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Abstract

Gowers presents, in his 2000 essay “The Two Cultures of Mathematics”, two
kinds of mathematicians he calls the theory-builders and problem-solvers.
Of course both kinds of research are important; theory building may directly
lead to solutions to problems, and by studying individual problems one
uncovers the general structures of problems themselves. However, referencing
a remark of Atiyah [9], Gowers observes that because so much research
is produced, the results that can be “organised coherently and explained
economically” will be the ones that last. Unlike mathematics, the field of
machine learning abounds in problem-solvers — this is wonderful as it leads
to a large number of problems being solved — but it is with regard to the
point of Gowers that we are motivated to develop an appropriately general
analytic framework to study machine learning problems themselves.

To do this we first locate and develop the appropriate analytic objects to
study. Chapter 2 recalls some concepts and definitions from the theory of
topological vector spaces. In particular, the families of radiant and co-radiant
sets and dualities. In Chapter 4 we will need generalisations of a variety of
existing results on these families, and these are presented in Chapter 3.

Classically a machine learning problem involves four quantities: an
outcome space, a family of predictions (or model),1 a loss function, and a
probability distribution. If the loss function is sufficiently general we can
combine it with the set of predictions to form a set of real functions, which
under very general assumptions, turns out to be closed, convex, and in

1In the sequel we use the terms prediction andmodel interchangeably since the distinction
is largely semantic.
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viii ABSTRACT

particular, co-radiant. With the machinery of the previous two chapters
in place, in Chapter 4 we lay out the foundations for an analytic theory of
the classical machine learning problem, including a general analysis of link
functions, by which we may rewrite almost any loss function as a scoring rule;
a discussion of scoring rules and their properisation; and using the co-radiant
results from Chapter 3 in particular, a theory of prediction aggregation.

Chapters 5 and 6 develop results inspired by and related to adversarial
learning. Chapter 5 develops a theory of boosted density estimation with
strong convergence guarantees, where density updates are computed by
training a classifier, and Chapter 6 uses the theory of optimal transport
to formulate a robust Bayes minimisation problem, in which we develop
a universal theory of regularisation and deliver new strong results for the
problem of adversarial learning.

Chapter 2

Chapter 3

Chapter 1

Chapter 4

Chapter 5

Chapter 6

Part I

Part II

Part III

Figure 1: Dependencies among chapters.
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Chapter 1
Introduction

It is a necessity that, when developing theory, one begins at the bottom,
working upwards to ensure that various desiderata are satisfied before building
on preliminary results. However, in direct opposition, for the purposes of
motivating the decisions when building a theory, it is more helpful to structure
the results in the opposite way, motivating the theory by what it achieves
in those subsequent chapters. These competing demands of motivation and
rigour leave the author with a kind of chicken and egg dilemma. By the
inclusion of this introduction, we hope to provide the reader with some
explanation for the direction of the subsequent chapters, by introducing the
following chapters in a non-linear fashion.

In Chapter 4 we seek to develop the basis for a general theory of classical
machine learning problems. The most basic way to think of such a problem
is the prediction of some kind of distribution over an outcome space. The
goodness of this prediction is evaluated with a scoring rule by calculating the
expected loss or penalty incurred, using a loss function. The prediction itself
may be a distribution, in which case the loss function is a called a scoring
rule, or it may be something more abstract (like a function). It turns out
that the natural convex structure of scoring rules lets us write any kind of
prediction as one of a family of distributions. It is in this way that almost
any kind of model class can be reparameterised using a scoring rule like this,
using a link function; the existence of which is guaranteed through the theory
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2 CHAPTER 1. INTRODUCTION

of convex duality (Section 4.3.2). This is one of many results we can achieve
by developing our general theory of learning problems using convex analysis
as a foundation. Some others we cover are ways to ensure scoring rules yield
accurate predictions via properisation (Section 4.3), and how to combine
scoring rules and compute their associated link functions (Section 4.4.2). A
key group of objects of study in the theory of convex analysis are the convex
sets, and so we establish some basic properties of a certain set, associated
with a learning problem called the superprediction set (Section 4.1.1). These
sets have many interesting properties. For example, when the scoring rule is
continuous, these sets are convex precisely when the scoring rule is proper
(Section 4.2.2). More generally these sets are often members of a kind of
unbounded set family, known as the co-radiant sets, and it is for this reason
that we are motivated to study these sets.

The theory of co-radiant sets is often studied in the convex analysis
literature together with their (often bounded) counterpart, the radiant sets.
Every co-radiant set is the complement of a radiant set, and vice versa. The
results mentioned above that are constructed using the superprediction sets
require developing a theory for manipulating the co-radiant sets, and for
completeness we show the companion results for the radiant sets (Chapter 3).
As part of this algebra we have a number of formulas for support and
gauge functions (Section 3.5), but to compute these we need to construct
a theory of duality (Section 3.4), and in turn to produce the theory of
duality we need some simpler formulas for some other gauge (Section 3.3)
and support functions (Section 3.1). Some of these results however require a
somewhat lengthy investigation of the topology of these sets (Section 3.2)
and, in particular, results associated with their asymptotic cones, which are
an object to simplify the analysis of unbounded sets. Even though most
machine learning problems can be represented in a Banach space, in the
convex analysis literature, results of the sort in Chapter 3 are typically proven
in a locally convex, Hausdorff topological vector space. For our results here
to represent a strict generalisation of other related works, we need to be
intimately familiar with the mechanics of these spaces.

The setting of a locally convex, Hausdorff topological space is one of the
most general vector spaces in mathematics; it is endowed with the minimal
structure necessary for the majority of essential results in analysis and convex
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analysis to hold (in particular, the Hahn–Banach separation theorem, and
the Bourbaki–Alaoglu theorem), and we provide an introduction to these
spaces and key results on them in Chapter 2. To manipulate sets in these
spaces in Chapter 3 we have certain results that require the sum of two
sets is closed. Unfortunately for us, we cannot be sure that either or both
of the sets will be bounded, and so we need results on the closure of the
sum of sets (Section 2.4.1). To be able to do study the sublinear functions
on these spaces (in particular the gauge and support functions) we need to
be able to calculate and ensure certain behaviours of their subdifferentials
(Sections 2.4.2 and 2.4.3). Chapter 2 begins with an introduction to all
of the basic concepts we will need for these results, along with some basic
properties.

The theory developed in Chapter 4, while interesting and rich in its foun-
dations, is not general enough to include some more exotic kinds of learning
problems that we introduce by way of example. In a binary classification
task, the Radon–Nikodym derivative can be related to the Bayes-optimal
classifier. Of course being able to compute the Radon–Nikodym derivative
between an initial guess and the true distribution makes performing density
estimation a triviality. It then should not be too surprising that by making
an initial guess at the true distribution and learning a classifier, that we
can learn some information about the Radon–Nikodym derivative. Using
this observation, in Chapter 5 we show how the how a sequence of binary
classifiers can be used to construct density estimates. And by making weak
assumptions about the performance of these classifiers, we can derive strong
convergence guarantees for density estimation.

When performing risk minimisation, instead of fitting a single distribu-
tion, one might instead look at a neighbourhood of distributions called an
uncertainty set — that way if it turns out the data that one has access to
were not completely representitive of the true distribution, the penalty of
the misspecification is not too severe. This kind of risk is called a robust
Bayes risk. Parallelly, there has been interest in regularisation for ensuring
performance against so-called adversarial examples. In Chapter 6 we develop
a general theory of regularisation that explains both of these phenomena.
Using the transportation cost, from the theory of optimal transport, we
formalise a notion of an uncertainty set. It’s then shown with equality



4 CHAPTER 1. INTRODUCTION

when the worst case risk over the uncertainty set is equal to the Lipschitz
regularised risk, and in the other cases we prove a tight upper bound result.
As an application we show how adversarial learning may be located within
the robust Bayes framework.

Finally each chapter following Chapter 2 is bookmarked with a brief
introduction and conclusion to summarise the intervening material.

In some ways the task of developing theory can be reflected upon as a
shifting of onus. In a more problem-driven approach to machine learning, the
onus is on the reader to understand a series of problems, and to be familiar
with the panoply of idiosyncratic solutions for each. A theory of machine
learning problems, on the other hand, shifts the onus of understanding the
commonality of problems to the theoretician. It is in this way that when a
new problem arises, or a new question is asked, that we have an array of
tools at our disposal to analyse and compare a new engineering challenge
with the ones we have already thoroughly understood.



Part I

Nonsmooth Analysis
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Chapter 2
Technical Preliminaries

Some special sets are [k] def= {1, . . . , k} with k ∈ N, R̄ def= [−∞,+∞],
R≥0

def= [0,∞), and R>0
def= (0,∞). For set T and a function f : T → R̄,

the set of points on which it achieves its infimum is arginft∈T f(t) def=
{t ∈ T | f(t) = inf f(T )}, with argsupt∈T f(t) defined similarly. We use the
standard conventions inf ∅ = +∞ and sup ∅ = −∞. The Iverson bracket is
J · K, which takes the value 1 when its argument is a true proposition and 0
otherwise. All vector spaces are implicitly over the real numbers.

2.1 Topological spaces and their measures

Let X be a topological space, its Borel sigma algebra is B(X) and the
collection of Borel probability measures is P(X). A subset of X is called Gδ

if it is the countable intersection of open sets. A net (xi)i∈I ⊆ is a function
from a directed set I to X. When X is Hausdorff and (xi) converges, we use
limi∈I xi to denote its limit. The Dirac measure at x ∈ X is δxA def= Jx ∈ AK
for A ⊆ X.

When Y is another topological spaces, the vector space of Borel measur-
able functions X → Y are collected in the set L0(X,Y ). When (X,Σ, λ) is
a measurable space, for p ≥ 1 there is the semi norm

∀p≥1∀f∈L0(X,R̄) : |f |p
def=
(∫
|f(x)|pλ(dx)

) 1
p

,

7



8 CHAPTER 2. TECHNICAL PRELIMINARIES

and |f |∞
def= esssupx∈X f(x) for f ∈ L0(X, R̄). The Lebesgue spaces are

∀p∈[1,∞] : Lp(X,λ) def=
{
f ∈ L0(X,R)

∣∣ |f |p <∞
}
,

with the usual quotient of equivalence under the seminorm. The continuous
functions X → Y are collected in C(X,Y ), and the subcollection of bounded
continuous functions is Cb(X,Y ). When Y is the set of real numbers these
are abbreviated L0(X), C(X), and Cb(X).

2.2 Topological vector spaces

Throughout L is a Hausdorff locally convex topological vector space over the
reals. The set of continuous linear functions L→ R is the topological dual,
L∗, and these are connected via the duality pairing 〈 · , · 〉 : L × L∗ → R.
The weakest topology on L that generates L∗ is σ(L,L∗) and the strongest
topology that generates L∗ is τ(L,L∗) and coincides with the initial topology
when L is metrisable. Closure operations for sets A ⊆ L∗ with σ(L∗, L) are
denoted cl*A and A∗. The following operations are standard:

A+ b def= {a+ b ∈ L | a ∈ A} c ·A def= {ca | a ∈ A}

A+B def=
⋃

b∈B
A+ b I ·A def=

⋃

c∈I
c ·A,

for b ∈ L, c ∈ R, A,B ⊆ L, I ⊆ R.

A set-valued mapping between sets L and M , denoted F : L⇒M , maps
elements of L to subsets of M . By convention its domain is the set of points
in L where it is nonempty, domF def= {x ∈ L | F (x) 6= ∅}, and its graph is

grF def= {(x, y) ∈ L×M | x ∈ domF, y ∈ F (x)}.

If G : L⇒ M is another set-valued map, then F ∩G is the mapping with
(F ∩ G)(x) def= F (x) ∩ G(x) for all x ∈ L. A selection of F is a function
f : domF → M with f(x) ∈ F (x) for all x ∈ domF , or equivalently,
gr f ⊆ grF .

Let f : L→ R̄. The Fenchel conjugate of f is the function f∗ : L∗ → R̄
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with

f∗(x∗) def= sup
x∈L

(
〈x, x∗〉 − f(x)

)
.

The lower-semicontinuous closure of f , denoted by f , is the greatest lower-
semicontinuous minorant of f . The upper-semicontinuous closure of f ,
denoted by f , is the least upper-semicontinuous majorant of f , and satisfies
f = −(−f). Its ε-subdifferential is ∂εf : L⇒ L∗

∂εf(x) def= {x∗ ∈ L∗ | ∀y∈L : 〈y − x, x∗〉 − ε ≤ f(y)− f(x)},

where ε ≥ 0, x ∈ L. The Moreau–Rockafellar subdifferential is ∂def= ∂0, and
satisfies ∂f =

⋂
ε>0 ∂εf . Its domain is the set dom f def= {x ∈ L | f(x) ∈ R}.

Its epigraph and sublevel sets are

epi f def= {(x, t) ∈ dom(f)×R | f(x) ≤ t},

lev≤c f def= {x ∈ L | f(x) ≤ c},

where c ∈ R. The sets lev<c f , lev≥c f , and lev>c f , are defined analogously.
We let ∂̂f def= −∂(−f). This set-valued map is sometimes called the concave
subdifferential or superdifferential [106, p. 308].

If f(cx) = cf(x) for all x ∈ L and c ∈ R>0 , then f is positively
homogeneous (or 1-homogeneous). If f(x+ y) ≤ f(x) + f(y) for all x, y ∈ L,
then f is subadditive. If f is both subadditive and positively homogeneous
it is sublinear . Alternatively, f is sublinear if and only if it is positively
homogeneous and convex.

Let A be a subset of L. The topological closure is clA or A, the convex
hull is coA and the closure of the convex hull is coA def= cl(coA). If

∀c>0 : c ·A ⊆ A and A+A ⊆ A

then A is called a cone. If A is a cone then A is pointed if 0 ∈ A. The conic
hull is pos(A) def= (0,∞) · A, and its closure is likewise posA. We associate
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to A the following sets:

A◦ def= {x∗ ∈ L∗ | ∀a∈A : 〈a, x∗〉 ≤ 1},

AO def= {x∗ ∈ L∗ | ∀a∈A : 〈a, x∗〉 ≥ 1},

A+ def= {x∗ ∈ L∗ | ∀a∈A : 〈a, x∗〉 ≥ 0},

A− def= {x∗ ∈ L∗ | ∀a∈A : 〈a, x∗〉 ≤ 0}.

(2.1)

These are called the polar , anti-polar , dual cone, and negative dual cone of
A respectively. The barrier cone of A is the set

bc(A) def= {x∗ ∈ L∗ | ∀a∈A : 〈a, x∗〉 <∞}. (2.2)

When A is convex, its normal cone is a mapping NA : L⇒ L∗ defined by

∀x∈A : NA(x) def= {x∗ ∈ L∗ | ∀a∈A : 〈a− x, x∗〉 ≤ 0}, (2.3)

and by convention NA(x) is empty for x /∈ A.

2.2.1 Ordered vector spaces

When there is an order relation ≥ on L that is compatible with the algebraic
vector space structure,

∀x,y,z∈L∀t>0 : x ≥ y =⇒ tx+ z ≥ ty + z, (2.4)

the pair (L,≥) is called an ordered vector space. The positive cone is the set
L≥0

def= {x ∈ L | x ≥ 0}, so that

∀x,y∈L : x ≥ y ⇐⇒ x− y ∈ L≥0. (2.5)

The relation ≥ is reflexive and transitive if and only if L≥0 is a convex cone.
Equivalently if K is the cone of positive vectors in L, we refer the order
relation associated to K (via (2.5)) by ≥K and the ordered vector space by
(L,K). Let P ⊆ L∗. Then P induces an order ≥P+ on L defined by

∀u,v∈L : u ≥P+ v ⇐⇒ ∀x∗∈P : 〈u, x∗〉 ≥ 〈v, x∗〉, (2.6)
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and the positive cone L≥0 satisfies L≥0 = P+, justifying the notation ≥P+ .
To see this, observe

v ∈ L≥0 ⇐⇒ v ≥P+ 0 (2.6)⇐⇒ ∀x∗∈P : 〈v, x∗〉 ≥ 0 ⇐⇒ v ∈ P+.

Proposition 2.1. Suppose L ⊆ L0(Ω,R) with a topology so that P(Ω) ⊆ L∗.
The ordering induced by P(Ω) is the usual pointwise ordering.

Proof. Let u, v ∈ L satisfy u(ω) ≥ v(ω) for all ω ∈ Ω then immediately
u ≥P v. Next assume u, v ∈ L satisfies u ≥P v. Then for every Dirac
measure δω there is 〈u, δω〉 ≥ 〈v, δω〉, or equivalently u(ω) ≥ v(ω). �

Remark 2.2. The inclusion condition of Proposition 2.1 is trivially verified in
the case where Ω is finite. When Ω is uncountable, more care is needed to
ensure the action of the Dirac measures are continuous with the topology
on L, such as requiring L consist of a set of bounded, measurable functions
with the sup norm.

A K-order interval joining a, b ∈ L, is the set

[a, b]K def= {x ∈ L | a ≤K x ≤K b}.

A set A ⊆ L is said to beK-full (or simply full when the order is unambiguous)
if [a, b]K ⊆ L for all a, b ∈ A. The order interval admits a convenient
formula

[a, b]K = (a+K) ∩ (b−K) and A = (A+K) ∩ (A− L),

both of which are simple to derive from (2.5) when A is full. By a full
subset of Rn, unless otherwise noted, we mean it is full with respect to the
pointwise order. That is, Rk≥0-full. Every order interval is a (possibly empty)
convex set. The full hull of a convex set is convex. The order interval and
the relationship between fullness and convexity is illustrated in Figure 2.1.
Finally we say that an order unit of K is some point e ∈ K so that for any
x ∈ K there exists c > 0 with ce ≥ x. The order units of a cone are precisely
the points of its relative interior [3, Lem. 1.7].
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b

a

(a) Not convex, full

b

a

(b) Convex, not full

b

a

(c) Convex, full

Figure 2.1: Pictured are three sets and the order interval [a, b]R2
≥0

(dashed region)
joining two points a, b belonging to each set (blue). The two shaded regions are the
sets a+R2

≥0 (green) and b−R2
≥0 (purple).

Topologies on ordered vector spaces

In a topological vector space (L,T), the vector space operations are assumed
compatible with the topology. Analogously, there is a convention in which
the order relation is can be compatible with the topology. A convex, proper
cone K ⊆ L is said to be T-normal if the topology on L has a base at zero
consisting of K-full sets [3]. A cone is weakly normal (σ(L,L∗)-normal) if it
is normal for σ(L,L∗) (consequentially every normal cone is σ(L,L∗)-normal)
[cf. 3, Thm. 2.26, Lem. 2.28]. When L is finite dimensional, every closed
cone is normal [3, Lem. 3.1].

Similarly given a cone K ⊆ L, the K-order topology on L is denoted
τ≥(K), which is the strongest locally convex topology on K on which every
K-order interval is bounded. If K ⊆ L is a cone then K is T-normal if and
only if T ⊆ τ≥(K) [3, Lem. 6.27].

2.2.2 Asymptotic cones

The following is standard [cf. 14, 78, 100, 105, 110, 122, 147–149]. The
asymptotic cone of A ⊆ L, is the set

A∞
def=
{
a ∈ L

∣∣∣ ∃(ti)i∈I⊆R>0∃(ai)i∈I⊆A : ti → 0, tiai → a
}
, (2.7)

denoted A∞ [37]. It has been used extensively to study the asymptotic
properties of unbounded sets. If

A∞ =
{
a ∈ L

∣∣∣ ∀(ti)i∈I⊆R>0∃(ai)i∈I⊆A : ti → 0, tiai → a
}
,
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then A is said to be asymptotically regular . For a scalar c ∈ R and an interval
I ⊆ R≥0 define

c ? A def=




{ca | a ∈ A} c 6= 0

A∞ c = 0.
and I ? A def=

⋃

c∈I
c ? A. (2.8)

With this convention if A is closed, so is [0, 1) ? A. When A is bounded
0 ? A = {0} as usual. We collect some standard results on asymptotic cones.

2.2.3 Extended real arithmetic

Since the extended real numbers are not a group in the algebraic sense,
certain conventions turn out to be convenient depending on the purpose.
Below, the operations ·e and +e are common when working with convex
functions, the subscript coming from epigraph; and the operations ·h and +h

are common when working with concave function, the subscript coming from
hypograph.1

We adopt the same conventions as Ward [137] and Zălinescu [146, 150],
namely the operations:

0 ·e (+∞) def= (+∞) ·e 0 def= +∞, 0 ·e (−∞) def= (−∞) ·e 0 def= 0,

0 ·h (+∞) def= (+∞) ·h 0 def= 0, 0 ·h (−∞) def= (−∞) ·h 0 def= −∞;

and

(−∞) +e (+∞) def= (+∞) +e (−∞) def= +∞,

(−∞) +h (+∞) def= (+∞) +h (−∞) def= −∞;

with ·e, ·h (resp. +e, +h) agreeing with usual scalar multiplication (resp.
scalar addition) in all other situations. The operations −e and −h are defed
similarly, with a−e b

def= a+e (−b) and a−h b
def= a+h (−b) for a, b ∈ R̄.

Remark 2.3. Under these conventions, for a convex function f : L→ R̄, there

1Weidner [138] provides an excellent further discussion on the problems of arithmetic
with the extended reals.
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is [cf. 137, p. 522]

∀x∈dom ∂f : ∂(0 ·e f)(x) = Ndom f (x) = (∂f(x))∞ = 0 ? ∂f(x),

with our asymptotic set multiplication convention (2.8).2

2.3 Minkowski duality

The following summarises a set of well-known results on the operations in
(2.1) [2, 99, 100, 149, 150]. For a nonempty set A ⊆ L there are the following
polar and bipolar results:

A◦ = (co((0, 1] ? A))◦,

AO = (co([1,∞) ? A))O,

A+ = (co((0,∞) ? A))+,

A− = (co((0,∞) ? A))−,

A◦◦ = co((0, 1] ? A),

AOO = co([1,∞) ? A),

A++ = co((0,∞) ? A),

A−− = co((0,∞) ? A).

(2.9)

When A is a cone A− = A◦ and A+ = AO. This motivates the introduction
of some classes of sets. The set A is called radiant if (0, 1] ? A ⊆ A, and
co-radiant if [1,∞) ? A ⊆ A. If A is radiant then it is star-shaped if 0 ∈ A,
and co-star-shaped if A is co-radiant with 0 /∈ A [cf. 97, 109, 111, 122, 144,
145]. The co-radiant and co-star-shaped sets are so named because they are
the complements of radiant and co-radiant sets respectively. Clearly if A is
radiant (resp. co-radiant) then so is A◦ (resp. AO).

It’s well known that radiant sets, convex sets, and cones are asymptotically
regular [e.g. 106, Thm 8.2, 14, Prop. 2.15, 147, Prop. 2.1, 110, §5]. And the
convention (2.8) is common when working with star-shaped or co-star-shaped
sets [cf. 100, 108, 117, 122].

2The operator f 7→ ∂∞f
def= (∂f( · ))∞ is also known as the asymptotic subdifferential

[99, p. 235].
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x

x∗

(a) Support function

x

x∗

(b) Co-support function

Figure 2.2: (a) A radiant set A ⊆ R2 (extending infinitely south west) together
with two points satisfying x ∈ ∂σA(x∗). (b) A co-radiant set B ⊆ R2 (extending
infinitely north east) together with two points satisfying x ∈ ∂̂ζB(x∗).

2.3.1 The support and gauge

To a set A ⊆ L we associate the functions σA, ζA : L∗ → R̄ and µA,νA :
L→ R̄, with [cf. 100, 150]

σA(x∗) def= sup
s∈A
〈s, x∗〉, ζA(x∗) def= inf

s∈A
〈s, x∗〉;

µA(x) def= inf{c ≥ 0 | x ∈ c ? A}, νA(x) def= sup{c ≥ 0 | x ∈ c ? A},
(2.10)

where σA is the familiar support and the co-support, ζA is easily identified
with −σ−S . The function µA is related to the (Minkowski) gauge of A, and
νA has likewise been related to what has been called Minkowski co-gauge.
For every set A the functions µA and νA are positively homogeneous. When
A is convex µA and −νA are convex. The subdifferentials of the support
and co-support functions are illustrated in Figure 2.2.

Remark 2.4. The exact definition and convention we use comes from Penot
and Zǎlinescu [100] who conduct a thorough study comparing (2.10) to
their more classical counterparts. Suffice to say that when A (resp. B) is
closed radiant (resp. co-radiant) the function µA (resp. νB) is equal to the
Minkowski gauge (resp. co-gauge). This is summarised in Proposition 2.6
below.

We also define the indicator , ιA(x), which is ∞ when x ∈ A and 0
otherwise. The significance of the barrier cone (2.2) is clear in light of
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(2.10):

bc(A) = domσA and − bc(A) = dom ζA .

The normal cone (2.3) allows to invert some important subdifferentials.

Lemma 2.5. Let A ⊆ L∗. Then for all x ∈ A,

(i) NcoA(x) = (∂σA)−1(x),

(ii) −NcoA(x) = ( ∂̂ζA)−1(x).

Proof. (i) follows from the Young–Fenchel relation [99, Thm. 3.47] observing
that σ∗A = ι∗∗A = ιcoA. To invert the co-support (concave) subdifferential note
that ζA(x) = σ−A(−x) and ∂(σ−A(− · )) = −∂σ−A, thus (−∂σ−A)−1(x) =
N− coA(−x). Let x ∈ A. There is x∗ ∈ N−A(−x) if and only if

∀a∈A :
[
〈−a+ x, x∗〉 ≤ 0 ⇐⇒ 〈a− x,−x∗〉 ≤ 0

]
⇐⇒ x∗ ∈ −NA(x).

This shows that N−A(−x) = −NA(x) and (ii) follows. �

The following proposition collects results that are immediate to derive or
appear directly in Penot and Zǎlinescu [100, Props. 2.3, 2.4] and Rubinov
[110, §2.9].

Proposition 2.6. Let A,B ⊆ L, λ ∈ R≥0. Then

(i) domµA = [0,∞) ? A,

(ii) lev=0 µA = A∞,

(iii) lev>0 µA = posA \A∞,

(iv) µA = µ(0,1]?A, µA = µclA,

(v) [0, λ] ?A ⊆ lev≤λ µA ⊆ [0, λ] ?A,

(vi) lev<1 µA ⊆ [0, 1] ? A ⊆ lev≤1 µA,

(vii) A ⊆ B if and only if µB ≤ µA;

and

(viii) domνA = [0,∞) ? A,

(ix) lev=0 νA = A∞ \ posA,

(x) lev>0 νA = posA,

(xi) νA = ν[1,∞)?A, νA = νclA,

(xii) [λ,∞)?A ⊆ lev≥λ νA ⊆ [λ,∞)?A,
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(xiii) lev>1 νA ⊆ [1,∞) ? A ⊆ lev≥1 νA,(xiv) A ⊆ B if and only if νA ≤ νB.

The polarity operations (2.9) induce a duality between the support/co-
support and gauge/co-gauge functions (2.10) which is known as Minkowski
duality [75, 110]. The following is standard or follows immediately from the
bipolar theorem (2.9), [110, Prop. 7.27, 100, Lem. 4.1].3 For a nonempty
A ⊆ L there is

(µA)∗ = ιA◦ , σA◦ = µA, µA◦ = σ(0,1]?A, A◦ = ∂µA(0);

(−νA)∗ = ι−AO , ζAO = νA, νAO = ζ[1,∞)?A, AO = ∂̂νA(0).
(2.11)

When A is closed radiant, σA = µA◦ and σA◦ = µA; and when A is closed
co-radiant, ζA = νAO and ζAO = νA. These identities are summarised in
Figure 2.3. If (L, | · |) is a normed space then | · | = µB where B is the closed
unit ball in L, or equivalently | · | = σB◦ , and B◦ coincides with the unit ball
in the dual space L∗.

