
Autonomous Visual Navigation of a
Quadrotor VTOL in complex and

dense environments

Jean-Luc Stevens

A thesis submitted for the degree of
Master of Philosophy of

The Australian National University

February 2021

© Jean-Luc Stevens 2021

Except where otherwise indicated, this thesis is my own original work.

Jean-Luc Stevens
19 February 2021

Acknowledgments

I would love to acknowledge my colleagues, whom many are my friends, who provided support
to me during the writing of this thesis. I would love to acknowledge my parents, who supported
me in all things during me thesis in a loving manner, making sure I am always on path. I would
also like to thank my church and God, in whom I would have gone insane without.

Foremost thanks to my supervisor, Robert Mahony, who guided me during the creation of
this thesis, who provided valuable insight into the science and mathematics of my work, who
spent large amounts of time in helping me write my conference paper, thesis proposal and this
main thesis, and who persevered through my lack of understanding and preparedness in all
things. He was invaluable in all of my research, and I would have just been completely lost
without him, so I say thanks to him.

I would like to acknowledge the contribution of my supervisory panel - Robert Mahony,
Viorella Ila, and Jochen Trumpf - who helped guide me down the right path during this the-
sis. Similarly, I would like to acknowledge Alex Martin who helped me design the quadrotor
platform and provided valuable help during this thesis.

v

Abstract

This thesis presents a system design of a micro aerial vehicle platform, specifically a quadro-
tor, that is aimed at autonomous vision-based reactive obstacle avoidance in dense and com-
plex environments. Most modern aerial system are incapable of autonomously navigating in
environments with a high density of trees and bushes. The presented quadrotor design uses
leading-edge technologies and inexpensive off-the-shelf components to build a system that
presents a leap forward in technologies aimed at overcoming the issues with dense and com-
plex environments.

Several major system requirements were met to make the design effective and safe. It had to
be completely autonomous in standard operations and have a manual override function. It had
to have its computational capability completely on-board along with vision processing ability.
As such, all state estimation and visual guidance had to be performed on-board the vehicle,
removing the need for remote connection which can easily fail in forest-like environments.
The quadrotor had to be made from mostly off-the-shelf components to reduce cost and make
it replicable. It also had to remain under 2kg to meet Australian commercial aerial vehicle
regulations regarding licencing.

In order to meet the system requirements, many design decisions were developed and al-
tered as needed. The main body of the quadrotor platform was based on off-the-shelf hobby
assemblies. A Pixhawk 2.1 was the flight controller used due to its open-source code and
design which included all sensors needed for state estimation, has manual override for con-
trol, and control the motors. A leading-edge computational device called the NVIDIA Tegra
TX2 was used for vision processing on the quadrotor. The NVIDIA Tegra TX2’s embedded
NVIDIA Graphics Processing Unit (GPU), is compact and consumes low amounts of power.
It also is capable of estimating dense optical flow on the GPU at rates of 120Hz when us-
ing a camera that outputs grey-scale images at a resolution of 376x240. The vision processor
is responsible for providing directional guidance to the on-board flight controller. A design
decision during the project was to include a 3-axis gimbal to stabilise the camera.

The quadrotor was shown to be able to hover and locally move both indoors and outdoors
using the optical flow measurements. Optical flow measurements give a sense of velocity
which can be integrated to get a position estimate, though it was susceptible to drift. The drift
was compensated using a combination of recognisable targets and positioning systems such as
GPS.

The experimental data obtained during the project showed that the algorithms presented
in this thesis are capable of performing reactive obstacle avoidance. The reactive obstacle
avoidance experiments were performed in both simulation and in real world environments,
including the dense forest-like environments. By fusing vehicle speed estimates with optical
flow measurements, visible points in 3D space can have their distance estimated relative to the
quadrotor. By projecting a 3D cylinder in the direction of travel onto the camera plane, the
system can perform reactive obstacle avoidance by steering the cylinder (direction of travel)

vii

viii

to a point with minimal interference. This system is intended to augment a point to point
navigation system such that the quadrotor responds to fine obstacle that may have otherwise
not been detected.

Contents

Acknowledgments v

Abstract vii

1 Introduction 1
1.1 What is a Quadrotor UAV? . 1
1.2 What applications are currently feasible for UAVs? 2
1.3 What are the current Obstacle Avoidance Methods of UAVs? 3
1.4 Contributions of this Thesis . 3

2 Literature Review 5
2.1 History of Quadrotors . 5
2.2 Control and State Estimation of Quadrotors 8
2.3 Optical Flow and its Characteristics . 10
2.4 Visual Control of Autonomous Aerial Vehicles 11
2.5 Summary . 13

3 System Avionics, Hardware, and Computational Architecture 15
3.1 System Requirements . 16
3.2 System Overview . 16
3.3 Computational Architecture . 17

3.3.1 Pixhawk 2.1 (PX4) Architecture . 18
3.3.2 NVIDIA Tegra TX2 Architecture . 19

3.4 Communications . 21
3.5 Camera and Gimbal . 22
3.6 Hardware vibration dampening system . 23
3.7 System components and weights . 25

4 Software Architecture, Filtering and Performance Tuning 27
4.1 Software Architecture . 27
4.2 Quadrotor Dynamics and Frames of Reference 29
4.3 Filtering of noisy GPS position and inertial velocity measurements to estimate

velocity . 31
4.4 Optical Flow Characteristics . 33
4.5 De-rotation of Optical Flow . 34
4.6 Average Inertial Spherical Flow w for Quadrotor Control 35
4.7 Performance Gain Tuning . 35

4.7.1 Velocity gain tuning for general flight 36

ix

x Contents

4.7.2 Velocity and Position Gain Tuning for Velocity Estimates using Opti-
cal Flow . 37

4.8 Summary . 39

5 Vision-based Hover Control 41
5.1 Position Estimation from a known landmark 41
5.2 Vertical Position Estimation via a Logarithmic Filter of w and a landmark . . . 42
5.3 Horizontal Position Estimation from Optical Flow and a Fiducial Marker 43
5.4 Experimental Results . 43
5.5 Comparison of the ArUco fiducial marker position estimate with other methods 44

6 Vision based Forward Sensitive Reactive Control for a Quadrotor VTOL 47
6.1 Forward Vision Tunnel-based Optical Flow Controller 47
6.2 Experimental Results . 53

6.2.1 Simulations . 53
6.2.2 Environmental Settings . 56
6.2.3 Control Sequence . 56
6.2.4 Results and Analysis . 57

7 Conclusion and Future Work 59
7.1 Conclusion . 59
7.2 Future Work . 60
7.3 Mapping the velocity vB onto the camera frame 63
7.4 Notation for Cost Function σ Definition . 63
7.5 Cost Function σ Definition . 64
7.6 Cost Function σ Derivation . 65
7.7 Cost Function γ . 66
7.8 Total Scene Cost Γ and its derivative ∇Γ defintion and derivation 67
7.9 Steering Control ε . 68

List of Figures

1.1 Australian National University quadrotor example 1
1.2 DJI S1000 octarotor . 2
1.3 Australian Bushland . 2

2.1 Breguet-Richet Gyroplane No. 1 . 5
2.2 Borenstein Hoverbot . 6
2.3 Stanford Mesicopter . 6
2.4 Australian National University X-4 Flyer . 6
2.5 DJI Spark . 7
2.6 DJI Inspire 2 . 7
2.7 Drone Racing Environment . 7
2.8 Parrot Bebop 2 FPV drone . 7
2.9 Skydio R1 . 8
2.10 VICON postioning system . 9
2.11 Optical flow estimation example . 10

3.1 Experimental Quadrotor . 15
3.2 Quadrotor Undercarriage . 16
3.3 System overview . 17
3.4 System Components . 17
3.5 Pixhawk 2.1 with HERE2 GNSS . 18
3.6 NVIDIA Tegra TX2 + ConnectTech Orbitty Carrier Board 19
3.7 Complete Quadrotor Architecture and Communications 21
3.8 Matrix-Vision mvBlueFOX-200w . 22
3.9 Accelerometer noise comparison . 23
3.10 Power Spectral Density of the Hard-Mounted IMU 24
3.11 Power Spectral Density of the Dampened IMU 24

4.1 Pixhawk 2.1 Hardware and Code Structure . 28
4.2 NVIDIA Tegra TX2 Hardware and Code Structure 29
4.3 Frames of reference of a quadrotor . 30
4.4 ’A Filter Formulation for Computing Real Time Optical Flow’ example 33
4.5 Semi-textured surface raw image . 34
4.6 Semi-textured surface optical flow filter output 34
4.7 Hv(s) Velocity Control Transfer Function . 36
4.8 Step Response of the tuned Quadrotor . 37
4.9 H(s) Position Controller Transfer Function 38

xi

xii LIST OF FIGURES

4.10 Hw(s) Velocity and Attitude Response Transfer Function 38
4.11 Step Response for Velocity Control . 39
4.12 Step Response for Position Control . 39

5.1 ArUco Marker Detection . 42
5.2 Quadrotor Experiment with assistance of the ArUco marker 44
5.3 Hover Experiment X Position Estimate . 45
5.4 Hover Experiment Y Position Estimate . 45
5.5 Hover Experiment Z Position Estimate . 45
5.6 Hover Experiment Horizontal Position Estimate 45
5.7 Chessboard Centre Detection . 46
5.8 Colour Segmented Output . 46

6.1 Dense optical flow from a quadrotor’s camera 48
6.2 Geometry of the cost function construction . 49
6.3 Visual representation of the cylinder . 49
6.4 Gazebo 7 environment . 53
6.5 Simulation dense optical flow output . 54
6.6 Simulation output of cost function . 54
6.7 Raw simulation output image . 54
6.8 Simulation results . 55
6.9 Obstacle avoidance experiment environment 56
6.12 Example cost function output from the reactive control experiments 57
6.10 Example raw image from the reactive control experiments 57
6.11 Example optical flow output from the reactive control experiments 57
6.13 Experiment Flight Path . 58

7.1 Cylinder-Cone Visualisation and Terminology 64
7.2 Optical Flow and Camera Terminology . 64
7.3 Properties of similar triangles, based on the cylinder 65
7.4 γ remap . 66
7.5 Raw image from failed reactive control experiment 70
7.6 Optical flow image from failed reactive control experiment 70
7.7 Cost output from failed reactive control experiment 70

Chapter 1

Introduction

As unmanned and autonomous aerial vehicles (UAV) are becoming common place in the world
they must be capable of manoeuvring around potential obstacles. UAVs as designed do not
require a human pilot. UAVs are used for both commercial and recreational purposes.

1.1 What is a Quadrotor UAV?

Figure 1.1: A quadrotor used at the Australian
National University. Rotor speed differences
affect the attitude and speed of the quadrotor.

A quadrotor is a form of UAV that is de-
signed for accurate 3D motion. Unlike he-
licopters, a quadrotor consist of 4 individual
fixed-pitch rotors. This simplifies the com-
plexity involved with helicopters that must
have a rotor pitch collective mechanism to
control attitude. The removal of rotor collec-
tive systems makes quadrotors cheaper than
the equivalent helicopter as it reduces the
need for specialised and expensive mechan-
ical parts, while also reducing maintenance
costs as the only moving parts are the 4 mo-
tors.

The basic design of a quadrotor con-
sists of a diagonal pair of rotors that spin in
the opposite direction of the other diagonal
pair (see Figure 1.1). Controlling the speed
on each rotor individually will create torque

which is used adjust the attitude of the vehicle, while a uniform increase/decrease of speed of
all the motors will modify the thrust.

1

2 Introduction

Figure 1.2: DJI S1000 octarotor car-
rying objects2

Designs of multi-rotor are not limited to 4 rotors.
The most commonly used platforms are the quadro-
tor, the hexarotor (6 rotors), and the octarotor (8 ro-
tors). Quadrotors are generally aimed at carrying
low weight payloads such as a single camera. How-
ever, hexarotors and octarotors are generally aimed
at higher weight payloads such as needed by delivery
drones. Generally a largely number of rotors implies a
heavier, larger platform with a higher load capacity.

1.2 What applications are cur-
rently feasible for UAVs?

UAVs have been widely used to perform tasks such
as photography, inspection, search and rescue, mili-
tary applications, and more recently delivery. They are
currently capable of flying from their origin to a target
position, and can navigate some low-density forest and
city environments.

Figure 1.3: Australian Bushland3

Despite all of these applications,
there are many scenarios in which fly-
ing robots cannot perform well. Au-
tonomous aerial vehicles had been
found to be incapable of flying well in
dense and complex environments, such
as forests with trees that have many low-
lying branches (eg. Australian bush-
land) or areas with wire-based fences.

An application that is currently in-
feasible which would provide great ben-
efits, would be to release a swarm of
fast-moving quadrotors that can navi-
gate dense forest environments. This
would greatly increase the efficiency of
Search and Rescue operations due to the

vast area being covered quickly, while flying under the canopy of the forest would make finding
the lost person easier. This could mean the person missing has a significantly higher chance
of survival, than using helicopters which fly above the visually restrictive canopy, or humans
walking on the ground which is incapable of covering vast areas quickly. Most current aerial
vehicle technologies either cannot or have limited ability to do this.

2https://deskgram.net/p/1862707655912817336_2202005788
3https://commons.wikimedia.org/wiki/File:Blue_Gum_Forest_Blue_Sky.jpg

https://deskgram.net/p/1862707655912817336_2202005788
https://commons.wikimedia.org/wiki/File:Blue_Gum_Forest_Blue_Sky.jpg

§1.3 What are the current Obstacle Avoidance Methods of UAVs? 3

1.3 What are the current Obstacle Avoidance Methods of UAVs?

Most methods for navigation of autonomous aerial vehicles are split into 2 different categories:
reactive control and path planning.

Reactive control is based on using instantaneous clues about the environment to perform
obstacle avoidance. The most common reactive control method uses optical flow on a monoc-
ular camera, which is the measure of movement as perceived by the 2D camera frame. Optical
flow reactive control typically uses the net magnitude and direction of optical flow to steer the
vehicle Eresen et al. [2012]; Conroy et al. [2009]; Peszor et al. [2017]. Optical flow has also
been used many times to perform corridor centring Conroy et al. [2009]; Eresen et al. [2012];
Zingg et al. [2010], estimate time to contact McCarthy et al. [2008], stabilisation and landing
over a textured surface Herisse et al. [2012]; Serra et al. [2016]; Ho et al. [2018], and motion
estimation Grabe et al. [2012]; Herisse et al. [2012]; Serra et al. [2016]; Honegger et al. [2013].

Path planning is a predictive control method that requires the estimation of the structure
of the environment to plot a course to a target. The most common method for estimating the
structure of the environment is using Simultaneous Localization and Mapping (SLAM). This
is typically done using a suite of sensors such as RGB-D depth cameras Valenti et al. [2014];
Huang et al. [2017], stereo depth camera Fraundorfer et al. [2012]; Schauwecker and Zell
[2013]; Schaub et al. [2017], LIDAR Achtelik et al. [2009]; Alpen et al. [2010], or monocular
cameras Weiss et al. [2011]; Fu et al. [2014]; Forster et al. [2013]; Blösch et al. [2010]; Fan
et al. [2018]. Estimation time of the structure of the 3D environment however changes in speed
with SLAM, dependant on the methods and scene density the SLAM method estimates.

1.4 Contributions of this Thesis

It was found out that reactive control algorithms that use optical flow, steer the vehicle directly
using a combination of magnitude and direction of the optical flow. However with modern
computational systems such as the NVIDIA Tegra TX2, on-board control using optical flow
can be expanded in capability, particular with access to both a CPU and GPU. A few years ago
this was not possible on-board micro multi-rotor platform.

Limited research has been done into determining whether the magnitude and direction of
optical flow on a point on the 2D image plane is actually representing a threat to the motion of
the vehicle. The research gap has been explored in this thesis. This thesis describes the design
of a quadrotor system that is capable of implementing a modern optical flow algorithm Adarve
and Mahony [2016] that is dense and runs on the latest mobilised computational hardware to
perform visual guidance.

The contributions of this thesis can be summarised as follows:

1. Design of a quadrotor system for utility aerial robotic experiments using off-the-shelf
components.

2. Software architecture and on-board computational hardware for utility aerial robotics
experimental work.

3. Sensor fusion for quadrotor state estimation.

4 Introduction

4. Implementation of image based hover and flight control.

5. Propose a novel new obstacle avoidance algorithm for forward looking reactive control
using optical flow.

The research for this thesis produced a conference paper published to IROS 2018, called
Vision Based Forward Sensitive Reactive Control for a Quadrotor VTOL Stevens and Mahony
[2018].

Chapter 2

Literature Review

Autonomous control of micro-aerial vehicles (MAV), specifically the quadrotor platform, has
had significant research and is being improved upon over time. Depending on the sensors
and computational equipment available, many state estimators and control methods have been
developed. Many algorithms that combine multiple sensors have been used to estimate the
state of the quadrotor, which includes attitude R, angular rate Ω, position ξ, velocity v, and
acceleration a.

Due to the level of sophistication of quadrotors, they are designed to be partly autonomous
as all 4 motors must be controlled to achieve the desired input, where it would be too difficult
for most, if not all, humans to achieve. This means manual control is done by using human-set
attitude or attitude rates, rather than controlling motor states directly.

2.1 History of Quadrotors

Figure 2.1: Breguet-Richet Gyroplane No. 1, the first
manned quadrotor [Leishman, 2002]

The first known manned quadro-
tor built was the ‘Breguet-Richet
Gyroplane No. 1’, built in 1907
[Leishman, 2002]. The quadrotor
has 4 rotors with 8 different lifting
surfaces per rotor, leading to a to-
tal of 32 lifting surfaces. The Gy-
roplane No.1 was reported to have
lifted a pilot up to 1.5m high for
a short period of time, using a sin-
gle 40hp (29.8kW) engine to power
the rotors with an on-board weight
about 578kg. However, there was
no mechanism to control the vehicle, so it was tethered to the ground.

