
Efficient Resource Allocation for
Throughput Maximization in

Next-Generation Networks

Meitian Huang

March 2021

A thesis submitted for the degree of
Doctor of Philosophy at

the Australian National University

To Music,
for the encouragement and smiles she gave me.

Declaration

This thesis is a presentation of the original work except where otherwise stated. I com-
pleted this work jointly with my supervisor, Professor Weifa Liang. My contribution
to the work is around 85%.

Meitian Huang
March 2021

v

Acknowledgments

This thesis is the result of three and a half years of work. During this period, I

have been accompanied and supported by many people. I would like to express my

gratitude to them.

First and foremost I would like to express my sincere gratitude to my supervisor,

Professor Weifa Liang, for the continuous support of my Ph.D. study and research

with his excellent guidance, patience, and immense knowledge. He taught and guided

me to become a qualified computer scientist through expert supervision with his keen

insight and valuable experience. I thank him for the systematic guidance and great

effort he put into training me in the scientific field.

I would like to thank the other members in my supervisor panel, Professor Bren-

dan McKay and Professor Song Guo for the support to make this thesis possible.

I wish to thank the people in the Research School of Computer Science at the

Australian National University, for their generous help and assistance in various

aspects. Janette Rawlinson, James Fellows, Elspeth Davies, Trina Merrell, Harriet King,

and Christie Liu deserve to be especially appreciated.

I am grateful to my friends, Zichuan Xu, Qiufen Xia, Wenzheng Xu, Xiaojiang

Ren, Narjess Afzaly, Mojtaba Rezvani, Yu Ma, Mike Jia, Dongxu Li, Junyi Xu, Haotian

Chang, Yang Liu, Jing Li, Yanbo Li, Zhenyue Qin, Jing Xie, Haitao Li, Siyuan Zhang

et al. for their great friendship and kind help during my years at the ANU.

I express my special thankfulness to my beloved wife Yuxi Sun, for her love, sup-

port, tolerance, and accompany in my life. I want to express the profound gratitude

to my beloved parents, Guangde Huang and Wenjing Chai, and my younger brother,

Xintian Huang, for their love and continuous support. Without their love and encour-

agement, this thesis could not have been completed.

vii

Finally, thanks to the people who receive no thanks.

So long, and thanks for all the fish.

Publications

Journal Publications

[1] Meitian Huang, Weifa Liang, Xiaojun Shen, Yu Ma, and Haibin Kan. Reliability-

Aware Virtualized Network Function Services Provisioning in Mobile Edge Comput-

ing. IEEE Transactions on Mobile Computing, Vol. 19, No. 11, pp. 2699–2713, 2020.

[2] Meitian Huang, Weifa Liang, Yu Ma, and Song Guo. Maximizing Throughput of

Delay-Sensitive NFV-Enabled Request Admissions via Virtualized Network Function

Placement. To appear in IEEE Transactions on Cloud Computing, Vol. XX, Acceptance

date: May 2, 2019, DOI: 10.1109/TCC.2019.2915835.

[3] Meitian Huang, Weifa Liang, Zichuan Xu, Wenzheng Xu, Song Guo, and Yinlong

Xu. Online Unicasting and Multicasting in Software-Defined networks. Computer

Networks, Vol. 132, pp. 26–39, February 2018.

[4] Meitian Huang, Weifa Liang, Zichuan Xu, and Song Guo. Efficient Algorithms for

Throughput Maximization in Software-Defined Networks with Consolidated Middle-

boxes. IEEE Transactions on Network and Service Management, Vol. 14, No. 3, pp. 631–645,

July 2017.

[5] Yu Ma, Weifa Liang, Meitian Huang, Wenzheng Xu, and Song Guo. Virtual Net-

work Function Service Provisioning in MEC via Trading Off the Usages Between Com-

puting and Communication Resources. To appear in IEEE Transactions on Cloud Com-

puting, Vol. XX, No. XX, Acceptance date: Dec. 5, 2020, DOI: 10.1109/TCC.2020.3043313.

[6] Jing Li, Weifa Liang, Meitian Huang, and Xiaohua Jia. Reliability-Aware Network

Service Provisioning In Mobile Edge-Cloud Networks. IEEE Transactions on Parallel

and Distributed Systems (TPDS), Vol. 31, No. 7, pp. 1545–1558, 2020.

