regions with a higher GC content have a higher ratio of Cas9 targets (R2 = 0.911, P = 1.777e-5). 
A linear model forecasts zero Cas9 targets to exist in regions with a zero GC content, as expected. However, this model 
forecasts Cas12a targets to reach zero at a 65% GC content. This indicates that although modulated by GC content, the 
lower abundance of Cas12a targets is likely due to a longer PAM sequence. 

The disproportionate nature of Cas9 and Cas12a targets was not unexpected, as two-

nucleotide motifs (GG) will occur more frequently by chance than three-nucleotide motifs 

(TTT). The extra nucleotide in the Cas12a PAM means that there will be four times fewer 

Cas12a PAMs than Cas9 PAMs when genomic nucleotide compositions are equal. However, 

because the two PAMs have different nucleotide compositions, genomic nucleotide 

composition, or nucleotide bias, can act as a confounding factor. Nucleotide bias, which is a 

preference towards A/T or C/G nucleotides, varies between organisms or even within 

individual genomes (Romiguier et al., 2010). This is evident by the varying GC levels in the 

ten human genes analysed (M = 56.29, SD = 4.69). With a positive GC bias in these ten genes, 

it was possible that Cas12a targets would become more abundant than Cas9 targets in less 
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GC-rich regions. To test this, I analysed the correlation between nucleotide bias and target 

ratio for each of the ten genes (Figure 13b). The results suggested that the ratio of Cas9 to 

Cas12 targets is correlated with GC content (coefficient of determination, R2 = 0.911, P = 

1.777e-5). However, based on a linear model, even with a GC content of 50%, Cas9 targets 

are more abundant than Cas12a targets with four Cas9 targets to one Cas12a target. The 

model further indicates that Cas12a targets will only outnumber Cas9 targets when the GC 

content drops below 30%. With the human GC content ranging from 30% to 65%, across 20kb 

windows (Waterston et al., 2002), these observations support my hypothesis that Cas12a 

targets will have fewer off-targets than Cas9 targets in the human genome. However, a 

disadvantage for Cas12a is that for GC-rich regions, above ~70%, Cas12a targets may 

become rare or non-existent. 

5.2.1.2 Computationally identified potential off-targets 

To further test my hypothesis that Cas12a off-targets are less abundant than Cas9 off-targets 

in the human genome, I performed a computational genome-wide analysis. This analysis was 

enabled by two computational tools, Cas-OFFinder and GT-Scan. Both tools test the 

uniqueness of CRISPR guides by identifying genome-wide matches (potential off-targets), 

based on sequence similarity. Potential off-targets can be identical, or with up to a predefined 

number of mismatches. However, while GT-Scan allows up to three mismatches, Cas-

OFFinder does not impose a mismatch limit. 

With off-target cleavage having previously been demonstrated to be possible (albeit inefficient) 

with up to five mismatches in human cells (Y. Fu et al., 2013), I aimed to use Cas-OFFinder 

to perform my analysis. However, to ensure Cas-OFFinder identified potential off-targets as 

expected, I compared it to GT-Scan with up to the latter’s maximum of three mismatches. GT-

Scan, which I developed for a previous research project, uses Bowtie (Langmead et al., 2009) 

to perform the potential off-target search. Across the ten genes, both tools identified identical 

sets of potential off-targets for 97.49% of Cas12a targets and 94.05% of Cas9 targets. For 

Cas12a targets, the only differences were at three mismatches. For Cas9 targets, most 

differences were at three mismatches, although 0.08% of targets differed at one mismatch 

and 0.4% of targets differed at two mismatches. Despite the few differing targets, there was 

no difference in the distribution of results between GT-Scan and Cas-OFFinder (Kolmogorov-

Smirnov test, D = 6.38e-4, P = 1). 

Having verified Cas-OFFinder against GT-Scan, I used Cas-OFFinder to compare Cas9 

potential off-targets to Cas12a potential off-targets with up to five mismatches. For each 

number of mismatches, Cas12a targets had fewer potential off-targets for Cas12a. Regarding 
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zero-mismatch potential off-targets, every Cas12a target (100%) and most Cas9 targets 

(99.1%) were unique in the genome (Figure 14). Most targets remained unique in the genome 

with up to two mismatches, however, like with zero mismatches, more Cas12a (71.4%) targets 

were unique than Cas9 (50.6%) targets. For three mismatches, only 1.9% (Cas9) and 6.6% 

(Cas12a) of targets were unique, and for four and five mismatches, no targets were unique in 

the genome. As well as more Cas12a targets being unique in the genome than Cas9 targets, 

the number of potential off-targets varied significantly. For example, at four mismatches, Cas9 

targets had twice as many potential off targets as Cas12a targets (Kolmogorov-Smirnov test, 

D+ = 0.33, P = 4.70e-27). 

 

Figure 14 – the average number of sites elsewhere in the genome with zero to five mismatches to the original target in the 
20nt guide sequence. Fewer sites exist for Cas12a targets than Cas9 targets for each of zero to five mismatches. For both 
Cas9 and Cas12a, the number of sites increases exponentially as the number of mismatches increase. The inner plots 
present a closer view of the distribution of zero to four mismatch sites. 

These results demonstrated that Cas12a targets are more unique in the human genome than 

Cas9 targets, with zero or more mismatches. Because R-loop formation is intolerant to 

mismatches, this suggests that a randomly chosen Cas12a target will have fewer mismatches 

than a randomly chosen Cas9 target. Although computational tools like GT-Scan and Cas-

OFFinder enable researchers to design guides systematically rather than randomly, no unique 

targets existed with four or more mismatches. However, with most Cas9 targets having at least 

1,452 potential off-targets with four or more mismatches and most Cas12a targets having at 

least 792 potential off-targets with four or more mismatches, more-unique Cas12a targets can 

be chosen than Cas9 targets. Furthermore, with the low cleavage frequency of off-targets with 

this many mismatches (Y. Fu et al., 2013), most potential off-targets will be false positives. 

Although these findings support my hypothesis that Cas12a is more specific than Cas9, they 

do not take CRISPR kinetics and real-world cleavage efficiency into account. Therefore, I 

aimed to further test my hypothesis on in vitro experimental results. 
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5.2.2 In vitro Cas9 and Cas12a off-target comparison 

To gather further support for my hypothesis, I analysed public in vitro experimental results. 