Proposition 2.7 (Minkowski Duality). Assume A,B ⊆ L are nonempty
and closed, with A radiant and B co-radiant. Then:

(i) for (x, x∗) ∈ pos(A×A◦) \ (A∞ ×A−)

x

σA◦(x) ∈ ∂σA(x∗) ⇐⇒ x∗

σA(x∗) ∈ ∂σA◦(x)

⇐⇒ σA◦(x)σA(x∗) = 〈x, x∗〉;

(ii) for (x, x∗) ∈ pos(B ×BO)

x

ζBO(x) ∈ ∂̂ζB(x∗) ⇐⇒ x∗

ζB(x∗) ∈ ∂̂ζBO(x)

⇐⇒ ζB◦(x) ζB(x∗) = 〈x, x∗〉.

Proof. Since A is closed and radiant σA◦ = µA and lev>0 σA◦ = lev>0 µA =
posA \ A∞ (Prop. 2.6(iii)). Similarly lev>0 σA = lev>0 µA◦ = pos(A◦) \

3Compare our definition of the co-gauge with that of Barbara and Crouzeix [15] in light
of (2.11). In essence, the co-gauge of Barbara and Crouzeix is the upper semicontinuous
closure of the co-gauge as defined here. For further discussion on the differences here see
Penot and Zǎlinescu [100] and Zaffaroni [145, §5].
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σ

µ

∂|0

µ

∂|0

(a) Support

B BO
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ζ

ν

∂̂|0
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∂̂|0

(b) Co-support

A A◦

µA µA◦

◦

µ

µ

σ

∂|0

σ
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(c) Gauge

B BO

νB νBO

O

ν

ν

ζ

∂̂|0

ζ

∂̂|0

(d) Co-gauge

Figure 2.3: Summary of the polar relationships in (2.11) when A,B ⊆ L are closed
convex, with A radiant and B co-radiant.

(A◦)∞. Using the fact that the polar of a radiant set is closed and radiant,
the formula for the asymptotic cone of a closed radiant set gives

(A◦)∞
P2.9(i)=

⋂

ε>0
ε ? A◦ =

(⋃

ε>0

1
ε
? A

)◦
= (posA)◦ = (posA)− = A−.

Therefore (x, x∗) ∈ pos(A×A◦) \ (A∞ ×A−) if and only if σAO(x) > 0 and
σA(x∗) > 0. By a similar argument, because B is closed and co-radiant
ζBO = νB and lev>0 ζBO = lev>0 νB = posB (Prop. 2.6(x)). Likewise
lev>0 ζB = pos(BO). Therefore (x, x∗) ∈ pos(B×BO) if and only if ζBO(x) >
0 and ζB(x∗) > 0.

Assume x
σA◦ (x) ∈ ∂σA(x∗). Then

σA(x∗) =
〈

x

σA◦(x) , x
∗
〉

and σA◦(x) =
〈
x,

x∗

σA(x∗)

〉
.

This shows x∗
σA(x∗) ∈ ∂σA◦(x). By symmetry there is the necessary condition,

and an identical argument, mutatis mutandis, yields the corresponding
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co-support result. �

Barbara and Crouzeix state a similar result to Proposition 2.7 in a
reflexive Banach space [15, Thm. 3.1]. However generalising the Minkowski
duality theory to a locally convex space is straight forward (as illustrated
by the proof of Proposition 2.7) and simplifies the exposition of the analysis
in Section 4.1. The definitions of the co-support and co-gauge we chose
also greatly simplifies the sufficient conditions compared with Barbara and
Crouzeix, whose definition of the co-gauge corresponds approximately to
taking the upper semicontinuous closure of the co-gauge [cf. 100, Prop. 2.3,
2.4, 146, Prop. 1(iii)].

Recall a subset of a topological vector space A ⊆ L is said to be bounded
if for every neighbourhood of zero V ∈ N(0) there is t0 > 0 so that A ⊆ tV
for all t ≥ t0. A set is σ(L,L∗)-bounded precisely when it is bounded.

Proposition 2.8. Let A,B ⊆ L be nonempty. Then

(i) A∞ =
⋂
ε>0 (0, ε] ? A

(ii) A∞ is a closed cone, A∞ = (clA)∞, and there is always A∞ ⊆ posA

(iii) if A ⊆ B, then A∞ ⊆ B∞, if A is convex then so is A∞

(iv) {v ∈ L | A+R>0 ? v ⊆ A} ⊆ A∞ ⊆ {v ∈ L | A+R>0 ? v ⊆ coA}

(v) A∞ = {0} if A is bounded

(vi) bc(A)− = (coA)∞ and bc(A) = (coA)−∞
def= ((coA)∞)−.

(vii) Let Ai ⊆ L for i ∈ I,

i.) (
⋂
i∈I Ai)∞ ⊆

⋂
i∈I(Ai)∞, when

⋂
i∈I Ai 6= ∅, with equality when

each Ai is convex

ii.) (
⋃
i∈I Ai)∞ ⊇

⋃
i∈I(Ai)∞

(viii) If A is asymptotically regular, then (A+B)∞ ⊇ A∞ +B∞.

These are mostly standard results, and only use the definition (2.7). We
provide either references or direct proofs.

Proof. (i): This is well known to the extent that sometimes
⋂
ε>0 (0, ε] ? A is

used for the definition of A∞ [16, Rem. 1.56, 147, Prop. 1(i)].
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(ii): Let a ∈ A∞. Then there exists (ai)i∈I ⊆ A and a convergent net
(ti)i∈I ⊆ R>0 with ti → 0 so that tiai → a. Thus a ∈ posA. The other
claims are straight-forward.

(iii): Immediate.

(iv): Let v ∈ L satisfy A+R≥0 ? v ⊆ A. Then for all t > 0, and all a ∈ A
there is a+ tv ∈ A. Take ai def= a+ 1

t i
v for a net (ti)i∈I ⊆ R>0 with ti → 0,

and (ai)i∈I ⊆ A. Then limi∈I tiai = v, and thus v ∈ A∞. Now assume
v ∈ A∞. Then there exists (ti)i∈I ⊆ R>0 with ti → 0 and (vi) ⊆ A with
(tivi)i∈I → v. Choose any a ∈ A and let ai def= (1 − ti)a + tivi. Then for a
cofinal subnet (aj)j∈J ⊆ coA and limj∈J aj = a+ v. Thus a+ v ∈ coA.

(v): Let a ∈ A∞. Then there exists (ai)i∈I ⊆ A and a convergent net
(ti)i∈I ⊆ R>0 with ti → 0 so that tiai → a. If A is bounded then for every
neighbourhood of zero V ∈ N(0) there exists tV > 0 so that A ⊆ tV for all
t ≥ tV . Pick an arbitrary V ∈ N(0). As ti → 0 eventually 1/ti ≥ tV for i in
some cofinal IV ⊆ I. Thus tiai ∈ ti ·A ⊆ V for all i ∈ IV . This shows that
for every V ∈ N(0),there is a subnet (tiai)i∈IV that lies entirely within V .
Then because

⋂
V ∈N(0) V = {0} we have tiai → 0.

(vi): The first claim is well-known [see e.g. 136, p. 142, 14, Thm. 2.2.1, 61,
p. 868, 65, Prop. 2.2.4], the second follows from the bipolar theorem.

(vii): From (i) there is
(⋂

i∈I
Ai

)

∞

=
⋂

ε>0
(0, ε] ·

⋂

i∈I
Ai and

(⋃

i∈I
Ai

)

∞

=
⋂

ε>0
(0, ε] ·

⋃

i∈I
Ai.

Therefore
(⋂

i∈I
Ai

)

∞

=
⋂

ε>0

⋃

t∈(0,ε]

⋂

i∈I
t ? Ai ⊆

⋂

i∈I

⋂

ε>0

⋃

t∈(0,ε]
t ? Ai =

⋂

i∈I
(Ai)∞,

and
(⋃

i∈I
Ai

)

∞

=
⋂

ε>0

⋃

i∈I
(0, ε] ? Ai ⊇

⋃

i∈I

⋂

ε>0
(0, ε] ? Ai =

⋃

i∈I
(Ai)∞ ⊇

⋃

i∈I
(Ai)∞.

The equality result is standard, and uses the asymptotic regularity of convex
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sets [e.g. 14, Prop. 2.1.9].

(viii): [148, p. 215, 147, Prop. 2.1, 122, Thm. 3.4] �

Under certain assumptions, the asymptotic cones have nice representa-
tions.

Proposition 2.9. Let A,B,C,K ⊆ L with A radiant, B co-radiant, C
convex, and K a cone. Then (i) A∞ =

⋂
ε>0 ε · A, (ii) B∞ = posB,

(iii) C∞ =
⋂
ε>0 ε · (C − x) for any x ∈ C, and (iv) K∞ = K.

These are all fairly standard results. We provide either references or
proofs.

Proof. (i): Proved by Shveidel [122, Thm. 2.2] in Rn, and the proof in a
topological vector space is the same using nets in place of sequences.

(ii): Pick an arbitrary b ∈ B. When B is co-radiant, for all t ∈ (0, 1] there
is 1

t b ∈ B. Take a convergent net (ti)i∈I ⊆ R>0 with ti → 0. Let bi def= 1
ti
b

whenever ti ≤ 1 and otherwise b. Then (bi)i∈I ⊆ B and tibi → b. This shows
b ∈ B∞ and B ⊆ B∞. Since B∞ is a closed cone posB ⊆ B∞ and there is
always the reverse inclusion (Prop. 2.8(ii)).

(iii): Direct consequence of the asymptotic regularity of convex sets [14,
p. 27].

(iv): A cone is co-radiant, and the claim follows by an application of (ii).
�

2.4 Some useful results

Throughout the subsequent chapters, there are several results which require
some obscure, or unknown lemmas. Since these are not specific to our
particular applications, we collect them here.

2.4.1 Closure of the sum

The normality of a cone rules out certain pathologies that may otherwise
interfere with analysis on noncompact sets.

Lemma 2.10 is inspired by a result due to Choquet [28, Cor. 16].
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Lemma 2.10. Assume K ⊆ L is a normal cone. Let (ai)i∈I ⊆ K, (bi)i∈I ⊆
K. If (ai + bi)i∈I converges weakly, then so do (ai)i∈I and (bi)i∈I .

Proof. If either (ai) and (bi) fail to converge weakly then there exist functions
a∗, b∗ ∈ L∗\{0} so that 〈ai, a∗〉 → ∞ or 〈bi, b∗〉 → ∞. (If (ai) converges, take
a∗ to be any element of L∗ or likewise for (bi).) We may assume (by passing
to a cofinite subnet, or replacing a∗ or b∗ with −a∗ or −b∗, if necessary) that
〈ai, a∗〉 ≥ 0 and 〈bi, b∗〉 ≥ 0 for all i ∈ I. Let ci def= ai + bi. By hypothesis ci
converges weakly.

Since K is weakly normal and L is locally convex, the dual cone, K+, is
generating [3, Lem. 2.29]. That is L∗ = K+ −K+. Equivalently

∀x∗∈L∗∃x∗+∈K+ : x∗ + x∗+ ∈ K+. (2.12)

For a∗ and b∗, let a∗+ and b∗+ be the two vectors that each respectively satisfy
(2.12), and c∗ def= a∗ + a∗+ + b∗ + b∗+. Then c∗ ∈ K+ and

〈ci, c∗〉 = 〈ai + bi, c
∗〉

=
〈
ai, a

∗ + a∗+ + b∗ + b∗+
〉

+
〈
bi, a

∗ + a∗+ + b∗ + b∗+
〉

= 〈ai, a∗〉+
〈
ai, a

∗
+ + b∗ + b∗+

〉
+ 〈bi, b∗〉+

〈
bi, a

∗ + a∗+ + b∗+
〉

If at least one of (ai) or (bi) fails to converge converge weakly,

〈
ai, a

∗
+
〉

+
〈
bi, b

∗
+
〉
→∞,

while

∀i∈I :
〈
ai, a

∗
+ + b∗ + b∗+

〉
+
〈
bi, a

∗ + a∗+ + b∗+
〉
≥ 0,

because a∗++b∗+b∗+ ∈ K+ and a∗+a∗++b∗+ ∈ K+. This would be suboptimal,
since we assumed (ci) converges weakly, yielding a contradiction. �

Lemma 2.10 yields a number of immediate corollaries for the closure of
the sum of two close sets.

Corollary 2.11. Assume K ⊆ L is a normal cone. If A,B ⊆ K are
σ(L,L∗)-closed, then so is A+B.
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Proof. Let (ci)i∈I ⊆ C def= A+B be a convergent net with limit c. Then there
are nets (ai)i∈I ⊆ A and (bi)i∈I ⊆ B. Lem. 2.10 proves that both (ai) and
(bi) are σ(L,L∗)-convergent, and so let a and b be their respective limits in
this topology. Continuity of addition and the fact that σ(L,L∗) is Hausdorff
implies that c = a+ b. Since A and B are σ(L,L∗)-weakly closed a ∈ A and
b ∈ B. This shows that c ∈ C and A+B is σ(L,L∗)-closed. �

Noting that the closure is equal to the weak closure for convex subsets of
separated locally convex spaces [e.g. 112, Thm. 3.12] we obtain the following
corollary.

Corollary 2.12. Assume K ⊆ L is a normal cone. If A,B ⊆ K are closed
convex, then so is A+B.

The closure of the sum has been shown with a variety of assumptions [cf.
14, 28], the most common (and restrictive) one being that one of A or B is
compact, however this is not sufficient for our purposes.

We call a cone K ⊆ L proper when K ∩ (−K) ⊆ {0} and K is convex.

Corollary 2.13. Assume L is finite dimensional, and K ⊆ is a closed proper
cone. If A,B ⊆ K are closed, then A+B is closed.

Proof. Immediately the cone K is normal [by 3, Lem. 3.1]. Then Cor. 2.11
shows A+B is closed since L is finite dimensional. �

2.4.2 Measurable selections

For this section equip the topological space (L,L) with a sigma algebra
Σ and assume (M,M) is another topological space. For a set-valued map
F : L⇒M , the upper inverse and lower inverse at A ⊆M are

F up(A) def= {x ∈ L | F (x) ⊆ A} and F lw(A) def= {x ∈ L}F (x) ∩A 6= ∅.

It’s convenient to observe F−1(a) = F lw({a}) for all a ∈ domF .
We say F is upper hemicontinuous4 at x ∈ L if for every open U ∈M

with F (x) ⊆ U , F up(U) is a neighbourhood of x, and upper hemicontinuous
4A word of warning: upper hemicontinuous mappings are called variously: uppers

semicontinuous, outer continuous, and outward semicontinuous [cf. 7, 13, 26, 99]. We adopt
the terminology and definitions of Aliprantis and Border [2] and Aubin [10].
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on M ⊆ L if it is upper hemicontinuous at every x ∈M . We say F is closed
if gr(F ) is closed in the product topology L ⊗M.

If F lw(V ) ∈ Σ for every open V ∈M then F is (Σ,M)-weakly measurable.
If F lw(V ) ∈ Σ for every closed V ∈M then F is (Σ,M)-measurable. Finally
F is upper hemicontinuous precisely when F lw takes closed sets to closed
sets [2, Lems. 17.4]. To summarise, when Σ is the Borel sigma algebra on
L, B(L), if F is upper hemicontinuous then F lw is a closed mapping and F
is (B(L),M)-measurable. When it does not cause confusion, for brevity we
write (L,M)-measurable to mean (B(L),M)-measurable.

Lemma 2.14 (Moreau [89, 10, Prop. 8]). Suppose that a convex function
f : L→ R̄ is τ(L,L∗)-continuous on an open subset U . Then the mapping
∂f : L ⇒ L∗ is upper hemicontinuous on U when L∗ is supplied with the
σ(L∗, L) topology.

The Kuratowski and Ryll-Nardzewski [74] selection theorem is the main
tool we use to construct measurable selections in Lemmas 2.16 and 2.18.

Lemma 2.15 (Kuratowski and Ryll-Nardzewski [74, 2, Thm. 18.13]). A
weakly measurable correspondence with nonempty closed values from a mea-
surable space into a Polish space admits a measurable selection.

Lemma 2.16. Assume L is a separable Fréchet space. Let f : L∗ → R̄ be a
lower semicontinuous convex function, σ(L∗, L)-continuous on an open set
U ⊆ L∗. Then ∂f : L∗ ⇒ L has a (σ(L∗, L), τ(L,L∗))-measurable selection
on U .

Proof. By assumption f is σ(L∗, L)-continuous on the σ(L∗, L)-open set U ,
therefore ∂f is

• nonempty and closed on U [via 10, Prop. 7, p. 107], and

• σ(L∗, L)-upper hemicontinuous on U via Lem. 2.14, as the τ(L∗, L) is
stronger than σ(L∗, L) topology.

Since ∂f is upper hemicontinuous it is (σ(L∗, L), τ(L,L∗))-measurable. Every
measurable set-valued mapping into a metrisable space is weakly measurable
[2, Lem. 18.2]. Since L is a Fréchet space and separable it is also a Polish
space, and the claim follows from Lem. 2.15. �
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Remark 2.17. In practice it is not hard to find an open set U to satisfy
Lemma 2.16. For a Banach space L, a convex f : L→ R̄ is continuous on
int(dom f) if either 1.) f is lower semicontinuous, or 2.) L is finite dimensional
[99, Props. 3.3, 3.4].

Lemma 2.18. Assume L is a separable Fréchet space whose dual is σ(L∗, L)-
separable. Let A ⊆ L be convex. Then the intersection mapping NA ∩P : L⇒
P has a (τ(L,L∗),σ(L∗, L))-measurable selection, for any σ(L∗, L)-compact
P ⊆ L∗.

Proof. Assume L is equipped with its τ(L,L∗) topology and L∗ is equipped
with the σ(L∗, L) topology.

Let (xi)i∈I ⊆ L and (yi)i∈I ⊆ L∗ satisfy (xi, yi) ∈ gr(NA) for all i ∈ I
and converge in τ(L,L∗)⊗ σ(L∗, L) with limit (x, y). Then for every a ∈ A
and i ∈ I there is 0 ≥ 〈xi − a, yi〉 and limi∈I〈xi − a, yi〉 = 〈x− a, y〉 ≤ 0 and
(x, y) ∈ gr NA. Thus gr NA is closed and NA is closed.

The set P is compact by hypothesis and so P is a trivially upper hemi-
continuous as a set-valued map L⇒ L∗. The intersection of a closed map
with a closed, compact-valued upper hemicontinuous map produces an upper
hemicontinuous map [2, Thm 17.25]. Therefore NA ∩P is upper hemicon-
tinuous and weakly measurable (reusing the measurability argument from
the proof of Lem. 2.16). The subspace topology on P is metrisable from the
Banach–Alaoglu–Bourbaki theorem [22, Thm. 3.1.4] and compact, whence
(P,σ(L∗, L)) is a Polish space, and the claim follows from Lem. 2.15. �

Remark 2.19. When L is a Banach space, separability of L∗ implies separa-
bility of L [38, Prop. 3.6.14].

2.4.3 The subdifferential of a supremum

In Lemma 2.20 we use a proof by contradiction. Zălinescu [149, Thm. 2.4.14(iii)]
provides a constructive proof assuming, additionally, that f is convex.

Lemma 2.20. Let f : L → R̄ be positively homogeneous. Then ∂f(0) =
∂εf(0) for all ε ≥ 0.

Proof. We will show ∂εf(0) = ∂f(0) for all ε > 0 using a proof by con-
tradiction. Fix ε > 0. Suppose x∗ ∈ ∂εf(0) \ ∂f(0). There exists
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y ∈ L with f(y) < 〈y, x∗〉 ≤ ε − νm(y) whence y ∈ dom f and therefore
0 < 〈y, x∗〉+ f(y) ≤ ε. Let c def= (ε+ 1)(〈y, x∗〉+ f(y))−1 > 0. Then

〈cy, x∗〉+ f(cy) = c(〈y, x∗〉+ f(y)) = ε+ 1 > ε,

a contradiction. This shows that x∗ /∈ ∂εf(0). Thus ∂εf(0) = ∂f(0). �

Lemma 2.21 (Hantoute, López, and Zălinescu [61, Cor. 9]). Let (ft)t∈T
be a nonempty arbitrary family of lower semicontinuous convex functions
L→ R̄, and set f def= supt∈T ft. Then f is closed and for all z ∈ and α ≥ 0
there is

∂f(z) =
⋂

L∈F(z)

⋂

ε>0
cl*

co


 ⋃

t∈Tε(z)
∂αεft(z)


+ NL∩dom f (z)


,

where F(z) is the collection of finite-dimension linear subspaces of L con-
taining z, and Tε(z) def= {t ∈ T | ft(z) ≥ f(z)− ε}.

Remark 2.22. Observe that, with the notation of Lemma 2.21, there is is
always

∀z∈L : ∂f(z) ⊇
⋃

t∈T0(z)
∂ft(z).

Lemma 2.23. Let (ft)t∈T be a nonempty arbitrary family of sublinear lower
semicontinuous convex functions L→ R̄, and set f def= supt∈T ft. Then f is
lower semicontinuous and sublinear and

∂f(0) = co
⋃

t∈T
∂ft(0).

Proof. Before we can apply Lem. 2.21 we first need to compute some terms.
Since ft is sublinear, there is ft(0) = 0 for every t ∈ T and

∀ε>0 : Tε(0) = {t ∈ T | ft(0) ≥ f(0)− ε} = {t ∈ T | 0 ≥ −ε} = T.

Define the orthogonal complement A⊥ def= {x∗ ∈ L∗ | ∀a∈A : 〈a, x∗〉 = 0} of
a set A ⊆ L [cf. 149, p. 7, 61, p. 866]. Let NX∗(0) denote set of convex
neighbourhoods of 0 in X∗. Let S be a linear subspace of L satisfying S⊥ ⊆ V
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for some V ∈ NX∗(0). Then

NS∩dom f (0) = (S ∩ dom f)−

= S⊥ + (dom f)−

= S⊥ +
(⋂

t∈T
∂ft(0)

)

∞

⊆ V +
(

co
⋂

t∈T
∂ft(0)

)

∞

. (2.13)

Lem. 2.21 yields

∂f(0) L2.20=
⋂

S∈F(0)
cl*
(

co
⋃

t∈T
∂ft(0) + NS∩dom f (0)

)

(2.13)
⊆

⋂

V ∈NX∗ (0)
cl*

co

⋃

t∈T
∂ft(0) + V +

(
co
⋂

t∈T
∂ft(0)

)

∞




P2.8(iv)=
⋂

V ∈NX∗ (0)
cl*
(

co
⋃

t∈T
∂ft(0) + V

)

= co
⋃

t∈T
∂ft(0).

It’s easy to see that reverse inclusion always holds, completing the proof. �





Chapter 3

Operations on the Families of
Radiant and Co-radiant Sets

Throughout this chapter, L is a locally convex Hausdorff topological vector
space over the reals. To a set M ⊆ Rk we associate the two operations

⊕M ,�M :
k times︷ ︸︸ ︷

2L × · · · × 2L → 2L

where, for a sequence of sets A1, . . . , Ak ⊆ L,

⊕M (A1, . . . , Ak) def=
⋃

m∈M

∑

i∈[k]
mi ? Ai, (3.1)

�M (A1, . . . , Ak) def=
⋃

m∈M

⋂

i∈[k]
mi ? Ai. (3.2)

These are called the M -sum and dual M -sum respectively. For each choice
of the set M , they encompass a wide range of operations, most of which have
been studied independently in the binary setting, that is, where k = 2 [44, 45,
117]. With the exception of Gardner, Hug, and Weil [49], analysis has largely
been limited to one several common choices for M , focusing exclusively
on subsets Ai ⊆ Rk for i ∈ [k] that are often compact and containing the
origin. The assumptions made by these previous approaches (summarised in
Table 3.1) will prove too restrictive for Chapter 4, and so our goal here is to

29
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1

1

(a) (Bp)p∈[1,∞]

1

1

(b) (Cp)p∈[1,∞]

Figure 3.2: Illustration of the families (Bp)p∈[1,∞], (Cp)p∈[1,∞], when k = 2. Observe
that both families are full and convex, and the sets (Bp)p∈[1,∞] are star-shaped,
whereas (Bp)p∈[1,∞] are co-star-shaped. In (b) the sets each extend infinitely north-
east.

extend a variety of existing results for application to our setting.
Define the following subsets of Rk,

Bp
def=
{
x ∈ Rk≥0

∣∣ |x|p ≤ 1
}
, Cp

def=
{
x ∈ Rk≥0

∣∣ |x| p
p−1
≥ 1

}
,

I1
def=
{
x ∈ Rk≥0

∣∣ |x|1 = 1
}
.

(3.3)

The set {1}k ⊆ Rk≥0 denotes the singleton consisting of a single vector with
every element equal to 1. The harmonic sum [100] of two sets A,B ⊆ L

is

A3B def=


 ⋃

t∈(0,1)
t ·A ∩ (1− t) ·B


 ∪A∞ ∪B∞.

Remark 3.1. We have B1 = [0, 1] ·e I1 and C1 = [1,∞) ·e I1. Consequentially
Propositions 2.6(iv) and 2.6(xi) show µB1 = µI1 and νC1 = νI1 .

The vast majority of previous results apply to radiant sets (Ai)i∈[k] with
a radiant set M (Table 3.1). Consequentially, the family (Cp)p∈[1,∞] makes
no real appearance in most of the literature mentioned. However since
(Cp)p∈[1,∞] consists of co-radiant sets, it should be no surprise that it is quite
relevant when the sets (Ai)i∈[k] are co-radiant. The families (Bp)p∈[1,∞] and
(Cp)p∈[1,∞] are illustrated in Figure 3.2, and some some special cases of ⊕M
and �M are listed in Table 3.3 using these sets.

Remark 3.2. While there is some inconsistency in the operation for the
scalar–set multiplication in (3.1) and (3.2) (Penot and Zǎlinescu [100] use our
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M ⊕M (A1, . . . , Ak)

Minkowski sum {1}k A1 + · · ·+Ak
Convex hull I1 co(A1 ∪ · · · ∪Ak)
Direct sum Bp -

M �M (A1, . . . , Ak)

Intersection {1}k A1 ∩ · · · ∩Ak
Harmonic sum I1 A13 · · ·3Ak
Inverse sum Bp -

Table 3.3: Some different operations obtained from ⊕M and �M by choosing different
sets M , when the sets (Ai)i∈[k] are bounded [117, Prop. 2.2].

asymptotic multiplication convention (2.8), it is considered by Seeger [117]
and Firey [43, 44] and Gardner, Hug, and Weil [49] use classical set–scalar
multiplication — in the case where the sets (Ai)i∈[k] are all bounded, for exam-
ple, when they are compact, the asymptotic multiplication and conventional
multiplication coincide. This is a consequence of Proposition 2.8(v).

The goal of this chapter is to complete the diagram in Figure 2.3 for sets
in the image of the operations ⊕M and �M with respect to the two polarities
◦,O, the two support functions σ, ζ, and the two gauge functions µ,ν. The
following support, co-support results are proven in Section 3.1:

⊕M (A1, . . . , Ak)
σ( · )−−−−−−−−−−−−−−→

Theorem 3.4
σM (σA1 , . . . ,σAk)

(3.4)

⊕M (A1, . . . , Ak)
ζ( · )−−−−−−−−−−−−−−→

Theorem 3.4
ζM (ζA1 , . . . , ζAk).