[7] Zichuan Xu, Weifa Liang, Meitian Huang, Mike Jia, Song Guo, and Alex Galis.

Efficient NFV-Enabled Multicasting in SDNs. IEEE Transactions on Communications,

ix

Vol. 67, No. 3, pp. 2052–2070, 2019.

[8] Mike Jia, Weifa Liang, Meitian Huang, Zichuan Xu, and Yu Ma. Routing Cost

Minimization and Throughput Maximization of NFV-Enabled Unicasting in Software-

Defined Networks. IEEE Transactions on Network and Service Management, Vol. 15, No. 2,

pp. 732–745, June 2018.

[9] Mike Jia, Weifa Liang, Zichuan Xu, Meitian Huang, and Yu Ma. QoS-Aware

Cloudlet Load Balancing in Wireless Metropolitan Area Networks. IEEE Transactions

on Cloud Computing, Vol. 8, No. 2, pp. 623–634, 2020.

[10] Zichuan Xu, Weifa Liang, Mike Jia, Meitian Huang, and Guoqiang Mao. Task

Offloading with Network Function Services in a Mobile Edge-Cloud Network. IEEE

Transactions on Mobile Computing, Vol. 18, No. 11, pp. 2672–2685, 2019.

Conference Publications

[1] Meitian Huang, Weifa Liang, Yu Ma, and Song Guo. Throughput Maximization

of Delay-Sensitive Request Admission via Virtualized Network Function Placements

and Migrations. Proceedings of 2018 IEEE International Conference on Communications

(ICC), May 2018.

[2] Meitian Huang and Weifa Liang. Incremental SDN-Enabled Switch Deployment

for Hybrid Software-Defined Networks. Proceedings of 2017 IEEE International Confer-

ence on Computer Communications and Networks (ICCCN), July 2017.

[3] Meitian Huang, Weifa Liang, Zichuan Xu, Mike Jia, and Song Guo. Throughput

Maximization in Software-Defined Networks with Consolidated Middleboxes. Pro-

ceedings of 2016 IEEE International Conference on Local Computer Networks (LCN), pp.

298–306, November 2016.

[4] Meitian Huang, Weifa Liang, Zichuan Xu, Wenzheng Xu, Song Guo, and Yinlong

Xu. Dynamic Routing for Network Throughput Maximization in Software-Defined

Networks. Proceedings of 2016 IEEE International Conference on Computer Communica-

tions (INFOCOM), pp. 2545–2553, April 2016.

[5] Jing Li, Weifa Liang, Meitian Huang, and Xiaohua Jia. Providing Reliability-Aware

Virtualized Network Function Services for Mobile Edge Computing. Proceedings of

39th IEEE Intl Conf on Distributed Computing Systems (ICDCS), July, 2019.

[6] Yu Ma, Weifa Liang, Meitian Huang, Yang Liu, and Song Guo. Virtual network

function provisioning for offloading tasks in MEC by trading off computing and

communication resource usages. Proc of IEEE INFOCOM WKSHP IECCO, 2019.

[7] Yu Ma, Weifa Liang, Meitian Huang, and Song Guo. Profit Maximization of NFV-

Enabled Request Admissions in SDNs. Proceedings of 2018 IEEE Global Communications

Conference (GLOBECOM), December 2018.

[8] Mike Jia, Weifa Liang, Meitian Huang, Zichuan Xu, and Yu Ma. Throughput

Maximization of NFV-Enabled Unicasting in Software-Defined Networks. Proceedings

of 2017 IEEE Global Communications Conference (GLOBECOM), December 2017.

[9] Zichuan Xu, Weifa Liang, Meitian Huang, Mike Jia, Song Guo, and Alex Galis.

Approximation and Online Algorithms for NFV-Enabled Multicasting in SDNs. Pro-

ceedings of 2017 International Conference on Distributed Computing Systems (ICDCS), pp.

625–634, June 2017.

[10] Mike Jia, Weifa Liang, Zichuan Xu, and Meitian Huang. Cloudlet Load Balanc-

ing in Wireless Metropolitan Area Networks. Proceedings of 2016 IEEE International

Conference on Computer Communications (INFOCOM), pp. 730–738, April 2016.