This meta-analysis involved two datasets; one with Cas9 data and the other with Cas12a data 

(Kleinstiver, Pattanayak, et al., 2016; Kleinstiver, Tsai, et al., 2016). Each dataset captured 

genome-wide off-targets for each target. This was achieved using a method called GUIDE-

seq (Tsai et al., 2015). GUIDE-seq allows for the detection of DSBs, including those introduced 

by CRISPR cleavage. These are presented proportionally in terms of read counts. It is 

therefore possible to identify how off-target cleavage corresponds to target cleavage. One 

concern was the size of the datasets, of which the Cas9 dataset contained eight and the 

Cas12a dataset contained eighteen sgRNAs. However, these were the largest publicly 

available off-target datasets at the time of analysis. But although size may be a disadvantage, 

one advantage of these datasets was that they were generated by the same group, which can 

help to reduce confounding variables. Another advantage I identified was that targets shared 

the same distribution of potential off-targets as targets from the previously analysed genes. 

5.2.2.1 Cas9 

Across the eight Cas9 targets, off-targets existed with from one to five mismatches. Off-targets 

were cleaved less efficiently than targets, with cleavage efficiency decreasing as the number 

of mismatches increased (Figure 15a). Although cleavage efficiencies were lower, there were 

more off-targets across the genome with higher numbers of mismatches (Figure 15b). This 

was likely due to there being more potential off-targets (identified with Cas-OFFinder) with 

higher numbers of mismatches (Figure 15c). For example, although only 30% of potential off-

targets with three mismatches were cleaved (Figure 15d), there were more potential off-targets 

with three mismatches than with two mismatches or one mismatch. The consequence of larger 

numbers of inefficient off-targets was higher combined off-target efficiency. For example, while 

the average cleavage efficiency of a three-mismatch off-target was less than 10%, the average 

cleavage efficiency of all three-mismatch off-targets, for a given target, was just under 40%. 



Generalisable Cas12a efficiency prediction 

75 

 

Figure 15 – each plot represents a different off-target distribution for each of one to five mismatches. a) Cas9 off-target 
cleavage efficiencies, relative to target efficiency. b) the number of off-target loci c) the number of potential off-targets, 
identified by CAS-OFFinder. d) The percentage of potential off-targets that were cleaved. 

These observations demonstrated the importance of being aware of off-target effects that arise 

from CRISPR-Cas9 cleavage. They also demonstrate the variable nature of off-target 

cleavage. For example, off-targets with two mismatches presented cleavage efficiencies with 

an interquartile range of 12% to 70%. However, this is likely a result of the proximity of 

mismatches to the PAM, as based on previous observations of a “seed’ region (Jinek et al., 

2012; X. H. Zhang et al., 2015). This is supported by most two-mismatch off-targets with an 

efficiency of greater than 25% having both mutations at least nine bases from the PAM. No 

two-mismatch potential off-targets with both mismatches within eight bases of the PAM 

demonstrated cleavage. However, further highlighting the unpredictable nature of CRISPR-

Cas9 cleavage is that the two-mismatch off-target with the second highest cleavage efficiency 

had a mismatch just two-bases from the PAM. 

5.2.2.2 Cas12a 

With Cas12a targets having fewer potential off-targets than Cas9 targets, I postulated that 

targets from the Cas12a dataset would present lower off-target cleavage than targets from the 

Cas9 dataset. This was indeed the case with nearly all targets. However, the proportion of 

Cas12a potential off-targets that were cleaved was lower than the proportion of Cas9 potential 

off-targets cleaved, with zero detectable off-target cleavage for most (16/18) Cas12a targets. 
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However, there were two exceptions. The first, DNMT1-3, had two off-targets and the second, 

DNMT1-7, had one. The former had a five-mismatch site with 0.3% cleavage efficiency, and 

a six-mismatch site with 149.9% cleavage efficiency. The latter just had a five-mismatch site 

with 1.6% cleavage efficiency. 

The most unexpected off-target was the six-mismatch site. Not only was it more efficient than 

the intended target (1174 reads, compared to 783), but it was also the only off-target to have 

more than five mismatches. Perhaps expectedly, all six mismatches were outside the seed 

region, being PAM-distal and at the end of the target. However, other guides presented 

potential off-targets with mismatches isolated to this region, yet presented no cleavage. This 

indicates this off-target to be an outlier, albeit an efficient one. Despite it being an outlier, 

evidence suggested it was real, with validation in another cell line identifying the same six-

mismatch off-target. However, in this validation set, cleavage efficiency was lower, at just 32%. 

No cleavage was detected at the five-mismatch site. 

5.2.2.3 Cas9 vs. Cas12a 

Based on these findings, Cas12a targets are more specific than Cas9 targets. While 7 out of 

8 (87.5%) Cas9 targets presented off-target cleavage, only 2 out of 19 (10.5%) Cas12a targets 

presented off-target cleavage. Furthermore, while Cas9 targets with off-targets had an 

average of 16 different off-targets, Cas12a targets with off-targets only had an average of 1.5 

different off-targets. Fewer different locations cleaved across the genome can help in reducing 

large deletions or chromosomal rearrangements. However, although off-targets were fewer 

with Cas12a, they were still present, and this indicates the importance of techniques like 

GUIDE-seq or DISCOVER-seq (Wienert et al., 2019). 

These findings support my hypothesis that Cas12a is more specific than Cas9 due to a lower 

abundance of PAMs. However, the disproportional decrease in Cas12a off-targets, relative to 

the number of potential off-targets, suggests that Cas12a kinetics also lend favour to its 

increased specificity. 

5.2.2.4 Limitations 

A potential limitation to this analysis was that it only analysed results from GUIDE-seq. This is 

because while GUIDE-seq does detect double-strand breaks (DSBs), it does not detect other 

potential off-target events, like single-strand nicks or structural variants. This may lead to 

GUIDE-seq missing off-target effects induced by Cas12a at mismatch sites where single-

strand nicks are likely. However, this may not be an issue due to how nicks are repaired. 

Because unlike cleavage, which can be repaired via the error prone NHEJ pathway, nicks are 
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usually repaired by the accurate single-strand break repair pathway (Caldecott, 2008). 