(3.5)

The companion gauge and co-gauge results are proven next in Section 3.3
after establishing some topological properties of the M -sum and dual M -sum
in Section 3.2:

�M (A1, . . . , Ak)
µ( · )−−−−−−−−−−−−−−→

Theorem 3.19
µM (µA1 , . . . ,µAk)

(3.15)

�M (A1, . . . , Ak)
ν( · )−−−−−−−−−−−−−−→

Theorem 3.20
νM (νA1 , . . . ,νAk).

(3.16)

In Section 3.4 we compute the polarity operations to link the M -sum to
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the dual M -sum:

�M (A1, . . . , Ak)
( · )◦

−−−−−−−−−−−−−−→
Theorem 3.26(iii)

⊕M◦(A◦1, . . . , A◦k)

�M (A1, . . . , Ak)
( · )O

−−−−−−−−−−−−−−→
Theorem 3.26(iv)

⊕MO(AO1 , . . . , AOk ),

and from the previous polarity results:

⊕M (A1, . . . , Ak)
( · )◦

−−−−−−−−−−−−−−→
(2.9)

�M◦(A◦1, . . . , A◦k)

⊕M (A1, . . . , Ak)
( · )O

−−−−−−−−−−−−−−→
(2.9)

�MO(AO1 , . . . , AOk ).

Where, as indicated by the equation references, the second row of arrows
follows from the bipolar theorem. In Section 3.5, using the polarity results
of the previous section, we compute the gauge and co-gauge functions of the
M -sum and dual M -sum:

⊕M (A1, . . . , Ak)
µ( · )−−−−−−−−−−−−−−→

Theorem 3.28
(3.25)

�M (A1, . . . , Ak)
σ( · )−−−−−−−−−−−−−−→

Theorem 3.28
(3.26),

and

⊕M (A1, . . . , Ak)
ν( · )−−−−−−−−−−−−−−→

Theorem 3.29
(3.27)

�M (A1, . . . , Ak)
ζ( · )−−−−−−−−−−−−−−→

Theorem 3.29
(3.28).

We conclude with a discussion of some related results in Section 3.6.
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3.1 Support functions

For M ⊆ Rk and f1, . . . fk : L→ R̄ let σM (f1, . . . , fk), ζM (f1, . . . , fk) : L→
R̄, where

σM (f1, . . . , fk) def= sup
m∈M

(
m1 ·e f1 +e · · ·+e mk ·e fk

)
, (3.4)

ζM (f1, . . . , fk) def= inf
m∈M

(
m1 ·h f1 +h · · ·+h mk ·h fk

)
. (3.5)

Therefore

σM (f1, . . . , fk) = − ζM (−f1, . . . ,−fk). (3.6)

Occasionally it will be convenient to write (3.4) and (3.5) using a summation
symbol, in this case we assume the summation is with respect to the respective
addition conventions in (3.4) and (3.5).

Proposition 3.3. Let A ⊆ L and m ≥ 0. Then σm?A = m ·e σA.

Proof. Since σA = σcoA, it is without loss of generality that we assume A is
convex. We have σm?A = m·eσA whenm 6= 0. Whenm = 0,m?A = A∞ and
σm?A = ιA−∞ . It is always the case that bc(A) ⊆ A−∞ (Prop. 2.8(vi)), therefore
σm?A and mσA differ only on the set L∗ \ A−∞ 3 x∗, when σm?A(x∗) = ∞
and m ·e σA(x∗) = 0. However L∗ \A−∞ ⊆ L∗ \bc(A). Therefore σA(x∗) =∞
for all x ∈ L∗ \A−∞. It follows that σm?A = m ·e σA. �

Theorem 3.4. LetM ⊆ Rk≥0 and Ai ⊆ L for i ∈ [k]. Let A def= ⊕M (A1, . . . , Am).
Then

σM (σA1 , . . . ,σAk) = σA and ζM (ζA1 , . . . , ζAk) = ζA .

Proof. Let Cm,i def= mi ? Ai, Bm def=
∑
i∈[k]Cm,i for m ∈ M , i ∈ [k]. Then

A =
⋃
m∈M Bm =

⋃
m∈M

∑
i∈[k]Cm,i, and from the usual calculus of support

functions [12, p. 31], σA = supm∈M σBm = supm∈M
∑
i∈[k] σCm,i and using

Prop. 3.3, σA = supm∈M
∑
i∈[k]mi ·e σAi . The claim about ζA follows from

(3.6), replacing M with −M and Ai with −Ai for i ∈ [k]. �
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Corollary 3.5. Let M ⊆ Rk≥0 and Ai ⊆ L for i ∈ [k]. Then

bc(⊕M (A1, . . . , Am)) =
⋂

i∈[k]
bc(Ai),

and ⊕M (A1, . . . , Ak) is bounded if and only if each of M,A1, . . . , Ak are
bounded.

3.2 Topological properties

In order to establish similar results to Theorem 3.4 for the gauge and co-gauge
function, we first need some results about the topology of the dual M -sum.

3.2.1 Closure

We start by giving some mild conditions under which ⊕M and �M are closed.
Proposition 3.6 is simple to derive from Corollary 3.5.

Proposition 3.6. Suppose M ⊆ Rk and each of Ai ⊆ L, i ∈ [k] are bounded
(resp. σ(L,L∗)-compact). Then ⊕M (A1, . . . , Ak) is bounded (resp. σ(L,L∗)-
compact).

Proof. If each Ai for i ∈ [k] is bounded, then Cor. 3.5 implies ⊕M (A1, . . . , Ak)
is bounded.

Let (xi)i∈I ⊆ ⊕M (A1, . . . , Ak) be a σ(L,L∗)-convergent net with limit
x̄. Then there is a net (mi)i∈I ⊆ M with xi ∈

∑
j∈[k]mij ? Aj . Since M is

closed and bounded (mi) may be assumed (possibly by passing to a subnet)
to converge, so let m̄ be its limit. Then there are nets (aij)i∈I ⊆ Aj for each
j ∈ [k] so that xi =

∑
j∈[k]mijaij for every i ∈ I. Since each Aj is σ(L,L∗)-

compact, the nets (aij)i∈I may be assumed to converge with limits āj for
each j ∈ [k]. Thus x̄ =

∑
j∈[k] m̄j āj . This shows x̄ ∈ ⊕M (A1, . . . , Ak). �

There is another result, similar to Proposition 3.6, when the sets (Ai)i∈[k]

are unbounded.

Theorem 3.7. Suppose L≥0 ⊆ L is a normal cone, and M ⊆ Rk≥0 is closed
convex, containing an order unit of Rk≥0. Suppose M and each of Ai ⊆ L≥0

for i ∈ [k] are σ(L,L∗)-closed. Then ⊕M (A1, . . . , Ak) is σ(L,L∗)-closed.
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Proof. Suppose (xi)i∈I ⊆ ⊕M (A1, . . . , Ak) is a σ(L,L∗)-convergent net with
limit x̄. Then there is a net (mi)i∈I ⊆M with xi ∈

∑
j∈[k]mij ? Aj for every

i ∈ I. Since M is convex and contains an order unit of Rk≥0, e, we may
assume mi ∈ Rk>0 for every i ∈ I. To see this, observe that we can construct
another sequence

(εie+ (1− εi)mi)i∈I ⊆M ∩Rk>0 with εie+ (1− εi)mi → m̄, (3.7)

where (εi)i∈I ⊆ (0, 1) is chosen arbitrarily to satisfy εi → 0. Because
mij ? Aj ⊆ L≥0 for every (i, j) ∈ I × [k] (via Prop. 2.8(iii)) from (3.7) it
follows that there are nets (aij)i∈I ⊆ Aj ⊆ L≥0 for each j ∈ [k] so that
xi =

∑
j∈[k]mijaij for every i ∈ I.

First assume (mi) converges with limit m̄ ∈ M . Since (xi) and (mi)
converge, Lem. 2.10 shows that so do each of (aij)i∈I for j ∈ [k]. Let āj
be the σ(L,L∗)-limit of (aij)i∈I for j ∈ [k]. Thus x̄ =

∑
j∈[k] m̄j āj and

x̄ ∈ ⊕M (A1, . . . , Ak).
Next assume (mi) does not converge. We will see this leads to a contra-

diction. Let | · | be any norm on Rn. Then we define the nets

∀i∈I : ti def= |mi| and ni
def=

1
ti
mi.

Then mij = tinij for (i, j) ∈ I × [k]. Since (ni) is bounded, we may assume
without loss of generality that it converges with limit n̄. Since (mi) does
not converge, we have ti → ∞. Another application of Lem. 2.10 shows
that the nets (aij)i∈I ⊆ Aj converge, with σ(L,L∗)-limits āj for j ∈ [k].
Thus

∑
j∈[k]〈nijaij , x∗〉 converges in σ(L,L∗), whence there exists x∗ ∈ L∗

with

〈xi, x∗〉 = ti
∑

j∈[k]
〈nijaij , x∗〉 and ti

∑

j∈[k]
〈nijaij , x∗〉 → ∞.

This contradicts the assumption that (xi) converges in σ(L,L∗), and com-
pletes the proof. �

Remark 3.8. To our knowledge Theorem 3.7 is the first ⊕M closure result for
unbounded M and unbounded sets (Ai)i∈[k]. Seeger [117, Prop. 4.3] proves
closure for k = 2 when one of the sets (Ai)i∈[k] is bounded. Instead we use
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Lemma 2.10 to ensure closure by requiring the sets are all subsets of a normal
cone.

Theorem 3.7 will be used to verify the closure of the scoring rule operation
we develop in Section 4.4. The use of the σ(L,L∗) topology is without loss of
generality when the sets (Ai)i∈[k] are convex, since the closure of a convex set
in the original topology coincides with the σ(L,L∗)-closure [112, Thm. 3.12].

Proposition 3.9. Suppose M ⊆ Rk≥0 is closed convex, containing an order
unit of Rk≥0, and Ai ⊆ L≥0 for i ∈ [k] are closed.

(i) If M is bounded then �M (A1, . . . , Ak) is closed.

(ii) If Ai ⊆ L≥0 for i ∈ [k] are bounded and σ(L,L∗)-compact then
�M (A1, . . . , Ak) is σ(L,L∗)-closed.

Proof. Suppose (xi)i∈I ⊆ ⊕M (A1, . . . , Ak) is a convergent net with limit x.
Then by the same argument as Thm. 3.7, in particular (3.7), there are nets
(mi)i∈I ⊆ M , (aij)i∈I ⊆ Aj for each j ∈ [k] so that xi = mijaij for every
(i, j) ∈ I × [k].

(i): Since M is compact, without loss of generality (mi) may be assumed to
converge in M . Let its limit be m̄ ∈M . Then because (xi) converges and
xi = mijaij for all i ∈ I, necessarily the nets (aij)i∈I converge for j ∈ [k], let
āj be the limit of (aij)i∈I for j ∈ [k]. The sets Aj for j ∈ [k] are closed, thus
āj ∈ Aj for j ∈ [k]. Thus x = m̄j āj ∈ �M (A1, . . . , Ak) and �M (A1, . . . , Ak)
is closed.

(ii): Suppose (xi)i∈I ⊆ ⊕M (A1, . . . , Ak) is a σ(L,L∗)-convergent net with
σ(L,L∗)-limit x. Since Aj is σ(L,L∗)-compact for all jnk, it is without
loss of generality to assume (aij)i∈I converge for j ∈ [k]. Let āj be the
limit of (aij)i∈I for j ∈ [k]. Then since (xi) converges and xi = mijaij for
all (i, j) ∈ I × [k], the net (mi)i∈I converges. Let its limit be m̄. Because
M is closed, m̄ ∈ M . Thus x = m̄j āj ∈ �M (A1, . . . , Ak) for j ∈ [k] and
�M (A1, . . . , Ak) is σ(L,L∗)-closed. �

Proposition 3.9(i) essentially uses a straight forward limit argument [cf.
117, Prop. 4.2, 100, Lem. 3.1(b)].
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3.2.2 Convexity

We now show that both of the operations ⊕M and �M preserve convexity
when M is convex. Gardner, Hug, and Weil provide similar result for ⊕M
with respect to the domain of compact, convex sets in a finite dimensional
space [49, Thm. 6.1], and our proof strategy is essentially the same, with
some added care to respect our scalar–set multiplication convention.

Lemma 3.10. Suppose (Si)i∈I and (Tj)j∈I , are arbitrary families of subsets
of L. Then

⋂
i∈I Si +

⋂
j∈I Tj ⊆

⋂
i∈I(Si + Ti).

Theorem 3.11. Suppose M ⊆ Rk and Ai ⊆ L, i ∈ [k], are convex. Then
both ⊕M (A1, . . . , Ak) and �M (A1, . . . , Ak) are convex.

Proof of Lemma 3.10. Let x ∈
⋂
i∈I Si +

⋂
j∈I Tj . Then x = s+ r for some

points s, r where s is in every Si, and r is in every Tj . Thus x ∈ Si + Tj for
all i, j ∈ I, including the pairs (Si, Tj) with j = i. Consequently x is in the
intersection

⋂
i∈I(Si + Ti). (Lem. 3.10) �

Proof of Theorem 3.11. Fix arbitrary x, y ∈ ⊕M (A1, . . . , Ak). Then there
are m,n ∈M , such that

x ∈
∑

i∈[k]
mi ? Ai and y ∈

∑

j∈[k]
nj ? Aj . (3.8)

To show ⊕M (A1, . . . , Ak) is a convex set, we need to show tx + (1 − t)y ∈
⊕M (A1, . . . , Ak) for all t ∈ (0, 1). By virtue of (3.8),

∀t∈(0,1) : tx+ (1− t)y ∈ t
∑

i∈[k]
mi ? Ai + (1− t)

∑

j∈[k]
nj ? Aj

=
∑

i∈[k]
(tmi ? Ai + (1− t)ni ? Ai). (3.9)

We have
∀i∈[k] : tmi ? Ai + (1− t)ni ? Ai = (tmi + (1− t)ni) ? Ai, (3.10)

and thus

∑

i∈[k]

(
tmi ? Ai + (1− t)ni ? Ai) =

∑

i∈[k]
(tmi + (1− t)ni

)
? Ai. (3.11)
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Finally, convexity of M guarantees tm+ (1− t)n ∈M , and therefore

∀t∈(0,1) : tx+ (1− t)y
(3.9)
∈

∑

i∈[k]

(
tmi ? Ai + (1− t)ni ? Ai

)

(3.11)=
∑

i∈[k]
(tmi + (1− t)ni) ? Ai

⊆
⋃

m∈M

∑

i∈[k]
mi ? Ai, (3.12)

which concludes the proof that ⊕M (A1, . . . , Ak) is convex.

The proof that �M (A1, . . . , Ak) is convex is very similar. Let x, y ∈
�M (A1, . . . , Ak). Then there exists m,n ∈ M such that x ∈

⋂
i∈[k]mi ? Ai

and y ∈
⋂
j∈[k] nj ? Aj . Therefore

∀t∈(0,1) : tx+ (1− t)y ∈ t
⋂

i∈[k]
mi ? Ai + (1− t)

⋂

j∈[k]
nj ? Aj

=
⋂

i∈[k]
tmi ? Ai) +

⋂

j∈[k]
(1− t)nj ? Aj

L3.10
⊆

⋂

i∈[k]

(
tmi ? Ai + (1− t)ni ? Ai

)
. (3.13)

From (3.10)

⋂

i∈[k]
(tmi ? Ai + (1− t)ni ? Ai) =

⋂

i∈[k]
(tmi + (1− t)ni) ? Ai. (3.14)

Again the convexity of M guarantees the presence of tm+ (1− t)n ∈M , and
mirroring (3.12)

∀t∈(0,1) : tx+ (1− t)y
(3.13)
∈

⋂

i∈[k]

(
tmi ? Ai + (1− t)ni ? Ai

)

(3.14)=
⋂

i∈[k]
(tmi + (1− t)ni) ? Ai

⊆
⋃

m∈M

⋂

i∈[k]
mi ? Ai,

which concludes the proof that �M (A1, . . . , Ak) is convex. (Thm. 3.11) �
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3.2.3 Radiant and co-radiant properties

Just like our results in the previous section, both of the operations ⊕M
and �M preserve radiance (resp. co-radiance) when M is radiant (resp.
co-radiant). Propositions 3.12 and 3.13 are essentially immediate, but they
are important to have when characterising the asymptotic cones of sets in
the image of �M .

Proposition 3.12. Suppose M ⊆ Rk and Ai ⊆ L, i ∈ [k] are convex. Then
⊕M (A1, . . . , Ak) is radiant (resp. co-radiant) if

(i) M is radiant (resp. co-radiant), or

(ii) the sets Ai are radiant (resp. co-radiant).

Proof. We use the convexity of each of the Ai to distribute the scalar c over
the summation

(0, 1] · ⊕M (A1, . . . , Ak) =
⋃

c∈(0,1]

⋃

m∈M
c ·
∑

i∈[k]
mi ? Ai

=
⋃

c∈(0,1]

⋃

m∈M

∑

i∈[k]
cmi ? Ai.

If M is radiant then the set (0, 1] gets absorbed into M , if each of Ai for
i ∈ [k] is each radiant it gets absorbed into each of them, proving radiance.
Likewise for the set [1,∞), to prove co-radiance. �

There are similar properties for �M absent the convexity assumption,
and the proof is exactly the same.

Proposition 3.13. LetM ⊆ Rk and Ai ⊆ L for i ∈ [k]. Then �M (A1, . . . , Ak)
is radiant (resp. co-radiant) if

(i) M is radiant (resp. co-radiant), or

(ii) the sets Ai for i ∈ [k] are radiant (resp. co-radiant).

3.2.4 Asymptotic properties

The behaviour of the gauge and co-gauge functions (2.10) is contingent on
the asymptotic behaviour of the associated sets. Consequentially we need
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some basic results on the asymptotic cones for �M to complete the main
theorems in Section 3.3.

Lemma 3.14. Suppose M ⊆ Rk≥0 and Ai ⊆ L for i ∈ [k]. Then

(i) �M (A1, . . . , Ak)∞ ⊇
⋂
i∈[k](Ai)∞ every Ai for i ∈ [k] is radiant or

every Ai for i ∈ [k] is convex, and

(ii) �M (A1, . . . , Ak)∞ ⊆
⋂
i∈[k](Ai)∞ ifM is bounded or each Ai for i ∈ [k]

is co-radiant.

Proof. Let A def= �M (A1, . . . , Ak)∞.

Assume the Ai are each radiant: When the sets Ai are each radiant A is
radiant (Prop. 3.13) and we can apply Prop. 2.9(i) to calculate

A∞
P2.9(i)=

⋂

ε>0

⋃

m∈M

⋂

i∈[k]
εmi ? Ai

⊇
⋃

m∈M

⋂

i∈[k]

⋂

ε>0
miε ? Ai.

P2.9(i)=
⋂

i∈[k]
(Ai)∞.

Assume the Ai are each convex: Then

A∞
P2.8(vii)
⊇

⋃

m∈M


 ⋂

i∈[k]
mi ? Ai



∞

P2.8(vii)=
⋃

m∈M

⋂

i∈[k]
(mi ? Ai)∞

=
⋂

i∈[k]
(Ai)∞.

Assume M is bounded: Let x ∈ A∞. Then there are nets (xi)i∈I ⊆ A and
(ti)i∈I ⊆ R>0 with ti → 0 so that x = limi∈I tixi. Therefore there is a net
(mi)i∈I ⊆M with xi ∈

⋂
j∈[k]mij ? Aj . If for any j ∈ [k] there is mij = 0 for

all i in a cofinal subset of I, then x ∈ (Aj)∞ as desired. So let us assume
this is not the case, that is (mi) ⊆ Rk>0. Then there are nets (aij)i∈I ⊆ Aj
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with xi = mijaij for each j ∈ [k] so that

∀j∈[k] : lim
i∈I

tixi = lim
i∈I

timijaij .

If M is bounded then we may assume (mi) converges, by passing to a
convergent subnet if necessary. Then timij → 0 and timijaij → x for all
j ∈ [k]. This shows x ∈

⋂
i∈[k](Ai)∞ and A∞ ⊆

⋂
i∈[k](Ai)∞.

Assume the Ai are each co-radiant: When the sets Ai are each co-radiant, A
is co-radiant (Prop. 3.13), and hence

A∞
P2.9(ii)=

⋃

ε>0

⋃

m∈M

⋂

i∈[k]
εmi ? Ai ⊆

⋃

m∈M

⋂

i∈[k]
mi ·

⋃

ε>0
ε ? Ai =

⋂

i∈[k]
posAi.

Then using Prop. 2.9(ii) we have A∞ ⊆
⋂
i∈[k](Ai)∞. �

There are two immediate corollaries from Lemma 3.14.

Corollary 3.15. Let M ⊆ Rk≥0 and Ai ⊆ L for i ∈ [k]. If either 1. both
M and the sets Ai are bounded for i ∈ [k], or 2. the sets Ai are convex and
co-radiant for i ∈ [k], then

�M (A1, . . . , Ak)∞ =
⋂

i∈[k]
(Ai)∞.

Corollary 3.16. LetM ⊆ Rk≥0 and Ai ⊆ L i ∈ [k]. Let A def= �M (A1, . . . , Ak).
(i) If each Ai for i ∈ [k] is convex or radiant, then bcA ⊆

∑
i∈[k] bcAi. (ii) If

each Ai for i ∈ [k] is co-radiant or M is bounded, then bcA ⊇
∑
i∈[k] bcAi.

Proof of Corollary 3.15. The second claim is immediate and so we only prove
the first. Lem. 3.14(ii) shows �M (A1, . . . , Ak)∞ ⊆

⋂
i∈[k](Ai)∞ when M is

bounded. Since each of the sets (Ai)i∈[k] are bounded
⋂
i∈[k](Ai)∞ = {0}

(from Prop. 2.8(v)). There is always {0} ⊆ �M (A1, . . . , Ak)∞, which gives
equality. (Cor. 3.15) �

Proof of Corollary 3.16. Since the asymptotic cone always contains 0, we
have [cf. 149, p. 7]


 ⋂

i∈[k]
(Ai)∞



−

=
∑

i∈[k]
(Ai)−∞

P2.8(vi)=
∑

i∈[k]
bcAi.
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Using Prop. 2.8(vi) bcA = (A)−∞. Since each Ai is convex for i ∈ [k] we have
A∞ ⊇

⋂
i∈[k](Ai)∞ (via Lem. 3.14(i)) and A∞ ⊆

⋂
i∈[k](Ai)∞ if the sets Ai

for i ∈ [k] are co-radiant (Lem. 3.14(ii)). (Cor. 3.16) �

3.3 Gauge functions

Mirroring the approach of Section 3.1, for M ⊆ Rk≥0 and f1, . . . fk : X → R̄.
Let µM (f1, . . . , fk),νM (f1, . . . , fk) : L→ R̄ be defined by

µM (f1, . . . , fk)(x) def= µM ◦ (f1, . . . , fk)(x) (3.15)

νM (f1, . . . , fk)(x) def= νM ◦ (f1, . . . , fk)(x), (3.16)

for x ∈
⋂
i∈[k] dom fi. For x ∈ L\

⋂
i∈[k] dom fi we define µM (f1, . . . , fk)(x) def=

∞ and νM (f1, . . . , fk)(x) def= −∞. This is a convention that is adopted by
Ward [137] in a similar setting to ours.

To demonstrate Theorem 3.4 we needed relatively fewer assumptions
compared with their gauge counterparts: Theorems 3.19 and 3.20 (which are
proved below). To some degree this is a product of the powerful definition
of the support function, which is always convex, and always lower semicon-
tinuous. By comparison the extended gauge function we have defined can
fail to be both convex and lower semicontinuous. In order to develop a dual
theory for the gauge functions we have already had to appeal to a substantial
amount of mathematical machinery to take care of the corner and asymptotic
cases — the additional assumptions present in Theorems 3.19 and 3.20 reflect
a compromise of mathematical convenience and analytic power. Indeed,
these same conditions are again equally beneficial in Section 3.4 when it
comes to proving Theorem 3.26, which unifies the operations ⊕M and �M
for the convex radiant and convex co-radiant sets. However, before we can
prove Theorems 3.19 and 3.20, we need some preparatory lemmas.

Lemma 3.17. Suppose M ⊆ Rk≥0 is convex and contains an order unit of
Rk≥0. Then if x ∈ Rk, γ ∈ R satisfy

(i) µM (x) < γ, then there is m ∈M with x < γm, when M is bounded;

(ii) νM (x) > γ, then x = 0 or there is m ∈ M and νM (x) ≥ β > γ with
x > βm, when M∞ \ posM = {0}



44 CHAPTER 3. RADIANT AND CO-RADIANT SETS

Proof. By hypothesis M contains an order unit, mε of Rk≥0. Every order
unit of a cone is an element of the relative interior [3, Lem. 1.7], and the
relative interior of Rk≥0 coincides with its topological interior. Thus mε > 0.

(i): Suppose µM (x) < γ. Then there exists t ∈ [µM (x), γ) with x ∈ t ? M .
If t = 0 then x = 0 (because M is bounded). Therefore mε satisfies
x = tmε < γmε. Next, if t > 0 then there is a ∈M with x = ta. Immediately
x ≤ ta. Taking the interior point mε, let mx

def= t
γa +

(
1− t

γ

)
mε. Then

mx ∈M by convexity, and γmx = ta+ (γ − t)mε, therefore x < γmx.

(ii): Let νM (x) > γ, then there is t ∈ (γ,νM (x)] ∩R≥0 with x ∈ t ? M . If
t = 0 then x ∈M∞ \ posM = {0}. Take any m ∈M and x ≥ tm. Next, if
t > 0 there is a ∈M with x = ta. Immediately x ≥ ta and x > ta− λmε for
all λ > 0. Let mx

def= t
βa+ (1− t

β )mε, then mx ∈M by convexity, and for all
0 < β < t there is βmx = ta− (t− β)mε ∈ β ?M and x > βmx when β < t.
In particular for β ∈ (max(0, γ), t). �

Lemma 3.18. Let A ⊆ L, m ∈ R≥0. Then

(i) µm?A(x) ≤ 1 implies µA(x) ≤ m

(ii) νm?A(x) ≥ 1 implies νA(x) ≥ m

Proof. (i): For every γ > µA(x) = m there is t ∈ [m, γ) with x ∈ t ? A. If
t = 0 then x ∈ A∞ and m = 0, thus x ∈ m ? A. If t > 0 then x /∈ A∞,
m > 0, and x ∈ t ? A, whence m

t x ∈ m ? A. Suppose m > 0. Then
µm?A(x) = µA(x/m), thus µA(x) ≤ m. If m = 0 then µm?A = ιA∞ . By
assumption µm?A(x) ≤ 1 < ∞ and so x ∈ (A)∞. From Prop. 2.6(xii), we
have µA(x) = m.

(ii): Suppose m > 0. Then νm?A(x) = νA(x/m) and νA(x) ≥ m. If m = 0
then νm?A(x) ≥ 1 implies x ∈ A∞ and νA(x) ≥ 0 = m. �

For a vector space L and a cone K ⊆ L letM0(K) denote the collection
of subsets of L which are convex, K-full, bounded, contain both 0 and an
order unit of K. Let M∞(K) denote the collection of of subsets M of K
which are closed, convex, containing an order unit and have posM = K \{0}.
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Theorem 3.19. Suppose M ∈ M0(Rk≥0), Ai ⊆ L for i ∈ [k]. Let A def=
�M (A1, . . . , Ak). Then µM (µA1 , . . . ,µAk) ≥ µA, and

µA = µM (µA1 , . . . ,µAk) ⇐⇒ A∞ ⊇
⋂

i∈[k]
(Ai)∞.