5

6 Literature Review

Figure 2.2: Borenstein Hoverbot [Borenstein,
1992]

Figure 2.3: Stanford Mesicopter [Kroo
et al., 2000]

The first micro quadrotor was the ‘Borenstein Hoverbot’ [Borenstein, 1992; Pounds et al.,
2007]. Micro quadrotors, while having no official definition, are typically less than 2m in di-
ameter and under 10kg. The ‘Borenstein Hoverbot’ consisted of 4 hobby helicopters connected
by the tail, and controlled via changing rotor thrust and rotor pitch angles. Following this was
the ‘Roswell Flyer’ and ‘HMX-4’ which later to become the ‘Draganflyer’, and then the Stan-
ford ‘Mesicopter’ by the late 1990s which weighed in the order of a gram coming under the
unofficial definition of nano-quadrotor [Kroo et al., 2000; Pounds et al., 2007].

Figure 2.4: Australian National University X-4
Flyer [Pounds et al., 2010, 2007]

The concept for an autonomous quadro-
tor, also known as a ‘X4-Flyer’, was first
conceived in a papers submitted in 2002
[Hamel et al., 2002; Altug et al., 2002].
The quadrotor platform allows for the de-
tachment of the motor dynamics from the
body dynamics, unlike other Vertical Take-
off and Landing (VTOL) vehicles such as he-
licopters [Hamel et al., 2002]. The 4-rotor
design allows for omni-directional travel,
however they are mostly aimed at low speed
or stationary flight [Hamel et al., 2002; Altug
et al., 2002].

§2.1 History of Quadrotors 7

Figure 2.5: DJI Spark, general public quadro-
tor for taking photos or having a fun time

Figure 2.6: DJI Inspire 2, quadrotor for pro-
fessional photography and film-making

Many commercial drones are available
for purchase today. The 2 most well known
commercial drone companies are DJI1 and
Parrot2, which are aimed at the general pub-
lic and professional photographers.

Figure 2.7: The common drone racing environment con-
sists of illuminated rings that the pilots must follow

through in a given sequence4

Figure 2.8: Parrot Bebop 2 FPV
drone

One of the latest trends in quadrotors is first-person view (FPV) drone racing. Racing
drones are outfitted with powerful motors and a camera. Pilots can see the environment from
the output of the camera on the racing drone using virtual reality (VR) goggles connected by a
radio link. The pilot then races against other pilots either via time-trials or having a few pilots
fly at once.

1DJI home website: https://www.dji.com/
2Parrot home website: https://www.parrot.com/global/
4https://www.factor-tech.com/feature/drone-racing-zips-glides-and-zooms-into-the-mainstream/

https://www.dji.com/
https://www.parrot.com/global/
https://www.factor-tech.com/feature/drone-racing-zips-glides-and-zooms-into-the-mainstream/

8 Literature Review

Figure 2.9: Skydio R1 autonomous quadrotor

One of the latest innovations in commer-
cial drone technology is the Skydio R15. The
quadrotor released for commerical buyers in
2018 uses Simulataneous Localisation and
Mapping (SLAM) to build a local map of the
environment. This is done using 13 cameras
strategically placed to see the whole environ-
ment. Then using Deep Learning, it detects
the person who it is set to follow and builds
a path through the environment in order to
follow the person while avoiding obstacles
around it. It is primarily aimed at video pho-
tography of people doing activities in the en-

vironment.

2.2 Control and State Estimation of Quadrotors

Control of the quadrotor platform can be achieved by varying the rotors’ speeds. This control
is a function of both rotor speed and pitch [Hamel et al., 2002; Altug et al., 2002]. By varying
different rotors’ speeds, the thrust T and torque τ of the quadrotor will vary. The thrust and
torque combined from each rotor will cause the vehicle to rotate and accelerate [Hamel et al.,
2002; Altug et al., 2002]. To ensure that the net torque of the quadrotor can be controlled,
each diagonal pair of rotors should spin in the opposite direction [Hamel et al., 2002; Altug
et al., 2002]. Roll φ can be controlled by increasing or decreasing the rotor speeds of the left
and/or right rotors. Pitch θ can be controlled by increasing or decreasing the rotor speeds of
the forward and/or rear rotors. Yaw ψ can be controlled by varying the net torque of the rotors
[Hamel et al., 2002; Altug et al., 2002].

Estimation of the current state of the quadrotor is undertaken in few different ways. Most
modern quadrotors and flight controller have a sensor suite on board that consists of an ac-
celerometer, gyroscope, magnetometer and barometer which constitutes the Inertial Measure-
ment Unit (IMU). Using the IMU and software filters (eg. Extended Kalman Filter), the rota-
tion, acceleration (translational and rotational) and altitude of the quadrotor can be estimated
[Bloesch et al., 2015, 2017; Zhang et al., 2016a,b; Lim et al., 2012; Bangura et al., 2014].

Most quadrotors that are commonly used for commercial or hobby purposes also are
equipped with a global position estimation unit (eg. GPS, GLONASS, Galileo), which es-
timates the latitude and longitude (in spherical coordinates) of the quadrotor in the world via a
complex satellite network. This can be used to estimate position and velocity (via the deriva-
tive of position or doppler effect) in local coordinates. This allows for position and velocity
control of the quadrotor to be achieved in outdoor environments. Local positioning systems,
such as VICON 6, can also estimate the position of the quadrotor inside a predefined domain.
These local positioning systems are commonly used in indoor environment, for the purpose of

5Skydio R1 information at: https://www.skydio.com/
6https://www.vicon.com/

https://www.skydio.com/
https://www.vicon.com/

§2.2 Control and State Estimation of Quadrotors 9

testing algorithms that require position or velocity estimation. These position and velocity es-
timates are often incorporated into the filters used by the IMU, to estimate the 6-DOF (degrees
of freedom) state of the quadrotor [Bangura et al., 2015; Brescianini et al., 2013; Weiss et al.,
2011].

Figure 2.10: VICON local positioning system.
The system is finding reflective markers on
the quadrotor using infra-red radiation. It is
then using the distances measured to get posi-
tion estimates of the markers. From the com-
bination of markers with known positions on
the quadrotor, the position and attitude of the

quadrotor can be determined.

However, other methods are also used
to estimate the 6-DOF state of the quadro-
tor. This can also be done using visual meth-
ods such as Simultaneous Localisation and
Mapping (SLAM) or Visual-Inertial Odom-
etry (VIO). Optical flow can also be used to
estimate velocity and position, which is de-
scribed later.

One of the most common visual meth-
ods for the autonomous control of vehicles,
including quadrotors, is using Simultaneous
Localisation and Mapping (SLAM). SLAM
is the process of building a map of the en-
vironment, usually by tracking features in
the environment, while estimating its 6-DOF
pose inside the map being built. This has
been extensively done in quadrotors. The
common sensors used to perform SLAM on
quadrotors are monocular cameras [Weiss
et al., 2011; Fu et al., 2014; Forster et al.,
2013; Blösch et al., 2010], rgb-d cameras
[Valenti et al., 2014; Huang et al., 2017], LI-
DAR (laser-based distance sensor) [Achtelik
et al., 2009; Alpen et al., 2010], and stereo cameras [Fraundorfer et al., 2012; Schauwecker
and Zell, 2013; Schaub et al., 2017].

Visual-Inertial Odemetry (VIO) is the fusion of Inertial Measurement Unit (IMU) data
(accelerometer, gyroscope, magnetometer) with visual estimates, to estimate the rotation and
position of the vehicle [Bloesch et al., 2015, 2017; Weiss et al., 2012; Mohta et al., 2018].
VIO is similar to SLAM that it creates a map to track its position and velocity, however it
removes parts of the map it can no longer see or track. An example of a recent project is the
Robust Visual-Inertial Odemetry (ROVIO) open-source project by a team at ETH Zurich 7.
This project uses an Extended Kalman Filter (EKF) with visual feature tracking on a camera to
estimate the rotation, position and velocity of a UAV in real-time [Bloesch et al., 2015, 2017].

7https://github.com/ethz-asl/rovio

https://github.com/ethz-asl/rovio

10 Literature Review

2.3 Optical Flow and its Characteristics

Figure 2.11: Optical flow estimation example. The difference in position of points between the
left and right image is optical flow.

Optical flow is the measure of the movement of image gradients and intensities tangentially
across the image plane [Lucas et al., 1981; Adarve and Mahony, 2016; Horn and Schunck,
1981]. The motion viewed from the camera frame is a representation of motion in the world
that the camera sees, and can be used to estimate the motion of the camera itself.

One of the most commonly used methods for calculating optical flow is called the Lucas-
Kanarde method [Lucas et al., 1981]. The Lucas-Kanarde method is open-source and avail-
able easily via most computer vision software packages such as OpenCV and MATLAB. The
Lucas-Kanarde method was originally designed for the matching of stereo camera images for
calculating depth, by calculating the relative disparity of image intensity gradients (via pixels)
on the image plane [Lucas et al., 1981]. The same algorithm was adapted to match between
2 images in a sequence, to compute optical flow. This method is designed to compute opti-
cal flow over a very small (eg. 3x3 pixels) local area, however a large area can be computed
by smoothing the image (low-pass filtering) and skipping pixels (called the ‘binning’ of pix-
els) effectively allowing distant pixels to act like they are closer [Lucas et al., 1981; Adarve
and Mahony, 2016; Bouguet, 2001]. This is known as the ‘Pyramidal’ structure [Adarve and
Mahony, 2016; Bouguet, 2001; Zingg et al., 2010].

The Horn Schunck method is another method for calculating optical flow, which was de-
veloped around the same time as the Lucas-Kanarde method [Horn and Schunck, 1981]. This
method is designed around satisfying brightness constancy criteria, which is based on the shift-
ing of image intensities E across the image plane.

Recent developments for optical flow algorithms are either focused on speed or accuracy
of the computation. Current optical flow algorithms that are aimed for speed utilise computing
hardware such as GPU and FPGA systems, which have allowed for optical flow algorithms to
run in the hundreds of hertz range [Adarve and Mahony, 2016]. For example, [Adarve and
Mahony, 2016], which is used during our experiments, is an example of a temporal-based op-
tical flow algorithm that can preform optical flow at VGA resolution at around 800Hz. This
was performed on an Intel i7-4790K processor (Quad core, 4.4GHz) and NVIDIA GTX 780
GPU (2304 CUDA cores, 288 GB/s of memory bandwidth) [Adarve and Mahony, 2016]. Cur-
rent optical flow algorithms that aimed for accuracy, typically attempt to use a deep learning
method to calculate optical flow, or combine parts of both standard and deep learning opti-

§2.4 Visual Control of Autonomous Aerial Vehicles 11

cal flow methods [Xu et al., 2017; Ren et al., 2017; Ilg et al., 2017; Dosovitskiy et al., 2015;
Ranjan and Black, 2017].

Since optical flow is the measure of motion of the projection of the environment onto the
camera plane, it is possible to estimate the motion of the camera itself. While most optical
flow methods uses the magnitude and direction to estimate motion, it is also possible to do this
using only the direction [Briod et al., 2016].

The motion of the camera, and position by integration of velocity, can be estimated from
using the optical flow perceived by the camera and can be mapped onto a unit sphere or via
using a spherical camera [Grabe et al., 2012; Herisse et al., 2012; Serra et al., 2016; Honegger
et al., 2013]. Mapping the optical flow onto the unit sphere perceived allows for a measure of
motion in all of R3, where the the motion in the z = e3 direction of the camera is measured
from the divergence/convergence of the optical flow. The motion estimates scale with distance
to the surface of the object, which requires rectification to get velocity [Grabe et al., 2012;
Herisse et al., 2012; Serra et al., 2016; Honegger et al., 2013].

An open-sourced project, called the PX4Flow, is a device that computes Lucas-Kanarde
optical flow on a camera with an embedded micro controller, which has an attached gyroscope
and sonar [Honegger et al., 2013]. This sensor is shows to be able to calculate velocity es-
timates, which by integration position estimates. It also uses the gyroscope to estimate and
remove rotational optical flow, as velocity estimates require only the translational component
of optical flow to be accurate. It also takes into account the scaling of optical flow from the
distance from the surface, using the sonar for distance measurement [Honegger et al., 2013].

2.4 Visual Control of Autonomous Aerial Vehicles

Reactive and Path Planning are the 2 primary control methods used on autonomous vehicles.
Reactive control relates to the instantaneous reaction to visual cue, while path planning is based
on using the known scene to estimate a path to follow.

Reactive control is typically achieved via using a visual input such as one of the few types
of cameras (monocular, RGB-D, stereo, etc). The most common method for reactive control is
based on using optical flow on a monocular camera, due to its lightweight and relative ease for
computation [Zingg et al., 2010; Coombs et al., 1998; McGuire et al., 2017; Peng et al., 2016;
Srinivasan et al., 1999].

Path planning requires that the structure of the environment can be determined, and a target
destination is known. A path is often built that fits the vehicle’s constraints, so that the vehicle
navigates to the target. If a map is available, the path is built to navigate around the objects it
can see. SLAM is used for path planning, as it naturally builds a map of the environment in
which the quadrotor is moving [Weiss et al., 2011].

The focus of this thesis is for using optical flow for reactive control as opposed to full
navigation and path planning of a quadrotor.

The optical flow method by Adarve and Mahony [2016] is used to perform the obstacle
avoidance and visual servoing experiments shown in this thesis. Optical flow based control of
robotic vehicles is shown to be a classical subject in ground-based and flying robotics [Coombs
et al., 1998; McGuire et al., 2017; Peng et al., 2016; Srinivasan et al., 1999].

12 Literature Review

Bio-mimetic literature demonstrates that many animals, insects, and even humans rely on
optical flow for low level control of motion [Srinivasan et al., 1996; Bhagavatula et al., 2011;
Warren et al., 2001; Srinivasan et al., 1999]. Honey bees and budgerigars were shown to
navigate through narrow passages by averaging the optic flow it experiences between both
eyes [Srinivasan et al., 1996; Bhagavatula et al., 2011; Srinivasan et al., 1999].

Corridor centring is one of the most prominent uses for optical flow on quadrotors for
indoor and outdoor environments [Conroy et al., 2009; Eresen et al., 2012; Zingg et al., 2010;
Lai et al., 2018]. An early example of optical flow control for corridor centring is where
a ground robot calculated optical flow from a camera which views both walls in a corridor,
and steers the robot to make the optical flow velocities equal [Srinivasan et al., 1999]. They
controlled the position of the robot by balancing the flow experienced. This was expanded to
corridor centring by estimating the distance from the robot to wall using optical flow from its
known velocity [Zingg et al., 2010]. The current limitations of corridor centring using optical
flow is when the environment is complex, such as in forests.

Implementation of optical flow based control of quadrotors has been undertaken for hover-
ing over a target [Herisse et al., 2012; Serra et al., 2016]. In the experiments by [Herisse et al.,
2012], they calculated the inertial average optical flow w of the projection of a camera onto
a unit sphere to achieve motion estimates in R3 (includes field divergence and convergence)
[Herisse et al., 2012]. From this, they were capable of hovering and landing over a moving
textured target. This was done using a face-down camera transmitting the camera feed to a
ground-station which is computing Lucas-Kanarde optical flow, then transmitting commands
back to the quadrotor [Herisse et al., 2012]. Hovering experiments have also been used to esti-
mate velocity from a face-down camera, when you know the distance from the ground [Grabe
et al., 2012; Herisse et al., 2012; Serra et al., 2016; Honegger et al., 2013]. A similar exper-
iment was performed more recently using on-board processing computer (Intel Atom Z530
1.6GHz), which computed Lucas-Kanarde optical flow at 10Hz [Serra et al., 2016]. Position
estimation was done using landmarks [Serra et al., 2016].

Divergence of optical flow has been used to perform visual docking of a quadrotor [Mc-
Carthy et al., 2008]. In this experiment, the Lucas-Kanarde optical flow method was used
[McCarthy et al., 2008]. This is done via acquiring an estimate of time-to-contact τ to a sur-
face via measuring the optical flow field divergence, while taking into account rotations of the
camera and surface [McCarthy et al., 2008].

Direct control of a quadrotor or micro aerial vehicles (MAV) for obstacle avoidance dur-
ing flight through unknown environments has been implemented a few times [Eresen et al.,
2012; Conroy et al., 2009; Peszor et al., 2017]. These methods primarily focused on using the
magnitude and direction of optical flow to directly control a quadrotor.

Some methods for the visual autonomous control of quadrotors can often mix different
visual sensors and methods. [Fraundorfer et al., 2012] mixes a face-down optical flow camera
with a forward facing stereo camera. In this method, the stereo camera is used to do SLAM,
while the optical flow is used to estimate velocity [Fraundorfer et al., 2012]. [Achtelik et al.,
2009] combines a stereo camera and laser range finder to perform SLAM.

§2.5 Summary 13

2.5 Summary

Since the inception of autonomous quadrotors and multi-rotor variants, they need to be able to
get to their commanded location without colliding with obstacles [Hamel et al., 2002; Altug
et al., 2002]. Potential obstacles can be detected using a range of sensors, including cameras
and rangefinders. Obstacles can be avoided by planning a path using a map or reactively
responding to detected obstacles using instantaneous sensor data.

Path planning requires knowledge of the environment to map a path. The map can be
generated before the flight or by creating a map as the vehicle is moving via methods such as
Simultaneous Localisation and Mapping (SLAM) [Weiss et al., 2011; Fu et al., 2014; Forster
et al., 2013; Blösch et al., 2010; Valenti et al., 2014; Huang et al., 2017; Achtelik et al., 2009;
Alpen et al., 2010; Fraundorfer et al., 2012; Schauwecker and Zell, 2013; Schaub et al., 2017]
and Visual Inertial Odometry (VIO) [Bloesch et al., 2015, 2017; Weiss et al., 2012; Mohta
et al., 2018].

Reactive obstacle avoidance, which is a focus in this thesis, is the near-instantaneous reac-
tion of a mobile autonomous system to the detection of obstacles. Reactive control methods
are generally simpler calculations compared to creating a map and planning a path using it
such as in SLAM and VIO, allowing for faster responses to detected obstacles.