Although, if the nick is not repaired in a timely manner, it can cause the replication fork in 

replicating chromosomes to collapse, resulting in a DSB at a later point in time (Kuzminov, 

2001). And although GUIDE-seq cannot capture structural variants or large-scale deletions, 

such variants are usually a consequence of DSBs (Kosicki et al., 2018). This means that using 

GUIDE-seq to understand the genomic DSB landscape can be an appropriate mitigation 

strategy to off-target effects. 

Although useful for quantifying off-target effects, GUIDE-seq cannot be used to identify on-

target effects like large deletions and translocations at the intended target (Newman et al., 

2020). Although these are also usually a consequence of DSBs, with the aim of CRISPR 

experiments generally being to induce DSBs at the target, using GUIDE-seq to identify targets 

with few DSBs is counteractive. Therefore, for a comprehensive understanding of target 

effects, and perhaps to ensure no unexpected off-target effects slip through the cracks, 

sequencing is required where avoiding undesired off-target and on-target effects is imperative. 

5.2.3 Predicting CRISPR-Cas12a editing outcomes 

With Cas12a presenting benefits regarding specificity, I aimed to identify whether it was 

possible to predict template-free editing outcomes of Cas12a. This was based on the 

observation that the editing outcomes of NHEJ and microhomology-mediated end joining 

(MMEJ) are sequence dependent (Ata et al., 2018). This means that insertions or deletions 

that result from cleavage are not random but are instead based on the sequence of the cleaved 

allele. Because of this, I hypothesised the editing outcome from CRISPR-Cas12a to be 

predictable. Although less versatile than the template based HDR, it would provide an 

alternative for simple editing outcomes. One benefit is an increased efficiency due to the more-

efficient nature of the repair mechanisms involved. And another benefit is that the complexity 

involved in designing and synthesising synthetic templates could be avoided. 

For Cas9, there are already numerous computational tools that enable the prediction of editing 

outcome. This includes inDelphi (Shen et al., 2018), FORECasT (Allen et al., 2019) and 

SPROUT (Leenay et al., 2019). However, although deletions resulting from the MMEJ 

pathway may be independent of the CRISPR system used, Allen et al. proposed that some 

changes, like a single nucleotide thymine insertion, may be due to Cas9 kinetics. If so, such 

tools are unlikely to be generalisable to Cas12a, despite both nucleases triggering the same 

repair pathways. 
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The ability to test the hypothesis of predictable template-free editing with Cas12a had not been 

possible until recently due to the lack of a sufficiently sized dataset. However, a recent dataset 

provided more than 15,000 Cas12a (AsCpf1) sequenced targets (H. K. Kim et al., 2018). I 

postulated that a dataset of this size would be sufficient to model editing outcomes if outcome-

modulating features do exist. 

5.2.3.1 Insertion/deletion analysis in Cas12a targets 

Before training a model, I aimed to quantify the mutational landscape of Cas12a. For this, I 

analysed the 15,000 samples (HT 1-1). These are synthetic targets, in that they are not 

endogenous to the host cell but synthesised in a plasmid vector, delivered by lentiviral 

particles, and integrated in the host genome. To verify the generalizability of editing outcomes, 

I also inspected a second dataset. This dataset included 55 targets (HEK-plasmid). However, 

one difference is that these are endogenous targets. Each target is present in the genome of 

HEK293T cell line, where the “-plasmid” suffix indicates that plasmid transfection was used as 

the delivery method for Cas12a and the crRNA. For each dataset, treated and control samples 

were available, where control samples were without Cas12a delivery and treated samples 

were at day six after Cas12a delivery. I used GOANA (in review) to identify variants and their 

respective frequencies. 

In the HT 1-1 dataset, I found that deletions occurred more frequently than insertions, with 

1.91 deletions for every insertion (independent t-test, t = 70.07, P = 0) (Figure 16). The 

difference between the two groups had a Cohen’s d of 0.776. Deletions with a length of one 

(L1 deletions) were the most frequent distribution of deletion, accounting for 25% of all 

insertions and deletions (indels). Of note is that the most deletion distributions were 

significantly different (P < 0.05) due to the large sample size of the dataset. The only two 

distributions that were not different are L4 deletions and L5 deletions (independent t-test, t = 

0.19, P = 0.85). These two distributions each accounted for approximately 15% of all indels. 

However, although the rest of the differences were significantly different, the difference 

between L1 deletions and L2 deletions was the greatest, with a Cohen’s d of 0.544. For 

comparison, the second most different distributions, L2 deletions and L3 deletions, had a 

Cohen’s d of 0.146, and the difference between L3 and L4 deletions was just 0.082. 

For insertions, the most frequently occurring distribution, as with deletions, had a length of one 

(L1 insertions). However, unlike deletions, which had relatively similar distributions of L2 

deletions and higher, insertion frequency decreased as length increased, with the longest 

detectable insertion being eight bases in length. The difference between every distribution was 

significant (P < 0.05) except for between L7 insertions and L8 insertions (independent t-test, t 
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= 0.94, P = 0.35). The difference between every group was large, with an average Cohen’s d 

of 0.50. 

 

Figure 16 – distribution of mutations in Cas12a treated samples for endogenous (blue) and synthetic (orange) targets. 
Despite distributions being similar, synthetic targets feature a hard cut-off for deletions with a length greater than five, 
which is not present in endogenous targets. 

Of interest is that unlike insertions, which gradually become less frequent as length increased, 

deletion frequencies remained relatively constant and then abruptly dropped to zero for L6 

deletions. With deletions of length ten bases and longer having been observed before 

(Bernabé-Orts et al., 2019), I postulated that this aberrant drop in reads for deletions of six 

bases and longer was artefactual. Supporting the postulate that this was a technical error 

specific to the HT 1-1 dataset was the observation that this trend did not exist in the HEK-

plasmid dataset (Figure 16). Instead, the frequency of deletions existed up to a length of 27 

(L27 deletions). As with the HT 1-1 dataset, the difference between L1 deletions and L2 

deletions was large (Cohen’s d = 0.544). However, there was another drop between L7 

deletions and L8 deletions (Cohen’s d = 0.689) and between L8 deletions and L9 deletions 

(Cohen’s d = 0.67). 