In particular, when the sets (Ai)i∈[k] are all radiant or convex, A∞ ⊇⋂
i∈[k](Ai)∞ and µA = µM (µA1 , . . . ,µAk).

Theorem 3.20. Suppose M ∈ M∞(Rk≥0), Ai ⊆ L for i ∈ [k]. Let A def=
�M (A1, . . . , Ak) and assume A∞ ⊆

⋂
i∈[k](Ai)∞. Then νM (νA1 , . . . ,νAk) ≥

νA and

νA = νM (νA1 , . . . ,νAk) ⇐⇒ [0,∞) ? A ⊇
⋂

i∈[k]
(Ai)∞.

In particular, when the sets (Ai)i∈[k] are each co-radiant, A∞ ⊆
⋂
i∈[k](Ai)∞

and νA = νM (νA1 , . . . ,νAk) if and only if A∞ ⊇
⋂
i∈[k](Ai)∞. When,

additionally, the sets (Ai)i∈[k] are each convex, A∞ =
⋂
i∈[k](Ai)∞ and

νA = νM (νA1 , . . . ,νAk).

Proof of Theorem 3.19. Let x ∈ L and γ ∈ R>0 satisfy γ > µM (y), where
y def= (µA1 , . . . ,µAk)(x). Since M is convex and contains an order unit of Rn≥0,
Lem. 3.17(i) shows there is m ∈M with y < γm pointwise. Therefore

∀i∈[k] : µAi(x) < γmi
P2.6(vi)=⇒ x ∈ [0, γ] ? mi ? Ai

and

x ∈
⋃

m∈M

⋂

i∈[k]
[0, γ] ? mi ? Ai ⊆ [0, γ] ·

⋃

m∈M

⋂

i∈[k]
mi ? Ai =⇒ µA(x) ≤ γ.

We have shown

∀γ∈R>0∀x∈L :
[
γ > µM (µA1 , . . . ,µAk)(x) =⇒ γ ≥ µA(x)

]

=⇒ µM (µA1 , . . . ,µAk) ≥ µA . (3.17)

Assume µM (µA1 , . . . ,µAk) = µA: Pick x ∈ L and let y def= (µA1 , . . . ,µAk)(x).
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We have µM (y) = 0 precisely when u ∈M∞ (Prop. 2.6(ii)) and because M is
bounded M∞ = {0}. Therefore µ−1

M (0) = 0. If we suppose x ∈
⋂
i∈[k](Ai)∞

then y = 0, and µM (y) = µA(x) = 0. This shows x ∈ A∞ and
⋂
i∈[k](Ai)∞ ⊆

A∞.

Assume A∞ ⊇
⋂
i∈[k](Ai)∞: From Lem. 3.14(ii) A∞ ⊆

⋂
i∈[k](Ai)∞ whenever

M is bounded. Thus A∞ =
⋂
i∈[k]Ai by hypothesis. Suppose x ∈ L and

γ ∈ R>0 satisfy γ > µA(x). Then λ ∈ [µA(x), γ) with x ∈ λ ? A. If λ = 0,
then

x ∈ A∞ =
⋂

i∈[k]
(Ai)∞

P2.6(ii)⇐⇒ ∀i∈[k] : µAi(x) = 0,

and immediately y = 0. Thus µM (y) = 0 ≤ λ. If λ > 0, then there exists
m ∈M with x/λ ∈

⋂
i∈[k]mi ? Ai. Thus for each i ∈ [k] we have

µmi?Ai(x/λ) ≤ 1 L3.18(i)=⇒ µAi(x) ≤ λmi,

and in particular, µAi(x) = λmi whenever mi = 0 for i ∈ [k]. Thus y ≤ λmi.
By hypothesis M is full and contains 0, likewise λ ?M is full and contains 0,
whence y ∈ [0, λm]Rk≥0

⊆ λ?M . Therefore µM (y) ≤ λ. We have shown

∀γ∈R>0∀x∈L :
[
γ > µA(x) =⇒ γ ≥ µM (µA1 , . . . ,µAk)(x)

]

=⇒ µA ≥ µM (µA1 , . . . ,µAk),

which together with (3.17) gives µA = µM (µA1 , . . . ,µAk).
The final claim follows from Lem. 3.14(i). (Thm. 3.19) �

Proof of Theorem 3.20. The style of proof is similar to the proof of Thm. 3.19,
however we need some different constructions to accomplish each step. First,
because posM = Rk≥0 \{0} there isM∞ ⊆ posM = Rk≥0 (from Prop. 2.8(ii))
and M∞ \ posM ⊆ Rk≥0 \

(
Rk≥0 \ {0}

)
= {0}.

Assume A∞ ⊆
⋂
i∈[k](Ai)∞: Suppose x ∈ L and γ ∈ R satisfy νA(x) > γ.

Then λ ∈ (γ,νA(x)]∩R≥0 with x ∈ λ?A. If λ = 0, then νA(x) = 0 and

x ∈ A∞ ⊆
⋂

i∈[k]
(Ai)∞

P2.6(ix)=⇒ ∀i∈[k] : νAi(x) ≥ 0,
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and immediately y ∈ Rk≥0. Thus µM (y) ≥ λ > γ. Next, if λ > 0 then there
exists m ∈M with x/λ ∈

⋂
i∈[k]mi ? Ai. Thus for each i ∈ [k] we have

νmi?Ai(x/λ) ≥ 1 L3.18(ii)=⇒ νAi(x) ≥ λmi.

Therefore y ∈ λM +Rk≥0. Since M is closed convex, the set [1,∞) ? M is
closed convex and co-radiant thus ([1,∞) ? M)∞ = pos([1,∞) ? M) = Rk≥0
(from Prop. 2.9(ii)) thus λM+Rk≥0 ⊆ [λ,∞)?M (from Prop. 2.8(iv)) whence
νM (y) ≥ λ. We have shown

∀γ∈R∀x∈L :
[
νA(x) > γ =⇒ νM (νA1 , . . . ,νAk)(x) ≥ γ

]

=⇒ νM (νA1 , . . . ,νAk) ≥ νA .

Assume
⋂
i∈[k](Ai)∞ ⊆ [0,∞)?A: Suppose x ∈ L and γ ∈ R satisfy νM (y) >

γ, where y def= (νA1 , . . . ,νAk)(x). Then λ ∈ (γ,νA(x)] ∩R≥0 with y ∈ λ ?M .
If λ = 0 then y = 0. Therefore x ∈

⋂
i∈[k](Ai)∞ ⊆ [0,∞) ? A and 0 =

νM (y) ≤ νA(x). Now assume λ > 0. Then there exists m ∈ M and β > γ

with y > βm. Therefore

∀i∈[k] : νAi(x) > βmi
P2.6(xiii)=⇒ x ∈ [β,∞) ? mi ? Ai

and

x ∈
⋃

m∈M

⋂

i∈[k]
[β,∞) ? mi ? Ai = [β,∞) ·

⋃

m∈M

⋂

i∈[k]
mi ? Ai

=⇒ νA(x) ≥ γ.

Therefore

∀γ∈R∀x∈L :
[
γ < νM (νA1 , . . . ,νAk)(x) =⇒ γ < νA(x)

]

=⇒ νM (νA1 , . . . ,νAk) ≤ νA .

Assume νM (νA1 , . . . ,νAk) = νA: Choose x ∈
⋂
i∈[k](Ai)∞. Then νAi(x) ≥ 0

for all i ∈ [k], and (νA1 , . . . ,νAk)(x) ∈ Rk≥0 = [0,∞)?M and νM (νA1 , . . . ,νAk)(x) <
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∞. This shows

⋂

i∈[k]
(Ai)∞ ⊆ domνM (νA1 , . . . ,νAk) = domνA = [0,∞) ? A,

thus
⋂
i∈[k](Ai)∞ ⊆ [0,∞) ? A.

In the final claim we apply Lem. 3.14(ii) to show A∞ ⊆
⋂
i∈[k](Ai)∞. The set

A is also co-radiant by Prop. 3.13 and therefore posA ⊆ A∞ by Prop. 2.9(ii),
whence [0,∞) ? A = A∞. (Thm. 3.20) �

3.4 Polarity

Up until now the analysis of ⊕M and �M has been completely separate, with
results on ⊕M limited to support functions and results on �M limited to
gauge functions. However we are about to see that the two are connected
via the duality relations introduced in Section 2.3. Let (L,≥) be an ordered
vector space.

A function f : L → R, is isotone on T ⊆ L if f(x) ≥ f(y) whenever
x, y ∈ T and x ≥ y [cf. 137, Def. 2.1]. As usual, when L = Rk the ordering is
assumed to be pointwise. It is important for our proof of Theorem 3.26 that
the gauge and co-gauge functions are isotone, fortunately the conditions on
M we used in Section 3.3 for Theorems 3.19 and 3.20 are both sufficient and
(up to closure and/or convexity) necessary to ensure this property.

Proposition 3.21. Assume M ⊆ L≥0 is bounded, contains 0, and an order
unit.

(i) If M is full, then µM is finite and isotone on L≥0.

(ii) If M is closed then µM is isotone only if M is full.

Proposition 3.22. Assume M ⊆ L≥0 is convex.

(i) If posM = L≥0 \ {0}, then νM is finite and isotone on L≥0.

(ii) If M is closed, then νM is isotone only if M∞ ⊇ L≥0.

Proof of Proposition 3.21. (i): Let e be the order unit of L≥0 contained in
M . Pick an arbitrary x ∈ L≥0. Then for some c > 0 there is ce ≥ x. Because
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M is full, x ∈ L≥0 ∩
(
ce− L≥0

)
⊆ c ? M . Thus L≥0 ⊆ posM , and because

M is bounded M∞ = {0} and L≥0 ⊆ [0,∞) ? M = domµM .
Suppose x, y ∈ L≥0 with x ≥ y and assume M is full. Choose γ ∈ R

with γ > µM (x). Then λ ∈ [µM (x), γ) with x ∈ λ ? M . If λ = 0 then
x ∈M∞ = {0} and x ≥ y means y = x = 0, in which case µM (y) = µM (x).
Next if λ > 0 then x ∈ λ ? M . Since M is full, containing 0, so is λ ? M .
x ≥ y ≥ 0 means that y ∈ [0, x]L≥0

. Since x, 0 ∈ λ ? M , [0, x]L≥0
⊆ λ ? M .

Thus µM (y) ≤ λ. We have proven µM (x) ≥ µM (y).

(ii): Assume M is also not full. Then x, y ∈ M and a point z ∈ [x, y]L≥0

with z /∈M , in particular, z ≤ y. If M is also closed then µM (z) > 1. Since
y ∈M there is µM (y) ≤ 1 < µ(z) and µM is not isotone. (Prop. 3.21) �

Proof of Proposition 3.22. (i): Since posM = L≥0 \ {0} there is M∞ ⊆
posM = L≥0 and [0,∞) ? M = L≥0 = domνM .

Suppose x, y ∈ L≥0 with x ≥ y and assume M is closed convex. Choose
γ ∈ R with γ < νM (y). Then λ ∈ [µM (y), γ) ∩ R≥0 with y ∈ λ ? M .
If 0 = λ ≥ νM (y) then ν(y) ≥ 0. If λ > 0 then because x ≥ y there
is x ∈ y + L≥0. By hypothesis M is convex with M∞ = L≥0, whence
λ ? M + M∞ ⊆ λ ? M and y + L≥0 ⊆ [λ,∞) ? M and νM (x) ≥ λ. Thus
νM (x) ≥ νM (y). Thus νM is isotone.

(ii): Assume M∞ ⊂ L≥0. Then some v ∈ L≥0 with v /∈ M∞. Since M is
closed convex M∞ is the largest set of points that satisfies M +M∞ ⊆M
and so m+ v /∈M for all m ∈M and so νM (m+ v) < 1. Pick an arbitrary
m ∈M . Since v ∈ L≥0 there is v ≥ 0 and m+ v ≥ m. Since M is assumed
closed and m ∈ M there is νM (m) ≥ 1 > νM (m + v), and νM is not
isotone. (Prop. 3.22) �

Remark 3.23. With regards to conditions on M of Proposition 3.22 (equiva-
lently Theorem 3.20), observe that whenM is closed co-radiant,M∞ = posM
(via Proposition 2.9(ii)), so that νM is isotone if and only if posM = L≥0\{0}.
Equivalently, νM is isotone if and only if M is closed co-star-shaped and
M∞ = L≥0.

Corollary 3.24. Assume M ⊆ Rk≥0 and Ai ⊆ L for i ∈ [k] are convex.

(i) If M is full, then µM (µA1 , . . . ,µAm) is convex.
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(ii) If posM = Rk≥0 \ {0}, then νM (νA1 , . . . ,νAm) is concave.

Before we can proceed, we need a version of the subdifferential chain rule
easy to deduce using our notation and asymptotic multiplication (2.8) from
Ward [137] (viz. Remark 2.3).

Lemma 3.25. Suppose f1, . . . , fk : L → R̄ are each convex and finite at
z ∈ L. Let f def= (f1, . . . , fk) and assume F : Rk → R̄ is convex, finite and
isotone on the set R def=

{
y ∈ Rk

∣∣∣ ∃x∈L : f(x) ≤ y
}
and finite at f(z). Then

if R ∩ int(domF ) 6= ∅

∂(F ◦ f)(z) =



∂


∑

i∈[k]
mi ·e fi


(z)

∣∣∣∣∣∣
m ∈ ∂F (f(z))





and ⊕∂F (f(z))(∂f1(z), . . . , ∂fk(z)) ⊆ ∂(F ◦ f)(z). In particular, when the fi
are additionally positively homogeneous

∂(F ◦ f)(0) = ⊕∂F (f(0))(∂f1(0), . . . , ∂fk(0))∗. (3.18)

Proof. Most of the above is proven by Ward [137, Thm. 2.6]. The clo-
sure result (3.18) is because ∂(f1 + · · · + fk)(0) = ∂f1(0) + · · ·+ ∂fk(0)∗

for lower semicontinuous sublinear functions (fi)i∈[k] [146, Prop. 2, 149,
Thm. 2.4.14(viii)]. Ward [137] observes ∂(c ·e f) = c ? ∂f with our asymp-
totic convention (2.8). It is well known that the subdifferential of proper
convex functions is σ(L∗, L)-compact [2, Thm. 7.13] and the σ(L∗, L)-closure
of the M -sum follows. �

Theorem 3.26. Suppose M ⊆ Rk≥0, Ai ⊆ L for i ∈ [k]. Then

(i) ⊕M (A1, . . . , Ak)◦ ⊆ �M◦(A◦1, . . . , A◦k), and

(ii) ⊕M (A1, . . . , Ak)O ⊆ �MO(AO1 , . . . , AOk ).

Now assume the sets Ai for i ∈ [k] are each closed and convex.

(iii) If M ∈M0(Rk≥0), then �M (A1, . . . , Ak)◦ = ⊕M◦(A◦1, . . . , A◦k)
∗.

(iv) If M ∈M∞(Rk≥0), then �M (A1, . . . , Ak)O = ⊕MO(AO1 , . . . , AOk )∗.
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Proof of Theorem 3.26. (i): Let A def= ⊕M (A1, . . . , Ak). Choose x∗ ∈ A◦.
Then for all a ∈ A

1 ≥ 〈a, x∗〉 ⇐⇒ 1 ≥ σA(x∗)
T3.4
≥ σM (σA1 , . . . ,σAk)(x∗). (3.19)

Thus (3.19) shows that there is m ∈M◦ with (σA1 , . . . ,σAk)(x∗) = m. When
mi > 0 there is

σA1(x∗) = mi =⇒ ∀a∈A : 1
mi
〈a, x∗〉 ≤ 1 ⇐⇒ ∀a∈ 1

mi
?A : 〈a, x∗〉 ≤ 1

and thus x ∈ mi ?A
◦
i for each ink. Next suppose there is i ∈ [k] with mi = 0.

Then

σAi(x∗) = 0 ⇐⇒ µA◦i
(x∗) = 0 =⇒ x ∈ (A◦i )∞ = mi ? A

◦
i (3.20)

This shows x∗ ∈
⋃
m∈M◦

⋂
i∈[k]mi ? A

◦
i = �M◦(A◦1, . . . , A◦k). We obtain the

same result for AO by reversing some inequalities, and observing

ζAi(x
∗) = 0 ⇐⇒ νAOi (x∗) = 0 ⇐⇒ x∗ ∈

(
AOi
)
∞ = mi ? A

O
i ,

in place of (3.20).

(iii): Let B def= �M (A1, . . . , Ak). Then µB = µM (µA1 , . . . ,µAk) because
the sets (Ai)i∈[k] are assumed convex and M satisfies the conditions of
Thm. 3.20. The mapping µM is isotonic and convex under the assumptions
on M (Prop. 3.21). Since each Ai is closed convex, µAi is convex and lower
semicontinuous for i ∈ [k]. Therefore we can apply Lem. 3.25 to calculate

B◦
(2.11)= ∂µB(0)
T3.19= ∂(µM (µA1 , . . . ,µAm))(0)
L3.25= ⊕∂µM (0)(∂µA1(0), . . . , ∂µAk(0))∗

(2.11)= ⊕M◦(A◦1, . . . , A◦k)
∗
.

(iv): Let B def= �M (A1, . . . , Ak). When M is bounded or B∞ ⊇
⋂
i∈[k](Ai)∞,

we have νB = νM (νA1 , . . . ,νAk) because the sets (Ai)i∈[k] are assumed
convex and M satisfies the conditions of Thm. 3.20. Since M is closed by
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hypothesis, −νM = − ζMO , and

−νM (νA1 , . . . ,νAk) = σMO(−νA1 , . . . ,−νAk)

= sup
m∈MO

∑

i∈[k]
mi ·e (−νAi). (3.21)

Therefore using Thm. 3.20 and Lem. 2.23

−BO (2.11)= ∂(−νB)(0)
T3.20= ∂(−νM (νA1 , . . . ,νAk))(0)

(3.21)= ∂


 sup
m∈MO

∑

i∈[k]
mi ·e (−νAi)


(0)

L2.23= co
⋃

m∈Tε(0)
∂


∑

i∈[k]
mi ·e (−νAi)


(0) (3.22)

Since
∑
i∈[k]mi ·e (−νAi) is positively homogeneous for each m ∈ M ,

Lem. 2.20 yields

∂ε

(∑

i∈[k]
mi ·e (−νAi)

)
(0) = ∂

(∑

i∈[k]
mi ·e (−νAi)

)
(0), (3.23)

for all m ∈ M and ε ≥ 0. Next, like in the proof of Lem. 3.25, for each
m ∈M there is [via 149, Thm. 2.4.14(viii)]

∂

(∑

i∈[k]
mi ·e (−νAi)

)
(0) =

∑

i∈[k]
mi ? ∂0(−νAi)(0)

∗

= −
∑

i∈[k]
mi ? AOi

∗
. (3.24)
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Therefore

BO
(3.22)= − co

⋃

m∈MO


∑

i∈[k]
mi ·e (−νAi)


(0)

(3.23)= co
⋃

m∈MO
∂


∑

i∈[k]
mi ·e (−νAi)


(0)

(3.24)= co
⋃

m∈MO

∑

i∈[k]
mi ? AOi

∗

= ⊕MO(AO1 , . . . , AOk )∗,

as claimed, and the proof is complete. (Thm. 3.26) �

Remark 3.27. It is also possible to prove Theorem 3.26(iii) using a similar
supremum subdifferential approach as is used in the proof of Theorem 3.26(iv).
However the converse is not true. That is, the Ward [137] chain rule is not
powerful enough for the proof of Theorem 3.26(iv), because the co-gauge
−νM is non isotonic under our assumptions, except when M corresponds to
the harmonic sum (cf. Proposition 3.22). This is the reason the proof of The-
orem 3.26(iv) is much more complicated than the proof of Theorem 3.26(iii)
(and much more complicated than the proof of the analogous specialised
result of Penot and Zǎlinescu [100, Prop. 4.3]).

3.5 Further support and gauge results

Using Theorem 3.26 we can now complete the plan in the roadmap at the
start of this chapter, and compute the support and co-support functions of
sets in the image of �M and gauge and co-gauge functions sets in the image
of ⊕M .

Theorem 3.28. Let M ∈M0(Rk≥0), Ai ⊆ L each closed convex for i ∈ [k].
Then for each x ∈ L

σ�M (A1,...,Ak)(x) = inf
{

sup
m∈M

∑

i∈[k]
mi ·e σAi(xi)

∣∣∣∣∣ x =
∑

i∈[k]
xi

}
, (3.25)
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and

µ⊕M (A1,...,Ak)(x) = inf
{
µM (µA1(x1), . . . ,µAk(xk))

∣∣∣∣∣ x =
∑

i∈[k]
xi

}
, (3.26)

where in (3.26) the infimum is over all sequences (xi)i∈[k] ⊆ L with xi ∈
domµAi for i ∈ [k].

Theorem 3.29. Let M ∈M∞(Rk≥0), Ai ⊆ L each closed convex for i ∈ [k]
and additionally either M is bounded or A∞ ⊇

⋂
i∈[k](Ai)∞. Then for each

x ∈ L

ζ�M (A1,...,Ak)(x) = sup
{

inf
m∈M

∑

i∈[k]
mi ·h ζAi(xi)

∣∣∣∣∣ x =
∑

i∈[k]
xi

}
, (3.27)

and

ν⊕M (A1,...,Ak)(x) = sup
{
νM (νA1(x1), . . . ,νAk(xk))

∣∣∣∣∣ x =
∑

i∈[k]
xi

}
, (3.28)

where in (3.28) the supremum is over all sequences (xi)i∈[k] ⊆ L with xi ∈
domνAi for i ∈ [k].

Proof of Theorem 3.28. Define the sets

Λx
def=
{
λ ≥ 0

∣∣∣ x ∈ λ ?⊕M◦(A◦1, . . . , A◦k)
}
,

and

Γx
def=



 sup
m∈M

∑

i∈[k]
mi ·e σAi(xi)

∣∣∣∣∣∣
∃(xi)i∈[k]⊆L : x =

∑

i∈[k]
xi



.

From Thm. 3.26(iii)
σ�M (A1,...,Ak)(x) = µ�M (A1,...,Ak)◦

T3.26(iii)= µ⊕M◦ (A◦1,...,A◦k) = inf Λx.

For every λ ∈ Λx there is x ∈ λ · ⊕M◦(A◦1, . . . , A◦k) and

∃m∈M◦ : x ∈
∑

i∈[k]
λmi ? A

◦
i ⇐⇒ ∃m∈λ?M◦∀i∈[k]∃xi∈mi?A◦i : x =

∑

i∈[k]
xi.

The condition m ∈ λ ?M◦ implies µM◦(m) = σM (m) ≤ λ. Similarly there
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exists a sequence (xi)i∈[k] ⊆ L with x =
∑
i∈[k] xi and xi ∈ mi ? A

◦
i . Thus

µA◦I
(xi) = σAi(xi) ≤ mi for each i ∈ [k]. Since M is assumed full, containing

0, there is y ∈ λ ? M◦ where y def= (σA1 , . . . ,σAk)(x), thus λ ≥ µM◦(y) =
supm∈M

∑
i∈[k]mi ·e yi and supm∈M

∑
i∈[k]mi ·e yi ∈ Γx by construction.

This shows for every λ ∈ Λx there exists γ ∈ Γx with γ ≤ λ. Therefore
inf Λx ≥ inf Γx.

Let γ ∈ Γx. Then there is (xi)i∈[k] ⊆ L with
∑
i∈[k] xi = x and γ =

supm∈M
∑
i∈[k]mi ·e σAi(xi). Let y

def= (σA1(x1), . . . ,σAk(xk)). Then

γ = sup
m∈M

∑

i∈[k]
mi ·e σAi(xi) = µM◦(y) =⇒ y ∈ γ ? M◦,

because M◦ is closed. Let m ∈ γ ? M◦ satisfy m = y. Then for each
i ∈ [k]

mi = σAi(xi) = µA◦i
(xi) =⇒ xi ∈ mi ? A

◦
i ,

again because each A◦i is closed for i ∈ [k]. It follows that x =
∑
i∈[k] xi ∈∑

i∈[k]mi ? A
◦
i , and

∑
i∈[k]mi ? A

◦
i ⊆ γ · ⊕M◦(A◦1, . . . , A◦k). This shows that

Γx ⊆ Λx and inf Γx ≥ inf Λx and completes the proof. (Thm. 3.28) �

Proof of Theorem 3.29. The proof is similar to Thm. 3.28, however the first
half is different owing to the varying conditions on M and so we show it in
full. Firstly note

(
MO)

∞ =
( ⋂

m∈M
lev≥1〈 · ,m〉

)

∞

=
⋂

m∈M
(lev≥1〈 · ,m〉)∞

=
⋂

m∈M
lev≥0〈 · ,m〉

= M+.

This is because the sets lev≥1〈 · ,m〉 for m ∈ M are each convex, thus
Prop. 2.8(vii) lets us pass the asymptotic cone over the union. The next
equality follows because lev≥1〈 · ,m〉 for m ∈ M are each co-radiant and
Prop. 2.9(ii) gives (lev≥1〈 · ,m〉)∞ = pos lev≥1〈 · ,m〉 = lev≥0〈 · ,m〉. Finally
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M+ = (posM)+ = Rk≥0 because posM = Rk≥0 \ {0} by hypothesis, as it is
assumed M ∈M∞(Rk≥0). Therefore (MO)∞ = Rk≥0.

Define the sets

Λx
def=
{
λ ≥ 0

∣∣∣ x ∈ λ ?⊕MO(AO1 , . . . , AOk )
}
,

and

Γx
def=



 inf
m∈M

∑

i∈[k]
mi ·e ζAi(xi)

∣∣∣∣∣∣
∃(xi)i∈[k]⊆L : x =

∑

i∈[k]
xi



.

From Thm. 3.26(iv)

ζ�M (A1,...,Ak)(x) = ν�M (A1,...,Ak)O
T3.26(iv)= ν⊕MO (AO1 ,...,AOk ) = supΛx.

For every λ ∈ Λx there is x ∈ λ · ⊕MO(AO1 , . . . , AOk ) and

∃m∈MO : x ∈
∑

i∈[k]
λmi ? A

O
i ⇐⇒ ∃m∈λ?MO∀i∈[k]∃xi∈mi?AOi : x =

∑

i∈[k]
xi.

The condition m ∈ λ ?MO implies νMO(m) = ζM (m) ≥ λ. Similarly there
exists a sequence (xi)i∈[k] ⊆ L with x =

∑
i∈[k] xi and xi ∈ mi ? A

O
i . Thus

νAOi (xi) = ζAi(xi) ≥ mi for each i ∈ [k]. This shows that y ≥ m, where
y def= (σA1 , . . . ,σAk)(x), thus y ∈ m + Rk≥0 ⊆ λ ? MO + Rk≥0. Since MO is
closed convex and (MO)∞ = Rk≥0 it follows that m + Rk≥0 ⊆ λ ? M from
Prop. 2.8(iv). Whence λ ≤ νM (y) = infm∈M

∑
i∈[k]mi ·e ζAi(xi). This shows

for every λ ∈ Λx there exists γ ∈ Γx with γ ≥ λ. Therefore supΛx ≤ supΓx.
The rest of the proof now proceeds like Thm. 3.28. (Thm. 3.29) �

Remark 3.30. It is also possible to prove Theorems 3.28 and 3.28 using
the more classical infimal convolution result for the support function of an
intersection [viz. 12, p. 34, also 65, Thm. 3.3.2]. The advantage here is to
show that the assumptions we have already employed (Theorems 3.19, 3.20
and 3.26) are sufficient, whereas the more classical approach would introduce
other assumptions and/or function closures. The necessity of the same
conditions used in Section 3.3 in the proofs of Propositions 3.21 and 3.22 is
evidence for a deeper structure beyond strict mathematical convenience.