One of the most common methods for detecting obstacles used in reactive control, is op-
tical flow. Optical flow is the measure of the movement of image gradients and intensities
tangentially across the image plane [Lucas et al., 1981; Adarve and Mahony, 2016; Horn and
Schunck, 1981]. It is suggested in bio-mimetic literature that many animals, insects, and even
humans rely on optical flow for low level control of motion [Srinivasan et al., 1996; Bhagavat-
ula et al., 2011; Warren et al., 2001; Srinivasan et al., 1999].

The most common methods of using optical flow for control is corridor centring and ob-
stacle avoidance in flight via balancing optical flow over the image plane [Conroy et al., 2009;
Eresen et al., 2012; Zingg et al., 2010; Lai et al., 2018; Eresen et al., 2012; Peszor et al., 2017],
hovering over a target using the divergence and averaged optical flow [Herisse et al., 2012;
Serra et al., 2016], and docking of a quadrotor on to a target using the divergence of the optical
flow [McCarthy et al., 2008].

Little research has been done into using optical flow for reactive obstacle avoidance in
complex and dense environments, such as forests or areas with wires or cables. Most optical
flow based control experiments focused on environments with little to no complex obstacles
like trees, including indoors and open areas.

Not all optical flow measurements represent an obstacle in the path of the quadrotor, while
some small obstacles such as wires produce little relative optical flow that classical reactive
control algorithms can use effectively. An example could be when a quadrotor is flying along
a wire fence, with trees on the right. The trees are likely to have a much more significant
optical flow presence in the image compared to the wires, and balancing optical flow will tell
the quadrotor to fly towards the wire fence even though the trees may not be in the way.

This thesis has a focus on detecting and reactively avoiding obstacles using dense opti-
cal flow that are actually a threat to a quadrotor by fusing sensor data with the optical flow
measurements.

14 Literature Review

Chapter 3

System Avionics, Hardware, and
Computational Architecture

This chapter presents a quadrotor platform that was designed for use during this thesis. It will
explain the system architecture of both the hardware and software systems. Figure 3.1 shows
the fully constructed quadrotor.

Figure 3.1: Experimental Quadrotor

From Figure 3.1, a Pixhawk 2.1 flight controller is mounted on the top of the quadrotor
with a HERE GNSS attached on top of the the Pixhawk 2.1. A NVIDIA Jetson TX2 and a
Matrix-Vision mvBlueFOX-200w camera (with 3-axis gimbal) is mounted underneath, with
the camera at the front of the quadrotor. Figure 3.2 is a view of the undercarriage close-up.

15

16 System Avionics, Hardware, and Computational Architecture

Figure 3.2: Quadrotor Undercarriage. Contains the mvBlueFOX-200w camera mounted to a
3-axis gimbal and the NVIDIA Tegra TX2 in the background

3.1 System Requirements

A quadrotor platform was designed to perform vision-based experiments with a monocular
camera in Australian environments. This came with the following requirements:

1. The quadrotor must have an autonomous flight mode for the experiments, and a manual
flight mode (via remote controller) in case the autonomous mode fails.

2. The quadrotor must have on-board compute capability, with vision processing ability.
Remote computational systems have limited bandwidth, higher latency, and can become
unusable when the wireless signal is lost.

3. The quadrotor must be less than 2kg, to meet the Australian Government Civil Aviation
Safety Authority (CASA) under 2kg commercial regulation1.

4. The quadrotor must must primarily use off-the-shelf parts for repeatability and reducing
overall cost.

3.2 System Overview

This section presents the system overview of the quadrotor architecture. The overview in
Figure 3.3 shows the design basis required to meet the system requirements.

1CASA under 2kg commercial quadrotor rulings: https://www.casa.gov.au/standard-page/
commercial-unmanned-flight-remotely-piloted-aircraft-under-2kg

https://www.casa.gov.au/standard-page/commercial-unmanned-flight-remotely-piloted-aircraft-under-2kg
https://www.casa.gov.au/standard-page/commercial-unmanned-flight-remotely-piloted-aircraft-under-2kg

§3.3 Computational Architecture 17

Figure 3.3: System overview of required architecture to meet system requirements

Figure 3.4: Hardware Architecture

As it is shown in Figure 3.3, 2 computational devices are required which are both mounted
on-board the airframe. A flight controller is required to take data from state estimation sensors
and a control command, turning these into control signal outputs used by the motors. The main
computer must be used to take in state data from the flight controller and data from a vision
sensor, while providing control commands to the flight controller.

3.3 Computational Architecture

The 2 different computational devices as described in the system overview are the Pixhawk 2.1
(PX4) as the flight controller and the NVIDIA Tegra TX2 as the main computer.

18 System Avionics, Hardware, and Computational Architecture

3.3.1 Pixhawk 2.1 (PX4) Architecture

The Pixhawk 2.1 is the flight controller and computer used to estimate the state of the quadro-
tor (rotation, velocity, position) and control the airframe via sending signals to the motor con-
trollers. It includes an ARM STM32F427 microprocessor and heated Inertial Measurement
Unit (IMU). The IMU includes an accelerometer, gyroscope, magnetometer, and barometer,
which are used to estimate the state of the quadrotor. Additionally, a HERE2 GNSS2 is an-
other state estimation sensor used which uses the satellite networks (GPS, BeiDou, GLONASS,
Galileo) to give a global position estimation.

This device was chosen largely based on the firmware it uses. The firmware used on the
Pixhawk 2.1 is the open-source px4 development code34. This firmware is under a 3-clause
BSD license5. It allows users to subscribe to data being constantly transmitted on the system
via UORB, which allows modular development of all programs. This modular design allows
for building programs that do not interfere with each other (except via CPU usage).

Figure 3.5: Pixhawk 2.1 with HERE2 GNSS
mounted on top

The micro-controller estimates the state
of the quadrotor which includes position, at-
titude, and attitude rates via an Extended
Kalman Filter, IMU and GPS. It then can
turn manual or autonomous control input-
s/setpoints to motor commands for flight.

The Inertial Measurement Unit (IMU)
consists of inertial, magnetic, and air pres-
sure sensors for the PX4 system to use to es-
timate state. The 2 inertial sensors are the
accelerometer and gyroscope which measure
linear and angular acceleration respectively.
The magnetic sensor called a magnetome-
ter (or compass) is used to estimate the rota-
tion of the quadrotor in respect to the Earth’s
magnetic field. The air pressure sensor called

the barometer is used to estimate height from sea level via measuring the local air pressure, in
which air pressure decreases as altitude increases.

The temperature compensated and physically dampened IMU on the Pixhawk 2.1 was one
of the primary reasons it was chosen. In most flight controllers, the inbuilt IMUs are prone
to having temperature affect the performance and calibration of the IMU allowing for drift in
flight. Temperature compensating this by setting a constant temperature (60oC), means that the
calibration and noise is constant in flight meaning the calibration values do not require change
during flight for keep maximum performance. Similarly, having a physically dampened IMU
means that the measurements from the IMU are more trustworthy and less prone to noise
caused by the rotors causing vibrations during flight.

2HERE2 GNSS available at: http://pixhawkstore.com.au/here-2-gnss/
3PX4 Developer Instructions: https://dev.px4.io/en/
4PX4 Developer Code: https://github.com/PX4/Firmware
53-Clause BSD License: https://opensource.org/licenses/BSD-3-Clause

http://pixhawkstore.com.au/here-2-gnss/
https://dev.px4.io/en/
https://github.com/PX4/Firmware
https://opensource.org/licenses/BSD-3-Clause

§3.3 Computational Architecture 19

3.3.2 NVIDIA Tegra TX2 Architecture

The NVIDIA Jetson TX2 is the main computational device used to calculate control features on
the quadrotor. The TX2 is used to perform vision-based guidance calculations used to control
the velocity of the quadrotor. This is a credit-card sized board that can be mounted to different
I/O (Input/Output) boards.

The specifications of the NVIDIA Tegra TX2 are:

• Central Processing Unit (CPU): HMP Dual Denver 2/2 MB L2 + Quad ARM A57/2 MB
L2

• Graphics Processing Unit (GPU): NVIDIA Pascal with 256 CUDA cores

• RAM: 8 GB 128 bit LPDDR4 59.7 GB/s

• Storage: 32 GB eMMC, SDIO, SATA

• I/O: CAN, UART, SPI, I2C, I2S, GPIO

Figure 3.6: NVIDIA Tegra TX2 connected
to the compact ConnectTech Orbitty Carrier

Board

The NVIDIA Jetson TX2’s firmware is
the NVIDIA JetPack SDK which is a modi-
fication of Ubuntu 16.046. This software al-
lows access to the GPU of the TX2 via the
inbuilt CUDA drivers, which is commonly
used for developing programs for NVIDIA
GPUs. Robot Operating System (ROS)7 is
capable of running on the TX2’s software
allowing for modular development of pro-
grams, which can is used on quadrotor plat-
form.

Since the main (default) development I/O
board for the TX2 is large, another I/O car-
rier board is used. The I/O board used is the
ConnectTech Orbitty Carrier Board8 which
matches the credit-card shape of the TX2, al-
lowing for it to be mounted to the quadrotor
platform with ease.

The design choice for using NVIDIA Tegra TX2 was based on the following reasons. Its
low power consumption, but strong compute ability with its CPU and GPU allows for a good
and compute heavy algorithm to run on the device at a desirable rate. The dense optical flow
algorithm used can operate at 120Hz at half-VGA (376x240) resolution. As such, the con-
trol calculations works 50-60Hz allowing for rapid control methods. The small size of the
TX2 with the carrier board attached means that it can fit onto a drone-sized platform with-
out significantly affecting performance compared to similarly powerful devices. Having the

6NVIDIA Tegra TX2 operating system installer can be found through: https://developer.nvidia.com/
embedded/jetpack

7Robot Operating System (ROS) website: http://www.ros.org/
8ConnectTech Orbitty Carrier Board information can be found at: http://connecttech.com/product/

orbitty-carrier-for-nvidia-jetson-tx2-tx1/

https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/embedded/jetpack
http://www.ros.org/
http://connecttech.com/product/orbitty-carrier-for-nvidia-jetson-tx2-tx1/
http://connecttech.com/product/orbitty-carrier-for-nvidia-jetson-tx2-tx1/

20 System Avionics, Hardware, and Computational Architecture

commonly available Ubuntu 16.04 installed on the device also allows programs developed on
Linux/Ubuntu systems should simply work on the device without much, if any, modifications.

§3.4 Communications 21

3.4 Communications

The communications methods between all the on-board components is shown in Figure 3.7. A
detailed description of Figure 3.7 is explained after.

Figure 3.7: Complete Quadrotor Architecture and Communications

1. TX2 to Pixhawk: UART/Serial link at 921600 baud, transferring data to and from at
120Hz.

2. TX2 to Laptop: A serial connection (via ssh) can be established with the TX2 and a
laptop are connected to the same wifi router. This is necessary to initiate and debug the
TX2 in flight.

3. TX2 to Camera: The camera passes data to the TX2 via USB2.0, while having the ability
to set parameters on the camera from the TX2.

4. Pixhawk to Camera Gimbal: The Pixhawk outputs Pulse-width modulated (PWM) sig-
nals to the gimbals inputs to give it position commands.

5. Pixhawk to Radio Controller: The Radio controller sends signals to a receiver attached
to the Pixhawk, which allows the user to arm, manually control, and set flight modes.

6. Pixhawk to Groundstation: The Pixhawk can communicate to a ground-station via a
57600 baud radio link. The data is transferred between the 2 devices using the common
Mavlink protocol, used by most aerial hobby devices.

7. Pixhawk to Motor: The Pixhawk sends PWM signals to the motor controller. This is
used by the motor controller to set the average current from the battery to the motor for
controlling motor speed and torque.

22 System Avionics, Hardware, and Computational Architecture

3.5 Camera and Gimbal

Figure 3.8: Matrix-Vision mvBlueFOX-200w
mounted to an off the shelf 3-axis gimbal for

motion stabilisation

The vision sensor (camera) used was the
Matrix-Vision mvBlueFOX-200w9 with a
native resolution of 752x240, which was
commonly used in the research field. This
included an IR-cut filter and a 120o field of
view lens. This camera was chosen for mul-
tiple reasons. The camera is natively RGB,
but it capable of running in grey-scale mode
in which the chosen optical flow algorithm
uses. This automatic ability from the cam-
era to output grey-scale images saves com-
pute resources on the TX2. Additionally, the
camera can halve the resolution in both hor-
izontal and vertical via H/V binning. This
allowed the camera to reduce its resolution
to 376x240, without consuming TX2 com-
pute space. A resolution of 376x240 pro-
vides an advantage as it allows the TX2 to
compute optical flow at 120Hz, rather than

70Hz, based on the performance of the TX2. This allowed the quadrotor to estimate the scene
and make control decision closer to real-time reducing risk of collision from delayed response.

The 120o field of view, IR-cut lens was used to get maximum viewing angle which allows
for more obstacles being detected and a larger range for control. An IR-cut filter was necessary
due to the high IR sensitivity of the Matrix-Vision mvBlueFOX-200w. During experiments,
dirt appeared as extremely bright and texture-less with respect to grass and other vegetation.
This is due to the dirt absorbing sunlight, heating up, then releasing infra-red radiation as a
result of the heat. The IR-cut filter helped in solving this, as the camera then only received the
visual spectrum which is sensitive to texture changes. The larger texture detection then helped
the optical flow algorithm work, as optical flow algorithms require more texture to get more
dense and accurate results.

The gimbal used was a 3-axis off-the-shelf gimbal. The design decision to use a 3-axis
gimbal rather than hard-mounting the camera was based on experiments designed to test the
chosen optical flow’s response. In optical flow, there is a rotational and translational component
measured. The translational component gives 3D information of the scene, while the rotational
component provides little 3D scene information. If you the know camera calibration matrix
and the rotational rate of the camera, you can in theory estimate the rotational component of
the optical flow and subtract it from the optical flow to get the translational component.

The dense optical flow algorithm used, which is aimed at estimating optical flow with
extreme speed and density, uses filtering principles which requires the flow to be properly
constructed after a few frames. The relationship between the measured rotational rates of the

9Information on the Matrix-Vision mvBlueFOX-200w can be found at: https://www.matrix-vision.com/
USB2.0-industrial-camera-mvbluefox.html

https://www.matrix-vision.com/USB2.0-industrial-camera-mvbluefox.html
https://www.matrix-vision.com/USB2.0-industrial-camera-mvbluefox.html

§3.6 Hardware vibration dampening system 23

camera and the optical flow algorithm appears as a single pole linear response when experi-
ments were performed to analyse this. Using this linear response, you can estimate the relative
rotational rate of the gyroscope measurements compared to the optical flow. Compensating
for optical flow induced by the rotation, which was filtered by the proposed optical flow algo-
rithm, proved to be impossible. This meant a 3-axis gimbal had to be used to make sure only
the translational component of the optical flow is observed, by constantly keeping the camera
pointing straight while eliminating the roll/pitch.

3.6 Hardware vibration dampening system

A customised dampening system is used to filter the vibrations caused by the inertia of the
rotors. Without the dampening system, the accelerometer picks up most of the noise caused
by the vibrations felt by the quadrotor in flight. This causes attitude estimates and velocity
estimates using (4.7) and (4.5) to be inaccurate. The dampening system consists of 2 plates
with 4 rubber springs interconnecting the 2 plates. Mounted on the dampening system is the
Pixhawk 2.1 and a Battery. With the Pixhawk 2.1 mounted on the dampening system, the
accelerometer on its IMU picks up less noise caused by the rotor vibrations. An example of
this is shown in Figure 3.9.

Figure 3.9: Accelerometer noise comparison. The blue curve is the noise observed when the
Pixhawk 2.1 is hard-mounted directly to the frame. The red curve is the noise observed with

the Pixhawk 2.1 mounted on the dampening system.

The Power Spectral Density of both the hard-mounted and dampened accelerometer is
shown in Figures 3.10 and 3.11 respectively.

24 System Avionics, Hardware, and Computational Architecture

Figure 3.10: Power Spectral Density of the
Hard-Mounted IMU

Figure 3.11: Power Spectral Density of the
Dampened IMU

It is clear from Figures 3.10 and 3.11 that there is -10dB reduction in noise power caused
by the dampening system. This means less energy is being fed from the vibrations caused
by the rotors into the Pixhawk 2.1’s IMU. This shows that the dampening system reduces
accelerometer noise, and could allow for higher attitude and velocity accuracy.

§3.7 System components and weights 25

3.7 System components and weights

To meet the Australian Government Civil Aviation Safety Authority (CASA) under 2kg com-
mercial rulings, the quadrotor was designed to be less than 2kg. To meet this system require-
ments, we used parts to meet this. These parts and their weights are shown in Table 3.1.

Quadrotor Frame Hobbyking X650F Glass Fiber Quadcopter Frame 550mm10 600g
4x motors Turnigy D2836/9 950KV brushless outrunner motor11 70g each
Main Computational Device NVIDIA Tegra TX2 250g
Flight Controller Pixhawk 2.1 50g
Camera Matrix-Vision mvBlueFOX-200w 40g
Gimbal 3-axis Aluminium cased 200g
Battery Li-Po 2500mAh 350g
Additional Parts Wiring, motor controllers, mounts 190g

Table 3.1: Table of quadrotor part weights

This system ended up with a total weight of 1.96kg. To meet the total weight budget, cables
were routed through the device and cut to the minimal length required. The quadrotor frame
had minor modifications to reduce weight, with the hardware dampening system designed to
reduce the weight. The battery weight was reduced by using a smaller battery, however it had
an effect on total flight time.