Other properties were similar across the two datasets. Deletions again had a higher frequency 

than insertions (independent t-test, t = 13.16, P = 2.796e-37), however, the difference between 

insertion frequency and deletion frequency was greater in this dataset (Cohen’s d = 0.958). 

Perhaps contributing to the increased rate of deletions in this dataset was that the full range 

of deletions were captured, unlike in the HT 1-1 dataset. This was supported by approximately 

half (53%) of all deletions being greater than five bases in length, the maximum deletion length 

in the HT 1-1 dataset. Adjusted for missing reads, the synthetic indel ratio would be 7.32:1, 

which is more comparable (1.2x) to that of the endogenous targets 8.63:1. These observations 

suggest that the HT 1-1 dataset, whilst large, is incomplete. This may limit its use in modelling 

editing outcome. 
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5.2.3.2 Single nucleotide variant analysis in Cas12a targets 

Another difference between the HT 1-1 dataset (15,000) and the HEK-plasmid (55) dataset 

was the indel to single nucleotide variant (SNV) ratio. In the HEK-plasmid dataset, SNVs 

contributed to just 6.89% of all short variants. But in the HT 1-1 dataset, I identified this value 

to be an order of magnitude higher, with SNVs making up the majority (63.40%) of short 

variants. This large number of SNVs was unexpected as SNVs are not the typical outcome of 

targeted nucleases. 

Because of the importance that the dataset was an accurate representation of CRISPR-

Cas12a editing outcomes, I aimed to identify the reason behind the high SNV ratio. I plotted 

the SNV outcome counts at each position in the gRNA targets (Figure 17). Each column 

represented the number of reads where that SNV was observed, divided by the total number 

of reads where a SNV was observed. For control (no Cas12a) samples, SNVs existed in a 

uniform distribution across the length of the reads. However, for synthetic treated samples, 

SNVs existed in a bimodal distribution with the global maximum at nucleotide position 17, 

downstream from the PAM. This was three nucleotides upstream from the end of the 20nt 

target. Where the expected proportion of SNVs at each position in the sequenced region was 

2.56%, the global maximum was more than 3x this value, at 7.82%. In fact, nearly half 

(47.30%) of all SNV-containing reads had an SNV at position 17 and its three adjacent 

positions (14 to 20). This data indicates that treating targets in the HT 1-1 dataset with Cas12a 

has resulted in PAM-distal SNVs at the target. It is these SNVs that result in the high SNV 

ratio in the HT 1-1 dataset. 
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Figure 17 – SNV distribution across treated and control samples. The horizontal dotted line indicates the expected uniform 
distribution (2.56) for evenly distributed SNVs across the 29 positions. The letters indicate the editing outcome. 

Although this observation suggested that certain positions were more prone to change, it was 

not possible to draw any other conclusions. To investigate whether features were present in 

the dataset that were modulating SNV outcome, I trained a Random Forest multiclass 

classifier on targets with an SNV at position 17. I labelled this set of targets with the SNV 

outcome (A, C, G or T). To filter out noise, I only included SNVs that were present in greater 

than 1% of target reads. I created features from the nucleotide sequence of the target and 

surrounding region, 39 bases in total. Although the feature that was resulting in this 

phenomenon remained unclear, I created the feature set based on the premise that prior 

nucleotides modulate NHEJ and MMEJ outcome. From five-fold cross-validation, I observed 

an average OOB error of 0.37. This indicated the five cross-validated models were predicting 

the outcome SNV for most samples correctly. To visualise this, I trained a model on 80% of 

the samples and validated the model on the remaining 20%  

This model was able to predict most editing outcomes correctly. Where the outcome SNV is a 

G, the model was correct 77% of the time (Figure 18a). With three possible outcomes for each 

nucleotide, this is more than 3x greater than chance. Predicting an A outcome was the least 

accurate, with an accuracy of 49%, but this was still a 2x improvement over chance. To further 

visualise the prediction probability, I plotted the model as one vs. all receiver operating curves 

(ROCs) (Figure 18b). Each solid line indicates the ROC for one predicted nucleotide versus 
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the remaining three. The dotted lines indicate the averages. Further supporting the 

performance of this prediction model was the average area under the ROC being 0.84. (where 

1 indicates perfect classification and 0 indicates random chance). 

 

 

Figure 18 – visualisations of a Random Forest model trained on 80% and validated on 20%. The label is the SNV outcome, 
which is one of [‘A’, ‘C’, ‘G’, ‘T’]. The features are a tokenised list of nucleotides at and surrounding the Cas12a 20nt target. 
(a) is a confusion matrix. (b) is a one vs. all ROC curve, where each label is alternately represented as true in each model. (c) 
is a list of the top ten important features from the RF model. 

With the strong performance of the model, I inspected whether any notable features were 

contributing to the predicted editing outcome. From the list of 1,200 features, ten features with 

the highest importance are presented in Figure 18c. Of interest was that all four values 

representing the nucleotide at the 26th downstream position from the PAM were included in 

this subset. Also included were three out of the four values representing the original nucleotide 

in the 17th position downstream from the PAM (the position being predicted). The remaining 

three features represent the overall counts of C, G and T. To visualize the relationship of the 

nucleotide at position 26 and the outcome SNV at position 17, I generated a plot representing 

the original nucleotides present at each location in the sequence (Figure 19). However, I 

adjusted bar heights based on equality between the nucleotide being plotted, and outcome 

SNVs elsewhere in the sequence. As an example, if a position has no influence on SNV 

outcomes at other positions, the height of that bar will be one. As presented in Figure 19, this 
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is true for most positions. However, at position 26 the bar height is just under two. This 

indicates that this nucleotide is modulating the SNV outcome at other positions in the 

sequence, resulting in SNV outcomes being the same nucleotide as present at position 26. 

This is at a rate of twice as would be expected by chance. This also applies to position 25, 

albeit at a reduced rate of 1.25x chance. 