3.6. RELATED RESULTS AND CONCLUSION 57

3.6 Related results and conclusion

Penot and Zǎlinescu [100] study a special case of the dual M -sum called
the harmonic sum [p. 30], where k = 2 and M corresponds to I1 ⊆ R2 (3.3),
which has some unique properties from our standpoint. Namely

µI1(x) = µ(0,1]?I1(x) = x1 + x2 and νI1(x) = ν[1,∞)?I1(x) = x1 + x2.

for all x ∈ R2
≥0. It is also not difficult to verify (0, 1] ? I1 ∈ M0(R2

≥0) and
[1,∞) ? I1 ∈M∞(R2

≥0). Moreover

µA3B = µ⊕(0,1]?I1 (A,B) and νA3B = ν⊕[1,∞)?I1 (A,B) .

There is (A ∩B)∞ ⊇ (⊕I1(A,B))∞ (via Lemma 3.14(ii)), and so we obtain
the following corollaries from Theorems 3.19 and 3.20.

Corollary 3.31 (Penot and Zǎlinescu [100, Prop. 3.5]). Let A,B ⊆ L.
Then

µA +e µB = µA3B ⇐⇒ (A3B)∞ = A∞ ∩B∞.

Corollary 3.32 (Penot and Zǎlinescu [100, Prop. 3.7]). Let A,B ⊆ L.
Then

νA +h νB = νA3B ⇐⇒ [0,∞) ? (A3B)∞ ⊇ A∞ ∩B∞.

In the previous sections we have shown general results for two families
of two operations ⊕M and �M operating on the families of radiant and co-
radiant subsets of a space L. What differs from our approach in this chapter
versus the others listed in Table 3.1 is that we axiomitise the admissible sets
M . This axiomitisation may not be minimal, however in Chapter 4 we will
encounter a family of sets compatible with the family M∞(L≥0) for some
cone L≥0 ⊆ L.
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Chapter 4
Convex Decision Theory

The modern theory of probability was formalised by Kolmogorov in his
seminal 1933 treatise Grundbegriffe der Wahrscheinlichkeitsrechnung [71, 72].
Kolmogorov’s axiomitisation introduced the measure theoretic framework
of Émile Borel to a tradition that began in the early eighteenth century
with Jacob Bernoulli and Abraham de Moivre of using mathematics to
model uncertainty in the natural world [118, 119]. Ever since, the concept
of a probability distribution has remained the platonic object of study for
decision theory, statistics, and (more recently) machine learning. Probability
elicitation [81, 113] is a game in which a forecaster, having private information
about the natural world, is encouraged to make that information public by
revealing a forecast in the form of a probability distribution. The forecaster
then receives a reward as determined by a pay-off function known as a scoring
rule [23, 51, 59, 81, 113].1

The model of probability elicitation is a natural foundation on which to
build a theory of machine learning problems, whereby a risk minimisation, in
the sense of Vapnik [133], is reduced fundamentally to eliciting a probability
distribution. In a general risk minimisation the forecaster is replaced by a
dataset, and the probabilistic forecast takes the form of a statistical model2,

1Jose, Nau, and Winkler [68] provide a detailed discussion comparing families of
common utility functions from the economics literature and families of scoring rules from
the forecasting literature.

2Recall we use the terms prediction and model interchangeably since the distinction is
largely semantic.
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and instead of the maximisation of a reward it is more common to consider
the minimisation of a punishment. However in a large variety of cases, this
alternate representation (namely replacing the distribution by some kind of
model) has been shown to be merely an alternate formulation. Following
Masnadi-shirazi and Vasconcelos [80] there has been a steady stream of
papers abstracting the probability elicitation framework to more and more
more general classes of machine learning problems starting with classical
binary classification problem [viz. 24, 80, 102] and multiclass classification
[141]. The so-called proper–composite representation, coined by Reid and
Williamson [102], has proven an important tool for the analysis and design
of statistical properties in machine learning models [30, 40, 69, 85, 94].

Having decided upon the probability elicitation framework, our next
choice is that of a mathematical structure in which to conduct analysis. In
pursuit of the goal of studying the underlying structures common to a variety
of machine learning problems, our setting will an ordered topological vector
space, with the order inherited from a family of probability distributions.
This is the minimal structure needed to, in Section 4.1, define a general
risk minimisation with a loss function. In Section 4.2 we define the scoring
rules, which are a particular kind of loss function. In Section 4.3 we prove
new results on properisation and the proper–composite representation, thus
locating a large number of machine learning problems within the probability
elicitation framework. Having demonstrated the importance of scoring rules,
in Section 4.4 we show how to use the results of Chapter 3 to generate a new
family of operations on these scoring rules.

4.1 Loss functions

Let V , P , Ω be arbitrary topological spaces. Unless otherwise noted, we
assume L is a vector space of functions L ⊆ R̄Ω together with a locally
convex, Hausdorff topology. We assume that there is some P ⊆ P(Ω) ∩ L∗

that induces an ordering on L (as in (2.6)). That is, (L,P+) forms an ordered
topological vector space.

The sets V and P are called model classes and Ω is the outcome space.
The set P may be thought of as a set of distributions we care to distinguish
between. Some examples of choices of P are listed in Table 4.1. A loss
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function is an operator l : V → L. The quantity l(v, ω) def= l(v)(ω) is
to be interpreted as the penalty when predicting v ∈ V upon observing
the outcome ω ∈ Ω. The l-risk of v under µ is riskl(v, µ) def= 〈l(v), µ〉.
Classically, a machine learning problem may be posed as the minimisation
of a risk function over an outcome space with respect to a model class [viz.
133]:

minimise
v∈V

riskl(v, µ). (B)

The value of the smallest risk over V , riskl(µ) def= infv∈V riskl(v, µ), is called
the Bayes risk. We omit the qualifying l and µ terms in describing these
quantities when they are unambiguous.

Description P

Differing in mean ∀µ,ν∈P :
∫
ων(dω) 6=

∫
ωµ(dω)

Compact support ∃Ω0⊆Ω∀µ∈P : Ω0 compact and µ(Ω0) = 1
Absolutely continuous (4.6) ∃π∈P(Ω) :

{
f dπ

∣∣ f ∈ Lα(Ω, π),
∫
f dπ = 1, f ≥ 0

}

Table 4.1: Example choices for the set P .

(a) Common Asplund spaces.

Ω L Asplund

finite L0(Ω,R) yes
measurable space Lp(Ω, λ) (†) yes

Hausdorff, compact, scattered C(Ω) (∗) yes

(b) Common normal order cones.

L topology P P+

Lp(Ω, λ) (†) | · |p {f dλ ∈ P(Ω) | f ∈ Lq(Ω, λ)} normal
C(Ω) | · |∞ P(Ω) normal

∗ Yost [143, Prop. 12] shows that C(Ω) is Asplund and only if Ω is Hausdorff, compact,
and scattered.

† It is assumed that 1 ≤ p <∞, with p, q Hölder conjugates, 1/p+ 1/q = 1.

Table 4.2: Example choices for the outcome space Ω, L, P , together with their
properties, where λ is a positive measure on Ω equipped with a sigma algebra.
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4.1.1 The superprediction set

For a loss function l : V → L the (generalised) superprediction set [27, 35,
140, 141] is

sp(l) def= {x ∈ L | ∃v∈V : x ≥P+ l(v)},

and its closure is denoted sp(l) def= cl(sp l). The geometry of the the superpre-
diction set is deeply related to properties of the underlying decision problem,
in particular properness [140]; classification calibration and consistency [17,
127]; and mixability [40, 69, 85]. We start by giving some general properties
of the superprediction set and its relationship to (B) before analysing the
case where l is a scoring rule, a special kind of loss function, in Section 4.2.

Proposition 4.1. Let l : V → L. Then

(i) sp(l) is full

(ii) σsp(l) = σl(V ) +e ιL−≥0
and ζsp(l) = ζl(V )−h ιL+

≥0
.

Proof. (i): From the definition of the order interval

[a, b]L≥0
= a+ [0, b− a]L≥0

= a+ L≥0 ∩ (b− a− L≥0) ⊆ a+ L≥0. (4.1)

Choose a, b ∈ sp(l) with b ≥ a (so that [a, b]L≥0
is nonempty). From (4.1)

we know [a, b]L≥0
⊆ a + L≥0. Since a ∈ sp(l), there exists a+ ∈ L≥0 and

al ∈ l(V ) so that a = al + a+ and a+ L≥0 = al + a+ + L≥0 = al + L≥0 ⊆
l(V ) + L≥0.

(ii): With the usual calculus of support functions [12, p. 31]:

σsp(l)(−x∗) = σl(V )+L≥0
(−x∗) =




σl(V )(−x∗) −x∗ ∈ L−≥0

∞ −x∗ /∈ L−≥0

thus ζsp(l) = ζl(V )−h ιL+
≥0
. �

Corollary 4.2. Let l : V → L. Then riskl and ζsp(l) agree on −bc(sp(l)).

There is a natural way in which the superprediction set may be connected
to the co-radiant sets. When the loss functions are bounded mappings in
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the topology on L this connection can be sharply characterised using tools
of Chapter 2. In particular, this is the case when l : V → L takes values
in the positive cone L≥0. The assumption that l(V ) ⊆ L≥0 is generally not
onerous since, identifying L≥0 with P++, we have

l(V ) ⊆ L≥0 ⇐⇒ ∀µ∈P∀v∈V : riskl(v, µ) ≥ 0.

We will say a loss function l : V → L is co-radiant if sp(l) is co-radiant.

Theorem 4.3. Let l : V → L≥0. Then

(i) sp(l) is co-radiant (co-star-shaped if 0 /∈ l(V )); and

(ii) if L≥0 is σ(L,L∗)-normal and l(V ) is σ(L,L∗)-closed, then sp(l) is
σ(L,L∗)-closed.

Proof. (i): Choose x ∈ L≥0. Then

∀t>1 :
(

1− 1
t

)
x ∈ L≥0 ⇐⇒ x− 1

t
x ∈ L≥0 ⇐⇒ tx ≥ x, (4.2)

where in the final biconditional we used the linearity of the order relation
(2.4) to multiply across t. Since l is assumed to map into L≥0 we have
sp(l) ⊆ L≥0. Let x ∈ sp(l). By assumption there is v ∈ V with x ≥ l(v)
and

∀t>1 : tx
(4.2)
≥ x ≥ l(v).

Therefore [1,∞) · sp(l) ⊆ sp(l). If 0 /∈ l(V ) then there is 0 /∈ sp(l) and
sp(l) is co-star-shaped.

(ii): The result follows from Cor. 2.11 applied to l(V ) + L≥0. �

Corollary 4.4. If l : V → L is bounded then l is co-radiant if and only if
l(V ) ⊆ L≥0.

Proof. The sufficient condition is proven in Thm. 4.3(i). For the necessary
condition assume l is bounded. Then l(V ) is bounded (thus l(V )∞ = {0},
via Prop. 2.8(v)) and sp(l)∞ =

(
L≥0

)
∞ = L≥0 from Prop. 2.8(ii). If sp(l)

is co-radiant, then sp(l) ⊆ sp(l)∞ = L≥0 from Prop. 2.9(ii). �
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4.1.2 Subdifferentiability

In the next section (Section 4.2) we will study a class of loss functions for
which there is a very natural condition to guarantee the subdifferentiability
of the superprediction set co-support function, however it will be convenient
(particularly in Section 4.3 and Section 4.3.2) to verify that the assumption
of subdifferentiability is not onerous. In Theorem 4.5 we see under mild
conditions that the assumption ∂̂ζsp(l)(µ) 6= ∅ is equivalent to assuming (B)
has a minimiser at µ.

Theorem 4.5. Let l : V → L. There is
{
µ ∈ L∗

∣∣∣∣ arginf
v∈V

riskl(v, µ) 6= ∅
}
⊆ dom ∂̂ζl(V ), (4.3)

with equality when L≥0 is normal and l(V ) ⊆ L≥0.

Proof. (4.3): Suppose µ ∈ {µ′ ∈ L∗ | arginfv∈V riskl(v, µ′) 6= ∅}. Then there
is v ∈ arginfv′∈V riskl(v, µ) with 〈l(v), µ〉 = riskl(µ) <∞. It follows from
Cor. 4.2 that 〈l(v), µ〉 = ζl(V )(µ), and l(v) ∈ ∂̂ζl(V )(µ).

Assume L≥0 is normal and l(V ) ⊆ L≥0: Suppose µ ∈ dom ∂̂ζl(V ). There
exists x ∈ ∂̂ζl(V )(µ) ⊆ bd(co l(V )) with 〈x, µ〉 = ζl(V )(µ), consequentially
for k ∈ [n] there are nets

(xik)i∈I ⊆ l(V ) ⊆ L≥0, and (tik)i∈I ⊆ [0, 1]

with

∀i∈I :
∑

k∈[n]
tik = 1 and

∑

k∈[n]
tikxik ⇀ x.

Without loss of generality assume (tik)i∈I converges for k ∈ [n]. Because L≥0

is normal, Lem. 2.10 shows that (tikxik)i∈I , for every k ∈ [n], converge in
σ(L,L∗). Let tkxk ∈ co l(V ) be the σ(L,L∗)-limit of (tikxik)i∈I for k ∈ [n].
It follows that 〈x, µ〉 =

∑
k∈[n] tk〈xk, µ〉.

To see that 〈xk′ , µ〉 = 〈x, µ〉 for every k′ ∈ [n], suppose that there
is k ∈ [n] where 〈xk, µ〉 > 〈x, µ〉. This produces a contradiction in the
optimality of x in the co-support function minimisation, since we would
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obtain

〈x, µ〉 =
∑

j∈[n]
tj〈xj , µ〉 >

∑

j∈[n]\{k}
uj〈xj , µ〉,

where uj def= tj
(∑

j′∈[n]\{k} tj′
)−1 for j ∈ [n] \ {k}. Similarly if there is k ∈ [n]

with 〈xk, µ〉 < 〈x, µ〉, this also produces a similar contradiction directly.
Consequentially there exists k ∈ [n] with

xk ∈ arginf
x′∈l(V )

〈
x′, µ

〉
=⇒ arginf

v∈V
〈l(v), µ〉 6= ∅,

which shows

µ ∈
{
µ ∈ L∗

∣∣∣∣ arginf
v∈V

riskl(v, µ) 6= ∅
}
,

and proves equality in (4.3). �

In Theorem 4.5 we connected the statistical notion of the existence of a
minimiser for a particular distribution and the purely mathematical concept
of the domain of the co-support function subdifferential. In Proposition 4.6
we leverage some well-known results in convex analysis to yield some new
insights into the existence of a minimiser in (B).

Proposition 4.6. Let l : V → L≥0. Then −bc(sp l) = L+
≥0. In particular

(i) int(L+
≥0) ⊆ dom ∂̂ζsp(l), and

(ii) dom ∂̂ζsp(l), is dense in L+
≥0 when L is a smooth Banach space.3

Proof. Since l takes values in L≥0 there is

L≥0 =
(
L≥0

)
∞ ⊇ sp(l)∞ =

(
l(V ) + L≥0

)
∞ =

(
L≥0

)
∞ = L≥0, (4.4)

which shows sp(l)∞ = L≥0. Hence bc(sp l) = sp(l)−∞ = L−≥0, and so
−bc(sp l) = L+

≥0. A lower semicontinuous convex function on a Banach
space is always continuous on the interior of its domain [99, Prop. 3.3] and its
subdifferential is nonempty at points of continuity [99, Thm. 3.25]. Finally,

3A Banach space is said to be a smooth when its norm is differentiable on the unit
sphere [16, p. 34].
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the Ekeland–Lebourg theorem [99, Thm 4.65] shows that the domain of
the subdifferential of a lower semicontinuous convex function is dense in its
domain for a smooth Banach space. �

4.2 Scoring rules

A scoring rule is a particular, classical, kind of loss function for which the
set of predictions is a subset of distributions on the outcome space [81, 113].4

That is, V = P in the notation of Section 4.1, and s : P → L. A scoring
rule s is said to be P -proper [51, 62, 81, 113] if

∀µ 6=ν∈P : 〈s(µ), µ〉 ≤ 〈s(ν), µ〉, (4.5)

and strictly P -proper if (4.5) holds with strict inequality.5

In continuous spaces it is a common practice assume (Ω, π) is a measurable
space and choose some

P ⊆ Pαπ
def=
{
f dπ

∣∣∣∣ f ∈ Lα(Ω, π),
∫
f dπ = 1, f ≥ 0

}
, (4.6)

and Pπ def= P 0
π . So that one may work instead with a set of density functions

[viz. 36, 51, 62, 125]. This construction makes it easy to ensure P is a subset
of some space L∗ that satisfies certain desirable technical conditions like
separability and reflexivity. Another motivation for this relaxation is that
many continuous space scoring rules are only defined on a set of densities —
most notably the logarithmic scoring rule [52].

Unlike other most of the other approaches mentioned we have made no
assumption on the convexity of P . The induced ordering ≥, however, is the
same whether one takes P or coP (or coP ), this is because P+ = (coP )+

(see (2.9)). It should be unsurprising, then, to learn that it is without loss of
generality that one may assume P is convex. This is a point we touch on

4Typically in the machine learning literature the name “scoring rule” is used inter-
changeably with “loss function” [24, 127, 141], but it is useful conceptually for our purposes
to draw a distinction. This convention is consistent with Grünwald and Dawid [59] and
others [23, 34, 51].

5In the statistics and decision theory literature [viz. 23, 51, 59, 62, 81, 113] the quantity
− risk s(v, µ) is called the expected score under µ when predicting v and is often notated
S(v, µ) for some v ∈ V and µ ∈ P .
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(a) General scoring rules.

Name Symbol s(µ)( · ) Proper∗ P

Brier score sBr 1− 2 dµ
dν (ω) +

∫ (dµ
dν (ω)

)2
π(dω) S.P. Pπ

Pseudospherical sα −dµ
dν
α−1(∫ dµ

dν (ω)απ(dω)
)−β (†) S.P. Pαπ

Logarithmic‡ s1 − log dµ
dπ (ω) S.P. rintPπ

(b) Discrete outcome space scoring rules.

Name Symbol s(µ)(i) Proper∗ P

Zero–one
q
i 6∈ argmaxj∈[k] µj

y
P. P([k])

Brier score sBr 1− 2µi +
∑

j∈[k](µj)
2 S.P. P([k])

Pseudospherical sα −µα−1
i

(∑
j∈[k] µ

α
j

)−β (†) S.P. P([k])
Logarithmic‡ s1 − log(µi) S.P. rintP([k])

∗ Scoring rules are characterised as either proper (P.) or strictly proper (S.P.) with respect
to the corresponding set P in the adjacent column.

† It is assumed that α > 1, and α, β are Hölder conjugates, 1/α+ 1/β = 1.
‡ The logarithmic score is obtained from the pseudospherical score in the limit as α→ 1.

Table 4.3: A selection of common proper scoring rules over the measured outcome
space (Ω, π), most of which are collected by Gneiting and Raftery [51]. The set
Pπ is defined in (4.6). When Ω is finite, Ω ' [k], it is common to take π as the
counting measure, πA def= |A| for A ⊆ Ω. Whence Pπ = P([k]), and we obtain the
formulations in (b). We use the shorthand µi def= µ{i} for i ∈ [k], µ ∈ P([k]).

again in Section 4.3. Some common scoring rules for discrete and general
topological spaces Ω are listed in Table 4.3.

4.2.1 The selection representation

There is a very convenient relationship between proper scoring rules and the
subdifferential which will form the basis of many results in this chapter.

Theorem 4.7. Let s : P → L be a scoring rule. Then s is

(i) P -proper if and only if s(µ) ∈ ∂̂ζs(P )(µ) for every µ ∈ P , and

(ii) strictly P -proper if and only if s is injective and ζs(P ) is Gâteaux
differentiable on P .

Proof. (i): Assume s is P -proper. Then for µ, ν ∈ P there is 〈s(µ), µ〉 ≤
〈s(ν), µ〉 and

∀µ∈P : 〈s(µ), µ〉 = inf
ν∈P
〈s(ν), µ〉 = inf

v∈s(P )
〈v, µ〉 = ζs(P )(µ). (4.7)
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Then, for every µ, ν ∈ P

〈s(µ), µ〉 ≤ 〈s(ν), µ〉+ (〈s(ν), ν〉 − 〈s(ν), ν〉)
(4.7)⇐⇒ 〈s(ν), ν − µ〉 ≤ ζs(P )(ν)− ζs(P )(µ).

This shows s(ν) ∈ ∂̂ζs(P )(ν). Now assume s(µ) ∈ ∂̂ζs(P )(µ) for every
µ ∈ P . Then s(µ) ∈ arginfv∈s(P )〈v, µ〉, which implies the converse claim.

(ii): The subdifferential of a Gâteaux differentiable convex function is pre-
cisely the singleton of the gradient [149, Thm 2.4.4]. Thus

∀µ∈P : arginf
v∈s(P )

〈v, µ〉 = ∂̂ζs(P )(µ) = {s(µ)}. (4.8)

It follows from (4.8) that if s is injective arginfν∈P 〈s(ν), µ〉 = {µ} for all
µ ∈ P and s is strictly P -proper. To complete the proof observe that
any strictly proper scoring rule must be injective or else a contradiction is
obtained in (4.5). �

Since a strictly proper scoring rule is automatically proper, it follows
from Theorem 4.7(i) that s : P → L is strictly P -proper if and only if it is
injective and

∀µ∈P : ∂̂ζs(P )(µ) = {s(µ)}.

A version of Theorem 4.7 was first stated (without proof) by McCarthy
[81] for the case of a strictly proper scoring rule, and it since has been noted
by several authors [34, 36, 51, 62, 141]. However most of the works cited do
not make full use of the subdifferential selection representation (Theorem 4.7)
in the same way as we will in the subsequent sections. We obtain immediately
the following straight-forward corollaries, which appear to be new.

Corollary 4.8. Assume s : P → L is P -proper (resp. strictly P -proper).
Then P ⊆ −bc s(P ) (resp. P ⊆ − int(bc s(P ))).

Proof. From Thm. 4.7 we have dom ∂̂ζs(P ) ⊇ P . There is always dom ∂̂ζs(P ) ⊆
dom ζs(P ). If s is strictly P -proper then Thm. 4.7 shows ζs(P ) is differen-
tiable on P , therefore ζs(P ) is differentiable on an open neighbourhood of P
(possibly equal to P itself), and P ⊆ int(dom ζs(P )(µ)). �
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If the subdifferential of a convex function is a singleton on an open where
that function is continuous, it is differentiable on that open set [99, Prop. 3.4,
Cor. 3.26].

Corollary 4.9. When L is a normed space, the Bayes risk of every P -proper
scoring rule is continuous on a neighbourhood of P .

Proof. For a strictly P -proper scoring rule s : P → L. Because P ⊆
− int(bc s(P )) (from Cor. 4.8), and the fact that support function is always
lower semicontinuous, it follows [via 99, Prop. 3.4] that ζs(P )(µ) is continuous
on a neighbourhood of P . �

A Banach space L is called an Asplund space [8] if every continuous convex
function, defined on an open convex subset M ⊆ L is Fréchet differentiable
on a Gδ set D, that is dense in M . Since continuous convex functions in an
Asplund space are differentiable on a dense subset of their domains, a great
number of P -proper scoring rules are almost strictly proper in these spaces.

Corollary 4.10. Suppose L is an Asplund space and s : P → L is P -proper
and injective, with a Bayes risk that’s finite on a neighbourhood of P . Then
there is a dense subset Pδ ⊆ P for which s is strictly Pδ-proper.

Proof. By assumption s is finite on a neighbourhood U of P . Since L
is an asplund space there is a Gδ dense subset D ⊆ U on which ζs(P ) is
differentiable. Define Pδ def= D ∩ P . Then ∂̂ζs(P ) is a singleton on Pδ [2,
Thm. 7.17], and Thm. 4.7 shows s is strictly Pδ-proper. �

4.2.2 Properness and convexity

Theorem 4.3 suggests some basic strategies to establish whether the superpre-
diction set of a loss function is closed.Theorem 4.13 aids in this endeavour by
showing there is a strong relationship between the properness of a continuous
scoring rule and the topology of its superprediction set, both in terms of
convexity and closure.

Lemma 4.11 (Hahn–Banach [12, Thm. 2, p. 27]). Let A be a subset of a
Hausdorff locally convex vector space L. Then

coA = {x ∈ L | ∀x∗∈L∗ : 〈x, x∗〉 ≤ σA(x∗)}.
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Lemma 4.12 (Fan [41, Thm. 5]). Let P be a compact set in a topological
vector space. Let f be a real-valued function defined on P × P so that

1. y 7→ f(x, y) is lower semicontinuous for all x ∈ P ,

2. x 7→ f(x, y) is quasi-concave for all y ∈ P .

Then
min
y∈P

sup
x∈P

f(x, y) ≤ sup
x∈P

f(x, x).

Theorem 4.13. Equip L and L∗ with topologies so that P ⊆ L∗ is compact
and s : P → L is continuous. If s is P -proper, then sp(s) is closed and
convex.

Proof. From the ordering assumption on L, there is x ∈ sp(s) precisely when

∃ν∈P : x ≥P+ s(ν) ⇐⇒ ∃ν∈P∀µ∈P : 〈x, µ〉 ≥ 〈s(ν), µ〉

⇐⇒ ∃ν∈P : sup
µ∈P
〈s(ν)− x, µ〉 ≤ 0

⇐⇒ min
ν∈P

sup
µ∈P
〈s(ν)− x, µ〉 ≤ 0. (4.9)

Since ζsp(s) = ζs(P )−h ιP++ (from Prop. 4.1(ii)), for every x ∈ L we
have

inf
x∗∈L∗

(
〈x, x∗〉 −e ζsp(s)(x∗)

)
= inf

x∗∈L∗

(
〈x, x∗〉+e ιP++(x∗)−e inf

µ∈P
〈s(µ), x∗〉

)

= inf
x∗∈P++

(
〈x, x∗〉 −e inf

µ∈P
〈s(µ), x∗〉

)
. (4.10)

When x ∈ co(sp s), Lem. 4.11 yields

[
∀µ∈P++ : 〈x, µ〉 ≥ inf

ν∈P
〈s(ν), µ〉

]
(4.10)⇐⇒ 0 ≤ inf

µ∈P++
sup
ν∈P
〈x− s(ν), µ〉

=⇒ 0 ≤ inf
µ∈P

sup
ν∈P
〈x− s(ν), µ〉

⇐⇒ 0 ≥ sup
µ∈P

inf
ν∈P
〈s(ν)− x, µ〉,(4.11)

where in the second line we exploited P ⊆ P++.
For x ∈ L let fx(µ, ν) def= 〈s(ν)− x, µ〉. Since s is continuous, fx( · , ν) is

continuous for all ν ∈ P . The Fan minimax inequality (Lem. 4.12) applied
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to fx gives

sup
µ∈P
〈s(µ)− x, µ〉 ≥ min

µ∈P
sup
ν∈P
〈s(ν)− x, µ〉. (4.12)

If s is P -proper then infν∈P 〈s(ν)− x, µ〉 = 〈s(µ)− x, µ〉, and (4.12) be-
comes

sup
µ∈P

inf
ν∈P
〈s(ν)− x, µ〉 ≥ min

µ∈P
sup
ν∈P
〈s(ν)− x, µ〉. (4.13)

Fix x ∈ co(sp s) and assume s is P -proper. Then

0
(4.11)
≥ sup

µ∈P
inf
ν∈P
〈s(ν)− x, µ〉

(4.13)
≥ min

µ∈P
sup
ν∈P
〈s(ν)− x, µ〉.