10https://hobbyking.com/en_us/hobbyking-x650f-glass-fiber-quadcopter-frame-550mm.html
11https://hobbyking.com/en_us/turnigy-d2836-9-950kv-brushless-outrunner-motor.html

https://hobbyking.com/en_us/hobbyking-x650f-glass-fiber-quadcopter-frame-550mm.html
https://hobbyking.com/en_us/turnigy-d2836-9-950kv-brushless-outrunner-motor.html

26 System Avionics, Hardware, and Computational Architecture

Chapter 4

Software Architecture, Filtering and
Performance Tuning

Software is required to perform any calculations required for controlling any robotic device.
Software is used to filter various different signal to be able to form a response that drives
control commands. An example is filtering the Inertial Measurement Unit (IMU) readings to
estimate state, and use a command input to change the state to meet the command in the most
efficient manner. To fly a drone completely autonomously, for example the quadrotor platform
designed, all software is executed on-board the vehicle. This is all done on the Pixhawk 2.1
flight controller and the NVIDIA Tegra TX2 computational board.

4.1 Software Architecture

The code structure on the Pixhawk 2.1 is shown in Figure 4.1.

27

28 Software Architecture, Filtering and Performance Tuning

Figure 4.1: Pixhawk 2.1 Hardware and Code Structure. Black boxes are I/O or hardware, green
boxes are code components.

The Pixhawk 2.1 has 4 main code structures used to control the quadrotor. The PX4
firmware is designed to modularise code as separate threads on PX4-based system. To make
this possible, each module/block can be given a thread priority, while data can be subscribed
and published between each module/block via a system called UORB (similar principle to
ROS). The Attitude Estimation block includes the code structures used by the default open-
source PX4 firmware to calculate attitude and position estimates using the IMU and GPS sen-
sors. The Velocity Filter block calculates velocity estimates using (4.7), or other velocity
measurements. The Velocity Control block is used to convert velocity commands to rotations
using (4.20). The Output Mixer block is used to control the motors and gimbal Pulse Width
Modulation (PWM) outputs, which are converted to power from external motor controllers.
Code has also been developed to talk to and from the NVIDIA Tegra TX2 via a UART/Serial
link.

The code structure on the NVIDIA Tegra TX2 is shown in Figure 4.2.

§4.2 Quadrotor Dynamics and Frames of Reference 29

Figure 4.2: NVIDIA Tegra TX2 Hardware and Code Structure. Black boxes are I/O or hard-
ware, green boxes are code components. The red ROS box is the internal ROS messaging

system.

The NVIDIA Tegra has 3 main code structures used to develop control commands from
camera input. The Optical Flow block calculates Optical Flow Φ and performs the conversion
to Spherical Flow Φs from the camera data. The Additional Image Processing block com-
putes anything additionally required from the camera data, which may include target finding
or segmentation processes. The Control Algorithm block computes the velocity or attitude
commands required. All of the attitude and control data goes to and from the Robot Operating
System (ROS) messaging system running on-board the NVIDIA Tegra TX2. The data being
written to and read from the ROS block is being transmitted to and from the Pixhawk 2.1 via a
UART/Serial link.

4.2 Quadrotor Dynamics and Frames of Reference

This section presents the dynamics of a quadrotor and the different frames of reference for
quadrotors. The frames of reference will make sure that the correct command input that is
expected is applied. The known dynamics will allow the controller to be designed to allow
commands to be translated to the motion expected.

The frames of reference for aerial vehicles, including the quadrotor, must be established
to construct control algorithms. Most aerial vehicles, unlike ground based vehicles, follow
the convention of using North-East-Down (NED) as their primary frame of reference. This is
shown in Figure 4.3:

30 Software Architecture, Filtering and Performance Tuning

Figure 4.3: NED frame of reference is used
on aerial vehicles such as the quadrotor. Split
into both inertial (world) A and body-fixed B

frames of reference. Note that e1, e2, and e3

represent the x, y, and z directions respectfully.

The dynamics of a quadrotor was origi-
nally derived by Hamel et al. [2002], how-
ever was later modified to account for
aerodynamic drag resistance Bangura et al.
[2015]. This is shown in (4.1):

ξ̇ = v (4.1a)

mv̇ = mge3 − TRe3 + RD, (4.1b)

Ṙ = RΩ× (4.1c)

IΩ̇ = −Ω× IΩ + Ga + τ, (4.1d)

I is moment of inertia of the vehicle and D
is the aerodynamic force due to translational
motion in {B}. Ga is from the gyroscopic
effects of each rotor and is shown in (4.2)
[Hamel et al., 2002]:

Ga = −
3

∑
i=0

Ir(Ω× e3)ωi (4.2)

The gyroscopic effect shown in (4.2) is mostly caused by the speed of the rotors ωi which
typically resist change of speed and orientation during a maneuver.

The aerodynamic forces D of a quadrotor has also been investigated Bangura et al. [2012,
2015]. It is the sum of 4 different drag forces: Translational Drag, Parasitic Drag, Induced
Drag and Blade Flapping. The drag force D is approximately linear at lower velocities, and
can be given as:

D = −TKB
r v (4.3)

Where Kr represents the drag coefficient matrix of a symmetric quadrotor:

Kr =

c̄ 0 0
0 c̄ 0
0 0 0

 (4.4)

While aerodynamic drag limits the ability of the quadrotor to move with speed, it is also
beneficial in that it can be used to approximate the velocity v of the quadrotor. The unfiltered
velocity in {B}, excluding vertical drag in e3, can be approximated during low speed flight as
shown in (4.5) [Bangura et al., 2015]:

Bvx =
ax

az c̄
(4.5a)

Bvy =
ay

az c̄
(4.5b)

Where ax, ay, az are raw accelerometer values in {B}. This comes from the relationship that the
accelerometer measures external forces acting on the quadrotor such that (4.6) can be derived

§4.3 Filtering of noisy GPS position and inertial velocity measurements to estimate velocity31

[Bangura et al., 2015]:

a = − 1
m

(
D
T

)
(4.6)

4.3 Filtering of noisy GPS position and inertial velocity mea-
surements to estimate velocity

A good estimate of the translational velocity v of the quadrotor is required to perform the
control methods this thesis required. The GPS sensor provides a low frequency, reasonably
accurate measure of the horizontal velocity of a quadrotor vehicle, at least assuming that the
quadrotor is flying in an area where GPS signal is reliable. The height resolution of a GPS
system is much poorer than its horizontal resolution and vertical velocities tend to be much
smaller than horizontal velocities. The consequence is that the relative noise on the GPS ver-
tical velocity component makes this unusable. We will only use the horizontal component uA

of the GPS velocity measurement That is uA = uA
1e1 + uA

2e2 with the third component in
the e3 direction not measured. In addition to the GPS signal, the IMU can be used to pro-
vide a rough estimate of velocity by exploiting the dependence of the drag term on the linear
translation of the vehicle [Bangura et al., 2015]. While GPS measurements work in the inertial
frame, aerodynamic modelling is based on body-fixed frame and needs to be converted to the
inertial frame. The model for IMU measurement of horizontal body-fixed frame velocity is

wB = ax
cxaz

e1 +
ay

cyaz
e2 where cx,cy are the flapping angle drag constants. In the absence of

noise, the relationships between the velocity measurements and the quadrotor velocity can be
written as

Pe3 vA = uA and PRe3 vA = R wB ,

where Pa = I− aa> is the projector onto the subspace orthogonal to a unit vector a ∈ R3,
|a| = 1 and Re3 is the z-axis of the quad expressed in the inertial frame coordinates.

The vertical velocity and relative height of the quadrotor are also required for the control.
There is no direct velocity measurement for vertical velocity, although the barometer provides
a measurement zp of the vehicle height with respect to its takeoff height. Thus, to estimate
vertical velocity we will estimate height and use the derivative of this estimate for the velocity
estimate.

The following filter for estimation of translational velocity Av̂ is proposed:

˙Av̂ = ge3 + Ra− ∆v1 − ∆v2 − kvz∆ze3, Av̂(0) =A v̂0 (4.7a)
˙̂z = 〈e3,A v̂〉 − kz∆z, ẑ(0) = 0. (4.7b)

The innovation terms are defined as:

∆v1 = kv1(P
A
Re3

v̂− R wB) (4.8)

∆v2 = kv2(P
A
e3

v̂− uA) (4.9)

∆z = ẑ− zp (4.10)

Theorem 4.1. Consider the system (4.1) and assume that R and Ω are known. Assume that

32 Software Architecture, Filtering and Performance Tuning

measurements of horizontal inertial velocity uA and horizontal body-fixed frame velocity wB

are available along with a measure zp of relative height to a ground reference. The estimates
Av̂ and ẑ provided by the filter (4.7) with innovations (4.8), (4.9), and (4.10) converge asymp-
totically to the true values vA and z for any initial conditions Av̂.

Proof. Consider the Lyapunov functional

L =
1
2

E2
v +

γ

2
E2

z (4.11)

for

Ev =A v̂− v, Ez = (ẑ− zp)e3. (4.12)

and gain γ = kvz > 0. Computing the derivative of the Lyapunov function gives;

L̇ =E>v ((ge3 + Ra− ∆v1 − ∆v2 − kvz∆ze3)− (ge3 + Ra))

+ γE>z ((〈e3,A v̂〉 − kz∆z)−(〈e3, v〉))e3 (4.13a)

=E>v (−kv1(P
A
Re3

v̂− wA)− kv2(P
A
e3

v̂− uA)

− kvz(ẑ− p)e3) + γE>z (〈e3,A v̂− v〉 − kz(ẑ− p))e3 (4.13b)

It is easily verified that

PA
Re3

v̂− wA = PRe3 Ev, PA
e3

v̂− uA = Pe3 Ev. (4.14)

Substituting into (4.13b) one obtains

L̇ =− kv1E>v PRe3 Ev − kv2E>v Pe3 Ev − kvzEv
>Ez

+ γE>z 〈e3, Ev〉e3 − γkzE>z Ez. (4.15a)

Recalling that γ = kvz then −kvzEv
>Ez + γE>z (〈e3, Ev〉)e3 = 0. It follows that

L̇ = −kv1E>v PRe3 Ev − kv2E>v Pe3 Ev − γkzE>z Ez (4.15b)

The projector matrices PRe3 and Pe3 are positive definite and it follows that L̇ is negative semi-
definite and negative definite if R 6= I3. If the attitude R(t) of the quadrotor is persistently
exciting in the sense that there exists two constants kv1, kv2 > 0 such that∫ t+δ

t
(kv1PR(τ)e3

+ kv2Pe3)dτ > γτ,

then exponential global stability of the error signals follows directly from Lyapunov’s principle
along with an averaging argument [Khalil, 1996] since the decrease function is negative definite
in the error variables. In more generality, a Barbalat argument can be used to prove global
asymptotic stability of the filter and a linearisation argument can be used to demonstrate local
exponential stability.

§4.4 Optical Flow Characteristics 33

4.4 Optical Flow Characteristics

Optical flow is the transport of image intensities across the image plane. As such, optical flow
can be estimated from a brightness constancy PDE (4.16) [Horn and Schunck, 1981; Adarve
and Mahony, 2016]:

∂E
∂x

u +
∂E
∂y

v +
∂E
∂t

= 0 (4.16)

Where u = dx
dt is the optical flow along the horizontal axis and v = dy

dt is the optical flow in
the vertical axis.

Figure 4.4: Example from the paper ‘A Filter Formulation for Computing Real Time Optical
Flow’ [Adarve and Mahony, 2016]. Real time optical flow computed using a 300Hz camera
input. The optical flow filter forms over a number of frames based on texture quality on a GPU.

The optical flow chosen is the real-time filter formulation proposed by Adarve and Ma-
hony [2016]. It is designed for real-time implementation at multi-hundred rates on graphics
processing units (GPU) or field-programmable gate arrays (FPGA), which are designed for
mass parallel programming. To be able to be run in real time on a GPU, it is a locally opti-
mised algorithm using texture close to the pixel to determine the optical flow. To get texture
differences, it uses the common Pyramidal method. The algorithm operates in 3 primary stages.
The first stage, the image pre-processing stage, the brightness parameters of the current frame
are determined, including brightness and brightness gradients. During the second stage, the
propagation stage, the filter predicts the next optical flow values for the next time iteration.
The third stage, the update stage, combines the brightness parameters with the predicted opti-
cal flow to get a new estimate of the optical flow field. This method keeps temporal and spacial
consistency unlike the Lucas-Kanade method, as it relies of multiple frames to form estimates
rather than just two frames.

34 Software Architecture, Filtering and Performance Tuning

Figure 4.5: Semi-textured surface raw image.
From a hovering quadrotor with a downwards
facing camera while computing optical flow.

Figure 4.6: Semi-textured surface, using opti-
cal flow filter by Adarve and Mahony [2016]
with additional low texture cut-off constraint.

Due to the locally optimised nature of the optical flow algorithm, good texture quality is
required to properly develop the the optical flow estimate Adarve and Mahony [2016]. In
forest-like environments, there is enough texture from all of the tree textures and leaves to
ensure the algorithm should work as expected. In the cases there is not much texture, such as
the blue sky or low texture tree surfaces, we have added an extra condition that sets the optical
flow to 0 so it does not feed false information into the control algorithms (see Figure 4.5 and
4.6). This was implemented as the temporal and spacial consistency typically pushes optical
flow over untextured regions in the images, which means the sky then acts as a obstacle to
avoid.

4.5 De-rotation of Optical Flow

Optical flow Φ can be split into its translational Ψ and rotational Θ components. Rotational
optical flow however gives no useful scene information, as its value is independent of distances
to a targets. This requires the removal of the rotational component of the optical flow to get
any useful scene estimation. The rotational optical flow Θ produced from the optical flow field
can be predicted if the rotational velocity Ω of the camera relative to the world frame is known
[Honegger et al., 2013].

In pinhole cameras, the camera frame is warped due to the focal point and the lens attached
to it. The rotational flow Θ for each individual pixel can be estimated using (4.17):

Θ = (K− ξpe>3)Ω×K−1ξp (4.17)

This is where K is the camera intrinsic matrix and ξp is the pixel coordinate (relative to centre
of the camera plane).

Equation (4.17) is capable of estimating the rotational optical flow in the ideal circumstance
where the whole scene has no distortion, scene is fully textured, and optical flow estimation
is instantaneous. While it is effective at estimating optical flow on the average of optical flow
vectors, due to its temporal and spacial consistency, it is very rarely the case that it can estimate

§4.6 Average Inertial Spherical Flow w for Quadrotor Control 35

the rotational optical flow for each individual pixel required by the algorithm from Adarve and
Mahony [2016]. For this reason, we use a 3-axis stabilised gimbal to remove rotational optical
flow.

4.6 Average Inertial Spherical Flow w for Quadrotor Control

The Average Inertial Spherical Flow w is calculated from Spherical Flow Φs (4.18). The aver-
age inertial spherical flow is a measure of the scaled velocity of the camera in all 3 directions
(x, y, z). The z-direction estimate is based on the divergence and convergence of the spheri-
cal flow field [Herisse et al., 2012]. Let η be a vector heading in any chosen direction from
the spherical camera’s position pη0. For the experiments in this thesis, this vector will point
directly downwards to the ground. w is calculated in a disk-like domain D expanding tan-
gentially on and from the spherical camera’s image surface. The expansion point (centre) of
disk-like domain D is the intersection of the spherical camera’s image surface and the vector
η. The angle θD is the angle between η and a vector formed from pη0 to the disk-like domain’s
D edge. The rotation of the plane relative to the spherical camera is given as Rt [Herisse et al.,
2012].

w = −
(

RtΛR−1
t

)
Rc

(∫
D

Φs(ξ̄)dtξ̄ + π(sin θD)
2Ω× R>c η

)
(4.18a)

Λ =
π(sin θD)

4

4

 1
λ 0 0
0 1

λ 0
0 0 2

 (4.18b)

λ =
(sin θD)

2

4− (sin θD)2 (4.18c)

However, since the optical flow Φ measured is based on a 2D image plane, we need to
calculate the spherical flow Φs (4.19), based on the projection of the 2D plane onto a unit
sphere.

Φs(ξ̄) =

√
(ξ̄ − ξ̄0)2 + f 2

f

(
Φ(ξ̄)

f |Ψ(ξ̄)|
|ξ̄−ξ̄0|

)
(4.19)

Where ξ̄0 is the camera centre pixel.
The Average Inertial Spherical Flow w is a necessary step in attempting to purely visually

hover the quadrotor over the ground using optical flow, without using other methods such as
Simultaneous Localisation and Mapping (SLAM), or Visual-Inertial Odometry (VIO) for state
estimation. This is used during all optical flow control based experiments during this thesis.

4.7 Performance Gain Tuning

To achieve accurate and performance effective velocity control, a velocity controller based on
a proportional-integral (PI) controller is used. This is designed to control the roll φ, pitch θ

36 Software Architecture, Filtering and Performance Tuning

and the thrust T of the quadrotor. This is shown in (4.20):

φd = kpy
s + kiy

s
(Bvyd −B v̂y) (4.20a)

θd = −kpx
s + kix

s
(Bvxd −B v̂x) (4.20b)

Td = mg− kpz
s + kiz

s
(Avzd −A v̂z), g = 9.81ms−2 (4.20c)

In practice, the PI-based controller is implemented in the quadrotor code in its parallel form.
Calibration is required to achieve the maximum possible performance for the quadrotor.

For calibration, we use a pole-zero based method for determining the best response the velocity
controller (4.20) can achieve.

4.7.1 Velocity gain tuning for general flight

In normal flight conditions, such as for when using GPS or VICON based position and velocity
estimates, these estimates can be assumed to be quick enough without having much of a delay.
The gains determined in this section were used during the main obstacle avoidance experi-
ments. The transfer function block diagram of a PI velocity controller for a quadrotor using
close to or real-time position and velocity measurements is given as shown in Figure 4.7:+

Cv Pa(s) Pv(s)
Bvd φd, θd φ, θ Bv
−

Figure 4.7: Hv(s) Velocity Control Transfer Function

The transfer function Hv(s) shown in Figure 4.7 is given as a larger block of 3 smaller
transfer functions. Cv is given as the transfer function of the velocity controller as shown
in (4.20). Pa(s) is the transfer function that describes the transition of the attitude φ, θ to
the desired attitude φd, θd based on the quadrotor’s dynamics, flight controller software, and
the four electronic speed controller and motor responses. Pv(s) is the transfer function that
describes the transition between attitude and the horizontal component of the body-fixed frame
velocity Bv̇xy. The quadrotor is considered symmetrical, meaning the transfer function for
Pa(s) is considered equivalent for both roll and pitch.