 

Figure 19 – this figure displays correlations between the nucleotide present at each position in the target, and outcome 
SNVs. For example, a bar of height one for T at position -1 indicates that for every change to a T elsewhere in the target, 
that there is a T present at position -1. Because position -1 is in the PAM and is guaranteed to be a T, its height will always 
be one. A bar height of 0.25 for T at position p indicates that for every change to a T in the target, 25% of the time the 
nucleotide present at position p is a T. Assuming an equal nucleotide distribution and random outcome, each colour will 
generally make up ~0.25, with a total bar height of ~1. A bar height > 1 indicates a correlation between the nucleotide at 
that position and SNV outcomes elsewhere in the target. For example, the bar at position 26 indicates that SNV outcomes 
across the target are on average twice as likely to be the same as the nucleotide present at position 26 as would be 
expected by chance. 

Whilst this phenomenon is present in treated HT 1-1 samples, it is not present in control HT 

1-1 samples. So, although unexpected, this suggests that the preference for SNVs over indels, 

and the influence of position 26, is a consequence of CRISPR-Cas12a. However, in treated 

samples from the HEK-plasmid dataset, results are as expected. SNV outcomes are the same 

as the control HT 1-1 samples, and there is a preference for indels over SNVs. From this I 

conclude that, while interesting, the observations from the HT 1-1 dataset are artefactual. In 

addition to the dataset lacking reads with deletions longer than five bases, the dataset is not 

a suitable candidate for modelling editing outcome. 
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5.2.4 Cas12a efficiency modelling 

With the observation that the HT 1-1 dataset contains artefacts, I postulated that models 

trained on it would not be optimal for representing Cas12a. The current state of the art model 

for predicting Cas12a cleavage efficiency, DeepCpf1, was trained on the HT 1-1 dataset. This 

model is reported to perform well, with a Spearman’s coefficient of 0.87 on the HEK-plasmid 

dataset (H. K. Kim et al., 2018). However, with this dataset having been trained on artefactual 

synthetic targets, I hypothesised that a model trained on endogenous targets would improve 

upon the performance. To support my hypothesis, I investigated differences in Cas12a 

cleavage efficiency between synthetic and endogenous CRISPR targets. Also, because 

DeepCpf1 models chromatin accessibility, I aimed to quantify the influence of chromatin 

accessibility on cleavage efficiency at accessible and inaccessible targets. After analysing the 

data, I analysed the performance of DeepCpf1 to identify what aspects of prediction 

performance could be improved upon. Finally, I trained Random Forest models on a public 

pooled-library screen dataset.  

5.2.4.1 Statistical analysis of efficiency modulators 

Although my analysis demonstrated a difference in editing outcome between HT 1-1 and HEK-

plasmid, I had not yet analysed Cas12a cleavage efficiency in these datasets. Therefore, to 

quantify any differences in cleavage efficiency between synthetic and endogenous targets, I 

analysed cleavage efficiencies in these two datasets. I also included three more datasets in 

my analysis. This included HEK-lenti and HCT-plasmid. These two datasets both consisted of 

endogenous targets like HEK-plasmid, however, the former differed regarding CRISPR 

delivery (lentiviral transduced), and the latter differed regarding cell type (HCT116). I also 

included a synthetic lentiviral transduced dataset. Finally, I separated the three endogenous 

datasets into chromatin accessible and inaccessible targets. In total, this resulted in eight 

different datasets (Figure 20). To summarise, this included synthetic and endogenous targets, 

HEK293T and HCT116 cell types, lentiviral transduction and plasmid transfection CRISPR 

delivery methods, and chromatin accessible and inaccessible targets. 
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Figure 20 – distributions of efficiencies for the different datasets. (a) is a box and whisker plot demonstrating the different 
ranges. The inaccessible plot indicates most inaccessible targets are inefficient and that the more-efficient targets are 
outliers. (b) is a density plot visualising the different variances between groups. 

The average cleavage efficiency had a high degree of variability between groups, with 

averages ranging from 2% to 45% (Figure 20a). However, cleavage efficiency also had a high 

degree of variability within groups, with variances ranging from 21 to 1045 (Figure 20b). To 

test for differences between groups, I used Welch’s t-test. Welch’s t-test is a version of the 

Students t-test that accounts for uneven variances (Welch, 1947). Cas12a cleavage was 

significantly more efficient in synthetic targets (M = 41.39, SD = 32.31) than in endogenous 

targets (M = 6.98, SD = 12.37); t = 43.06, P = 4.28e-139. However, a potential confounding 

variable was chromatin accessibility, as this has been observed to modulate cleavage 

efficiency (H. K. Kim et al., 2018). This is because while synthetic targets are inherently 

accessible, endogenous targets comprise of both accessible and inaccessible targets, 

depending on chromatin status. Out of the endogenous targets, only 34% (n = 92) were 

accessible. I therefore compared synthetic targets to accessible targets. I found that to a lesser 

degree, synthetic targets (M = 41.39, SD = 32.31) were significantly more efficient than 

accessible endogenous targets (M = 15.50, SD = 16.68); t = 14.72, P = 2.85e-26. The different 

distributions in cleavage efficiency support my hypothesis that synthetic data is not a good 

representation of CRISPR-Cas12a cleavage in general. Even when considering chromatin 

accessibility, the cleavage of synthetic CRISPR-Cas12a targets is significantly more efficient 

than that of accessible endogenous targets. 

Two other factors that appeared to be correlated with cleavage efficiency were cell type and 

CRISPR delivery method (Figure 20a). Comparing different cell types for accessible targets 

with a plasmid delivery method, cleavage efficiency of targets in HEK293T cells (M = 23.85, 

SD = 18.91) was significantly higher than the cleavage efficiency of targets in HCT116 cells 

(M = 8.84, SD=8.13); t = 3.28, P = 0.003. Comparing different delivery methods for accessible 
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targets in HEK293 cells, a plasmid delivery method resulted in a higher cleavage efficiency (M 

= 23.85, SD = 18.91) than a lentiviral delivery method (M = 15.09, STD = 17.35), however this 

was not significant; t = 1.79, P = 0.08. 

5.2.4.2 Chromatin aware efficiency prediction with DeepCpf1 

Despite the significant difference in efficiency between accessible and inaccessible targets, 

only one currently available model uses chromatin accessibility as a feature. This is the 

DeepCpf1 model. All other models just use nucleotide features. This includes Seq-DeepCpf1, 

the model that DeepCpf1 is based on. 