(4.9)⇐⇒ x ∈ sp(s).

This shows that co(sp(s)) ⊆ sp(s). The reverse inclusion is immediate. �

Results similar to Theorem 4.13 have been claimed or proved by other
authors under a variety of stricter assumptions. It is usually the case that
P is assumed convex or the entirety of P(Ω), and Ω is assumed finite [23,
35, 51, 62, 85, 125, 141]. The setting of Dawid [35] is the closest to ours,
and provides a brief proof sketch for the case of continuous Ω [35, Lem. 3].
As we have already seen when P is P(Ω), the induced inequality is indeed
pointwise (Proposition 2.1) which allows Theorem 4.13 to verify the existing
results mentioned.

4.2.3 Dual characterisations

As we have seen, the properness of a scoring rule can be characterised
in terms of a selection property of a subdifferential of a convex function
(Theorem 4.7). Since the subdifferential of a convex function can be inverted,
Proposition 4.14 provides the following new characterisation of properness.

Lemma 2.5, together with Theorem 4.7 yields a dual characterisation of
properness.

Proposition 4.14. Let s : V → L. Then s is P -proper if and only if for
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all µ ∈ P
µ ∈ −Nco(sp s)(s(µ)).

Proof. From Thm. 4.7 s is P -proper if and only if s(µ) ∈ ∂̂ζsp(s)(µ), for all
µ ∈ P , which by Lem. 2.5(ii) is equivalent to µ ∈ −Nco(sp s)(s(µ)) for all
µ ∈ P . �

For the co-star-shaped scoring rules there is an additional characterisation,
using the co-radiant Minkowski duality from Section 2.3.

Theorem 4.15. Assume 0 /∈ P and s : P → L≥0 is co-star-shaped. Then s

is P -proper if and only if for all µ ∈ P

µ

ζsp(s)(µ) ∈ ∂̂νsp(s)(s(µ)). (4.14)

Proof. Since s is co-radiant sp(s) is closed, co-radiant. Assume s is P -proper
and fix µ ∈ P . Then Thm. 4.7 implies

ζsp(s)(µ) = 〈s(µ), µ〉. (4.15)

Since s(µ) ∈ pos(sp s) ⊆ L≥0 \ {0} and µ ∈ P ⊆ L+
≥0 \ {0}, (4.15) implies

〈s(µ), µ〉 = ζsp(s)(µ) = νsp(s)O(µ) > 0. It follows that µ ∈ pos(sp(l)O).
Thus Prop. 2.7(ii) implies (4.14).

Next assume (4.14) holds and fix µ ∈ P . Then

µ

ζsp(s)(µ) ∈ ∂̂νsp(s)(s(µ)) =⇒ 〈s(µ), µ〉
ζsp(s)(µ) = νsp(s)(s(µ)). (4.16)

Since s(µ) ∈ sp(s) we have νsp(s)(s(µ)) ≤ 1 and (4.16) implies

〈s(µ), µ〉 ≤ ζsp(s)(µ). (4.17)

The definition of the co-support function means that (4.17) must be an
equality. Thus s(µ) ∈ ∂̂ζsp(s)(µ) for all µ ∈ P and Thm. 4.7 implies s is
P -proper. �
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4.3 Bayes acts, properisations, and link functions

Let l : V → L be a loss function. Fix µ ∈ P . If there is some vµ ∈ V for
which 〈l(vµ), µ〉 ≤ 〈l(v), µ〉 for all v ∈ V then Grünwald and Dawid [59] call
vµ the Bayes act for µ [see also 23, 35]. The Bayes act allows two interesting
constructions: One may take an arbitrary scoring rule and reparameterise it
to obtain a proper scoring rule. Brehmer and Gneiting [23] call this procedure
properisation. Even more generally, one may take an arbitrary loss function
and reparameterise it so that it can be described using a proper scoring rule
and what Reid and Williamson [102, 103] call a canonical link function.

The subdifferential characterisation of properness in Theorem 4.7 allows
us to apply the theory developed in Section 2.4.2 to generate several existence
results for these two applications.

4.3.1 Properisation

We say a scoring rule sP : P → L is a properisation of s if

∀µ∈P : sP(µ) = s(v(µ))

where the mapping µ 7→ v(µ) satisfies v(µ) ∈ arginfν∈P 〈s(ν), µ〉 for all
µ ∈ P . Any properisation is automatically a proper scoring rule [23, Thm. 1].

The theory we have established already in Sections 2.4.2 and 4.2 allows
us to state an extremely general properisation result. In Theorem 4.16
and Corollary 4.17 measurability refers to measurability with respect to the
τ(L,L∗)- and σ(L∗, L)-Borel sigma algebras.

Theorem 4.16. Assume L is a Banach space with separable dual. Assume
P is σ(L∗, L)-Borel measurable. Let s : P → L be a scoring rule with a
Bayes risk function that is finite on a neighbourhood of P . Then there is a
P -proper, measurable scoring rule sP : P → L with the same risk function
as s, and sP is a properisation of s on a dense subset Pδ ⊆ P .

Proof. For simplicity of notation let F def= −∂σ−s(P ). If riskl is finite on
a neighbourhood U of P then it is continuous on U ⊇ P [99, Prop. 3.3]
and P ⊆ domF [via 99, Thm. 3.25]. Since L has a separable dual it is an
Asplund space [99, Thm. 3.97]. Convex functions that are continuous on
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an open set U of any Asplund space are always differentiable on a dense
Gδ subset Uδ ⊆ U . Any dense subset of U is also dense in P , whence there
exists the dense subset Pδ def= Uδ ∩ P on which F is single-valued [via 2,
Thm. 7.17]. Using Lem. 2.16 we observe that F has a measurable selection
on a neighbourhood of P . We denote its restriction to P by sP : P → L.
Since P is σ(L∗, L)-Borel measurable, the restriction is measurable.

Since sP selects F , it is automatically a P -proper scoring rule (Thm. 4.7).
Any Bayes act properisation of s is necessarily a selection, and therefore
agrees with sP on Pδ. Finally because the s risk function is 1-homogeneous
and sP selects its subdifferential,

∀µ∈P : risk sP(µ) = risk s(µ),

[via 149, Thm. 2.4.14(iii)]. That is, the s and sP Bayes risk functions
agree. �

As we have already mentioned in Section 4.2.2, it is a common assumption
(implicit or explicit) to assume the set P is convex. The duality correspon-
dence already ensures the order induced on L via P is the same as the order
induced by coP . Similarly, under the fairly mild conditions of Theorem 4.16
we can use the same approach to measurably extend a scoring rule defined
on a nonconvex P . This lends credence to the P convexity assumption.

Corollary 4.17. Assume all the assumptions of Theorem 4.16 are met, and
additionally assume that P is σ(L∗, L)-closed, s : P → L is measurable and
P -proper. Then s has measurable extension to co(P ) that is co(P )-proper.

Proof. The corollary follows from the proof of Thm. 4.16 observing that
P ⊆ int(domF ) implies coP ⊆ int(domF ) because the subdifferential
domain is convex. The extension sext may now be constructed using

∀µ∈coP : sext(µ) def=




s(µ) µ ∈ P

sP(µ) µ ∈ coP \ P,

where sP(µ) is as in Thm. 4.16. Properness follows from Thm. 4.7, and
measurability follows from the measurability of coP \ P . �
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4.3.2 Link functions

The idea of the link function dates to Nelder and Wedderburn [92, see also 82,
§2] who introduced it as part of the definition of a generalised linear model,
wherein the link function connects a prediction with the parameters of an
exponential family distribution. In this sense link functions are a mapping
from a set of predictions V to a set of probability distributions P .

The idea has since been resurrected by Reid and Williamson [103] for
binary classification problems, and Williamson, Vernet, and Reid [141] for
multiclass classification. The setting of multiclass classification corresponds to
a conditional density estimation problem over a discrete topological outcome
space, and will be the subject of Section 4.3.3. However, first we build upon
several ideas from Williamson, Vernet, and Reid [141] in two directions of
generality. Firstly from a discrete to a general topological outcome space,
and secondly from differentiable to suitably finite Bayes risk functions.

As with Theorem 4.16, measurability in Theorem 4.18 is proven with
respect to τ(L,L∗)- and σ(L∗, L)-Borel sigma algebras.

Theorem 4.18. Assume L is a Banach space with separable dual, in which
P ⊆ L∗ is σ(L∗, L)-compact. Let l : V → L be a Borel loss function
with a Bayes risk function that’s finite (resp. differentiable) on a σ(L∗, L)-
neighbourhood of P . Then there is a Borel function τ : co l(V ) → P , a
P -proper (resp. strictly P -proper) Borel scoring rule s : P → L and a
σ(L∗, L)-dense subset Pδ ⊆ P (resp. Pδ = P ) so that

∀µ∈P : inf
v∈V

riskl(v, µ) = inf
v∈V

risk s◦τ◦l(v, µ)

and if l is injective

∀µ∈Pδ : arginf
v∈V

riskl(v, µ) = arginf
v∈V

risk s◦τ◦l(v, µ).

Proof. For simplicity of notation let F def= −∂σ−l(V ). If we equip L∗ with
σ(L∗, L) then L = (L∗,σ(L∗, L))∗ [2, Thm. 5.93]. Since L has a separable
dual (by assumption) it is separable itself [38, Prop. 3.6.14]. Since L =
(L∗,σ(L∗, L))∗ is separable, L∗ is an Asplund space [99, Thm. 3.97].

By an identical argument to the proof of Thm. 4.16 (observing that P is
σ(L∗, L)-Borel measurable) F has a measurable selection on a neighbourhood
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of P which is a P -proper scoring rule when restricted to P (Lem. 2.16) which
we denote s : P → L. By construction (cf. the lower inverse in Section 2.4.2)
we have dom(F−1 ∩ P ) = F (P ). From Lem. 2.18 the map F−1 ∩ P =
−Nco l(V ) ∩P has a measurable selection which we denote τ : F (P ) → P

(the equality is due to Lem. 2.5).
Since riskl is differentiable on Uδ, it follows that s is invertible on Pδ with

Uδ-inverse τ [cf. 99, Cor. 3.26]. Pick µ ∈ Pδ. If l is an injection then

vµ ∈ arginf
v∈V

riskl(v, µ) ⇐⇒ l(vµ) ∈ F (µ),

because F is single-valued at µ. Next because s selects F we have s(µ) =
l(vµ), and τ(l(vµ)) = µ. Therefore

∀µ∈Pδ : arginf
v∈V

riskl(v, µ) = arginf
v∈V

risk s◦τ◦l(v, µ).

If the Bayes risk function is differentiable on U then s is strictly proper by
Thm. 4.7 and Pδ can be taken to be P . �

Theorem 4.18 shows that a great many risk minimisation problems may
be reparameterised in such a way that they can be expressed in terms of
the minimisation of a scoring rule risk over a family of distributions. In
particular, there is a natural way the set of predictions V can mapped into
an a set of distributions P . The mathematics underpinning this surprising
relationship is just the duality between measures and functions, combined
with the natural concavity of the function ζl(V ). Moreover it argues for the
necessity and generality of proper scoring rules in describing (B).

4.3.3 Decomposable risk minimisation

Until now we have assumed (L,L≥0) is a vector space of functions Ω → R̄. If
the outcome space is decomposable for some topological spaces X,Y , that is
Ω = X×Y , then the risk minimisation problem (B) is called regression when
Y is continuous, and classification when Y is discrete [133]. When Ω has such
a structure, we refer to (B) as the decomposable risk minimisation problem.
One possible approach to analyse the the decomposable risk minimisation
problem would be to replace L by a set of functions X × Y → R̄. The
question then is what ordering is natural to impose on this space. Similarly
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to Section 4.1 we could specify a positive cone P+ via a family of measures
P ⊆ P(X × Y ). This approach, however, would not allow us to exploit the
intrinsic structure of the decomposable problem, and yield similar results
to Sections 4.1 and 4.2. Instead, we assume the structure of the preceding
section on on the space Y , and specialise our investigation to the decomposable
loss functions (defined below).

For this section we assume Unless otherwise noted, we assume L is a vector
space of functions L ⊆ R̄Y together with a locally convex, Hausdorff topology,
and there is a subset P ⊆ L∗ so that (L,P+) is an ordered topological vector
space. Due to the added structure in this setting we refine some of the
notions from Section 4.1. The following conventions end up simplifying the
notation that follows. A loss function is a Borel mapping l : V ×X → L

and we let l(v)(x, y) def= l(v, x)(y) so that l(v) ∈ L0(X × Y ) for all v ∈ V .
The evaluation operator at x ∈ X is

evx : L0(X × Y )→ L0(Y ) with ∀f∈L0(X×Y ) : evx f def= f(x, · ).

This construction ensures for all x ∈ X that evx l(v) is a function in L.
Though it is possible to define scoring rules directly on P(X × Y ), we will
consider scoring rules as mapping P → L, that is, just as we had in Section 4.2
(with Ω replaced by Y ).

The evaluation operator generates the pull-back order in L0(X × Y )
via

∀x∈X : (evx)−1(L≥0) =
{
f ∈ L0(X × Y )

∣∣ evx f ∈ L≥0

}

and so the positive cone in L0(X × Y ) is

(
⋃
x∈X evx)−1(L≥0) = {f ∈ L0(X × Y ) | ∀x∈X∀µ∈P : 〈evx f, µ〉 ≥ 0}.

In particular, observing that the adjoint of the evaluation operator is the
Dirac product,6

(
⋃
x∈X evx)−1(L≥0) = {f ∈ L0(X × Y ) | ∀x∈X∀µ∈P : 〈f, δx×µ〉 ≥ 0}

= (δX ×P )+,

6That is 〈evx f, µ〉 = 〈f, δx×µ〉 for all x ∈ X, µ ∈ L∗.
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where δX ×P def=
⋃
x∈X{δx×µ | µ ∈ P}. Then (L0(X × Y ), (δX ×P )+) is

an ordered vector space, it is with respect to this ordering that we define
sp(l):

sp(l) def=
{
x ∈ L0(X × Y )

∣∣∣ ∃v∈V : x ≥(δX ×P )+ l(v)
}
.

We now assume V is a collection of functions v : X → Z. A decomposable
loss function, l, is defined using a mapping g : Z → L so that

∀v∈V ∀(x,y)∈X×Y : l(v)(x, y) = g(v(x))(y). (4.18)

In practice many conditional prediction problems are specified using a loss
function of the form (4.18). With the pull-back order on L0(X × Y ) there is
a close relationship between sp(l) and sp(g).

Proposition 4.19. Suppose l : V → L is a decomposable rule loss function
for g : Z → L. Then

sp(h) ⊆
⋃

x∈X
evx(sp l),

with equality if Z = V (X) def=
⋃
v∈V {v(x) ∈ Z | x ∈ X}.

Proof. Choose any x ∈ X and f ∈ sp(l). It follows that there exists
v ∈ V with f ≥(δX ×P )+ l(v). Because evx is a positive operator, that is,
evx((δX ×P )+) ⊆ (P+) for all x ∈ X,

f ≥(δX ×P )+ l(v) =⇒ ∀x∈X : evx f ≥P+ evx l(v)

=⇒ ∀x∈X∃z∈V (X) : evx f ≥P+ g(z),

where V (X) def=
⋃
v∈V v(X). This shows

⋃
x∈X evx sp(l) ⊆ sp(g).

Now assume V (X) = Z and choose f ∈ sp(g). It follows that

∃z∈Z : f ≥P+ g(z) =⇒ ∃vf∈V ∃xf∈X : f ≥P+ g(vf (xf )) = evxf l(vf ).

Let h(x, y) def= max{l(vf )(x, y), f(x)}. Then evxf h = f and h ≥(δX ×P )+

l(v), which shows f ∈
⋃
x∈X evx sp(l). Thus sp(g) ⊆

⋃
x∈X evx sp(l). �

Corollary 4.20. Let l : V ×X → L is a decomposable rule loss function for



4.4. SCORING RULE AGGREGATION 81

g : Z → L. Then ζsp(g) ≥ infx∈X ζsp(l)(δx× · ), with equality if V (X) = Z.

Proof. For all µ ∈ L∗, from Prop. 4.19

ζsp(g)(µ) = inf
f∈sp(g)

〈f, µ〉

≥ inf
h∈
⋃
x∈X evx sp(l)

〈h, µ〉

= inf
x∈X

inf
h∈evx sp(l)

〈h, µ〉

= inf
x∈X

inf
h∈sp(l)

〈h, δx×µ〉

= inf
x∈X

ζsp(l)(δx×µ),

with equality if V (X) = Z. �

4.4 Scoring rule aggregation

It is interesting that in spite of the generality of the notion of a proper
scoring rule, one typically encounters only a handful of concrete examples
in the literature [e.g. 24, 51].7 Consequentially, choosing a scoring rule for
a statistical model itself similarly may present its own problems with some
theorists recommending instead using a combination of scoring rules [84].
We have seen in Chapter 3 that there is a rich structure in the family of
co-radiant sets with the family operations ⊕M and �M . It is our hope that
by introducing these operations to the family of proper scoring rules, that
we may contribute simultaneously each of these problems.

In Sections 4.1 and 4.2 we saw that a large number of proper scoring rules
have an analytically simple representation in terms of the superprediction
set, which is convex and co-radiant. By combining the results of Chapter 3
with Sections 4.1 and 4.2 we develop a simple composition operation for the
scoring rules which preserves properness. The rich set of polarity results from
Sections 3.4 and 4.2.3 then lets us calculate the corresponding link functions.

7Most of these are listed in Table 4.3.
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4.4.1 Superprediction sets

Before we can proceed, it is helpful to verify that a large number of scoring
rules have superprediction sets satisfying the conditions of the theorems and
corollaries in Chapter 3.

Proposition 4.21. Let s : P → P+ \ {0} be σ(L∗, L)-continuous and P -
proper, where P is σ(L∗, L)-compact. Then sp(s) ∈M∞(P+).8

Proof. Closed and convex : Thm. 4.13 shows that sp(s) is closed and convex.

pos(sp s) = P+ \ {0}:
As part of the proof of Prop. 4.6 we calculated P+ = sp(s)∞. There-

fore

P+ \ {0} (4.4)= sp(s)+
∞ \ {0}

P2.9(ii)= pos(sp s) \ {0}. (4.19)

We will now show that pos(sp s) \ {0} = pos(sp s). Take a σ(L,L∗)-
convergent net (xi)i∈I ⊆ pos(sp s) with limit x 6= 0. There are nets (ti)i∈I ⊆
R>0 and (li)i∈I ⊆ sp(s) with xi = tili for all i ∈ I. If either (ti) or (li)
fail to converge, ti〈li, x∗〉 → ∞ for any x∗ ∈ sp(s)+, and so both nets must
converge. Let t and l be their limits, with (li) converging in σ(L,L∗). If (ti)
converges at 0 then x = 0l = 0 which contradicts the assumption x 6= 0. If
(ti) converges at some t > 0, then tili ⇀ tl. Because sp(s) is closed convex,
it is σ(L,L∗)-closed.

This shows x ∈ pos(sp s) and pos(sp s) is σ(L,L∗)-closed. Because sp(s)
is convex, pos(sp s) is convex and therefore it is strongly closed. It follows
from (4.19) that pos(sp s) = P+ \ {0}.

Containing an order unit: From Prop. 2.9(ii) (sp(s))∞ = P+, and by
assumption sp(s) ⊆ P+. Taking any order unit e ∈ P+, and x ∈ sp(s) we
obtain from Prop. 2.8(iv) that e+ x ∈ sp(s) and e+ x is an order unit of
P+. �

By the set R[k]
≥0 we mean the collection of functions [k]→ R≥0, which is

isomorphic, as a vector space, to Rk≥0.

8Recall from Section 3.3 thatM∞(K) denotes the collection of subsets M of the cone
K which are closed, convex, containing a K-order unit and have posM = K \ {0}.
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Corollary 4.22. Let s : P([k]) → R
[k]
≥0 be continuous and proper. Then

sp(s) ∈M∞(R[k]
≥0).

Let s1, . . . , sk : P → L≥0 be a sequence of continuous P -proper scoring
rules, and let s0 : P([k]) → Rk≥0 be a P([k])-proper scoring rule. Then
Theorem 4.13 and Proposition 4.1 show that sp(si) is closed, convex and
co-radiant for i ∈ [k] ∪ {0}.9 It follows from Theorem 3.11, Proposition 3.12,
and Corollary 4.22 that

⊕sp(s0)(sp(s1), . . . , sp(sk)) and ⊕sp(s0)O(sp(s1)O, . . . , sp(sk)O),

are both convex and co-radiant. In this section will find a proper scoring
rule s⊕ : P → L and link function s� : P → L so that

sp(s⊕) = ⊕sp(s0)(sp(s1), . . . , sp(sk))

and

∀µ∈dom : τ(µ) ∈ ∂̂ζsp(s⊕)(s⊕(µ)).

4.4.2 M-sums of scoring rules

Using Theorem 3.4, Corollaries 3.5 and 4.2 for all µ ∈ −
⋂
i∈[k] bc(sp si)

risk s⊕(µ) C4.2= ζsp(s⊕)
T3.4= inf

m∈sp(s0)

∑

i∈[k]
mi ·h ζsp(si)(µ). (4.20)

Since s0, as a selection of ∂̂ζsp(s0), is defined on P([k]), we need to
normalise the vector (ζsp(s1)(µ), . . . , ζsp(sk)(µ)) so that it lies in this set.
Observe

∀c>0∀µ∈P(Ω) : ∂̂ζsp(sk)(cµ) = ∂̂ζsp(sk)(µ).

Therefore we define

s|µ def= (ζsp(s1), . . . , ζsp(sk))(µ) ∈ Rk≥0,

9Recall we use the pointwise-ordering on Rk to define sp(s0).



84 CHAPTER 4. CONVEX DECISION THEORY

and

s̃|µ def=
1

µP([k])(s|µ) ? s|µ ∈ P([k]). (4.21)

The gauge µP([k])(s|µ) ensures that s̃|µ lies in P([k]) for every µ ∈ P . Then
using Lemma 2.21 to subdifferentiate (4.20) we have

∂̂ζsp(s⊕)(µ)
R2.22
⊇

⋃

m∈ ∂̂ζsp( s0)(s|µ)

∑

i∈[k]
mi ? ∂̂ζsp(si)(µ)

T4.7
3

∑

i∈[k]
s0(s̃|µ)(i) · si(µ).

Let us now define

s⊕ : P → L with s⊕(µ) def=
∑

i∈[k]
s0(s̃|µ)(i) · si(µ).

Since s⊕ enjoys the subdifferential representation it is automatically P -proper
(Theorem 4.7). Next, because ζsp(s⊕) = ζ⊕sp( s0)(sp(s1),...,sp(sk)), taking the
subdifferential at 0 shows co(sp s⊕) = co

(
⊕sp(s0)(sp(s1), . . . , sp(sk))

)
and

Theorems 3.7 and 3.11 yield

sp(s⊕) = ⊕sp(s0)(sp(s1), . . . , sp(sk)). (4.22)

4.4.3 Dual M-sum scoring rules

We use essentially the same approach as Section 4.4.2 to compute the
scoring rule s�. However to apply Theorem 3.29 we need to show a sufficient
condition for the asymptotic cone of �sp(s0)(sp(s1), . . . , sp(sk)). Since sp(si)
is convex for each i ∈ [k], Lemma 3.14 shows

(
�sp(s0)(sp(s1), . . . , sp(sk))

)
∞

L3.14(i)
⊇

⋂

i∈[k]
(sp si)∞.

Similar to (4.21) ait will simplify things to introduce some notation. Let
µ[k] denote a sequence (µi)i∈[k] ⊆ L∗, so that µ[k] ∈ (L∗)k and

s|µ[k]
def= (ζsp(s1)(µ1), . . . , ζsp(sk)(µk)),
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and

s̃|µ[k]
def=

1
µP([k])(s|µ[k])

? s|µ[k] . (4.23)

Using Theorem 3.29 and Corollary 3.16, and our notation in (4.23), for
all

µ ∈ int
∑

i∈[k]
bc(sp si)

C3.16
⊆ bc(sp s�)

there is

risk s�(µ) T3.29= sup



 inf
m∈sp(s0)

∑

i∈[k]
mi ·h ζsp(si)(µi)

∣∣∣∣∣∣
µ =

∑

i∈[k]
µi





= sup




∑

i∈[k]
s0(s|µ[k])(i) ·h ζsp(si)(µi)

∣∣∣∣∣∣
µ =

∑

i∈[k]
µi



.

Next let T (µ) denote the set


(µi)i∈[n] ⊆ L∗

∣∣∣∣∣∣
µ =

∑

i∈[k]
µi, risk s⊕(µ) =

∑

i∈[k]
s0(s|µ[k])(i) ·h ζsp(si)(µi)



.

Then, again using Lemma 2.21, we have

∂̂ζsp(s�)(µ) ⊇




∑

i∈[k]
s0(s̃|µ[k])(i) · si(µi)

∣∣∣∣∣∣
(µ1, . . . , µk) ∈ T (µ)



.

It is harder to get an exact form for s� that parallels s⊕ in (4.22) and
ensures a result like (3.16). To do so one would need to construct a selection
of µ 7→ T (µ), however with a selection of this sort, a similar subdifferential
argument to (4.22) would yield the same superprediction set equality.

4.5 Conclusion

Many machine learning problems are not framed in terms of probability
elicitation, but rather as a risk minimisation over some class of functions.
To free ourselves of the constraints of probability elicitation we introduced
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the link functions, grounded in the duality of convex sets, which provides a
means by which we can generalise the probability elicitation framework to an
arbitrary set of predictions in a consistent manner. In many of our theorems
we have made no assumption of differentiability or smoothness, and have
instead exploited the natural concavity of the risk functional to supply these
properties. However, when the stronger assumption of differentiability is
satisfied, we recover the stronger existing results in the literature that have
been provided in a finite dimensional setting. By studying machine learning
problems in the abstract we are forced to consider the shared underlying
structures between problems. An example of the simplicity obtained through
abstraction is encapsulated very nicely in the study of link functions, wherein
the seemingly complicated idea of probabilistic inference just reduces to
finding the inverse of a studied, well-behaved monotone operator.

In convex analysis, Hörmander’s theorem provides a bridge between
sublinear functions and closed radiant sets via the support function. It
is perhaps surprising that such a connection exists, and that there is a
dual calculus for sublinear functions and their corresponding sets. We have
generalised this calculus not only to the family of sublinear operations on a
set of support functions, but with a set of superlinear operations on a set of
co-support functions — the less common concave counterparts. Similarly,
with the introduction of the generalised superprediction set, we can transform
a machine learning problem into a member of a family of sets, the calculus
of which we then inherit.