We used the systemIdentification toolbox provided by MATLAB to estimate Pa(s). Esti-
mated to be a single pole system, Pa(s) was determined to be approximately (4.21):

Pa(s) =
9

s + 9
(4.21)

To determine Pv(s), we used the quadrotors kinematics/dynamics shown in (4.1). We know

§4.7 Performance Gain Tuning 37

from (4.1), that (4.22) can be formulated:

+−B v̇ = g sin θ, g = 9.81ms−2 (4.22)

While the transfer function of sin θ is complex, we know the attitude of the vehicle is never
more than π

6 radians from design decisions. This means we invoke the rule that sin θ u θ,
when θ is small. This leads to (4.23):

Bv̇ = gθ (4.23)

From (4.23), we can get Pv(s) (4.24):

Pv(s) =
g
s

(4.24)

Since we now have the transfer functions of kinematics of the quadrotor Pa(s) and Pv(s),
we can tune the velocity controller. This was done using the sisotool pole-zero editor toobox
in MATLAB.

The tuned PI controller Cv is shown in (4.25) as an adjustment of (4.20):

φd = Cv(
Bvyd −B v̂y) (4.25a)

θd = −Cv(
Bvxd −B v̂x) (4.25b)

Cv = 0.657
s + 0.039

s
(4.25c)

The step response to the system Hv(s) is shown in Figure 4.8 after tuning, which has a corre-
sponding rise time of 0.238s.

Figure 4.8: Step Response of the tuned Quadrotor

4.7.2 Velocity and Position Gain Tuning for Velocity Estimates using Op-
tical Flow

During the optical flow based hovering experiments, the chosen optical flow algorithm was
used to estimate the velocity of the vehicle. This optical flow algorithm has a linear response

38 Software Architecture, Filtering and Performance Tuning

delay due to its differentially-driven method. This adds an additional return transfer function
when attempting to tune the system, compared the previous section’s method. The quadrotor’s
system transfer function using w was determined so that the performance of the quadrotor was
maximised. It can be summarised in the velocity controller transfer function (Figure 4.10) and
position controller transfer function (Figure 4.9).

Cp Hw(s) 1
s

ξd wd w ξ

−

Figure 4.9: H(s) Position Controller Transfer Function

Cw Pa(s) Pv(s)

H f (s)

wd θd θ w
−

Figure 4.10: Hw(s) Velocity and Attitude Response Transfer Function

The position controller transfer function H(s) is defined by 3 small transfer functions. A
proportional controller Cp is used to control the position of the quadrotor, and is defined as
Cp = wd = −kp(ξ − ξd). Hw(s) is the velocity response transfer function. The system
integrator is used to integrate the structural flow w to get a position estimate. However, when
the object that we are visually servoing to is visible, we use the position estimate of that point
as the position ξ feedback instead.

The velocity and attitude response Hw(s) is comprised of 4 parts. The first part is the pro-
portional controller Cw used to control the velocity of the quadrotor, by adjusting the attitude
of the quadrotor. This is derived as Cw = θd = −kw(w− wd). The 2 plants are the same as
(4.21) and (4.24), as it was the same quadrotor. The last component of Hw(s) is the feedback
of the structural flow w estimate having a linear response and offset due to the nature of the op-
tical flow algorithm. The linear system response of w relative the measured velocity is defined
below (4.26):

H f (s) =
7.49
s + 7

(4.26)

Hw(s) as shown in 4.7 was tuned to have a step response as shown in Figure 4.11. H(s)
as shown in 4.9 was tuned to have a step response as shown in Figure 4.12.

§4.8 Summary 39

Figure 4.11: Step Response of Hw(s) (Veloc-
ity Control)

Figure 4.12: Step Response of H(s) (Posi-
tion Control)

The proportional controller gain kw in Cw was set to 0.2820. This has a rise time of 0.4584
seconds. The proportional controller gain kp in Cp was set to 1.6543. This has a rise time of
0.6970 seconds.

4.8 Summary

The quadrotor software architecture described during this chapter is used to control the quadro-
tor in the experiments later described in this thesis, which includes vision-based hovering ex-
periments and reactive obstacle avoidance experiments using optical flow Φ(ξ̄).

The Pixhawk 2.1 uses the PX4 architecture and custom modules to allow the quadrotor to
fly given velocity commands Bvd,Avd. The velocity filter (4.7) was used to filter IMU (Inertial
Measurement Unit) data Ω, a, zp and combined measurements from other systems such as GPS
velocity Au, or vision-based velocity and height measurements Bw, zp to estimate velocity Bv̂
and altitude ẑ in real-time. From these measurements and velocity commands from the TX2
Bv(x,y)d, Avzd, the system estimates the required thrust Td and attitude φd, θd using the PI
controller (4.20) to control the quadrotor.

Using the image input from the Matrix-Vision mvBlueFOX-200w camera, optical flow
Φ(ξ̄) was calculated. The NVIDIA Tegra TX2 then used the optical flow measurements,
and any additional image processing, to determine the desired velocity Bv(x,y)d, Avzd. The
algorithms to determine the desired velocity are described later in the the thesis.

40 Software Architecture, Filtering and Performance Tuning

Chapter 5

Vision-based Hover Control

Obtaining position estimates via visual odometry allows for autonomous flying robots to con-
trol its position without the need for GPS-based systems, which can be easily obscured in
complex environments. A few of the experiments performed to test the quadrotor platform’s
performance was based on hovering the quadrotor above the ground, with some manoeuvres
being performed. All of the experiments used dense optical flow calculated on a NVIDIA
Tegra TX2 at 70 Hz to estimate the velocity of the quadrotor above ground. To perform these
hovering tests, we used the Average Inertial Spherical Flow w approximation from previous
conference and journal papers via projecting the 2D optical flow onto a unit sphere Herisse
et al. [2012]. Via the filters (5.2) and (5.4), we integrated optical flow estimates to estimate
horizontal and vertical position. A known landmark was used correct for drift when the vehicle
was close to its initial position and the landmark was in view.

5.1 Position Estimation from a known landmark

Landmarks are known features that can be used to verify a vehicle’s location. Landmarks can
used to provide a position estimate of the camera that has detected the landmark, if the posi-
tion of the marker in the environment is known. Fiducial markers are examples of a landmark
designed for use with computer/robotic vision algorithms. Some fiducial marker detection
algorithms, such as for the ArUco marker, are openly available via OpenCV. In our experi-
ments, we used the ArUco fiducial marker algorithm used by OpenCV to correct the estimate
of position when in good view.

Estimating the horizontal position of an ArUco marker can be done via (5.1). Using the
pixel position of the corners detected by the OpenCV algorithm, you can estimate the centre
pixel ξp of the ArUco marker by the average corner of the pixel positions. Using the known
camera focal length f , image centre pixel ξ0p, and the height estimate ẑL (5.2), you can esti-
mate the horizontal position of ArUco marker using (5.1).

ξ̂s = −ẑL
ξp − ξ0p

f
(5.1)

You can estimate the height of the ArUco marker z f using the known ArUco marker size
(eg. 30cm target), corner pixel positions, and focal length. The corner pixel separation scales
with height of the camera from the marker, where the further away markers have less apparent

41

42 Vision-based Hover Control

Figure 5.1: ArUco Marker Detection. The grey dot in the centre of the ArUco fiducial marker
is the calculated centre of the ArUco marker using the marker corners.

corner pixel separations. The height can be estimated using the OpenCV ArUco detection
algorithms.

5.2 Vertical Position Estimation via a Logarithmic Filter of w
and a landmark

Equation (4.7) uses the barometer to determine vertical velocity. This filter is however not
adequate to determine true height due to barometer measurements being susceptible to pressure
and temperature variations. This tends to result in variation between ±1.5m, more so in an
indoor environment with air-conditioning systems. However this is accurate enough to get an
approximate velocity estimate v̂z.

We implement another filter L̂z that uses the vertical component of the structural flow
representation wz = we3 from (4.18). The structural flow is equivalent to w = v

d , where d is
the height from the ground when using a gimbal stabilised camera pointing face-down. This
suggests it is logarithmic in nature to the height from the ground. kt is a gain used to represent
the texture of the surface and kLz is a convergence gain which can be adjusted depending on
the reliability of the estimated height z f of a ground based landmark (e.g. ArUco marker or
landing pad). Filter (5.2) is used to approximate height:

˙̂Lz = −ktwz − kLz
(

L̂z − log(z f)
)

(5.2a)

ẑL = −eL̂z (5.2b)

Note that ẑL has a positive upwards direction, in contradiction to standard flying robotics, due
to logarithmic values being greater than 0. As such, L̂z(0) is the estimated height of the vehicle
when the filter is started, as a positive value. When L̂z ≤ 0, L̂z is reset to 0.1m to stop the
logarithmic value L̂z going beyond the logarithmic limits. If the surface is not well textured,
kt has to be increased to compensate for lost optical flow. This can be calibrated before flight.

The filter (5.2) allows for the structural flow w to control height. Since wz responds to
all changes in altitude, a proportional height controller vzd = −kz(ẑL − zd) can be used to

§5.3 Horizontal Position Estimation from Optical Flow and a Fiducial Marker 43

stabilise height in indoor and outdoor environments.

This method can only be implemented after a certain height is achieved after launch, as
estimates of w when the quadrotor’s camera is very close to the ground are inaccurate. To deal
with this situation, the quadrotor is launched to a height above the landmark, specifically an
ArUco marker, before switching to the ẑL (5.2) filter. The height of the ArUco marker can
be detected via the OpenCV libraries. The OpenCV algorithm uses the camera parameters,
marker corner pixel coordinates, and known marker size to estimate the height.

5.3 Horizontal Position Estimation via the integration of w
and correction via the ArUco fiducial markers

The spherical average inertial flow w (4.18) is capable of estimating the horizontal position of
the camera if the height ẑL (5.2) is known, which can be calculated using (5.3).

ξw = kt ẑL

∫
wdt (5.3)

This is simply the integral of w with reference to height ẑL and the texture quality kt.

The main disadvantage of integrating w directly is that the position estimate drifts over
time, without anything to correct it. To deal with drift caused by (5.3), we used the horizontal
position estimate of the ArUco marker (5.1) in a filter (5.4).

˙̂ξv = kt ẑLw− ks
(
ξ̂v − ξs

)
(5.4)

The output horizontal position estimation algorithm (5.4) relies on the optical flow to for-
ward estimation position. If the ArUco marker is detected, then ks is set to a constant positive
value. If the ArUco marker is not detected, then ks is set to 0, effectively ignoring old ArUco
marker position estimates. Ultimately this visual odometry method is designed to work at the
high frequency (70Hz) of the camera, and can navigate away from the marker for a period of
time.

5.4 Experimental Results

The experimental results for a hovering experiment using the average inertial spherical flow
estimate and the ArUco marker for drift correction is shown in Figures 5.3 to 5.6. The VICON
motion capture system was used to act as a ground-truth to verify the results. The experiment
consisted of a figure of 8 flight in the air.

44 Vision-based Hover Control

Figure 5.2: Quadrotor Experiment with assistance of the ArUco marker

The results show that the system can perform visual navigation1. The integration of the av-
erage spherical flow estimates w with the ArUco fiducial marker as a backup origin reference,
via the filters (5.2) and (5.4), does allow the system to visually navigate.

The drift in horizontal position could be explained by the average spherical flow estimate
integration error and the minor mismatch between the horizontal position with the ground
truth. Since filter (5.4) relies on a good vertical position estimate, this could create the scaling
difference between vision position estimates and ground-truth.

The vertical position estimate appears linked with the horizontal position estimates. The
peaks and valleys of the vertical estimates match the peaks and valleys of the horizontal posi-
tion estimates. This could be explained by the camera intrinsics and heavy distortion not being
consistent, and also by the camera gimbal not having a perfect response.

There were a few known difficulties during the experiment in regards to the environment’s
texture. Low texture environments as perceived by the camera reduce the reliability of the
optical flow algorithm. This often causes velocity estimates from the optical flow to have a
large amount of error, which leads on to high error in position estimates. These low textures as
perceived by the camera can include tiles, dirt, or when the camera is over or under exposed.
The purpose of the landmark origin or ArUco marker was to be used to reduce the cumulative
error.

5.5 Comparison of the ArUco fiducial marker position esti-
mate with other methods

Two potential replacements for the ArUco fiducial marker were first investigated, but later
ignored. One is via using a chessboard target, and another using a coloured target. The chess-
board target used an OpenCV algorithm to detect it, while the coloured target used HSV pa-
rameters on a coloured image to get a masked output.

The ArUco marker method was ultimately used due to its high reliability and performance
compared to both the coloured target and chessboard detection methods. The colour segmen-

1Video of the Vision-based Hover and Figure of Eight experiment can be found via https://www.youtube.com/
watch?v=gUgmRTYIjJA&t=57s

https://www.youtube.com/watch?v=gUgmRTYIjJA&t=57s
https://www.youtube.com/watch?v=gUgmRTYIjJA&t=57s

§5.5 Comparison of the ArUco fiducial marker position estimate with other methods 45

Figure 5.3: Hover Experiment X Position Es-
timate. The blue line is the vision position
estimate and the red line is the groundtruth.

Figure 5.4: Hover Experiment Y Position Es-
timate. The blue line is the vision position
estimate and the red line is the groundtruth.

Figure 5.5: Hover Experiment Z Position Es-
timate. The blue line is the vision position
estimate and the red line is the groundtruth.

Figure 5.6: Hover Experiment Horizontal Po-
sition Estimate. The blue line is the vi-
sion position estimate and the red line is the

groundtruth.

46 Vision-based Hover Control

Figure 5.7: Chessboard Centre Detection.
The grey dot in the centre of the chessboard is
the calculated centre of the chessboard using

the chessboard corners.

Figure 5.8: Colour Segmented Output. The
grey dot in the centre of the white area is the

calculated centre of the coloured target.

tation algorithm relied on constant adjustment of HSV parameters as the day progressed, while
also needing adjustment during different weather conditions. This was particular noticeable in
outdoor environments or rooms with windows in which outdoor light can enter indoors. This
made it unreliable to use this method over a period of time. The colour segmentation method
also suffered when points outside of the colour target were within the HSV parameters, causing
an apparent shift of the origin.

While the chessboard detection algorithm successfully detected the centre, the ArUco
marker outperformed the chessboard algorithm. Both the ArUco and chessboard methods
were robust to lighting conditions, assuming the lighting was good enough to make the white
and black squares on the ArUco and chessboard markers distinguishable. The ArUco marker
detection algorithm almost never lost track of its position, even when near the borders of the
highly distorted image from the 120o field-of-view (FOV) camera. The chessboard algorithm
was susceptible to failed detection when near the borders of the highly distorted image. The
chessboard detection algorithm also took more time (≈ 10ms) to estimate compared to the
ArUco marker method (< 5ms).

Chapter 6

Vision based Forward Sensitive
Reactive Control for a Quadrotor
VTOL

Deployment of aerial robotic vehicles for real world tasks such as home deliveries, close range
aerial inspection, etc., require robotic vehicles to fly through complex and cluttered 3D envi-
ronments such as forests, shrubbery or into balconies, garages, or sheds. Dense high-speed
optical flow can provide real-time motion cues for obstacle avoidance that does not require
3D full reconstruction of the environment. However, classical reactive control does not ‘look
ahead’ and tends to bounce off obstacles rather than generating a smooth trajectory that an-
ticipates and avoids upcoming obstacles. In this chapter, we consider deriving a fully image
based control criteria that forward predicts a cylinder of free space into the image flow rep-
resentation of the environment and steers the vehicle by manoeuvring this cylinder through
the upcoming environment. The length and radius of the cylinder provide a guarantee that the
vehicle can indeed fly through the space identified and the fact that it is predicted forward into
the environment leads to smooth anticipation of upcoming obstacles. Results are obtained for
a quadrotor flying autonomously through a forest environment. This chapter is based off our
published conference paper Vision Based Forward Sensitive Reactive Control for a Quadrotor
VTOL [Stevens and Mahony, 2018].

6.1 Forward Vision Tunnel-based Optical Flow Controller

Real-time dense optical flow is used as the basic sensing modality for obstacle avoidance. The
flow algorithm used is that developed by Adarve and Mahony [2016]. We compute the dense
optical flow at 120Hz for the control algorithm for a 376x240 pixel image sequence.

47

48 Vision based Forward Sensitive Reactive Control for a Quadrotor VTOL

Figure 6.1: Dense Optical Flow. This was taken when a quadrotor was flying past a tree.
Optical flow is a measurement of how much a texture moves each frame, measured in pixels.
Each colour represents a direction, while the intensity of the colour represents the magnitude
of the optical flow. The colour wheel at the bottom right of the image describes the direction
and magnitude of the colours, where the optical flow vector goes from the centre of the colour

wheel outwards.

Conceptually the control design is based on the principle of steering into free space. The
novelty of the design is to reformulate this principle into a purely image flow based criterion.
Dense optical flow is a vector field Φ(ξ̄, t) that assigns an infinitesimal image motion vector
to each point ξ̄ in the image at each time t. Given a point ξ̄ = (ξ̄x, ξ̄y) in a perspective image
the optical flow, for a calibrated camera with focal length f , can be written:

Φ(ξ̄, t) = Ψ(ξ̄, y) + Θ(ξ̄, t) (6.1)

=
1
Z

(
− f Vx + ξ̄xVz

− f Vy + ξ̄yVz

)
+

(
1
f ξ̄x ξ̄yΩx − (f + 1

f ξ̄2
x)Ωy + ξ̄yΩz

(f + 1
f ξ̄2

y)Ωx − 1
f ξ̄x ξ̄yΩy − ξ̄xΩz

)

where Ψ(ξ̄, t) is the optical flow due to translation of the camera and Θ(ξ̄, t) is optical
flow due to rotation of the camera. Note that the rotational optical flow depends only on pixel
coordinates ξ̄ = (ξ̄x, ξ̄y) and the angular velocity Ω = (Ωx, Ωy, Ωz) and does not provide
any information on the motion of the vehicle through the local environment.