DeepCpf1 and Seq-DeepCpf1 are convolutional neural networks, with Seq-DeepCpf1 being 

trained on sequence information from the 15,000 synthetic HT 1-1 samples. However, 

DeepCpf1 extends Seq-DeepCpf1 by training an additional layer on chromatin accessibility 

information from the 148 endogenous HEK-lenti samples (H. K. Kim et al., 2018). But because 

DeepCpf1 extends Seq-DeepCpf1, both models include layers trained on data from the 

synthetic HT 1-1 dataset. Based on the differences in efficiency between synthetic and 

endogenous targets, as well as the artefacts present in the synthetic dataset, I hypothesised 

that the HT 1-1 dataset was not ideal for modelling endogenous targets. 

In agreement with the published results, I found DeepCpf1 to result in higher Spearman 

correlation coefficients when predicting a mixture of accessible and inaccessible targets. With 

the HEK-lenti dataset, the coefficient improved from 0.573 (P = 2.684e-14) to 0.671 (P = 

9.928e-21). The DeepCpf1 model achieves this improvement in through its additional neural 

network layer trained on chromatin accessibility data. From further inspection, this layer is 

equivalent to dividing the predicted efficiency of inaccessible targets by 7.1. Although this 

improves the score, it has multiple consequences. One is that it results in the maximum 

predicted efficiency of an inaccessible target being 14.08 (100 7.1⁄ ). Another is that it 

separates the relationship between predicted efficiencies into two distributions (Figure 21a). 

The samples in each distribution follow a monotonically increasing curve (Figure 21b). 

However, with both curves starting from zero, this results in a drop in average predicted 

efficiency between inaccessible and inaccessible targets. For example, a target predicted to 

be 10-15% efficient would be on average more efficient than a target predicted to be 20-25% 

efficient. 
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Figure 21 – a) a density plot of the predictions of the same targets to demonstrate the two distributions. The green curve 
represents all targets, and the blue and orange represent inaccessible and accessible targets, respectively. b) DeepCpf1 
predictions for accessible (orange) and inaccessible (blue) targets. The red bar is a histogram for all targets in 20 bins which 
displays the average observed efficiency for predicted efficiencies. The non-linear relationship between true efficiency and 
predicted efficiency leads to poor predictability. 

Because of these observations, I hypothesised that the Spearman correlation coefficient is 

overestimating the performance of DeepCpf1. Firstly, predicted efficiencies and actual 

efficiencies should ideally form a linear relationship, yet Spearman’s coefficient measures the 

relationship between ranked values, rather than the linearity. Secondly, a previous study 

concluded that Spearman’s coefficient should not be overinterpreted as a measure of strength 

of associations between two variables (Hauke & Kossowski, 2011). Therefore, I postulate that 

the Pearson correlation coefficient, which measures linear relationships, is a more appropriate 

measure of model performance. 

Validating the DeepCp1 model on the HEK-lenti dataset, I inspected accessible and 

inaccessible targets separately. For accessible targets, Pearson’s coefficient was 0.273 (P = 

9.95e-05). For inaccessible targets, Pearson’s coefficient was 0.180 (P = 1.33e-05). This 

indicates that predictions produced from DeepCpf1 only accounted for a small amount of 

variance of actual efficiencies. Pearson’s coefficient was higher for the HEK-plasmid dataset 

but was still below 0.5 (0.466 (P = 9.14e-04) and 0.426 (P = 2.13e-05) for accessible and 

inaccessible targets, respectively). 

These results suggested that the DeepCpf1 model has room for improvement, despite its high 

reported Spearman’s coefficient. Firstly, all inaccessible targets were reported poorly, 

regardless of whether they are more efficient than accessible targets. Secondly, the linear 

relationship between predicted efficiencies and actual efficiencies had a high variance, as 

demonstrated by the low Spearman’s coefficient. I proposed that the first point can be solved 

by not including predictions for accessible and inaccessible targets in the same set of results. 

However, the second point is more difficult problem. I hypothesised that a model trained on 

endogenous targets will outperform the DeepCpf1 model. I postulate that this is due to the 
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artefactual nature of the synthetic HT 1-1 dataset. To test this hypothesis, I aimed to train a 

machine learning model on an endogenous dataset and validate on the same datasets used 

to validate DeepCpf1. 

5.2.4.3 Random Forest model 

Although there were no endogenous datasets with the same sample size comparable to that 

of HT 1-1 (15,000 sgRNAs), I identified a pooled-library screen (Mini-human) with 2,061 

samples across 687 human genes (J. Liu et al., 2019). In this knockout screen, Cas12a guides 

were designed for a set of genes, and these regions were sequenced at a series of time points. 

This enabled the calculation of guide efficiency through the log fold change of gene depletion. 

This calculation is based on the relative read count of each region. The log fold change is 

modulated by the confounding factor of whether a gene is essential, or not. That is, how 

important a gene is for the cell to remain viable. To mitigate this, I excluded genes with a low 

Bayes Factor (BF) in my preprocessing stage. BFs are a statistical measure of a gene 

belonging to an essential, or non-essential distribution (Hart & Moffat, 2016). 

After preprocessing, the sample size was 306. Because of the relatively small sample size, I 

avoided deep learning and instead trained models using Random Forests. Because Random 

Forests lack the convolutional layers found in deep learning, I instead used the feature 

processing methodology from my previous chapters. This included global nucleotide counts 

and local nucleotide counts. However, I expanded on my methodology to sample discrete 

regions of the guide in a sliding window. This was more in line with the features that 

convolutional layers from neural networks can generate. For the label, I used Cas12a cleavage 

efficiency. I used five-fold cross validation on the Mini-human dataset for training and testing, 

and validated on each of the HEK-plasmid, HCT-plasmid and HEK-lenti datasets from (H. K. 

Kim et al., 2018). 

I identified the model with the lowest OOB error and scored it using the Pearson correlation 

coefficient on accessible targets from each of the validation sets. These scores are reported 

in Table 9 along with Pearson’s coefficients from the DeepCpf1 model. For each validation, 

the Pearson’s coefficient of the Random Forest model was higher than the DeepCpf1 model. 