Contrary to our approach here, much of modern machine learning research
starts with a particular problem that one seeks to solve, whether this is to
build a classifier for a particular domain, or to estimate some quantity of
interest. In the preceding sections we have built a theoretical framework that
goes in the opposite direction; beginning with a fundamental quantity of
interest (the probability distribution) and the simplest means of its discovery
(a proper scoring rule). In order to endow our theory with a rich analytic
structure, we observed and employed deep connections to convex analysis,
nonsmooth analysis, and the theory of co-radiant sets, all of which arise from
our basic premise of probability elicitation with a proper scoring rule.
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Chapter 5
Boosted Density Estimation

In the emerging area of Generative Adversarial Networks (GANs) [53] a
binary classifier, called a discriminator, is used learn a highly efficient sampler
for a data distribution, combining what would traditionally be two steps
— first learning the density function from a family of densities, then fine-
tuning a sampler — into one. Interest in this field has sparked a series of
formal inquiries and generalisations describing GANs in terms of (among
other things) divergence minimisation [5, 96]. Using a similar framework to
Nowozin, Cseke, and Tomioka [96], Grover and Ermon [58] make a preliminary
analysis of an algorithm that takes a series of iteratively trained discriminators
to estimate a density function1. The cost of this approach, insofar as we have
been able to devise, is that one forgoes learning an efficient sampler (as with
a GAN), and must make do with classical sampling techniques to sample
from the learned density. We leave the issue of efficient sampling from these
density as an open problem, and instead focus on analysing the densities
learned with formal convergence guarantees under reasonable assumptions
(Table 5.2). Previous formal results have established a range of guarantees,
from qualitative convergence [58], to geometric convergence rates [129], with
numerous results in between.

In learning a density function iteratively, most previous approaches [e.g.
60, 77, 86, 107, 129, 130] have investigated a single update rule, not unlike

1Grover and Ermon [58] call this procedure “multiplicative discriminative boosting”.
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Frank–Wolfe optimisation [46], where a sequence (xt), an initial point y0 and
a set of numbers (αt) ⊆ [0, 1] is chosen satisfying

yt = ψ(αtxt + (1− αt)yt−1), (5.1)

for some function ψ, so that an objective function (usually a divergence)
is minimised along (yt). Grover and Ermon [58] is a recent exception to
(5.1) wherein alternative choices are explored. Few works in this area are
accompanied by convergence proofs, and even fewer provide convergence
rates [60, 77, 107, 129, 130].

To establish convergence and/or bound the convergence rate all ap-
proaches necessarily make structural assumptions or approximations on the
parameters involved in (5.1). These assumptions can be on the (local) varia-
tion of the divergence [60, 91, 130], the true distribution or the quality of
the updates [33, 58, 60, 77], the step size [86, 129], the previous history of
updates [33, 107], and so on. Often in order to produce the best geometric
convergence bounds, the update is usually required required to be close to
the optimal one [129, Cor. 2, 3]. Table 5.1 compares the best results of the
leading three to our approach. We give for each of them the updates aggre-
gated, the assumptions on which rely the results and the rate to come close
to a fixed value of Kullback–Liebler divergence (Jensen-Shannon divergence,
for Tolstikhin et al. [129]), which is just the order of the number of iterations
necessary, hiding the other dependences for simplicity.

However, it must be kept in mind that for many of these works [viz. 129]
the primary objective is to develop an efficient black box sampler for µ?, in
particular for large dimensions. Our objective however is to focus on furtive
lack of formal results on the densities and convergence, and deferring the
problem of learning an efficient sampler.

5.1 From discriminators to densities

Throughout this chapter, (Ω,µ0) is a Borel space with µ0 ∈ P(Ω). We de-
note the µ0 absolutely continuous probability measures by P(Ω,µ0) def=
{µ ∈ P(Ω) | µ� µ0} and the target distribution will be denoted µ? ∈
P(Ω,µ0). For a distributions µ, ν ∈ P(Ω), the Radon–Nikodym deriva-
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tive for ν is the function dν/ dµ ∈ L0(Ω,µ) that satisfies νA =
∫
A ·

dν
dµ dµ for

all A ∈ B(Ω). For µ ∈ P(Ω) and f ∈ L0(Ω) the expectation operator is
Eµ f def=

∫
f dµ.

An important tool of ours are the ϕ-divergences of information theory [1,
32, 104]. For µ, ν ∈ P(Ω) with µ� ν, the ϕ-divergence of ν from µ is

Iϕ(µ, ν) def=
∫
ϕ

(dµ
dν

)
dν,

where it always assumed that ϕ ∈ L0(R,R≥0) is convex and lower semicon-
tinuous, and often additionally the normalisation condition ϕ(1) = 0. Every
ϕ-divergence has a variational representation via the Fenchel conjugate [viz.
93, also 104]:

Iϕ(µ, ν) =
∫
ϕ∗∗

(dµ
dν

)
dν

=
∫

sup
t∈R

(dµ
dν (ω)− ϕ∗(ω)

)
ν(dω)

= sup
f∈L0(Ω,R≥0)

(∫
f

dµ
dν dν − ϕ∗ ◦ f dν

)

= sup
f∈L0(Ω,R≥0)

(
Eµ[f ] + Eν [−ϕ∗ ◦ f ]

)
. (5.2)

The variational representation of a ϕ-divergence has been leveraged by
Nowozin, Cseke, and Tomioka [96] to show the equivalence between the
GAN saddle point objective of Goodfellow et al. [53] and the minimisation
of ϕ-divergence.

When ϕ is differentiable, it is a common result that the supremum in
(5.2) is attained for ϕ′ ◦ dµ/ dν [53, 96], so that we may reparameterise (5.2)
to obtain the following minimisation problem

minimise
d∈L0(Ω,R≥0)

Eµ[−ϕ′ ◦ d] + Eν [ϕ∗ ◦ ϕ′ ◦ d]. (5.3)

Remark 5.1. The reparameterised problem (5.3) shows that ϕ′ serves as
a canonical choice for the so-called link function of Nowozin, Cseke, and
Tomioka [96].

The objective in (5.3) is easily identified with the expectation of the loss
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function

l : L0(Ω,R>0)→ L0(Ω × [2],R) where

∀d∈L0(Ω,R>0) : l(d)(ω, y) def=





(−ϕ′ ◦ d)(ω) y = 1

(ϕ∗ ◦ ϕ′ ◦ d)(ω) y = 2,

under the joint distribution

π(dω,dy) def=
1
2
(
µ(dω) δ1(dy) + ν(dω) δ2(dy)

)
.

That is, a classical binary classification problem [17, 24, 95, 102–104], where
the task is to classify samples with the labels {1, 2}. In fact, several common
binary classification loss functions can seen to be special cases of (5.3) as
evidenced by Table 5.2, wherein we define the Kullback–Liebler divergence,
which will be most useful in Sections 5.2 and 5.3.

With a smoothness assumption on ϕ we can replace the set L0(Ω,R≥0)
with L0(Ω,R>0) in (5.3). We can further reparameterise the set L0(Ω,R>0)
with any bijection to the set L0(Ω,R). The exponential function has several
useful properties and so this is the one we use. In the sections that follow,
for every t ∈ N and dt ∈ L0(Ω,R>0) we let ct def= log ◦dt, or equivalently for
every ct ∈ L0(Ω,R) we let dt def= exp ◦ct. The notation reflects that dt refers
to a density ratio and ct a binary classifier . With the exponential function
and the GAN divergence (Table 5.2) we obtain the usual logistic sigmoid in
(5.3), that is

minimise
ct∈L0(Ω,R)

Eµ log(1 + exp(−ct)) + Eν log(1 + exp(ct)).

The analysis in Section 5.2 proceeds using density ratios, whereas Section 5.3
makes use of binary classifiers.

5.2 Boosted density estimation

We will study a sequence (µt) ⊆ P(Ω,µ0), defined for a sequence of func-
tions (dt) ⊆ L1(Ω,R>0), and a sequence of real numbers (αt) ⊆ [0, 1] that
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satisfies

µt = 1
zt
µ̃t, where zt

def=
∫

dµ̃t,

and µ̃t(dω) = dαtt (ω) · µt−1(dω).
(5.4)

For each t ∈ N the error term is the function εt ∈ L0(Ω,R>0) satisfying

∀ω∈Ω : dt(ω) = εt(ω) dµ?
dµt−1

(ω).

It measures the optimality of the update dt in the sense that if εt is a constant
function, choosing αt = 1 means that µt = µ? (via (5.4)). The goal of the
analysis will be to develop conditions on the sequences (dt) and (αt) to ensure
KL(µ?, µt) converges at 0 with vigour.

Proposition 5.2. The normalisation factors can be written recursively with
zt = zt−1 ·

∫
dαtt dµt−1.

Proof. We just need to write

zt
zt−1

= 1
zt−1

∫
dµ̃t

= 1
zt−1

∫
dαtt dµ̃t−1

=
∫
dαtt dµt−1

=
∫
dαtt dµt−1, (5.5)

thus zt = zt−1 ·
∫
dαtt dµt−1. �

Proposition 5.3 (Cranko and Nock [31]). The distribution µt is an expo-
nential family distribution with natural parameter (α1, . . . , αt) and sufficient
statistic (c1(x), . . . , ct(x)).

The connection between the sufficient statistics of an exponential family
and deep learning (that is, when (ci) is a sequence of neural network classifiers)
has also been made elsewhere [viz. 94].

Lemma 5.4. For any αt ∈ [0, 1] and εt ∈ L0(Ω,R≥0) we have:

exp
(
Eµt−1 log εt − rKL(µ?, µt−1)

)αt
≤ zt
zt−1

≤ (Eµ? εt)
αt .
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Theorem 5.5. For αt ∈ [0, 1], dt ∈ L0(Ω,R>0), there is

KL(µ?, µt) ≤ (1− αt) KL(µ?, µt−1) + αt(log Eµ? εt − Eµ? log εt), (5.6)

where εt def= (dµ?/dµt−1)−1dt.

Remark 5.6. Grover and Ermon [58, Thm. 2] assume a uniform error term,
εt ≡ c for some c > 0. In this case Theorem 5.5 yields geometric conver-
gence

∀αt∈[0,1] : KL(µ?, µt) ≤ (1− αt) KL(µ?, µt−1).

This result is significantly stronger than Grover and Ermon [58, Thm. 2],
who just show the non-increase of the KL divergence. If, in addition to
achieving uniform error, we let αt = 1, then (5.6) guarantees µt = µ?.

Proof of Lemma 5.4. Since αt ∈ [0, 1], by Jensen’s inequality it follows
that

Eµt−1 d
αt
t ≤

(
Eµt−1 dt

)αt =
(∫ dµ?

dµt−1
· εt dµt−1

)αt
= (Eµ? εt)

αt . (5.7)

The upper bound on zt/zt−1 follows:

zt
zt−1

(5.5)= Eµt−1 d
αt
t

(5.7)
≤ (Eµ? εt)

αt .

For the lower bound on zt/zt−1, note that

log
(
zt
zt−1

)
(5.5)= log Eµt−1 d

α
t

≥ αt Eµt−1 log dt

= αt Eµt−1

[
log εt + log

( dµ?
dµt−1

)]
,

which implies the lemma. (Lem. 5.4) �

Proof of Theorem 5.5. First note that

dµt = 1
zt

dµ̃t = 1
zt
dαtt dµ̃t−1 = zt−1

zt
dαtt dµt−1. (5.8)
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Now consider the following two identities:

−αt log Eµ? εt ≤ log
(
zt−1
zt

)
, (5.9)

which follows from Lem. 5.4, and
∫ (

log
( dµ?

dµt−1

)
− αt log dt

)
dµ? (5.10)

=
∫ (

log
( dµ?

dµt−1

)
− αt log

( dµ?
dµt−1

)
− αt log εt

)
dµ?

= (1− αt)
∫

log
( dµ?

dµt−1

)
dµ? − αt

∫
log εt dµ?

= (1− αt) KL(µ?, µt−1)− αt Eµ? log εt.

Then

KL(µ?, µt) =
∫

log
(dµ?

dµt

)
dµ?

(5.8)=
∫ (

log
( dµ?

dµt−1

)
− log

(
zt−1
zt

dαtt

))
dµ?

=
∫ (

log
( dµ?

dµt−1

)
− αt log dt

)
dµ?

︸ ︷︷ ︸
(5.10)

− log
(
zt−1
zt

)

︸ ︷︷ ︸
(5.9)

≤ (1− αt) KL(µ?, µt−1) + αt(log Eµ? εt − Eµ? log εt),

as claimed. (Thm. 5.5) �

We can express the update (5.6) in a way that more closely resembles
Frank–Wolfe update (5.1). Since εt takes on positive values, we can identify
it with a density ratio involving a nonnegative measure as follows

ρ̃t(dx) def= εt(x) · µ?(dx) and ρt
def=

1∫
dρ̃t
· ρ̃t.

Introducing ρ̃t allows us to lend some interpretation to Theorem 5.5 in
terms of the probability measure ρt. Letting mt

def= dµt/dµ0, rt def= dρt/dµ0,
then

mt ∝ dαtt mt−1 =
(

p

mt−1
εt

)αt
mt−1 = r̃αtt m

1−αt
t−1 .
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Or equivalently,

mt = ψ(αt log rt + (1− αt)mt−1),

where ψ(f) def= exp(f( · ) −
∫

log(f)dµ0) for f ∈ L0(Ω). This shows the
manner in which (5.4) is a special case of the general Frank–Wolfe form (5.1),
with updates xt def= log rt, and initial point y0

def= µ0.

Corollary 5.7. If ρt satisfies

KL(µ?, ρt) ≤ γKL(µ?, µt−1), (5.11)

for some γ ∈ [0, 1], then for any αt ∈ [0, 1]

KL(µ?, µt) ≤ (1− αt(1− γ)) KL(µ?, µt−1). (5.12)

Proof. We first show

KL(µ?, µt) ≤ (1− αt) KL(µ?, µt−1) + αt KL(µ?, ρt). (5.13)

By definition εt = dρt/dµ?. From Thm. 5.5, the rightmost term in (5.6)
reduces as follows

log Eµ? εt − Eµ? log εt = log
∫ dρ̃t

dµ?
dµ? −

∫
log
( dρ̃t

dµ?

)
dµ?

= log
∫

dρ̃t +
∫

log
(dµ?

dρ̃t

)
dµ?

=
∫ (

log
(dµ?

dρ̃t

)
+ log

∫
dρ̃t
)

dµ?

=
∫

log
(dµ?

dρ̃t
·
∫

dρ̃t
)

dµ?

=
∫

log


 dµ?

1∫
dρ̃t

dρ̃t


dµ?

= KL(µ?, ρt),

which shows (5.13). The proof of (5.12) is then immediate. �

We obtain the same convergence rate as Tolstikhin et al. [129, Cor. 2]
(geometric) for a boosted distribution µt which is not a convex mixture,
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which, to our knowledge, is a new result. Corollary 5.7 is restricted to the KL
divergence, however, we do not need the technical domination assumption of
Tolstikhin et al. [129, Cor. 2]. From the standpoint of weak versus strong
learning, Tolstikhin et al. [129, Cor. 2] require a condition similar to (5.11),
that is, the iterate ρt has to be close enough to µ?. It is the objective of the
following sections to relax this requirement to something akin to the weak
updates common in a boosting scheme.

5.3 Convergence under weak assumptions

In the previous section we have established two preliminary convergence
results (Remark 5.6, Corollary 5.7) that equal the state of the art and/or
rely on similarly strong assumptions. We now show how to relax these in
favour of placing some weak conditions on the binary classifiers learnt in
(5.2).

Define the two expected edges of ct [cf. 95]:

e−(t) def=
1
b

Eµt−1 [−ct] and e+(t) def=
1
b

Eµ? [ct],

where b ≥ esssup |ct| for all t ∈ N, and the essential supremum is with
respect to µ0. Classical boosting results rely on assumption on such edges
for different kinds of ct [47, 115, 116]. We also assume b <∞ and |ct| > 0
for all t ∈ N. That is, the classifiers have bounded and nonzero confidence.
By construction e−(t), e+(t) ∈ [−1, 1] for every t ∈ N. The difference of sign
of ct is due to the decision rule for a binary classifier, whereby ct(ω) ≥ 0
reflects that ct classifies ω ∈ Ω as originating from µ? rather than µt−1, and
vice versa for −ct(ω).

Assumption WLT (Weak learning). For T ∈ N there exist γ+, γ− > 0 so
that e+(t) ≥ γ+ and e−(t) ≥ γ− for all t ≤ T .

The weak learning assumption is in effect a separation condition of µ?
and µt−1. That is, the decision boundary associated with ct correctly divides
most of the mass of µ? and most of the mass of µt−1. This is illustrated
in Figure 5.3. Note that if µt−1 has converged to µ?, the weak learning
assumption cannot hold. This is reasonable since as µt−1 → µ? it becomes
harder to build a classifier to tell them apart. We note that classical boosting
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m?

mt−1

−ct
b

ct
b

e+(t) e−(t)

(a) WLT is not violated, e+(t), e−(t) > 0

m?

mt−1

ct
b

ct
b

e+(t) e−(t)

(b) WLT is violated, e−(t) < 0

Figure 5.3: Illustration of WLT in one dimension with a classifier ct and its decision
rule (indicated by the dashed grey line). The red (resp. blue) area is the area under
the ct/b ? p (resp. −ct/b ? mt−1) line (where m?,mt−1 are corresponding density
functions of µ? and µt−1), that is, e+(t) (resp. e−(t)).

would rely on a single inequality for the weak learning assumption (involving
the two edges) [116] instead of two as in WLT . The difference is, however,
superficial as we can show that both assumptions are equivalent. A boosting
algorithm would ensure, for any given error % > 0, that there exists a number
of iterations T for which we do have KL(µ?, µT ) ≤ %, where T is required to be
polynomial in all relevant parameters, in particular 1/γ+, 1/γ−, b,KL(µ?, µ0).
Notice that we have to put KL(µ?, µ0) in the complexity requirement since
it can be arbitrarily large compared to the other parameters.

Theorem 5.8 (Cranko and Nock [31]). Assume there is WLT , where the
sequence (αt)t≤T satisfies

αt = min
{

1, 1
2b log

(1 + e−(t)
1− e−(t)

)}
.

Then KL(µ?, µT ) ≤ % when

T ≥ 2 · KL(µ?, µ0)− %
γ+γ−

.

The question naturally arises as to whether faster convergence is possible.
Define

e(t) def=
1
b
· Eµ? log εt,

the normalised expected log-density estimation error. Then we have e+(t) =
1
b ·KL(µ?, µt−1) + e(t), so controlling e+(t) does not give substantial leverage
on KL(µ?, µt) because of the unknown e(t). Therefore we can show that that
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an additional weak assumption on e(t) (not unlike boundedness condition
on the log-density ratio of Li and Barron [77, Thm. 1]) is all that is needed
with WLT , to obtain convergence rates that compete with Tolstikhin et al.
[129, Lem. 2] but using much weaker assumptions.

Assumption WDT (Weak dominance). For T ∈ N there exists Γε > 0 so
that e(t) ≥ −Γε for all t ≤ T .

Under WLT and WDT we are able to obtain a geometric convergence
rate.

Theorem 5.9 (Cranko and Nock [31]). If WLT and WDT hold, then

KL(µ?, µT ) ≤
(

1− γ+

2(1 + Γε)
min

{
2, γ−

b

})T
·KL(µ?, µ0).

Note that the bound obtained in Theorem 5.9 is, in fact, logarithmic in
KL(µ?, µ0), that is, we have KL(µ?, µT ) ≤ % when

T ≥ 2(1 + Γε)
γ+ min{2, γ−/b}

log
(KL(µ?, µ0)

%

)
.

The proofs of Theorems 5.8 and 5.9 are due to Prof. Richard Nock and are
quite lengthy. These can be found in full in the original work this chapter
was based upon [31].

5.4 Conclusion

The prospect of learning a density iteratively with a boosting-like procedure
has recently been met with significant attention. However, the success of
these approaches hinge on the existence of oracles satisfying very strong
assumptions. By contrast, the task of learning a binary classifier iteratively is
well understood and backed by a large amount of research. By leveraging this
understanding for the seemingly disparate application of density estimation,
we are able to improve upon other state-of-the-art guarantees. Finally, since
the work on which this chapter was published [31], in a follow-up, Husein et
al. [67] have shown how density estimation of the form we analyse here can
be adapted to yield strong differential privacy properties.



Chapter 6
Robust Bayes, Regularisation,
and Adversarial Learning

When learning a statistical model, it is rare that one has complete access
to the distribution. More often it is the case that one approximates the
risk minimisation by an empirical risk, using sequence of samples from the
distribution. In practice this can be problematic, particularly when the curse
of dimensionality is in full force, to: 1.) know with certainty that one has
enough samples, and 2.) guarantee good performance away from the data.
Both of these two problems can, in effect, be cast as problems of ensuring
generalisation. A remedy for both of these problems has been proposed
in the form of a modification to the risk minimisation framework, wherein
we integrate a certain amount of distrust of the distribution. This distrust
results in a certification of worst case performance if it turns out later that
the distribution was specified imprecisely, improving generalisation.

To make this concept of distrust concrete, in the notation of Chapter 4, for
a loss function l : V → L0(Ω, R̄) we replace the classical risk minimisation
(B) [on p. 63] with

minimise
v∈V

sup
ν∈B

riskl(v, ν), (rB)

where B ⊆ P(Ω) is called the uncertainty set and (rB) is called the B-
robust Bayes risk [59, §4, 18, 134]. The problem (rB) is an example of a

101



102 CHAPTER 6. ROBUST BAYES AND REGULARISATION

machine learning problem that is incompatible with the risk minimisation,
and therefore the probability elicitation framework in general. However,
we shall see that for a class of loss functions l : V → L, and a particular
uncertainty set, Bc(µ, r) (containing µ ∈ P(Ω) and depending on r ≥ 0 and
c ∈ L0(Ω, R̄≥0)), there is a function lipc : L→ R̄≥0 so that the regularised
objective

minimise
v∈V

riskl(v, µ) + r lipc(l(v)), (Reg)

has the same minimisers as the Bc(µ, r)-robust Bayes risk.
There are two reasons we are interested in finding a relationship between

(rB) and (Reg). There is independent interest in the objective function in
(Reg), particularly when C corresponds to the least Lipschitz constant of l(v)
measured with respect to some metric on L. The applications for Lipschitz
regularisation are as disparate as generative adversarial networks [5, 87],
generalisation [42, 55, 142], and adversarial learning [4, 29, 30, 131] among
others [56, 114]. Building a model that is robust to a particular uncertainty
set is very intuitive and tractable. However, the left hand side of (Reg)
involves an optimisation over a subset of an infinite dimensional space,1 by
comparison, (Reg) is often much easier to work with in practice. For these
reasons then it is always interesting to note when a robust Bayes problem
admits an equivalent formulation of (rB) in the form of (Reg), or vice versa.

It happens that for the applications mentioned above, the relevant uncer-
tainty set is parameterised by the transportation cost. In Section 6.1 we state
the major definitions to define the transportation cost and its associated
uncertainty set, the transportation cost ball. In Section 6.2 we begin with
a series of technical lemmas before proving we are able to prove our major
result, Theorem 6.5. This result connects (rB) and (Reg) with new generality
and tightness guarantees, applying to a class of models broad enough to
include nonconvex models, such as deep neural networks. In Section 6.3,
we introduce the previously mentioned problem of adversarial learning, and
give a new generalised result showing equality with the transportation-cost-
parameterised uncertainty set from Sections 6.1 and 6.2. This completes the
loop for the problem of adversarial learning and suggests new ways in which

1Except for when Bc(µ, r) is chosen in a particularly trivial way.



6.1. PRELIMINARIES 103

robustness can be learnt for a broad class of models, discussion of which is
postponed to the conclusion, Section 6.4.

6.1 Preliminaries

For the remainder of this chapter we let R̄ def= (−∞,∞]. Unless otherwise
specified, X,Y,Ω are topological outcome spaces. Often X will be used when
there is some linear structure, compatible with the topology, so that X × Y
may be interpreted as the classical outcome space for classification problems
[cf. 133]. For a measure µ ∈ P(X) its push-forward by f ∈ L0(X,Y ) is
f#µ ∈ P(Y ), where f#µA

def= µ(f−1(A)) for all Borel A ⊆ Y . When (Ω, d)
is a metric space, the closed ball of radius r ≥ 0, centred at x ∈ X is denoted
Bd(x, r) def= {y ∈ X | d(x, y) ≤ r}.

For two measures µ, ν ∈ P(Ω) the set of (µ, ν)-couplings is

Π(µ, ν) def=
{
π ∈ P(Ω ×Ω)

∣∣∣∣ µ =
∫
π( · ,dω), ν =

∫
π(dω, · )

}
.

For a Borel coupling function c : Ω × Ω → R̄ the c-transportation cost of
µ, ν ∈ P(Ω) is

costc(µ, ν) def= inf
π∈Π(µ,ν)

∫
cdπ, (6.1)

and the c-transportation cost ball of radius r ≥ 0 centred at µ ∈ P(Ω) is

Bc(µ, r) def= {ν ∈ P(Ω) | costc(µ, ν) ≤ r}, (6.2)

and serves as our uncertainty set. When (Ω, d) is a Polish space, the d-
transportation cost is called the Wasserstein distance. When d is bounded,
costd completely metrises the σ(P(Ω),Cb(Ω))-topology on P(Ω) [see 135,
Cor. 6.13].

A coupling function c : X×X → R̄ has an associated conjugacy operation
with

f c(x) def= sup
y∈X

(
f(y)− c(x, y)

)
, (6.3)

for any function f : X → R̄. Coupling functions and their conjugates
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have many applications in the theory of generalised convexity and polarities,
including those we have already encountered in Chapters 2 and 3 [cf. 39, 90,
97, 98, 135]. We define the least c-Lipschitz constant [cf. 30] of a function
f : X → R̄:

lipc(f) def= inf{λ ≥ 0 | ∀x,y∈X : f(x)− f(y) ≤ λc(x, y)}, (6.4)

so that when (X, d) is a metric space lipd(f) agrees with the usual Lipschitz
notion. When c : X → R̄, for example when c is a norm, we take c(x, y) def=
c(x− y) for all x, y ∈ X in (6.1), (6.2), (6.3), and (6.4).

For a function f : X → R̄ there is another function co f : X → R̄,
called the convex envelope of f , satisfying epi(co f) = co(epi f). It is the
greatest closed convex function that minorises f . The quantity ρ(f) def=
supx∈X(f(x)− co f(x)) was first suggested by Aubin and Ekeland [11] to
quantify the lack of convexity of a function f , and has since shown to be of
considerable interest for, among other things, bounding the duality gap in
nonconvex optimisation [cf. 6, 70, 76, 132].

Let ∆n(x) def=
{
α ∈ Rn≥0

∣∣ ∑
i∈[n] αi = 1

}
. When f : Rn → R̄ is minorised

by an affine function, epi(co f) = co(epi f) means that [cf. 66, Prop. 1.5.4]
for all x ∈ Rn

co f(x) = inf





∑

i∈[n+1]
αif(xi)

∣∣∣∣∣∣
α ∈ ∆n+1, (xi)i∈[n+1] ⊆ Rn, x =

∑

i∈[n+1]
αixi



.

Consequentially there is the common expression

ρ(f) = sup



f


 ∑

i∈[n+1]
αixi


−

∑

i∈[n+1]
αif(xi)

∣∣∣∣∣∣
α ∈ ∆n+1, (xi)i∈[n+1] ⊆ Rn



.

For simplicity of notation in the subsequent sections, for a loss function
l : V → L, we identify l at a particular model v ∈ V , with the function
f : Ω → R̄, so that l(v) = f .

6.2 Robust learning

Duality results like Lemma 6.1 have been the basis of a number of recent
theoretical efforts in the theory of adversarial learning [20, 48, 120, 123], the
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results of Blanchet and Murthy [21] being the most general to date.