Abstract

Software-Defined Networking (SDN) and Network Function Virtualization (NFV)

have emerged as the foundation of the next-generation network architecture by in-

troducing great flexibility and network automation capabilities, including automatic

response to faults and load changes and programmatic provision of network resources

and connections. It has been envisioned that the SDN- and NFV-based next-generation

network architecture will play a critical role in providing network services to users,

where the desired network services, including data transfer and policy enforcement,

are fulfilled by allocating network resources using virtualization technologies. How-

ever, the disparity between ever-growing user demands and scarce network resources

makes resource allocation exceptionally central to the performance of a network

service, because only by effectively allocating these scarce resources can a network

service provider satisfy users and maximize the gain from running the service.

In this thesis, we study efficient resource allocation for network throughput max-

imization in next-generation networks, while meeting user resource demands and

Quality of Service (QoS) requirements, subject to network resource capacities. This

however poses great challenges, namely, (1) how to maximize network throughput,

considering that both SDN-enabled switches and links are capacitated, (2) how to

maximize the network throughput while taking into account network function and

QoS requirements of users, (3) how to dynamically scale and readjust resource allo-

cation for user requests, and (4) how to provision a network service that can satisfy

user reliability requirements.

To address these challenges, we provide a thorough study of network throughput

maximization problems in the context of the next-generation network architecture, by

formulating the problems as optimizations problems and developing novel optimiza-

xiii

xiv

tion frameworks and algorithms for the problems. Specifically, this thesis makes the

following contributions.

Firstly, we consider dynamic user request admissions where user requests arrive

one by one and the knowledge of future request arrivals is not given as a priori. We de-

velop a novel cost model that accurately captures the usage costs of network resources

and propose online algorithms with provable performance guarantees. We are the

very first to study the problem and to devise online algorithms with performance

guarantees for the problem. In addition, the algorithm design and analysis techniques

may be of independent interests and can be applied to other optimization problems

in different contexts.

Secondly, we study the problem of realizing user requests with network function

requirements, with the objective of maximizing network throughput, while meeting

user QoS requirements, subject to resource capacity constraints. For this problem, we

develop two algorithms that strive for the trade-off between the accuracy/quality of a

solution and the running time of obtaining the solution. To the best of our knowledge,

we are the first to formulate a novel optimization problem by jointly taking into

account data traffic routing and network function placement, while meeting different

user QoS requirements.

Thirdly, we investigate maximization of network throughput by dynamically scal-

ing network resources while minimizing the overall operational cost of a network.

We propose a unified framework for two types of resource scaling – vertical scaling

and horizontal scaling. Through non-trivial reductions of the problem of concern into

several classic problems, we propose an algorithm that has been empirically demon-

strated to deliver near-optimal solutions. It is worth noting that unlike existing studies

that only dealt with either type of scaling, the proposed framework jointly considers

both types of scalings.

Fourthly, we deal with the problem of reliability-aware provisioning of network

resources for users, with the aim of maximizing network throughput. We devise an

xv

approximation algorithm with a logarithmic approximation ratio for the general case

of this problem. We also develop constant-factor approximation and exact algorithm

for two special cases of the problem, respectively. The formulated problem is a gen-

eralization of several classic optimization problems. To the best of our knowledge,

there is no prior study on similarly formulated problems, and this problem has broad

potential applications in other areas as well.

Finally, in addition to extensive theoretical analyses, we also evaluate the perfor-

mance of proposed algorithms empirically through experimental simulations based

on real and synthetic datasets. Experimental results show that the proposed algo-

rithms significantly outperform existing algorithms.