The Pearson’s coefficient increased by from 14% for the HCT-plasmid dataset to 50% for the 

HEK-lenti dataset. This variation is likely a result of differences between the training data each 

model used, and differences in efficiency distributions between cell types and CRISPR 

delivery methods. Because where DeepCpf1 performs poorer on HEK-lenti (0.273) than HCT-

plasmid (0.354), the Random Forest model has an equal performance on HEK-lenti (0.409) 
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and HCT-plasmid (0.404). Regardless of the differences, for all validations and with both 

models, the Pearson’s coefficients were significant (P < 0.05). 

 DeepCpf1 Random Forest model Difference 

HEK-plasmid  0.466 (P = 9.14e-04) 0.578 (P = 6.84e-05) 24% 

HCT-plasmid 0.354 (P = 3.49e-03) 0.404 (P = 1.48e-03) 14% 

HEK-lenti 0.273 (P = 9.95e-05) 0.409 (P = 5.64e-07) 50% 

Table 9 – Pearson correlation coefficients for “DeepCpf1” and “RF” models on accessible targets from three validation sets. 
The difference column indicates the increase in these metrics for the RF model over DeepCpf1. 

The improvement on the independent datasets achieved by Random Forests over DeepCpf1 

was despite the training set for Random Forests being 50x smaller than the training set for 

DeepCpf1. This supported my hypothesis that training a model on endogenous data will result 

in an improved model over one trained on synthetic data. Despite the improvements, the 

models do share similarities regarding prediction outcomes on different datasets, which 

suggests that both models are lacking in features modelled. This is because the performance 

of both models varies depending on cell type and CRISPR delivery method. Both models tend 

to over-estimate or under-estimate the efficiencies of different datasets to different degrees 

(Figure 22). 

 

Figure 22 – prediction results for CeepCpf1 and the Random Forest model. The differing fitted linear models are due to 
different cell lines and CRISPR delivery methods resulting in different efficiency distributions. Although the Random Forest 
model predictions are closer to truth, it tends to underestimate efficiencies. The DeepCpf1 model tends to overestimate 
efficiencies. 

The variations are correlated with the efficiency distributions of each datasets (Figure 20). For 

example, because the HCT-plasmid dataset features the lowest average efficiency, both 
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models will overestimate its efficiencies to a greater degree than targets from the more-

efficient HEK datasets. This result suggests that a more-complete model would include cell 

type and delivery method. However, this would be at the cost of generalisability. 

The results supported my hypothesis that a model trained on endogenous Cas12a targets will 

be more generalizable than a model trained on non-representative data. On accessible 

targets, the correlation between predicted cleavage efficiency and observed cleavage 

efficiency improved by between 14% to 50% with my Random Forest model. This 

improvement was despite having access to 50x fewer sgRNA samples than DeepCpf1. Based 

on this improvement, I released the model as Cas12aRF. Available in my repository, it can 

easily be loaded into Python to be used for predicting Cas12a sgRNA efficiency. 

One similarity between both models was the tendency to overestimate or underestimate 

sgRNA efficiencies from different cell types and CRISPR delivery methods. Regarding cell 

types, this raises the question of what biological factors are modulating efficiency. However, 

to investigate this observation further, more data would be required. I propose that such a 

dataset would be the same size as the HT 1-1 dataset (15,000 sgRNAs), but with endogenous 

targets from a diverse range of annotated cell types. This would enable testing a wide range 

of epigenetic modifications. 
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Chapter 6 – General conclusions 

6.1 General overview 

Throughout my thesis, I aimed to improve the usability of CRISPR for genome editing. One 

part of this was through expanding on the knowledge of CRISPR systems and repair 

pathways. For example, elucidating variables that influence the likelihood of replacing a single 

nucleotide at a target site. The other part was to train predictive models that could be used to 

predict the efficiency of genome editing in mammalian cells using Cas9 or Cas12a effector 

nucleases. Such models could be used by researchers to design their own efficient editing 

experiments, improving outcomes, and reducing the number of attempts to result in the 

desired outcome. In each chapter I investigated and modelled a different repair pathway, 

CRISPR nuclease or editing technique. 

For my first results chapter (Chapter 3) I aimed to improve the efficiency of using CRISPR-

Cas9 to make precise edits to an allele. As well as the influence of the sgRNA, I also identified 

novel ssODN features that influence the efficiency of HDR-induced SNVs. This included the 

nucleotide content of the ssODN. However, rather than being the entire nucleotide content, I 

discovered that it was only the nucleotide content of the ssODN arm that initially interacts with 

the target site. Using this information, I trained the HDR efficiency prediction model, CUNE. 

This was published in Scientific Reports and is available freely to researchers as a web 

service. 

My focus on precision editing continued into my second results chapter (Chapter 4) where I 

aimed to test the independence of two simultaneous HDR events, and to identify features that 

influence the efficiency. I identified a correlation between the efficiency of two successful 

insertion events and the distance between the two target sites. However, the feature that 

provided the highest correlation, was the efficiency of a single successful HDR event. Other 

more complex features, like experimental variables, had no significant influence on efficiency. 

In my third results chapter (Chapter 5), I addressed one of the other main concerns of genome 

editing, off-target effects. I found evidence supporting the improved specificity that Cas12a 

offers over Cas9 with most analysed Cas12a targets having no detectable off-target effects. 

With the benefit of specificity, I aimed to train a model to predict Cas12a editing outcome. 

However, I identified that the only Cas12a dataset large enough for this task contained 

artefacts. With the current state of the art Cas12a efficiency prediction model having been 

trained on this dataset, I aimed to train a more accurate model on a smaller, but cleaner, 
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dataset. The resulting Random Forest model, Cas12aRF, improved prediction accuracy by up 

to 50%. 

6.2 Contributions 

My work resulted in a better understanding of different repair mechanisms, improving on the 

knowledge of this field. It also resulted in two publicly available CRISPR prediction models 

(CUNE and Cas12aRF). Through these models, researchers can design efficient CRISPR 

experiments. 

My work on SNV insertion efficiency has led to a better understanding of the HDR pathway 

and features which modulate its efficiency. Although my results demonstrated the increased 

complexity involved in precision gene editing, they also expand upon the current knowledge 

of the pathways involved. For example, it illustrates the importance of nucleotide composition 

in biological processes like homologous recombination. It also indicates that gene editing with 

HDR is not just modulated by the sgRNA sequence, but also the ssODN sequence. These 

findings lead to more variables for researchers to trial when aiming to efficiently induce 

homologous recombination. 