Lemma 6.1 (Blanchet and Murthy [21, Thm. 1]). Assume Ω is a Polish
space and fix µ ∈ P(Ω). Let c : Ω ×Ω → R̄≥0 be lower semicontinuous with
c(ω, ω) = 0 for all ω ∈ Ω, and f ∈ L1(Ω,µ) is upper semicontinuous. Then
for all r ≥ 0 there is

sup
ν∈Bc(µ,r)

∫
f dν = inf

λ≥0

(
λr +

∫
fλc dµ

)
. (6.5)

The necessity for such duality results like Lemma 6.1 is because while
the supremum on the left hand side of (6.5) is over a (usually) infinite
dimensional space, the right hand side only involves only a finite dimensional
optimisation. The generalised conjugate in (6.5) also hides an optimisation,
but when the outcome space Ω is finite dimensional, this too is a finite
dimensional problem.

The following lemma is sometimes stated a consequence of, or in the proof
of, the McShane–Whitney extension theorem [83, 139], but it is immediate
to observe.

Lemma 6.2. Let X be a set. Assume c : X ×X → R̄≥0 satisfies c(x, x) = 0
for all x ∈ X, f : X → R. Then

1 ≥ lipc(f) ⇐⇒ ∀y∈X : f(y) = sup
x∈X

(
f(x)− c(x, y)

)
.

Proof. Suppose 1 ≥ lipc(f). Fix y0 ∈ X. Then

∀x∈X : f(x)− c(x, y0) ≤ f(y0),

with equality when x = y0. Next suppose

∀y∈X : f(y) = sup
x∈X

(
f(x)− c(x, y)

)
,

then

∀x,y∈X : f(y) ≥ f(x)− c(x, y) ⇐⇒ ∀x,y∈X : f(x)− f(y) ≤ c(x, y)

⇐⇒ 1 ≥ lipc(f),

as claimed. �
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Lemma 6.3. Assume X is a vector space. Suppose c : X → R̄≥0 satisfies
c(0) = 0, and f : X → R is convex. Then

1 ≥ lipc(f) ⇐⇒ ∀ε≥0 : ∂εf(X) ⊆ ∂εc(0).

Proof. Suppose 1 ≥ lipc(f). Then f(x) − f(y) ≤ c(x − y) for all x, y ∈ X.
Fix ε ≥ 0, x ∈ X and suppose x∗ ∈ ∂εf(x). Then

∀y∈X : 〈y − x, x∗〉 − ε ≤ f(y)− f(x) ≤ c(y − x)

⇐⇒ ∀y∈X : 〈y, x∗〉 − ε ≤ f(y + x)− f(x) ≤ c(y)− c(0),

because c(0) = 0. This shows x∗ ∈ ∂εc(0).
Next assume ∂εf(x) ⊆ ∂εc(0) for all ε ≥ 0 and x ∈ X. Because f is

not extended-real valued, it is continuous on all of X [via 149, Cor. 2.2.10],
∂f(x) is nonempty for all x ∈ X [via 149, Thm. 2.4.9]. Fix an arbitrary
x ∈ X. Then ∅ 6= ∂f(x) ⊆ ∂c(0), and

∃x∗∈∂f(x)∀y∈X : f(x)− f(y) ≤ 〈x− y, x∗〉

=⇒ ∀y∈X : f(x)− f(y) ≤ 〈x− y, x∗〉 ≤ c(x− y),
(6.6)

where the implication is because x∗ ∈ ∂c(0) and c(0) = 0. Since the choice
of x in (6.6) was arbitrary, the proof is complete. �

Lemma 6.4. Assume X is a locally convex Hausdorff topological vector
space. Suppose c : X → R̄ is closed sublinear, and f : X → R is closed
convex. Then there is

∀y∈X : sup
x∈X

(
f(x)− c(x− y)

)
=




f(y) 1 ≥ lipc(f)

∞ otherwise.

Proof. Fix an arbitrary y0 ∈ X. From Lem. 6.3 we know

1 ≥ lipc(f) ⇐⇒ ∀ε≥0 : ∂εf(X) ⊆ ∂εc(0).

Assume ∂εf(X) ⊆ ∂εc(0) for all ε ≥ 0: Consequentially ∂εf(y0) ⊆ ∂εc(0) =
∂εc( · − y0)(y0) for every ε ≥ 0. From the usual difference-convex global
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ε-subdifferential condition [64, Thm. 4.4] it follows that

inf
x∈X

(
c(x− y0)− f(x)

)
= c(y0 − y0)︸ ︷︷ ︸

0

−f(y0) = −f(y0),

where we note that c(y0 − y0) = c(0) = 0 because c is sublinear.

Assume ∂εf(X) 6⊆ ∂εc(0) for some ε ≥ 0: By hypothesis there exists ε0 ≥ 0,
x0 ∈ X, and x∗0 ∈ X∗ with

x∗0 ∈ ∂ε0f(x0) and x∗0 /∈ ∂ε0c(0).

Using the Toland [128] duality formula [viz. 63, Cor. 2.3] and the usual
calculus rules for the Fenchel conjugate [e.g. 149, Thm. 2.3.1] we have

inf
x∈X

(
c(x− y0)− f(x)

)
= inf

x∗∈X∗

(
f∗(x∗)− (c( · − y0))∗(x∗)

)

= inf
x∗∈X∗

(
f∗(x∗)− c∗(x∗) + 〈y0, x

∗〉
)

≤ f∗(x∗0)− c∗(x∗0) + 〈y0, x
∗
0〉

≤ ε0 + 〈x0, x
∗
0〉 − f(x0)− c∗(x∗0) + 〈y0, x

∗
0〉

= ε0 + 〈x0 + y0, x
∗
0〉 − f(x0)︸ ︷︷ ︸

<∞

−c∗(x∗0), (6.7)

where the second inequality is because x∗0 ∈ ∂ε0f(x0).
We have assumed x∗0 /∈ ∂εc(0) ⊇ ∂c(0). Because c is sublinear, c∗ = ι∂c(0)

[149, Thm. 2.4.14 (i)], and therefore c∗(x∗0) =∞. Then (6.7) yields

inf
x∈X

(
c(x− y0)− f(x)

)
≤ −∞,

which completes the proof. �

Theorem 6.5 subsumes many existing results [48, Cor. 2 (iv), 29, §3.2,
123, various, 120, Thm. 14] with a great deal more generality, applying to a
very broad family of models, loss functions, and outcome spaces.

Theorem 6.5. Assume X is a separable Fréchet space and fix µ ∈ P(X).
Suppose c : X → R̄≥0 is closed sublinear, and f ∈ L1(X,µ) is upper
semicontinuous with lipc(f) < ∞. Then for all r ≥ 0, there is a number
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∆(f, µ, r, c) ≥ 0 so that

sup
ν∈Bc(µ,r)

∫
f dν +∆(f, µ, r, c) =

∫
f dµ+ r lipc(f). (6.8)

Moreover

0 ≤ ∆(f, µ, r, c) ≤ r lipc(f)−
[
r lipc(co f)−

∫
(f − co f) dµ

]
+
, (6.9)

where [ · ]+
def= max{ · , 0}, so that when f is closed convex ∆(f, µ, r, c) = 0.

Observing that ∆(f, µ, r, c) ≥ 0, the equality (6.8) yields the upper
bound

sup
ν∈Bc(µ,r)

∫
f dν ≤

∫
f dµ+ r lipc(f). (6.10)

By controlling ∆(f, µ, r, c) we are able to guarantee that the regularised risk
in (Reg) is a good surrogate for the robust risk. The number ∆(f, µ, r, c)
itself is quite hard to measure (since it would require computing the robust
risk directly), which is why we upper bound it in (6.9). Proposition 6.6
shows the slackness bound (6.9) is tight for a large family of distributions
after observing

∀f∈L0(X,R̄)∀µ∈P(X) :
∫

(f − co f) dµ ≤ ρ(f).

Which yields

r lipc(f)−
[
r lipc(co f)−

∫
(f − co f) dµ

]
+

≤ r lipc(f)−
[
r lipc(co f)− ρ(f)

]
+
,

for all f ∈ L0(X, R̄), µ ∈ P(X), and r ≥ 0.

Proposition 6.6. Let X be a separable Fréchet space with X0 ⊆ X. Suppose
c : X → R̄≥0 is closed sublinear, and f ∈

⋂
µ∈P(X0) L1(X,µ) is upper

semicontinuous, has lipc(f) <∞, and attains its maximum on X0. Then

∀r≥0 : sup
µ∈P(X0)

∆(f, µ, r, c) = r lipc(f)−
[
r lipc(co f)− ρ(f)

]
+
.
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Remark 6.7. In particular, for any compact subset of a Fréchet space X0

(such as the set of n-dimensional images, X0 = [0, 1]n ⊆ Rn) the bound
(6.8) is tight with respect to the set P(X0) for any upper semicontinuous
f ∈

⋂
µ∈P(X0) L1(X,µ). Since the behaviour of f away from X0 is not

important, the c-Lipschitz constant in (6.8) need only be computed here. To
do so one may replace c with c̃, where c̃(x) = c(x) for x ∈ X0 and c̃(x) =∞
for x ∈ X \X0, and observe lipc̃(f) ≤ lipc(f), because c̃ ≥ c.

The extension of Theorem 6.5 for robust classification in the absence of
label noise is straight-forward:

Corollary 6.8. Assume X is a separable Fréchet space and Y is a topological
space. Fix µ ∈ P(X×Y ). Assume c : (X×Y )×(X×Y )→ R̄≥0 satisfies

c((x, y), (x′, y′)) =




c0(x− x′) y = y′

∞ y 6= y′,

where c0 : X → R̄≥0 is closed sublinear, and f ∈ L1(X × Y, µ) is upper
semicontinuous with lipc(f) <∞. Then for all r ≥ 0 there is (6.8) and (6.9),
where the closed convex hull is interpreted as co(f)(x, y) def= co(f( · , y))(x).

It is the first time to our knowledge that the slackness in (6.9) has been
characterised tightly. Clearly from Theorem 6.5 the upper bound (6.10) is
tight for closed convex functions, but Proposition 6.6 shows it is also tight
for a large family of nonconvex functions and measures — particularly the
upper semi-continuous loss functions on a compact set, with the collection of
probability distributions supported on that set.

Proof of Theorem 6.5. (6.8): Since c is assumed sublinear, it is positively
homogeneous and there is c(x, x) = c(x − x) = c(0) = 0 for all x ∈ X.
Therefore we can apply Lem. 6.1 and Lem. 6.2 to obtain

sup
ν∈Bc(µ,r)

∫
f dν L6.1= inf

λ≥0

(
rλ+

∫
fλc dµ

)

≤ inf
λ≥lipc(f)

(
rλ+

∫
fλc dµ

)

L6.2= r lipc(f) +
∫
f dµ,

(6.11)
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and therefore ∆(f, µ, r, c) ≥ 0.

(6.9): Thus observing that co f ≤ f , from Lem. 6.4 we find for all x ∈ X

sup
λ∈[0,∞)

(
f(x)− fλc(x)− rλ

)

= sup
λ∈[0,∞)

(
f(x)− sup

y∈X

(
f(y)− λc(x− y)

)
− rλ

)

= sup
λ∈[0,∞)

inf
y∈X

(
f(x)− f(y) + λc(x− y)− rλ

)

≤ sup
λ∈[0,∞)

inf
y∈X

(
f(x)− co f(y) + λc(x− y)− λr

)

L6.4= sup
λ∈[0,∞)




f(x)− co f(x)− λr lipc(co f) ≤ λ

−∞ lipc(co f) > λ

= f(x)− co f(x)− r lipc(co f). (6.12)

Similarly, for all x ∈ X there is

sup
λ∈[0,∞)

(
f(x)− fλc(x)− rλ

)
≤ sup

λ∈[0,∞)

(
f(x)− fλc(x)

)
+ sup
λ∈[0,∞)

(
−rλ

)

= sup
λ∈[0,∞)

(
f(x)− fλc(x)

)

= sup
λ∈[0,∞)

inf
y∈X

(
f(x)− f(y) + λc(x− y)

)

≤ inf
y∈X

sup
λ∈[0,∞)

(
f(x)− f(y) + λc(x− y)

)

= inf
y∈X




∞ c(x− y) > 0

0 c(x− y) = 0

= 0. (6.13)

Together, (6.12) and (6.13) show
∫

sup
λ∈[0,∞)

(
f − fλc − rλ

)
dµ

≤ min
{∫

(f − co f) dµ− r lipc(co f), 0
}
. (6.14)
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Then

∆(f, µ, r, c) =
(
r lipc(f) +

∫
f dµ

)
− sup
ν∈Bc(µ,r)

∫
f dν

(6.11)=
(
r lipc(f) +

∫
f dµ

)
− inf
λ∈[0,∞)

(
rλ−

∫
fλc dµ

)

= r lipc(f) + sup
λ∈[0,∞)

∫ (
f − fλc − λr

)
dµ

≤ r lipc(f) +
∫

sup
λ∈[0,∞)

(
f − fλc − λr

)
dµ

(6.14)
≤ r lipc(f) + min

{∫
(f − co f) dµ− r lipc(co f), 0

}
,

which implies (6.9). (Thm. 6.5) �

Proof of Proposition 6.6. Let x0 ∈ X0 be a point at which f(x0) = sup f(X0).
Then costc(δx0 , δx0) = 0 ≤ r, and supν∈Bc(δx0 ,r)

∫
f dν = f(x0). Therefore

∆(f, δx0 , r, c) = r lipc(f) + f(x0)− f(x0) = r lipc(f). (6.15)

And so we have

r lipc(f)
(6.15)
≤ sup

µ∈P(X0)
∆(f, µ, r, c)

T6.5
≤ r lipc(f)−max

{
r lipc(co f)− ρ(f), 0

}

≤ r lipc(f),

which implies the claim. (Prop. 6.6) �

6.3 Adversarial learning

Szegedy et al. [126] observe that deep neural networks, trained for image
classification using empirical risk minimisation, exhibit a curious behaviour
whereby an image, x ∈ Rn, and a small, imperceptible amount of noise,
εx ∈ Rn, may found so that the network classifies x and x+ εx differently.
Imagining that the troublesome noise vector is sought by an adversary seeking
to defeat the classifier, such pairs have come to be known as adversarial
examples [54, 73, 88].
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Let X be a linear space and Y a topological space. Fix µ ∈ P(X × Y ),
r ≥ 0, and let d be a metric on X. The following objective has been proposed
[viz. 25, 29, 79, 121] as a means of learning classifiers that are robust to
adversarial examples

∫
sup

ε∈Bd(0,r)
f(x+ ε, y)µ(dx× dy) =

∫
sup

ω̃∈Bd̃(ω,r)
f(ω̃)µ(dω), (6.16)

where f : X × Y → R̄ is the loss of some classifier, and in the equality we
extend d to a metric on Ω def= X × Y with

d̃((x, y), (x′, y′)) def=




d(x, x′) y = y′

∞ y 6= y′.

The goal of this section is to prove a strong result linking (6.16) to the
distributionally robust risk in (rB). We begin with Proposition 6.9 which
verifies (6.16) is well defined. We then have a technical lemma before the
main result, Theorem 6.11, is proven.

For a Borel measure µ ∈ P(Ω), the completion of B(Ω) with respect
to µ is denoted Bµ(Ω). The universal sigma algebra on Ω is U(Ω) def=
⋂
µ∈P(Ω) Bµ(Ω). We say a function f : X → Y is universally measurable

if for every open U ⊆ Y there is f−1(U) ∈ U(X). Universally measurable
functions can be integrated under a Borel measure because for µ ∈ P(X),
f : X → R̄ is universally measurable if and only if there is a unique Borel
fµ : X → R̄ with f(x) = fµ(x) for µ-almost every x ∈ X [19, Lem. 7.27],
and so we let

∫
f dµ def=

∫
fµ dµ. The push forward of the measure µ ∈ P(X)

by a measurable function f : X → Y is the measure f#µ ∈ P(Y ) with
f#µ(dy) def= µf−1(dy).

Proposition 6.9. If f : Ω → R̄, g : Ω → R≥0, and c : Ω × Ω → R̄≥0 are
Borel, then the function ω 7→ supω′∈Bc(ω,g(ω)) f(ω′) is universally measurable.

Proof. Let T (ω1, ω2) def= ιBc(ω1,c(ω1))(ω2) and fix ω1 ∈ Ω. Since Bc(ω1, r) is
closed for every r ≥ 0, the level sets

∀u∈R : lev>u T (ω1, · ) =




Ω \ Bd(ω1, g(ω1)) u ≥ 0

Ω u < 0,
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are all Borel, therefore T (ω1, · ) is Borel for every ω1 ∈ Ω.
Let cω2(ω1) def= c(ω1, ω2), fix ω2 ∈ Ω and consider

lev=0 T ( · , ω2) = {ω1 ∈ Ω | c(ω1, ω2) ≤ g(ω1)}

= {ω1 ∈ Ω | cω2(ω1) ≤ g(ω1)}

= {ω1 ∈ Ω | 0 ≤ g(ω1)− cω2(ω1)}

= lev≥0(g(ω1)− cω2(ω1)).

Since g and c are Borel, so is the set lev=0 T ( · , ω2). By a similar argument,
it’s clear the set lev>0 T ( · , ω2) is Borel too. This shows that T is a Borel
function. Then for all u ∈ R, using the concave convention ∞−∞ def= −∞,
we have

lev>u

(
sup

ω′∈Bc( · ,g( · ))
f(ω′)

)

= lev>u

(
sup
ω′∈Ω

(
f(ω′)− T ( · , ω′)

)
)

= proj1{(ω1, ω2) ∈ Ω ×Ω | f(ω2)− T (ω1, ω2) > u}, (6.17)

where proj1(ω1, ω2) def= ω1. Since f and T are Borel, the argument of the
projection in (6.17) is Borel too. The projection of a Borel set is universally
measurable [19, Prop. 7.39, Cor. 7.42.1], therefore ω 7→ supω′∈Bc(ω,g(ω)) f(ω′)
is universally measurable. �

Lemma 6.10 will be used to show an equality result in Theorem 6.11.

Lemma 6.10. Assume (Ω, c) is a compact Polish space and µ ∈ P(Ω) is
non-atomic. For r > 0 and ν? ∈ Bc(µ, r) there is a sequence (fi)i∈N ⊆
Aµ(r) def= {f ∈ L0(Ω,Ω) |

∫
cd(id, f)#µ ≤ r} with (fi)#µ converging at ν?

in σ(P(Ω),C(Ω)).

Proof. Let P (µ, ν) def= {f ∈ L0(X,X) | f#µ = ν}. Since µ is non-atomic and
c is continuous we have [via 101, Thm. B]

∀ν∈P(Ω) : inf
f∈P (µ,ν)

∫
cd(id, f)#µ = costc(µ, ν).

Let r? def= costc(µ, ν?), obviously r? ≤ r. Assume r? > 0, otherwise the
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lemma is trivial. Fix a sequence (εk)k∈N ⊆ (0, r?) with εk → 0. For u ≥ 0
let ν(u) def= µ+ u(ν? − µ). Then

costc(µ, ν(0)) = 0 and costc(µ, ν(1)) = r?,

and because costc metrises the σ(P(Ω),C(Ω))-topology onP(Ω) [135, Cor. 13],
the mapping u 7→ costc(µ, ν(u)) is σ(P(Ω),C(Ω))-continuous. Then by the
intermediate value theorem for every k ∈ N there is some uk > 0 with
costc(µ, ν(uk)) = r? − εk, forming a sequence (uk)k∈N ⊆ [0, 1]. Then for
every k there is a sequence (fjk)j∈N ⊆ P (µ, ν(uk)) so that (fjk)#µ

∗
⇀ ν(k)

and

lim
j∈N

∫
cd(id, fjk)#µ = inf

f∈P (µ,ν(k))

∫
cd(id, fk)#µ

= costc(µ, ν(k))

= r? − εk.

Therefore for every k ∈ N there exists jk ≥ 0 so that for every j ≥ jk
∫
c d(id, fjk)#µ ≤ r?. (6.18)

Let us pass directly to this subsequence of (fjk)j∈N for every k ∈ N so that
(6.18) holds for all j, k ∈ N. Next by construction we have ν(uk) → ν?.
Therefore (fjk)j,k∈N has a subsequence in k so that (fjk)#µ

∗
⇀ ν?. By

ensuring (6.18) is satisfied, the sequences (fjk)j∈N ⊆ Aµ(r) for every k ∈
N. �

We can now prove our main result for this section.

Theorem 6.11. Assume (X, c) is a separable Banach space. Fix µ ∈ P(X)
and for r ≥ 0 let

Rµ(r) def=
{
g ∈ L0(X,R≥0)

∣∣∣∣
∫
g dµ ≤ r

}
.

Then for f ∈ L0(Ω, R̄) and r ≥ 0 there is

sup
g∈Rµ(r)

∫
µ(dω) sup

ω′∈Bc(ω,g(ω))
f(ω′) ≤ sup

ν∈Bc(µ,r)

∫
f dν. (6.19)
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Furthermore if µ is non-atomically concentrated on a compact subset of X,
on which f is continuous with the subspace topology, then (6.19) holds as an
equality.

Remark 6.12. It’s easy to see that the left side of (6.19) upper bounds (6.16)
by observing the constant function gr ≡ r is included in the supremum over
Rµ(r).

Theorem 6.11 generalises and subsumes a number of existing results
[48, Cor. 2 (iv), 124, Prop. 3.1, 124, Prop. 3.1, 120, Thm. 12] to relate the
adversarial risk minimisation (6.16) to the distributionally robust risk in
Theorem 6.5. The previous results mentioned are all are formulated with
respect to an empirical distribution, that is, an average of Dirac masses. Of
course any finite set is compact, and so these empirical distributions satisfy
the concentration assumption.

Proof of Theorem 6.11. When r = 0, the set Rµ(r) consists of the set of
functions g which are 0 µ-almost everywhere, in which case Bc(x, g(x)) = {0}
for µ-almost all x ∈ X. Thus the left hand side of (6.19) is equal to
∫
f(x)µ(dx). Since c is a norm, c(0) = 0, and by a similar argument there is

equality with the right hand side. We now complete the proof for the cases
where r > 0.

(6.19): For g ∈ Rµ(r), let Γg : X ⇒ X denote the set-valued mapping with
Γg(x) def= Bc(x, g(x)). Let L0(X,Γg) denote the set of Borel a : X → X so
that a(x) ∈ Γg(x) for µ-almost all x ∈ X. Let Aµ(r) def=

⋃
g∈Rµ(r) L0(X,Γg).

Clearly for every a ∈ Aµ(r) there is

r ≥
∫
c(x, a(x)) dµ =

∫
cd(id, a)#µ,

which shows {a#µ | a ∈ Aµ(r)} ⊆ Bc(µ, r). Then if there is equality in (6.20),
we have

sup
g∈Rµ(r)

∫
sup

x′∈Γg(x)
f(x) = sup

g∈Rµ(r)
sup

a∈L0(X,Γg)

∫
f da#µ (6.20)

= sup
a∈Aµ(r)

∫
f da#µ

≤ sup
ν∈Bc(µ,r)

∫
f dν,
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which proves the inequality (6.19).

(6.20): To complete the proof we will now justify the exchange of integra-
tion and supremum. The set L0(X,Γg) is trivially decomposable [50, see
the remark at the bottom of p. 323, Def. 2.1]. By assumption f is Borel
measurable. Since f is measurable, any decomposable subset of L0(X,X) is
f -decomposable [50, Prop. 5.3] and f -linked [50, Prop. 3.7 (i)]. Giner [50,
Thm. 6.1 (c)] therefore allows us to exchange integration and supremum in
(6.20).

Equality in (6.19): Under the additional assumptions there exists ν? ∈ P(Ω)
with [via 21, Prop. 2]

∫
f dν? = sup

ν∈Bc(µ,r)

∫
f dν.

The compact subset where µ is concentrated and non-atomic is a Polish
space with the Banach metric. Therefore using Lem. 6.10 there is a sequence
(fi)i∈N ⊆ Aµ(r) so that

lim
i∈N

∫
fi dµ =

∫
f dν? = sup

ν∈Bc(µ,r)

∫
f dν,

proving equality in (6.19). (Thm. 6.11) �

6.4 Conclusion

Risk minimisation can fail to be optimal when there is some misspecification
of the distribution, such as when working with its empirical counterpart.
Therefore we must turn to other techniques in order to ensure stability
when learning a model. The robust Bayes framework provides a systematic
approach to these problems, however it leaves open the choice as to which
uncertainty set is most appropriate. We avoid this question by showing that
the popular Lipschitz regularisation corresponds to robust Bayes using a
transportation-cost-based uncertainty set. To further justify this choice of
uncertainty set we have seen that there are strong connections linking the
transportation cost uncertainty set to phenomenon of adversarial examples.

To do this we have borrowed tools from the nonconvex optimisation
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literature. In particular the closed convex envelope appears to be of somewhat
novel application in this area. By its introduction we have been able to
maintain tractability while making minimal assumptions about the model
class or loss function so that this theory can be applied to popular exotic
model classes such as deep neural networks.





Symbols

A+ The dual cone of the set A.
A⊥ The orthogonal space of the set A.
A− The negative of the dual cone of the set A.
R̄ The set [−∞,+∞].
[k] The set {1, 2, . . . , k}.
A∞ The asymptotic cone of the set A.
B(L) The collection of Borel subsets of L.
bc(A) The barrier cone of the set A.
C(X) The set of real, continuous functions on X.
cl(A), A The closure of the set A.
co(A) The convex hull of the set A.
cl*(A), A∗ The weak closure of the set A.
Bd(µ, r) The d-metric ball of radius r centered at µ.
costc(µ, ν) The c-transportation cost of transporting the mass of µ to ν.
∂̂f The Moreau–Rockerfellar superdifferential of the function f .
∂εf The approximate or ε-subdifferential of the function f .
∂f The Moreau–Rockerfellar subdifferential of the function f .
δx The Dirac measure at x.
dom f The domain of the mapping f .
epi(f) The epigraph of the function f .
evx The evaluation operator with evx(f)(y) def= f(x, y) where f ∈

L0(X × Y ).
A3B The harmonic sum of A and B.
ιA The indicator function of the set A.
Lp(Ω, λ) The Lebesgue space of λ-measurable functions f : Ω → R for

which |f |p <∞.
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120 Symbols

L0(X,Y ) The set of Borel mappings X → Y .
lev≤c f The c lower level set of the function f .
lipc(f) The least c-Lipschitz constant of the function f .
M0(L) The collection of subsets of L which are convex, L≥0-full,

bounded, contain both 0 and an order unit of L≥0.
M∞(K) The collection of of subsets M of the cone K which are closed,

convex, containing an order unit of K and have posM =
K \ {0}.

⊕M (A1, . . . , Am) The M -sum of the sets A1, . . . , Ak.
�M (A1, . . . , Am) The dual M -sum of the sets A1, . . . , Ak.
µA The gauge of the set A.
NA The normal cone of the set A.
N(x) The neighbourhood filter at x.
νA The co-gauge of the set A.
P(L) The set of probability measures on L.
L≥0 The positive cone in the ordered vector space (L,≥).
Π(µ, ν) The set of couplings joining µ to ν..
A◦ The polar of the set A.
pos(A) The conic hull of the set A.
proj1 The operator sending (x1, x2) 7→ x1.
ρ(f) The lack of convexity of the function f .
σA The support of the set A.
σ(L,L∗) The weakest topology on L that generates L∗.
sp(l) The superprediction set of the loss function l.
τ(L,L∗) The strongest topology on L that generates L∗, more com-

monly known as the Mackey topology.
τ≥(K) The order topology on L generated by the cone K.
U(X) The universal sigma algebra on X.
AO The antipolar of the set A.
ζA The co-support of the set A.
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