In this paper we will use the stabilised optical flow

Ψ(ξ̄, y) = Φ(ξ̄, t)−Θ(ξ̄, t).

We use a 3 axis gymbal to physically de-rotate the camera, allowing us to apply the optical flow
algorithms directly to the image sequence to generate stabilised optical flow. Although it is
conceptually attractive to use a physically attached camera and de-rotate the flow Ψ (computed
from the measurement Ω) by subtracting the rotational flow, in practice, Θ can be considerably
larger than the translational flow Ψ and numerically computing the difference can introduce
significant errors. We note that most animals and insects that use vision as a primary motion
sensor also use a physical de-rotation of the eye, rather than relying on post processing of the
flow signal.

A key aspect of the control design is the use of the known vehicle velocity. This velocity

§6.1 Forward Vision Tunnel-based Optical Flow Controller 49

lies in a direction which can be mapped to an image pixel coordinate

V̄ =

(
f vC

x
vC

z
,

f vC
y

vC
z

)
(6.2)

vC = Rcam vB is the vehicle velocity written in the camera frame and Rcam is the rotation of
the camera frame with respect to the body-fixed-frame. Note that Ψ(V̄, t) = 0 since there is
no optical flow generated along the axes of motion (focus of expansion) in the image.

We conceptualize a finite cylinder in 3D-space of radius r and depth d that projects forward
from the camera frame of reference in the direction of motion V̄ of the vehicle (Fig. 6.2).

Figure 6.2: Geometry of the cost function construction. The cylinder and cone section of the
free space estimate are shown. A point p in the environment is observed by the camera at pixel
coordinates ξ̄ on the image plane. The optical flow of the real environment point is denoted
Ψ(ξ̄). A virtual point pr lies on the radius of the cylinder. The virtual optical flow, that would
be measured if environment was touching the boundary of the cylinder is denoted Ψr(ξ̄). Note

that |Ψr| > |Ψ| for point p outside the cylinder.

Figure 6.3: Visual representation of the cylinder Dcylinder and cone Dcone projected on to the
2D image plane. Denoting κ̄ = |ξ̄ − V̄|, the optical flow Φ would appear as a vector leading

away from the point V̄, which is the same as the derivative of κ̄.

50 Vision based Forward Sensitive Reactive Control for a Quadrotor VTOL

Consider a point p (see Figure 6.2) in the environment and assume that it is stationary. Its
relative velocity with respect to the camera is−v. Let ξ̄ denote the calibrated pixel coordinates
of this point as observed in the image, then (6.1) can be written

Ψ(ξ̄, t) =
1
Z

(
− f P vC + ξ̄e>3 vC

)
(6.3)

where

P =

(
1 0 0
0 1 0

)
is the calibrated image projection matrix. Collecting terms, it is straightforward to verify that

Ψ(ξ̄, t)
e>3 vC

=
1
Z
(−V̄ + ξ̄) =

ξ̄ − V̄
Z

. (6.4)

Given that the velocity vC is known it should in principle be possible to invert the relation-
ship (6.4) and estimate the depth Z of the environment point. However, the flow Ψ is noisy,
and the velocity estimate v̂C is also uncertain. The consequence is that the raw depth data ex-
tracted in this manner is unsuitable for standard free space path planning algorithms. However,
we can consider a criteria directly on the flow by noting that the flow increases as Z decreases
for a fixed pixel coordinate ξ̄. That is for points p closer to the camera along the ray associated
with pixel coordinates ξ̄, the value of the flow Ψ(ξ̄) will be less than flow Ψr associated with
a virtual point pr that has the same pixel coordinates but lies on the cylinder (Fig. 6.2). Let Zr

denote the depth of the virtual point pr. Then for a camera of focal length f and a cylinder of
radius r one has

Zr

r
=

f
|ξ̄ − V̄|

(6.5)

Let d denote the look ahead distance to be considered Fig. 6.2. Define a cost function

σ(V̄, t; ξ̄, Ψ(ξ̄, t), f , r) =
|Ψ(ξ̄, t)|

e>3 vC
.

r f
|ξ̄ − V̄|2

µ

(
r f

|ξ̄ − V̄|

)
(6.6)

where µ : R → R is a weighting function we define in the sequel. Note that σ depends only
on image criteria and the velocity direction V̄.

To understand σ, consider the virtual point pr and its associated flow Ψr. Computing the
cost function for this scenario one has

σ(V̄, t; ξ̄, Ψr, f , r) =
|ξ̄ − V̄|

Z
Zr

|ξ̄ − V̄|
µ(Zr)

=
Zr

Z
µ(Zr) = µ(Zr).

Since Zr < Z for points outside the cylinder then σ(ξ̄, t) < µ(Zr) for such points. If µ(Zr) =
1 is set to unity then one has a constant criteria σ(ξ̄, t) = 1 for points lying on the cylinder.
If µ(Zr) is allowed to vary then σ(ξ̄, t) = 1 can be thought of as a criteria r(Zr) = rµ(Zr)

§6.1 Forward Vision Tunnel-based Optical Flow Controller 51

where the virtual point pr is now considered to lie on a new cylinder of radius r(Zr) at depth
Zr. In this way, we can generalise the cylinder to any revolute shape as long as a given ray
(pixel coordinates ξ̄) does not intersect the surface of the surface more than once. In practice,
the cylinder of free space works well and is simple to understand and develop.

Let d1 ∈ (0, d) be a positive number in the range 0 to d. We will choose a scaling function
µ : [0, d]→ R as follows

µ(Zr) =

{
Zr ∈ [0, d1] µ(Zr) = 1
Zr ∈ [d1, d] µ(Zr) =

d−Zr
d−d1

(6.7)

This choice is associated with a constant radius r cylinder with a depth range of [0, d1] in front
of the vehicle followed by a cone that tapers to a point at depth d (cf. Fig. 6.2).

The cost function introduced is a barrier function construction based on keeping σ(ξ̄, t) <
1. Classical barrier functions are often based on logarithmic growth functions in order that the
derivative of the barrier is well conditioned as the barrier conditions is reached. In practice,
we found that introducing an infinite barrier function was too aggressive, particularly for noisy
flow measurements. As a consequence we have introduced a finite “barrier like” function to
scale the indicator function σ.

Define a ‘barrier’ function γ : [0, 1]→ [0, ∞] by

γ(σ) := A (eασ − 1) (6.8)

for constants B > 0, G > 0 and where A = B
G−1 and α = log(G). In particular, one has

γ(0) = 0, γ(1) = B,
d

dσ
γ(0) =

B(log(G)− 1)
G− 1

Thus, the constant B fixes the maximum value of the barrier function while G implicitly fixes
the gradient of the cost function at the origin.

The flow based criteria σ (6.6) is combined with the barrier function construction γ (7.8)
to generate a total scene cost function Γ : S2 ×R→ R defined by

Γ(V̄, t) =
∫

R2
γ(σ(V̄, ξ̄; Ψ(ξ̄, t), f , r))dξ̄ (6.9)

where the flow Ψ(ξ̄, t) is an exogenous input to the cost based on the changing local environ-
ment as the quadrotor flies through the environment, and f and r are constant parameters. The
total scene cost function Γ is minimized for a direction V̄ such that the cylinder/cone construc-
tion is separated from the environment. In this way we can choose a desired steering direction
V̄ which steers through the environment - this provides the path planning like aspects of the
proposed control. The total scene cost function is maximal when points in the environment
approach the cylinder/cone boundary. This provides the natural reactive control properties of
flow based criteria.

The proposed control is a steering control for the velocity direction V̄. We first compute the
gradient of Γ with respect to V̄. We divide the image into two regions, Υ1 corresponding to all
image points viewed through the walls of the cylinder for the free space construction, and Υ2

52 Vision based Forward Sensitive Reactive Control for a Quadrotor VTOL

corresponding to image point viewed through the conic section of the free space construction
Fig. 6.2. Thus, on Υ1 then µ(Zr) = 1, while on Υ2 then µ(Zr) = (d− Zr)/(d− d1). The
derivative of Γ is given by

∇V̄Γ(V̄, t)

=
∫

R2

d
dσ

γ(σ(V̄, ξ̄))
d

dV̄
σ(V̄, ξ̄)dξ̄

=
∫

Υ1

Aαeασ(V̄,ξ̄)2r f
|Ψ|

e>3 vC

ξ̄ − V̄
|ξ̄ − V̄|4

dξ̄

+
∫

Υ2

Aαeασ(V̄,ξ̄) r f
d− d1

|Ψ|
e>3 vC

ξ̄ − V̄
|ξ̄ − V̄|2(

2d
|ξ̄ − V̄|2

− 3r f
|ξ̄ − V̄|3

)
dξ̄

=Aα
∫

Υ1

2eασσ(V̄, ξ̄)
ξ̄ − V̄
|ξ̄ − V̄|2

dξ̄

+ Aα
∫

Υ2

eασσ(V̄, ξ̄)
ξ̄ − V̄
d− Zr

(
2d

|ξ̄ − V̄|2
− 3r f
|ξ̄ − V̄|3

)
dξ̄ (6.10)

The negative gradient of Γ indicates the direction in which V̄ should be moved and is
mapped into a force tangential force input on the motion of the quadrotor. That is we define
control input to the quadrotor to be

F = ε + mge3 + u1e1

where u1 is a control for speed regulation, mge3 compensates for the gravitational term, and ε

is the obstacle avoidance term

ε := −kε∇Γ(V̄, t) (6.11)

An experiment to test Forward Sensitive Vision Tunnel-based Reactive Optical Flow Con-
troller (6.10) discussed in Chapter 6. The aim was to test to see if the system can detect
obstacles such as trees and their small branches and leaves, and then perform reactive evasion
using the detected obstacles.

§6.2 Experimental Results 53

Figure 6.4: Gazebo 7 environment used to test reactive avoidance algorithm. The environment
is setup to mimic trees along a path with a boundary. The simulated quadrotor would start in

the middle of the open area to the left.

6.2 Experimental Results

This section presents experiments performed to test the forward vision tunnel-based optical
flow controller (6.11). Simulations were first conducted to test the theory, followed by real
experiments on the design quadrotor platform.

6.2.1 Simulations

Simulations were performed to test whether or not the visual guidance algorithm (6.11) would
work as expected. The simulations were used as a proof of concept before applying it to a
real quadrotor. The simulation was set up in Ubuntu 16.04, running Robot Operating System
(ROS) and the Gazebo physics simulation environment (see Figure 6.4). The environment is
set up so that it would be like a corridor in a forest. Textured poles were implemented to act as
trees. While in Australian forests trees have a large amount of low-lying branches, this was not
implemented due to 3D texture complexity being difficult to create and too computationally
expensive to simulate in the Gazebo environment with the available resources.

The results from the simulated experiments showed that the visual guidance algorithm
is somewhat successful at performing reactive avoidance. Example results of the output are
shown in the Figures 6.5, 6.6, and 6.7.

From the results in Figures 6.5, 6.6, and 6.7, the visual guidance algorithm (6.11) can be
seen working. From Figure 6.5, you can see optical flow is dense, with the poles and the
floor having optical flow produced. However the floor and the wall were never a threat to the
quadrotor’s motion, which can be clearly seen in Figure 6.6, where the largest threat is the pole
in front. The response of this can be seen in Figure 6.7, where the current velocity (red dot) is
being shifted towards the desired velocity (blue dot).

54 Vision based Forward Sensitive Reactive Control for a Quadrotor VTOL

Figure 6.5: Simulation dense optical flow
output. The colour wheel at the bottom left
represents the colour that refers to the direc-

tion and magnitude of the optical flow.

Figure 6.6: Simulation γ (7.8) cost. The
brighter pixels refer to higher values of γ 7.8,
which mean the points are more of a threat

and the controller must respond as such.

Figure 6.7: Raw simulation output image, via
ROS interface. The red dot is the current ve-
locity, while the blue dot is the visual guid-

ance algorithm (6.11) velocity setpoint.

§6.2 Experimental Results 55

Figure 6.8: Simulation Results: Six paths for the simulated quadrotor. Three paths failed due
to entering parts of the environment from which there was no exit.

The paths that were often followed by the simulated quadrotor are as in Figure 6.8, which
includes success and failure cases. From multiple trials, the most common paths followed
were the red and blue paths. Both paths found corridors of low amounts of poles to go down,
however had to make a significant steering correction just before the middle of the environ-
ment. The dark green line was the most successful case, where little variation in direction was
required, however it was not a common chosen path at first.

Both the yellow and the orange paths were the most common failure cases. In both situ-
ations, the visual guidance algorithm got stuck in a local minima between either 2 poles or a
pole and a wall. While the visual guidance algorithm often overcame this, once the quadrotor
got too close there is no area to avoid collisions. A rarer failure case is the light green line,
where the algorithm got stuck between the poles and did not steer when required.

56 Vision based Forward Sensitive Reactive Control for a Quadrotor VTOL

6.2.2 Environmental Settings

The main setting of this experiment was aimed to simulate Australian bushland, which can be
defined as:

1. Trees and shrubs are close together.

2. Many large and small branches (<1cm) with leaves in irregular shapes, unlike a pine
forest with straight and predictable branch patterns.

Figure 6.9: Reactive obstacle avoidance exper-
iment environment setting

The weather conditions had an impact
on performance. Performance was notice-
ably better during times with large amounts
of cloud. Sunny days created large amounts
of shadows which cause the camera to
have lighting issues, which is a normal is-
sue for non-specialised cameras. Sunny
patches appeared extremely bright while
shaded patches appeared dark. This inher-
ently reduced the ability for the optical flow
algorithm to work correctly, as it reduced
texture resolution. Cloudy days reduced the
dynamic range of light via constant shade,
meaning the camera could be well calibrated
to the conditions.

The system performed better during low wind days for two primary reasons. The quadrotor
is susceptible to drift due to wind pushing the vehicle around. This could lead to velocity
estimates using the aerodynamic modelling (4.5) to have a large error, and the PI velocity
controller (4.20) not performing optimally. The second reason is that branches and trees will
sway in wind. This can cause the optical flow produced by the branches and trees to be different
from when it is stationary, leading to position estimates of the objects having error.

6.2.3 Control Sequence

The experiments follow specific control sequence.

1. The quadrotor with the camera face down computing optical flow, hovers above its
launch point using Equations (5.2) and (5.3) for position control.

2. The quadrotor switches the camera to a stabilised face forward mode aiming the camera
in direction of expected travel.

3. The quadrotor performs the obstacle avoidance experiment using (6.10) and (6.11).

4. The quadrotor stops and faces the camera down to hover again.

5. The quadrotor then performs a landing, using a constant downwards velocity command
and stabilises horizontal position using a zero velocity command rather than (5.3) due to
error of optical flow very close to ground leading to heavy sideways movement.

§6.2 Experimental Results 57

Figure 6.12: Cost Function Output. The dark circle is the area of pixels around V̄ that is
ignored due to the noise from Ψ. The cost function γ is represented by grey scale where the
whiter pixels represents higher values of γ. This scaling is true, except in the case when γ = B

which is represented by red areas.

6.2.4 Results and Analysis

A scene from a typical experiment is shown in Figures 6.10, 6.11, 6.12, and 6.13.

Figure 6.10: Raw image output of the mvBlueFOX-200w camera at a resolution of 376x240.
The grey dot is the vector Av̂ plotted on the camera frame, while the white dot is the desired

velocity vector determined from ε.

Figure 6.11: Example optical flow output Ψ from the reactive control experiment.

In these figures you can see the effect the cost function has on determining whether or not
an object is a threat. Comparing the optical flow output Fig. 6.11 and the cost function output
Fig. 6.12, one can see the cost function reduces the influence of objects that are not a threat
to the control. The tree on the left of the images has a very large optical flow output, however

58 Vision based Forward Sensitive Reactive Control for a Quadrotor VTOL

Figure 6.13: Flight path taken by the quadrotor by an experiment over a distance of 12 meters.
The yellow path is the GPS-tracked flight path, and the blue dots are the approximate tree

(obstacles) locations.

the cost function does not respond to the flow since it is in a zone that will not intersect the
vehicle’s motion. However, the trees slightly to the left and right of the grey dot V̄ are given a
stronger cost even though they have less optical flow.

Although the algorithm is providing a level of look ahead for the vehicle, the quadrotor
can still become stuck if it flies into an open space which then narrows and traps the vehicle.
An example of a failure case can be found in Appendix B - Vision Based Forward Sensitive
Reactive Control for a Quadrotor VTOL Failure Case. It is a straightforward matter to add
an additional control term for the forward velocity of the vehicle that regulates the speed to
zero in the case where the environment encroaches on the free space cylinder. Of course, as
the speed of the vehicle decreases the flow will decrease also allowing the vehicle to squeeze
through narrow spaces1.

1Video of the ‘Vision based forward sensitive reactive control for a quadrotor VTOL’ can be found via https:
//www.youtube.com/watch?v=mwuqyz9cEEA

https://www.youtube.com/watch?v=mwuqyz9cEEA
https://www.youtube.com/watch?v=mwuqyz9cEEA

Chapter 7

Conclusion and Future Work

This chapter summarises the major achievements of the thesis and describe possible future
research.

7.1 Conclusion

This thesis described a quadrotor system for visual navigation in complex and dense environ-
ments. It was designed to meet a set of requirements consistent with functionality required for
future UAV applications. The quadrotor platform achieved completely autonomous flight in
complex and dense environments, and also demonstrated the ability to hover using only visual
cues. It was demonstrated that an effective manual function was in place. The quadrotor used
primarily off-the-shelf components for repeatability and cost saving. The quadrotor was fitted
with the proposed camera and on-board computational capability, which was used with a vi-
sual guidance system. The quadrotor with the complete assembly described in this thesis met
the Australian Government Civil Aviation Safety Authority (CASA) under 2kg commercial
regulations regarding licencing.