The model that resulted from this research was CUNE (computational universal nucleotide 

editor). Unlike other available CRISPR efficiency models, CUNE predicts the efficiency of 

precision editing using an ssODN. This enables the ability for researchers to design editing 

experiments in silico that have a higher chance of success. This can save time and money by 

reducing the number of editing attempts using inefficient sgRNA/ssODN. As well as predicting 

editing efficiency, CUNE will automatically design the sgRNA and ssODN. Therefore, CUNE 

can save time in the design of editing components. CUNE is generalisable to different 

laboratories as supported by evidence from Chapter 4 demonstrating the negligible influence 

of experimental parameters on HDR efficiency. CUNE is freely available to researchers as a 

web application, provided as part of the GT-Scan suite. It is easy to use, requiring just the loci 

and desired SNV. Also, as well as designing components for genome editing with HDR, CUNE 

will also identify whether base editing is possible for a target. 

One of the other advantages of CUNE is its extendibility, which is essential in the evolving 

field of gene editing. Firstly, not only can rules for novel base editors be added in the future, 

but researchers can also define rules for their own proprietary base editors. Secondly, CUNE’s 

serverless design means that it can be expanded with models for techniques like prime editing, 

allowing researchers to identify the most effective editing technique for their desired outcome. 
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Although computational tools like CUNE can enable efficient HDR gene editing experiments, 

techniques that require two simultaneous HDR events are inherently inefficient. This is 

because of the lower probability of two successful events. Current efficiencies can result in 

hundreds of failed attempts before achieving a success. Therefore, when two simultaneous 

edits are required, researchers may benefit from considering whether alternatives to HDR are 

available. 

However, where long insertions are required and alternatives to HDR are not available, 

researchers can instead focus on two considerations to maximise efficiency. The first 

consideration is to ensure that the sgRNA/ssODN designs for each of the two target sites are 

efficient. The second consideration is that the two target sites are not too close together. My 

findings suggest 4,000 to 8,000 nucleotides apart is optimal, however more data is required 

to test longer distances. 

I also proposed a method for predicting the number of attempts required, based on the 

observed efficiency of single HDR events. This means that researchers can identify targets 

with a high, or low, efficiency after just ten attempts. This can not only save researchers effort 

and money but can also improve animal welfare where animal models are used.  

Just as important as efficiency, is specificity. The high specificity of Cas12a makes it an ideal 

candidate enzyme for tasks like gene therapy. This can save the effort and money involved in 

trialling multiple different guides to reduce off-target effects. But more importantly, as a viable 

alternative to Cas9, Cas12a expands the gene editing toolbox, enabling targeting of more 

alleles in a more diverse set of genomes. 

My Cas12a prediction model, Cas12aRF aims to close this gap in this field. By providing 

accurate efficiency predictions, researchers can use it to enable efficient Cas12a cleavage. 

Because of its generalisability, researchers can be confident that its predictions will provide 

improvements over traditionally designed guides. In combination with computational tools to 

identify unique Cas12a targets, this can help researchers to design efficient and specific 

Cas12a targets unreachable with Cas9 enzymes. By enabling more efficient experiments, the 

uptake of Cas12a will likely increase, resulting in more data. This can enable further modelling 

of Cas12a and the ongoing improvement of Cas12aRF. 
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Throughout the process of locating, analysing and modelling data, one overarching 

observation was that large datasets were scarce or not representative. Although modelling 

smaller datasets is possible, as demonstrated with CUNE, larger datasets are always going 

to provide more accurate results than smaller ones, provided they are representative. Going 

forward, the ideal scenario is that more experimental data is released to the public. This may 

not always be possible due to data ownership concerns. However, it is a problem that needs 

to be considered. And considering the generalisability of models, even numerous small 

datasets would prove useful for future researchers. 

Overall, this work demonstrates the versatility in applying machine learning algorithms to 

genome editing techniques. Even with a scarcity of data, CUNE and Cas12aRF accurately 

captured the systems they were trained to represent, in a generalisable way. Currently, and 

for the foreseeable future, prediction models are and will be essential for reducing wasted time 

and effort. This is especially true for inefficient editing techniques like HDR.  

More generally, as the field of genome editing evolves and new editing techniques become 

available, there will be an increased need for sophisticated computational guidance. Tools that 

can recommend one technique over another and flag their individual limitations on the range 

of editing outcomes they can achieve. Prediction models will hence become essential to direct 

researchers to the editing technique that offers them the solution they need. 
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Appendix 

Name SRP Experiment Samples 
 

Cell line Type Source Citation 

mouse N/A HDR 30 Embryo 
    

Endo-Cas9 SRP150719 NHEJ 124 Endogenous HEK293T treated SRR7352858 Kim et al., 2019 

control SRR7352859 

HT 1-1 SRP107920 15,000 Synthetic N/A treated SRR6058546 Kim et al., 2018 

control SRR6058545 

HCT-
plasmid 

66 Endogenous HCT116 treated SRR6058554 

control SRR6058553 

HEK-
plasmid 

55 Endogenous HEK293T treated SRR6058552 

control SRR6058551 

HEK-lenti 148 Synthetic and 
endogenous 

treated SRR6058550 

control SRR6058549 

Mini-
human 

SRP181683 2061 Endogenous K-562 reference SRR8479041/MonoRef.part1 Liu et al., 2019 

SRR8479029/MonoRef.part2 

week1 SRR8479041/MonoRep1Week1.part1 

SRR8479029/MonoRep1Week1.part2 

week2 SRR8479041/MonoRep1Week2.part1 

SRR8479029/MonoRep1Week2.part2 

week3 SRR8479044/MonoRep1Week3.part1 

SRR8479028/MonoRep1Week3.part2 

week4 SRR8479044/MonoRep1Week4.part1 

SRR8479028/MonoRep1Week4.part2 

Cas9-OT SRP181683 GUIDE-Seq 8 Endogenous U2OS 
 

Supplementary from original paper Kleinstiver et al., 2016 

Cas12a-OT SRP075607 18 Endogenous U2OS 
 

Supplementary from original paper Kleinstiver et al., 2016 

Supplementary Table 1 – this table summarises the datasets used in this thesis. 