xvi

Contents

Acknowledgments vii

Publications ix

Abstract xiii

1 Introduction 1

1.1 Next-Generation Network Architecture 1

1.1.1 Software-Defined Networking . 2

1.1.2 Network Function Virtualization 3

1.1.3 The Synergy between Software-Defined Networking and Net-

work Function Virtualization . 5

1.2 Resource Allocation for Network Throughput Maximization 6

1.2.1 Resource Allocation in Software-Defined Networking 6

1.2.2 Resource Allocation for Virtualized Network Functions 7

1.3 Challenges of Resource Allocation in Next-Generation Networks 9

1.4 Research Topics and Aims . 12

1.4.1 Network Throughput Maximization of User Requests in Software-

Defined Networks . 13

1.4.2 Network Throughput Maximization of User Requests with Net-

work Function Requirements . 16

1.4.3 Dynamic Adjustment of Resource Allocation via Scalings 19

1.4.4 Reliability-Aware Resource Allocation 22

1.5 Thesis Contributions . 24

1.6 Thesis Overview . 26

xvii

xviii Contents

2 Online Unicasting and Multicasting in Software-Defined Networks 27

2.1 Introduction . 27

2.2 Preliminaries . 30

2.2.1 System Model . 30

2.2.2 TCAM and Routing Rule Matching in SDNs 30

2.2.3 User Routing Requests . 31

2.2.4 Competitive Ratios of Online Algorithms 32

2.2.5 Problem Definitions . 32

2.3 The Usage Costs of Resources of Links and Nodes 33

2.4 An Online Algorithm for Dynamic Unicast Routing 34

2.4.1 Online Algorithm . 35

2.4.2 Algorithm Analysis . 38

2.5 An Online Algorithm for Multicast Routing 47

2.5.1 Online Algorithm . 48

2.5.2 Algorithm Analysis . 49

2.6 Performance Evaluation . 57

2.6.1 Experimental Environment Settings 57

2.6.2 Performance Evaluation of Different Algorithms 58

2.6.3 Parameter Impacts on Algorithmic Performance 59

2.6.4 Impact of Request Implementation Durations on Algorithm Per-

formance . 62

2.7 Summary . 64

3 Throughput Maximization in Software-Defined Networks with Consoli-

dated Middleboxes 65

3.1 Introduction . 65

3.2 Preliminaries . 67

3.2.1 System Model . 67

3.2.2 User Requests . 68

Contents xix

3.2.3 Problem Definition . 69

3.2.4 NP-Hardness . 70

3.3 Integer Linear Program . 72

3.4 A Heuristic Algorithm . 74

3.4.1 A Novel Cost Model of Resource Usages and the Construction

of an Auxiliary Graph . 74

3.4.2 Algorithm . 76

3.4.3 Algorithm Analysis . 80

3.5 A Faster Heuristic Algorithm . 82

3.5.1 Overview . 82

3.5.2 Algorithm . 83

3.5.3 Algorithm Analysis . 85

3.6 An Online Algorithm . 87

3.7 Performance Evaluation . 88

3.7.1 Experimental Environment Settings 88

3.7.2 Performance of Different Algorithms within One Time Slot . . . 89

3.7.3 Algorithm Performance within a Finite Time Horizon 93

3.7.4 Impact of Request Durations on the Performance of Different

Online Algorithms . 94

3.8 Summary . 97

4 Virtualized Network Function Placements for Delay-Sensitive Network Func-

tion Virtualization-Enabled Requests 99

4.1 Preliminaries . 103

4.1.1 System model . 103

4.1.2 Virtualized network functions . 104

4.1.3 User requests . 104

4.1.4 Dynamic admissions of user requests 105

4.1.5 Vertical and horizontal scalings . 106

xx Contents

4.1.6 The operational cost . 108

4.1.7 Problem definition . 109

4.1.8 NP-hardness of the defined problem 110

4.2 Integer Linear Programming . 111

4.3 Heuristic Algorithm . 114

4.3.1 Overview of the proposed algorithm 114

4.3.2 VNF ordering . 115

4.3.3 VNF instance placements and migrations 118

4.3.4 Algorithm . 120

4.3.5 Analysis of the proposed algorithm 121

4.4 Performance Evaluation . 124

4.4.1 Experimental environment . 124

4.4.2 Performance evaluation of different algorithms within a single

time slot . 125

4.4.3 Performance evaluation of different algorithms within a finite

time horizon . 129

4.5 Summary . 131

5 Reliability-Aware Virtualized Network Function Services Provisioning in

Mobile Edge Computing 133

5.1 Introduction . 133

5.2 Preliminaries . 136

5.2.1 Network model . 136

5.2.2 User requests . 138

5.2.3 Problem definition . 140

5.3 NP-Hardness . 140

5.4 Integer Linear Programming . 142

5.5 Approximation Algorithm for the Reliability-Aware VNF Instances Pro-

visioning Problem . 143

Contents xxi

5.5.1 Cost modeling . 143

5.5.2 Algorithm description . 144

5.5.3 Algorithm analysis . 144

5.6 Approximation and Exact Algorithms for Special Cases of the Reliability-

Aware VNF Instances Provisioning Problem 151

5.6.1 A constant approximation algorithm for a special reliability-

aware VNF instances provisioning problem 151

5.6.2 A dynamic programming algorithm for another special reliability-

aware VNF instances provisioning problem 155

5.6.2.1 A dynamic programming algorithm 155

5.7 Performance Evaluation . 162

5.7.1 Experimental environment settings 162

5.7.2 Algorithm performance evaluation for the reliability-aware VNF

instances provisioning problem 163

5.7.3 Algorithm performance evaluation for special reliability-aware

VNF instances provisioning problems 164

5.7.4 Parameter impacts on algorithm performance 167

5.8 Summary . 169

6 Conclusion and Future Works 171

6.1 Summary of Contributions . 171

6.2 Future Works . 173

xxii Contents

List of Figures

1.1 A service function chain consisting of three network functions: NAT,

Firewall, and IDS . 3

1.2 A service provider network G with a set V = {v1, v2, v3, v4, v5, v6} of

SDN-enabled switch nodes and a subset VS = {v1, v4, v5, v6} (VS ⊆ V)