The 5 primary goals of this thesis were to demonstrate that:

1. A design of a quadrotor system for utility aerial robotic experiments using off-the-shelf
parts: This was achieved by using a hobby quadrotor kit, using the Pixhawk 2.1 open-
source flight controller and software, using the commercially available NVIDIA Tegra
TX2 with Ubuntu (Linux) operation system, 3-axis hobby gimbal, and the Matrix-Vision
mvBlueFOX-200w camera. These were all off-the-shelf components, however still us-
ing the latest mobilised computational architecture design for robotics.

2. Software architecture and on-board computational hardware for utility aerial robotics ex-
perimental work: This was achieved by using the open-source PX4 code for the Pixhawk
2.1 flight controller and the NVIDIA Jetpack software, a variation of Ubuntu 16.04, for
the NVIDIA Tegra TX2. The state of the quadrotor, including attitude and velocity, was
estimated on the Pixhawk 2.1. The Pixhawk 2.1 was also used to convert autonomous
(from the TX2) or manual commands into motor set-points, used by the motor controllers
to control rotor speed. The visual guidance system was done on the NVIDIA Tegra TX2
using the input from the Matrix-Vision mvBlueFOX-200w camera and trasmitted to the
Pixhawk 2.1 for control.

59

60 Conclusion and Future Work

3. Sensor fusion for quadrotor state estimation: The state of the quadrotor, including atti-
tude and velocity, was estimated on the Pixhawk 2.1 using its on-board inertial measure-
ment unit (IMU) and its HERE2 GNSS (GPS) for position measurements. A customised
velocity filter, using Lyapunov stability theory, was used to get accelerometer measure-
ments (from the IMU), GPS position estimates, and aerodynamic velocity estimates to
get a real-time filtered velocity estimate. Additionally, a customised hardware filtering
system was designed to reduce noise picked up by the IMU due to the motors, meaning
IMU measurements were more reliable.

4. Implementation of image based hover and flight control: Using the NVIDIA Tegra TX2
to get camera inputs and then calculating optical flow in real-time, a position estimate
was calculated. Additionally, with a known landmark such as specific tree or an ArUco
marker, the position estimate could be compensated for drift. The NVIDIA Tegra TX2
would then use a PI controller to give velocity commands to the Pixhawk 2.1 for flight
control.

5. A novel new obstacle avoidance algorithm for forward looking reactive control using
optical flow: Using the dense optical flow algorithm and velocity measurements, points
in 3D space in the direction of the quadrotor were determined whether they were a threat
or not to the quadrotor’s motion. A cylinder in 3D space was projected onto the camera
plane, which determined what points were a threat or not. The cylinder was then steered
to a minimum, to perform forward looking reactive control. This algorithm is novel as it
predicts future possible collisions, other than just reacting purely to optical flow.

7.2 Future Work

The results of this thesis suggest possible research extensions to improve the performance of
the system.

1. Optical Flow: Develop a dense optical flow algorithm which can run on mobilised
computational hardware, such as the NVIDIA Tegra TX2 or an FPGA, which is capable
of having the rotational component of the optical flow removed. This would allow the
removal of the 3-axis gimbal which contributes to a significant weight increase in the
system, while also allowing the quadrotor to rotate without have to stop and move the
gimbal.

2. Event Camera: Using an event camera to estimate optical flow would provide the ben-
efit of extreme dynamic range, allowing the quadrotor to fly during the night or in cave-
like environments. The event camera would also provide the benefit of real-time control
as the data can come from the event camera asynchronously, which could remove the
control delay due to having to process individual frames.

3. Completely Customised Quadrotor: A customised quadrotor using customised parts
could reduce the system weight and make the system more compact. This would increase
the performance of the system, allowing it to fly through smaller gaps and extend flight

§7.2 Future Work 61

time. While this would provide a weight and size benefit, it would reduce the ability
to reproduce and potentially increase the costs of the system as it is no longer using
off-the-shelf parts.

4. Image Warp Conditioning: In high FOV camera, there is a significant lens distortion
causing a warped image present. Removing this would increase system performance,
however it is computationally expensive to do so. Having a system on the camera such
as an FPGA could remove it when the image is picked up by the camera, the transmitting
the un-warped image to the main computational device.

5. Speed Set-points: Add a control term that sets the maximum speed of the quadrotor
dependant on the amounts of threats detected. This means the quadrotor will have more
time to react to targets, and steer more effectively. It also means that the quadrotor would
speed up when there is no real threats.

62 Conclusion and Future Work

Appendix A - Detailed derivation of
Vision Based Forward Sensitive
Reactive Control for a Quadrotor
VTOL

Current optical flow controlled quadrotors directly use optical flow to steer. However, with the
known velocity of the vehicle Bv̂, we can project a cylinder with a cone end into free space
ξ, which is mapped onto the camera frame ξ̄. This tunnel is in the direction of the vector
of vB . Using the cylinder method, it is possible to predict a collision with a point using the
translational optical flow Ψ, while ignoring or reducing the significance of optical flow points
that will not cause a collision even if the optical flow vector is large.

7.3 Mapping the velocity vB onto the camera frame

The first part required is mapping the velocity Bv̂ onto the camera plane ψ̄. This mapping V̄
can be achieved using (7.1):

V̄ =

(
f vC

x
vC

z
,

f vC
y

vC
z

)
(7.1)

Note that vC = Rcam vB is the vehicle velocity written in the camera frame and Rcam is the
rotation of the camera frame with respect to the body-fixed-frame Bv̂.

7.4 Notation for Cost Function σ Definition

The cost function proposed σ is used to derive the steering controller ε. Figure 7.1 shows the
characteristics of the cylinder with a cone end that the steering controller ε is based on. d1

is the distance (in metres) from the quadrotor to the cone’s starting point, while d is the total
length of the cylinder with the cone end. r is the desired radius of the proposed cylinder. r
should be slightly larger than the maximum distance between any point on the quadrotor, to
maximise the chance of the quadrotor not colliding with a point.

63

64 Conclusion and Future Work

Figure 7.1: Cylinder-Cone Visualisation and Terminology

Figure 7.2 shows the mapping of the projected cyclinder with cone end and optical flow
onto the image plane. Dcylinder and Dcone are the domains in which the cylinder and cone
appear on the camera frame. Φ is the optical flow vector in its continuous form (Φ is generally
in its time-based form, which is the measure of pixel motion over a period of time). ξ̄ is a pixel
coordinate on the image plane and V̄ is the pixel coordinate that the velocity appears travelling
towards on the image plane. κ̄ is the magnitude of the distance from ξ̄ to V̄. As such, the
derivative ˙̄κ of κ̄ is the continuous form of the optical flow vector.

Figure 7.2: Optical Flow and Camera Terminology

7.5 Cost Function σ Definition

A dimensionless cost function σ is developed to give an indication of whether or not a point
on the image place ξ̄ is a threat to the quadrotors motion. Let zr denote the depth of the point
ξr on the cylinder wall. This cost function is based of the projection of the cylinder with cone
end (7.2):

σ(V̄, t; ξ̄, Ψ(ξ, t), f , r) =
|Ψ(ξ̄, t)|

e>3 vC

r f
|ξ̄ − V̄|2

µ (zr) (7.2)

§7.6 Cost Function σ Derivation 65

This is where µ (zr) is based on the cylinder and cone shape (7.3), and zr is the distance in e3

from the quadrotor to a point:

µ(zr) =

{
zr ∈ [0, d1] µ(zr) = 1
zr ∈ [d1, d] µ(zr) =

d−zr
d−d1

(7.3)

7.6 Cost Function σ Derivation

The cost function σ is developed from the properties of similar triangles, projecting on to the
cylinder wall of radius r. A point in space p ∈ R3 can be projected onto the camera plane ξ̄

using the properties of similar triangles as shown in Figure 7.3. Using the properties of similar
triangles we get (7.4):

zr

r
=

f
κ̄

(7.4)

Figure 7.3: Properties of similar triangles, based on the cylinder

Where κ̄ = |ξ̄ − V̄| is the relative position on the pixel ξ̄ compared to the mapped velocity
V̄. Rearranging (7.4) and taking the derivative of κ̄ we get (7.5):

˙̄κ = −r f
żr

z2
r

(7.5)

Substituting zr =
r f
κ̄ (7.4) into (7.5) we get :

˙̄κ = − κ̄2

r f
żr (7.6)

The quadrotor’s velocity in the camera frame Cv is travelling to the point V̄, we can take
the velocity in the z-direction of the camera frame is the same as equivalent to the velocity
e3 vC = −żr. ˙̄κ is the normalised translational flow Ψ over time (pixels per second). From this

66 Conclusion and Future Work

we get (7.7):
|Ψ(ξ, t)|

e>3 vC

r f
|ξ̄ − V̄|2

= 1 (7.7)

σ (7.2) is essentially a function of the variation of the measured relationship |Ψ(ξ,t)|
e>3 vC .

7.7 Cost Function γ

σ (7.2) however is not effective enough to be used to steer the quadrotor. Since points outside
the cylinder wall are not a major problem, we can remap σ on to the ‘barrier’ cost function γ

so that different points can be scaled. Defining the ‘barrier’ cost function γ : [0, 1] → [0, ∞]
(7.8):

γ(σ) := A (eασ − 1) (7.8)

for constants B > 0, G > 0 and where A = B
G−1 and α = log(G). In particular, one has

γ(0) = 0, γ(1) = B,
d

dσ
γ(0) =

B(log(G)− 1)
G− 1

Thus, the constant B fixes the maximum value of the barrier function while G implicitly fixes
the gradient of the cost function at the origin. γ can be visualised in Figure 7.4:

Figure 7.4: γ remap

§7.8 Total Scene Cost Γ and its derivative ∇Γ defintion and derivation 67

7.8 Total Scene Cost Γ and its derivative ∇Γ defintion and
derivation

To achieve the control we need to look at an integration Γ(V̄, t) over all the surface of the
image plane ξ̄ (7.9).

Γ(V̄, t) =
∫

R2
γ(σ(V̄, ξ; Ψ(ξ, t), f , r))dξ (7.9)

For steering control ε based on the direction of V̄, we use the derivative of Γ(V̄, t) as
defined in (7.10):

∇Γ(V̄, t) =
∫

R2

d
dσ

γ(σ(V̄, ξ))
d

dV̄
σ(V̄, ξ)dξ (7.10)

For simplicity, we split ∇Γ into its cylinder ∇Γcyl and cone ∇Γco components such that
(7.11) is formed:

∇Γ = ∇Γcyl +∇Γco (7.11)

This is where ∇Γcyl and ∇Γco are defined as:

∇Γcyl = Aα
∫

Dcyl

2eασσ
ξ̄ − V̄
|ξ̄ − V̄|2

dξ̄ (7.12)

∇Γco = Aα
∫

Dco

eασσ
ξ̄ − V̄
d− d1

(
2d

|ξ̄ − V̄|2
− 3r f
|ξ̄ − V̄|3

)
dξ̄ (7.13)

The following process to form ∇Γcyl and ∇Γco, we need to find out the components for
each. Since d

dσ γ is independent of variations of σ, d
dσ γ is determined (7.14):

d
dσ

γ = Aαeασ (7.14)

For the domain of the cylinder we can compute d
dV̄ σcyl via this sequence:

σcyl =
|Ψ|

e>3 vC

r f
|ξ̄ − V̄|2

(7.15a)

d
dV̄

σcyl = 2r f
|Ψ|

e>3 vC

1
|ξ̄ − V̄|3

(7.15b)

= 2r f
|Ψ|

e>3 vC

ξ̄ − V̄
|ξ̄ − V̄|4

for direction (7.15c)

= 2σcyl
ξ̄ − V̄
|ξ̄ − V̄|2

(7.15d)

68 Conclusion and Future Work

For the domain of the cone we can compute σco in its expanded form via this sequence:

σco =
|Ψ|

e>3 vC

r f
|ξ̄ − V̄|2

d− zr

d− d1
(7.16a)

=
|Ψ|

e>3 vC

r f
|ξ̄ − V̄|2

d− r f
|ξ̄−V̄|

d− d1
(7.16b)

=
r f

d− d1

|Ψ|
e>3 vC

(
d

|ξ̄ − V̄|2
− r f
|ξ̄ − V̄|3

)
(7.16c)

Then we can compute d
dV̄ σco via this sequence:

d
dV̄

σco (7.17a)

=
r f

d− d1

|Ψ|
e>3 vC

(
2d

|ξ̄ − V̄|3
− 3r f
|ξ̄ − V̄|4

)
(7.17b)

=
r f

d− d1

|Ψ|
e>3 vC

ξ̄ − V̄
|ξ̄ − V̄|2

(
2d

|ξ̄ − V̄|2
− 3r f
|ξ̄ − V̄|3

)
for direction (7.17c)

=
ξ̄ − V̄
d− d1

σcyl

(
2d

|ξ̄ − V̄|2
− 3r f
|ξ̄ − V̄|3

)
(7.17d)

Since we now have d
dσ γ, d

dV̄ σcyl , and d
dV̄ σco, we can compute ∇Γcyl and ∇Γco with the

results shown in (7.12) and (7.13) respectively.

7.9 Steering Control ε

Using (7.10), we can calculate our steering controller ε with a gain kε as (7.18):

ε = −kε∇Γ(V̄, t) (7.18)

ε is used as a force controller Fd component that drives the quadrotor in {B}. This controller
is described in (7.19):

Fd = εe2 + mge3 + u1e1 (7.19)

Where u1 is a desired forward force controller.

Appendix B - Vision Based Forward
Sensitive Reactive Control for a
Quadrotor VTOL Failure Case

The most common failure case observed during the main experiments occurs when the cost
function has an equal distribution across the image around V̄ (7.1). This can either be when
there are 2 border trees causing the algorithm to navigate in between the two but they are too
tight to fit between, or when the algorithm navigates towards the centre of a tree causing the
total scene cost Γ(V̄, t) (7.9) to have no significant control value due the spread of the tree and
its affect on the optical flow. Figures 7.5, 7.6, and 7.7 are an example output of when the costs
on both sides of V̄ (7.1) is near equal which causes Γ(V̄, t) (7.9) to be near zero when moving
towards the centre of a tree.

To deal with this situation, an additional control term is necessary to increase or decrease
the velocity of the quadrotor, or to move it out of the path. This was not explored during this
thesis.

69

70 Conclusion and Future Work

Figure 7.5: Raw image from failed reactive
control experiment.

Figure 7.6: Optical flow image from failed
reactive control experiment.

Figure 7.7: Cost output from failed reactive
control experiment.

Bibliography

ACHTELIK, M.; BACHRACH, A.; HE, R.; PRENTICE, S.; AND ROY, N., 2009. Autonomous
navigation and exploration of a quadrotor helicopter in gps-denied indoor environments. In
First Symposium on Indoor Flight, 2009. Citeseer. (cited on pages 3, 9, 12, and 13)

ADARVE, J. D. AND MAHONY, R., 2016. A filter formulation for computing real time optical
flow. IEEE Robotics and Automation Letters, 1, 2 (July 2016), 1192–1199. doi:10.1109/
LRA.2016.2532928. (cited on pages 3, 10, 11, 13, 33, 34, 35, and 47)

ALPEN, M.; WILLRODT, C.; FRICK, K.; AND HORN, J., 2010. On-board slam for indoor
uav using a laser range finder. In Unmanned Systems Technology XII, vol. 7692, 769213.
International Society for Optics and Photonics. (cited on pages 3, 9, and 13)

ALTUG, E.; OSTROWSKI, J. P.; AND MAHONY, R., 2002. Control of a quadrotor helicopter
using visual feedback. In Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE
International Conference on, vol. 1, 72–77. IEEE. (cited on pages 6, 8, and 13)

BANGURA, M.; KUIPERS, F.; ALLIBERT, G.; AND MAHONY, R., 2015. Non-linear ve-
locity aided attitude estimation and velocity control for quadrotors. In Proceedings of the
Australian Conference for Automation and Robotics. (cited on pages 9, 30, and 31)

BANGURA, M.; MAHONY, R.; LIM, H.; AND KIM, H. J., 2014. An open-source implemen-
tation of a unit quaternion based attitude and trajectory tracking for quadrotors. In Proceed-
ings of the Australasian Conference on Robotics and Automation, Melbourne, Australia,
2–4. (cited on page 8)

BANGURA, M.; MAHONY, R.; ET AL., 2012. Nonlinear dynamic modeling for high perfor-
mance control of a quadrotor. In Australasian conference on robotics and automation, 1–10.
(cited on page 30)

BHAGAVATULA, P. S.; CLAUDIANOS, C.; IBBOTSON, M. R.; AND SRINIVASAN, M. V.,
2011. Optic flow cues guide flight in birds. Current Biology, 21, 21 (2011), 1794–1799.
(cited on pages 12 and 13)

BLOESCH, M.; BURRI, M.; OMARI, S.; HUTTER, M.; AND SIEGWART, R., 2017. Iterated
extended kalman filter based visual-inertial odometry using direct photometric feedback.
The International Journal of Robotics Research, 36, 10 (2017), 1053–1072. (cited on pages
8, 9, and 13)

BLOESCH, M.; OMARI, S.; HUTTER, M.; AND SIEGWART, R., 2015. Robust visual inertial
odometry using a direct ekf-based approach. In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, 298–304. IEEE. (cited on pages 8, 9, and 13)

71

http://dx.doi.org/10.1109/LRA.2016.2532928
http://dx.doi.org/10.1109/LRA.2016.2532928

72 BIBLIOGRAPHY

BLÖSCH, M.; WEISS, S.; SCARAMUZZA, D.; AND SIEGWART, R., 2010. Vision based
mav navigation in unknown and unstructured environments. In 2010 IEEE International
Conference on Robotics and Automation, 21–28. doi:10.1109/ROBOT.2010.5509920.
(cited on pages 3, 9, and 13)