of switch nodes attached with servers or data centers. 8

2.1 The construction of G′(k) = (V ′(k), E′(k)) for an SDN G = (V, E) for

online unicasting when request rk arrives. 35

2.2 The accumulated bandwidth delivered by different algorithms in net-

works. 58

2.3 The performance of Algorithm 2.1 for online unicasting by varying α

and β, when σv = σe = n− 1. 60

2.4 The performance of Algorithm 2.2 for online multicasting by varying

α and β when σv = σe = n− 1. 61

2.5 The accumulated bandwidth delivered by Algorithm 2.1 for online

unicasting and Algorithm 2.2 for online multicasting with thresholds

σv = σe = n − 1 and without the thresholds σv = σe = ∞ when

α = β = 2n. 62

2.6 The network throughput delivered by Algorithm 2.1 for online unicast-

ing and Algorithm 2.2 for online multicasting by varying the maximum

duration of admitted requests in terms of numbers of time slots. 63

3.1 An example of the SDN G constructed from an instance of the GAP

with four items and four bins. 71

xxiii

xxiv LIST OF FIGURES

3.2 An ILP formulation of the network throughput maximization problem 73

3.3 The auxiliary graph construction of G′i from G for the ith request: (a) the

original SDN G = (V, E); and (b) the corresponding auxiliary graph

G′i = (V ′i , E′i) of G. 75

3.4 Augmenting auxiliary graph G′i on the left to G′i,v on the right for switch

v ∈ Vpm . 77

3.5 An example of a bipartite graph Gb. 85

3.6 Performance of different algorithms on the GÉANT within one time

slot if the number of request is fixed. 90

3.7 Performance of different algorithms on the GÉANT within one time

slot if the number of requests follows a Poisson distribution. 91

3.8 Performance of different algorithms in the GÉANT by varying the

number of switches from 100 to 600, while the number of requests is

fixed at 160 per time slot. 92

3.9 Performance of different online algorithms in the GÉANT within a time

horizon of 200 time slots, where the number of requests arrives at each

time slot follows a Poisson distribution with a mean of 30. 93

3.10 The accumulative number of admitted requests and the running time

of different online algorithms based on algorithms ALG-1, ALG-2 and

MH for a time horizon of 200 time slots in ISP networks. 95

3.11 The accumulative number of admitted requests and running time of

different online algorithms based on algorithms ALG-1, ALG-2, and MH

with different maximum durations of requests when the network is of

the GÉANT . 96

4.1 An example network G with six nodes and two requests r1 and r2 . . . 100

4.2 An example network . 103

4.3 Different options for admitting r2 after request r1 has been admitted in

network G in Figure 4.1 . 106

LIST OF FIGURES xxv

4.4 An ILP formulation of the network throughput maximization via VNF

instance scaling problem . 112

4.5 The four service chains demanded by four requests r1, r2, r3, and r4 can

be represented by the directed graph H 116

4.6 Performance of different algorithms within one time slot, using a real

network topology with 40 nodes . 126

4.7 Performance of different algorithms within one time slot, using syn-

thetic networks of various sizes . 128

4.8 Performance of different algorithms within a finite time horizon, using

a real network topology . 130

5.1 An MEC consists of five APs and three cloudlets co-located with APs.

User devices access the network through their nearby APs and APs are

interconnected by optical links of the MEC. 137

5.2 An illustration of the proof of Theorem 5.4. 159

5.3 Performance evaluation of the approximation algorithm ALG-1 for the

reliability-aware VNF instances provisioning problem 163

5.4 Performance of different algorithms for the special case of the reliability-

aware VNF instances provisioning problem where each request re-

quires exactly one secondary instance . 164

5.5 Performance of different algorithms for the special reliability-aware

VNF instances provisioning problem . 166

5.6 Performance impact of parameter nmax on algorithm ALG-1 168

5.7 Impacts of the admission control policy and the value of α on the

performance of algorithm ALG-1 . 168

xxvi LIST OF FIGURES

Chapter 1

Introduction

The management of society’s

resources is important because

resources are scarce. Scarcity means

that society has limited resources

and therefore cannot produce all the

goods and services people wish to

have.

Principles of Economics

N. Gregory Mankiw

1.1 Next-Generation Network Architecture

The Internet has accelerated the transition into a digital society, where every device

is connected and accessible at any time and from anywhere. This trend is further

fueled by the proliferation of Mobile Edge Computing (MEC) and the Internet of

Things (IoT). Unfortunately, conventional network architectures cannot meet such

ever-growing demands. Software-Defined Networking (SDN) and Network Function

Virtualization (NFV) have been emerged and envisioned to revolutionize the net-

working landscape profoundly. Not only does SDN address the issue that the static

architecture of conventional networks is not suited for dynamic computing and stor-

age needs of today’s data centers, campuses, and carrier environments [69], but it

also promises to simplify network management and enables technology innovation

1

2 Introduction

and evolution dramatically [57, 85, 107, 136]. Meanwhile, NFV has great potential

to lead to significant reductions in operating expenses (OPEX) and capital expenses

(CAPEX) and facilitate the deployment of new network services with increased agility

and faster time-to-value [103, 143].

1.1.1 Software-Defined Networking

In spite of its widespread adoption, the conventional network architecture has been

considered ill-suited for the management of large-scale complex networks [57, 85, 107,

136], which demand agile re-policing or re-configurations from time to time. A typical

computer network consists of a large number of network devices such as routers and

switches [35, 127], and the operator of the network is responsible for configuring

policies to respond to a wide range of network events and applications [107]. In

a conventional network, the operator must implement desired network policies and

accomplish complex tasks using low-level, vendor-specific commands [57]. Automatic

reconfiguration and response mechanisms, which are critical to endure the dynamics

of faults and adapt to load changes, are virtually non-existent in such a network [85].

As a result, enforcing the required policies in such a dynamic environment is highly

challenging, and network service providers are faced with high operating expenses

and significant management burdens. One of the key contributing factors of the

complexity is that the control plane, which determines how network traffic should be

routed in the network, and the data plane, which forwards traffic in accordance with

routing decisions made by the control plane, are vertically integrated (i.e., these two

planes are bundled together inside networking devices) and vendor-specific [85, 107,

136].

SDN as an emerging networking paradigm promises to change this state of affairs

by breaking vertical integration, separating the control logic of a network from the

underlying routers and switches, promoting a logically centralized network control,

and introducing the ability to program the network. The separation of the control

§1.1 Next-Generation Network Architecture 3

and data planes allows the network control to become directly programmable via a

standardized interface and the underlying infrastructure to become simple packet

forwarding devices that can be automated. The separation of concerns introduced be-

tween the definition of network policies, their implementation in switching hardware,

and the forwarding of traffic, is key to the desired flexibility: by breaking the network

control problem into tractable pieces, SDN makes it easier to create and introduce

new abstractions in networking, simplifying network management and facilitating

network evolution [24, 61, 57, 136]. As a result, SDN has attracted significant attention

from both the academia and industry as an essential paradigm for the management

of large-scale complex networks. SDN is becoming a key technology for the next-

generation network architecture and has been applied to many large-scale networks,

including Internet backbone networks and data-center networks, e.g., Google’s B4 [56,

68] and Microsoft’s SWAN [55].

1.1.2 Network Function Virtualization

Computer networks nowadays rely on a broad spectrum of network functions, in-

cluding firewall, Intrusion Detection System (IDS), WAN optimizer, and Deep Packet

Inspection (DPI), to enhance the performance and security of different network ser-

vices [44, 119]. Specifically, users require their data traffic to traverse specified se-

quences of network functions that are referred to as service function chains. Figure 1.1

shows a service function chain. In this example, the traffic from the source must

traverse Network Address Translation (NAT), firewall, and IDS (in this order) before

reaching the destination.