BORENSTEIN, J., 1992. The hoverbot–an electrically powered flying robot. Unpublished
white paper, University of Michigan, Ann Arbor, MI. Available FTP: ftp://ftp. eecs. umich.
edu/people/johannb/paper99. pdf, (1992). (cited on page 6)

BOUGUET, J.-Y., 2001. Pyramidal implementation of the affine lucas kanade feature tracker
description of the algorithm. Intel Corporation, 5, 1-10 (2001), 4. (cited on page 10)

BRESCIANINI, D.; HEHN, M.; AND D’ANDREA, R., 2013. Quadrocopter pole acrobatics. In
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, 3472–
3479. IEEE. (cited on page 9)

BRIOD, A.; ZUFFEREY, J.-C.; AND FLOREANO, D., 2016. A method for ego-motion estima-
tion in micro-hovering platforms flying in very cluttered environments. Autonomous Robots,
40 (06 2016). doi:10.1007/s10514-015-9494-4. (cited on page 11)

CONROY, J.; GREMILLION, G.; RANGANATHAN, B.; AND HUMBERT, J. S., 2009. Im-
plementation of wide-field integration of optic flow for autonomous quadrotor navigation.
Autonomous robots, 27, 3 (2009), 189. (cited on pages 3, 12, and 13)

COOMBS, D.; HERMAN, M.; HONG, T.-H.; AND NASHMAN, M., 1998. Real-time obsta-
cle avoidance using central flow divergence, and peripheral flow. IEEE Transactions on
Robotics and Automation, 14, 1 (1998), 49–59. (cited on page 11)

DOSOVITSKIY, A.; FISCHER, P.; ILG, E.; HÄUSSER, P.; HAZIRBAS, C.; GOLKOV, V.;
V. D. SMAGT, P.; CREMERS, D.; AND BROX, T., 2015. Flownet: Learning optical flow
with convolutional networks. In 2015 IEEE International Conference on Computer Vision
(ICCV), 2758–2766. doi:10.1109/ICCV.2015.316. (cited on page 11)

ERESEN, A.; İMAMOĞLU, N.; AND EFE, M. Ö., 2012. Autonomous quadrotor flight with
vision-based obstacle avoidance in virtual environment. Expert Systems with Applications,
39, 1 (2012), 894–905. (cited on pages 3, 12, and 13)

FAN, L.; LAI, J.; LYU, P.; AND YUAN, C., 2018. Visual path following method for quadrotors
based on structured edge detection*. In 2018 IEEE CSAA Guidance, Navigation and Control
Conference (CGNCC), 1–6. doi:10.1109/GNCC42960.2018.9019154. (cited on page
3)

FORSTER, C.; LYNEN, S.; KNEIP, L.; AND SCARAMUZZA, D., 2013. Collaborative monoc-
ular slam with multiple micro aerial vehicles. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 3962–3970. doi:10.1109/IROS.2013.6696923. (cited
on pages 3, 9, and 13)

http://dx.doi.org/10.1109/ROBOT.2010.5509920
http://dx.doi.org/10.1007/s10514-015-9494-4
http://dx.doi.org/10.1109/ICCV.2015.316
http://dx.doi.org/10.1109/GNCC42960.2018.9019154
http://dx.doi.org/10.1109/IROS.2013.6696923

BIBLIOGRAPHY 73

FRAUNDORFER, F.; HENG, L.; HONEGGER, D.; LEE, G. H.; MEIER, L.; TANSKANEN,
P.; AND POLLEFEYS, M., 2012. Vision-based autonomous mapping and exploration using
a quadrotor mav. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, 4557–4564. IEEE. (cited on pages 3, 9, 12, and 13)

FU, C.; OLIVARES-MENDEZ, M. A.; SUAREZ-FERNANDEZ, R.; AND CAMPOY, P., 2014.
Monocular visual-inertial slam-based collision avoidance strategy for fail-safe uav using
fuzzy logic controllers. Journal of intelligent & robotic systems, 73, 1-4 (2014), 513–533.
(cited on pages 3, 9, and 13)

GRABE, V.; BÜLTHOFF, H. H.; AND GIORDANO, P. R., 2012. On-board velocity estimation
and closed-loop control of a quadrotor uav based on optical flow. In Robotics and Automa-
tion (ICRA), 2012 IEEE International Conference on, 491–497. IEEE. (cited on pages 3,
11, and 12)

HAMEL, T.; MAHONY, R.; LOZANO, R.; AND OSTROWSKI, J., 2002. Dynamic mod-
elling and configuration stabilization for an x4-flyer. IFAC Proceedings Volumes, 35, 1
(2002), 217 – 222. doi:https://doi.org/10.3182/20020721-6-ES-1901.00848. http:
//www.sciencedirect.com/science/article/pii/S1474667015392697. 15th IFAC World
Congress. (cited on pages 6, 8, 13, and 30)

HERISSE, B.; HAMEL, T.; MAHONY, R.; AND RUSSOTTO, F. X., 2012. Landing a vtol
unmanned aerial vehicle on a moving platform using optical flow. IEEE Transactions on
Robotics, 28, 1 (Feb 2012), 77–89. doi:10.1109/TRO.2011.2163435. (cited on pages 3,
11, 12, 13, 35, and 41)

HO, H. W.; DE CROON, G. C. H. E.; VAN KAMPEN, E.; CHU, Q. P.; AND MULDER,
M., 2018. Adaptive gain control strategy for constant optical flow divergence landing.
IEEE Transactions on Robotics, 34, 2 (2018), 508–516. doi:10.1109/TRO.2018.2817418.
(cited on page 3)

HONEGGER, D.; MEIER, L.; TANSKANEN, P.; AND POLLEFEYS, M., 2013. An open source
and open hardware embedded metric optical flow cmos camera for indoor and outdoor ap-
plications. In Robotics and Automation (ICRA), 2013 IEEE International Conference on,
1736–1741. IEEE. (cited on pages 3, 11, 12, and 34)

HORN, B. K. AND SCHUNCK, B. G., 1981. Determining optical flow. Artificial intelligence,
17, 1-3 (1981), 185–203. (cited on pages 10, 13, and 33)

HUANG, A. S.; BACHRACH, A.; HENRY, P.; KRAININ, M.; MATURANA, D.; FOX, D.;
AND ROY, N., 2017. Visual odometry and mapping for autonomous flight using an rgb-d
camera. In Robotics Research, 235–252. Springer. (cited on pages 3, 9, and 13)

ILG, E.; MAYER, N.; SAIKIA, T.; KEUPER, M.; DOSOVITSKIY, A.; AND BROX, T., 2017.
Flownet 2.0: Evolution of optical flow estimation with deep networks. In IEEE conference
on computer vision and pattern recognition (CVPR), vol. 2, 6. (cited on page 11)

http://dx.doi.org/https://doi.org/10.3182/20020721-6-ES-1901.00848
http://www.sciencedirect.com/science/article/pii/S1474667015392697
http://www.sciencedirect.com/science/article/pii/S1474667015392697
http://dx.doi.org/10.1109/TRO.2011.2163435
http://dx.doi.org/10.1109/TRO.2018.2817418

74 BIBLIOGRAPHY

KHALIL, H. K., 1996. Nonlinear Systems. Prentice-Hall, Englewood Cliffs, NJ, 2nd edn.
(cited on page 32)

KROO, I.; PRINZ, F.; SHANTZ, M.; KUNZ, P.; FAY, G.; CHENG, S.; FABIAN, T.; AND

PARTRIDGE, C., 2000. The mesicopter: A miniature rotorcraft concept phase ii interim
report. Stanford university, (2000). (cited on page 6)

LAI, S.; LAN, M.; AND CHEN, B. M., 2018. Efficient safe corridor navigation with jerk
limited trajectory for quadrotors. In 2018 37th Chinese Control Conference (CCC), 10065–
10070. doi:10.23919/ChiCC.2018.8483213. (cited on pages 12 and 13)

LEISHMAN, J. G., 2002. The breguet-richet quad-rotor helicopter of 1907. Vertiflite, 47, 3
(2002), 58–60. (cited on page 5)

LIM, H.; PARK, J.; LEE, D.; AND KIM, H. J., 2012. Build your own quadrotor: Open-source
projects on unmanned aerial vehicles. IEEE Robotics Automation Magazine, 19, 3 (Sept
2012), 33–45. doi:10.1109/MRA.2012.2205629. (cited on page 8)

LUCAS, B. D.; KANADE, T.; ET AL., 1981. An iterative image registration technique with an
application to stereo vision. (1981). (cited on pages 10 and 13)

MCCARTHY, C.; BARNES, N.; AND MAHONY, R., 2008. A robust docking strategy for a
mobile robot using flow field divergence. IEEE Transactions on Robotics, 24, 4 (Aug 2008),
832–842. doi:10.1109/TRO.2008.926871. (cited on pages 3, 12, and 13)

MCGUIRE, K.; DE CROON, G.; WAGTER, C. D.; TUYLS, K.; AND KAPPEN, H., 2017.
Efficient optical flow and stereo vision for velocity estimation and obstacle avoidance on
an autonomous pocket drone. IEEE Robotics and Automation Letters, 2, 2 (April 2017),
1070–1076. doi:10.1109/LRA.2017.2658940. (cited on page 11)

MOHTA, K.; SUN, K.; LIU, S.; WATTERSON, M.; PFROMMER, B.; SVACHA, J.; MUL-
GAONKAR, Y.; TAYLOR, C. J.; AND KUMAR, V., 2018. Experiments in fast, autonomous,
gps-denied quadrotor flight. In 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA), 7832–7839. doi:10.1109/ICRA.2018.8463214. (cited on pages 9
and 13)

PENG, X. Z.; LIN, H. Y.; AND DAI, J. M., 2016. Path planning and obstacle avoidance for
vision guided quadrotor uav navigation. In 2016 12th IEEE International Conference on
Control and Automation (ICCA), 984–989. doi:10.1109/ICCA.2016.7505408. (cited on
page 11)

PESZOR, D.; WOJCIECHOWSKA, M.; WOJCIECHOWSKI, K.; AND SZENDER, M., 2017.
Fast moving uav collision avoidance using optical flow and stereovision. In Lecture notes in
computer science: Intelligent information and database systems, 572–581. Springer. (cited
on pages 3, 12, and 13)

POUNDS, P.; MAHONY, R.; AND CORKE, P., 2010. Modelling and control of a large quadro-
tor robot. Control Engineering Practice, 18, 7 (2010), 691–699. (cited on page 6)

http://dx.doi.org/10.23919/ChiCC.2018.8483213
http://dx.doi.org/10.1109/MRA.2012.2205629
http://dx.doi.org/10.1109/TRO.2008.926871
http://dx.doi.org/10.1109/LRA.2017.2658940
http://dx.doi.org/10.1109/ICRA.2018.8463214
http://dx.doi.org/10.1109/ICCA.2016.7505408

BIBLIOGRAPHY 75

POUNDS, P. E. I. ET AL., 2007. Design, construction and control of a large quadrotor micro
air vehicle. (2007). (cited on page 6)

RANJAN, A. AND BLACK, M. J., 2017. Optical flow estimation using a spatial pyramid
network. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2,
2. IEEE. (cited on page 11)

REN, Z.; YAN, J.; NI, B.; LIU, B.; YANG, X.; AND ZHA, H., 2017. Unsupervised deep
learning for optical flow estimation. In AAAI, vol. 3, 7. (cited on page 11)

SCHAUB, A.; BAUMGARTNER, D.; AND BURSCHKA, D., 2017. Reactive obstacle avoid-
ance for highly maneuverable vehicles based on a two-stage optical flow clustering. IEEE
Transactions on Intelligent Transportation Systems, 18, 8 (Aug 2017), 2137–2152. doi:
10.1109/TITS.2016.2633292. (cited on pages 3, 9, and 13)

SCHAUWECKER, K. AND ZELL, A., 2013. On-board dual-stereo-vision for autonomous
quadrotor navigation. In Unmanned Aircraft Systems (ICUAS), 2013 International Con-
ference on, 333–342. IEEE. (cited on pages 3, 9, and 13)

SERRA, P.; CUNHA, R.; HAMEL, T.; CABECINHAS, D.; AND SILVESTRE, C., 2016. Land-
ing of a quadrotor on a moving target using dynamic image-based visual servo control. IEEE
Transactions on Robotics, 32, 6 (2016), 1524–1535. (cited on pages 3, 11, 12, and 13)

SRINIVASAN, M.; CHAHL, J.; K.WEBER; S.VENKATESH; M.G.NAGLE; AND

S.W.ZHANG, 1999. Robot navigation inspired by principles of insect vision. Robotics
and Autonomous Systems, 26, 2–3 (1999), 203–216. (cited on pages 11, 12, and 13)

SRINIVASAN, M.; ZHANG, S.; LEHRER, M.; AND COLLETT, T., 1996. Honeybee navigation
en route to the goal: visual flight control and odometry. Journal of Experimental Biology,
199, 1 (1996), 237–244. (cited on pages 12 and 13)

STEVENS, J. AND MAHONY, R., 2018. Vision based forward sensitive reactive control for a
quadrotor vtol. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), 5232–5238. doi:10.1109/IROS.2018.8593606. (cited on pages 4 and 47)

VALENTI, R. G.; DRYANOVSKI, I.; JARAMILLO, C.; STRÖM, D. P.; AND XIAO, J., 2014.
Autonomous quadrotor flight using onboard rgb-d visual odometry. In Robotics and Au-
tomation (ICRA), 2014 IEEE International Conference on, 5233–5238. IEEE. (cited on
pages 3, 9, and 13)

WARREN, W. H.; KAY, B. A.; ZOSH, W. D.; DUCHON, A. P.; AND SAHUC, S., 2001. Optic
flow is used to control human walking. Nature neuroscience, 4, 2 (2001), 213. (cited on
pages 12 and 13)

WEISS, S.; ACHTELIK, M. W.; LYNEN, S.; CHLI, M.; AND SIEGWART, R., 2012. Real-
time onboard visual-inertial state estimation and self-calibration of mavs in unknown envi-
ronments. In Robotics and Automation (ICRA), 2012 IEEE International Conference on,
957–964. IEEE. (cited on pages 9 and 13)

http://dx.doi.org/10.1109/TITS.2016.2633292
http://dx.doi.org/10.1109/TITS.2016.2633292
http://dx.doi.org/10.1109/IROS.2018.8593606

76 BIBLIOGRAPHY

WEISS, S.; SCARAMUZZA, D.; AND SIEGWART, R., 2011. Monocular-slam–based nav-
igation for autonomous micro helicopters in gps-denied environments. Journal of Field
Robotics, 28, 6 (2011), 854–874. (cited on pages 3, 9, 11, and 13)

XU, J.; RANFTL, R.; AND KOLTUN, V., 2017. Accurate optical flow via direct cost volume
processing. arXiv preprint arXiv:1704.07325, (2017). (cited on page 11)

ZHANG, K.; CHEN, J.; CHANG, Y.; AND SHI, Y., 2016a. Ekf-based lqr tracking control of a
quadrotor helicopter subject to uncertainties. In IECON 2016 - 42nd Annual Conference of
the IEEE Industrial Electronics Society, 5426–5431. doi:10.1109/IECON.2016.7794149.
(cited on page 8)

ZHANG, X.; YANG, Z.; ZHANG, T.; AND SHEN, Y., 2016b. An improved kalman filter
for attitude determination of multi-rotor uavs based on low-cost mems sensors. In 2016
IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), 407–412. doi:
10.1109/CGNCC.2016.7828820. (cited on page 8)

ZINGG, S.; SCARAMUZZA, D.; WEISS, S.; AND SIEGWART, R., 2010. Mav navigation
through indoor corridors using optical flow. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, 3361–3368. IEEE. (cited on pages 3, 10, 11, 12, and 13)

http://dx.doi.org/10.1109/IECON.2016.7794149
http://dx.doi.org/10.1109/CGNCC.2016.7828820
http://dx.doi.org/10.1109/CGNCC.2016.7828820

	Acknowledgments
	Abstract
	Contents
	Introduction
	What is a Quadrotor UAV?
	What applications are currently feasible for UAVs?
	What are the current Obstacle Avoidance Methods of UAVs?
	Contributions of this Thesis

	Literature Review
	History of Quadrotors
	Control and State Estimation of Quadrotors
	Optical Flow and its Characteristics
	Visual Control of Autonomous Aerial Vehicles
	Summary

	System Avionics, Hardware, and Computational Architecture
	System Requirements
	System Overview
	Computational Architecture
	Pixhawk 2.1 (PX4) Architecture
	NVIDIA Tegra TX2 Architecture

	Communications
	Camera and Gimbal
	Hardware vibration dampening system
	System components and weights

	Software Architecture, Filtering and Performance Tuning
	Software Architecture
	Quadrotor Dynamics and Frames of Reference
	Filtering of noisy GPS position and inertial velocity measurements to estimate velocity
	Optical Flow Characteristics
	De-rotation of Optical Flow
	Average Inertial Spherical Flow w for Quadrotor Control
	Performance Gain Tuning
	Velocity gain tuning for general flight
	Velocity and Position Gain Tuning for Velocity Estimates using Optical Flow

	Summary

	Vision-based Hover Control
	Position Estimation from a known landmark
	Vertical Position Estimation via a Logarithmic Filter of w and a landmark
	Horizontal Position Estimation from Optical Flow and a Fiducial Marker
	Experimental Results
	Comparison of the ArUco fiducial marker position estimate with other methods

	Vision based Forward Sensitive Reactive Control for a Quadrotor VTOL
	Forward Vision Tunnel-based Optical Flow Controller
	Experimental Results
	Simulations
	Environmental Settings
	Control Sequence
	Results and Analysis

	Conclusion and Future Work
	Conclusion
	Future Work
	Mapping the velocity *[B]v onto the camera frame
	Notation for Cost Function Definition
	Cost Function Definition
	Cost Function Derivation
	Cost Function
	Total Scene Cost and its derivative defintion and derivation
	Steering Control