Source NAT Firewall IDS Destination

Figure 1.1: A service function chain consisting of three network functions: NAT,
Firewall, and IDS

Network functions have been conventionally implemented as dedicated hardware.

4 Introduction

Unfortunately, management and deployment of hardware-implemented network func-

tions are complex and costly. For example, a survey conducted by Sherry et al. [119]

showed that large networks (10k-100k network nodes) spent over one million dol-

lars on deploying and maintaining hardware-implemented network functions while

medium and small networks (1k-10k nodes) spent between $5,000 and $50,000. As

demands for more diverse and new short-lived services with high data rates continue

to increase, network operators must continuously purchase, install, and maintain ex-

tra physical equipment in order to keep up with user demands. These, coupled with

requirements for high quality, stability, and stringent protocol adherence, have re-

sulted in prolonged product cycles, very low service agility and heavy dependence

on specialized hardware to implement network functions [103, 143].

NFV has drawn significant attention from both industry and academia as a sig-

nificant paradigm shift in service provisioning. In this new architecture, a network

function, such as firewall or NAT in Figure 1.1, can be implemented as an instance of

a software component that is offloaded to a network service provider for execution in

the provider’s network. This allows for the consolidation of many network equipment

types onto high volume servers, switches and storage, which could be located in data

centers, distributed network nodes, or in close proximity to end users, in order to

better tailor for user requirements [103]. A given service can be decomposed into a set

of Virtualized Network Function (VNF) instances, each of which can be implemented

as a software component running on one or more off-the-shelf physical servers [67,

143]. The VNF instances may then be relocated and instantiated at different locations

in a network (e.g., aimed at introduction of a service targeting specific customers in

the strategic geographical location) without necessarily requiring the purchase and

installation of new hardware. By decoupling network functions from the hardware

platform on which network functions are executed, NFV has the potential to lead to

significant reductions in operating expenses and capital expenses, and facilitate the

deployment of new services with increased agility and faster time-to-value [103, 143].

§1.1 Next-Generation Network Architecture 5

1.1.3 The Synergy between Software-Defined Networking and Network

Function Virtualization

SDN and NFV share many similarities: They both advocate open software and stan-

dard network hardware, and they seek to leverage automation and virtualization

technologies to achieve their respective goals [67, 85, 103, 107, 143]. They are highly

complementary technologies, combining them in the same network will generate

higher values. Consequently, it has been envisioned that the centralized control and

management applications (such as load balancing, monitoring, and traffic analysis) in

SDNs can be partially implemented as VNF instances, and hence benefit from NFV’s

reliability and elasticity functionalities [103, 143]. Similarly, SDN can accelerate the

NFV deployment by providing a flexible and automated way of chaining functions,

provisioning and configuration of network connectivity and bandwidth, automation

of operations, security and policy control [27].

Due to the prospect of SDN and NFV, network service providers are currently mov-

ing towards a next-generation network architecture by adopting these technologies in

order to mitigate issues in conventional networks. In a next-generation network, the

network service provider is in charge of managing and allocating network resources,

e.g., bandwidth and computing resources, and provides network services to the public

on a pay-as-you-go basis. In order to acquire resources from the network, customers

specify their resource demands and send user requests to the network service provider,

and the provider then determines if user requests should be admitted and which

resources should be allocated for admitted requests. Specifically, to make use of the

resources provided by a network service provider, a customer specifies the desired

amount of resource and the associated desirable properties of needed resources, e.g.,

the maximum tolerated end-to-end delay and reliability requirements, to the network

service provider. Upon receiving a user request, the network service provider queries

the network infrastructure for operational statistics including residual capacities, cur-

rent workload, etc. Based on the collected information, the network service provider

6 Introduction

might reserve resources in corresponding data centers for the request and then grant

the customer to access those resources.

1.2 Resource Allocation for Network Throughput Maximiza-

tion

While both industry [45, 55, 56, 68, 106] and academia [85, 103, 107, 143] are embrac-

ing SDN and NFV as the cornerstone of the next-generation network architecture

at unprecedented rates, SDN and NFV are still in their infancy and there is a full

spectrum of ongoing topics. As more network service providers look at the details of

deploying SDN and NFV and realizing the benefits that these key enabling technolo-

gies promise, there is an urgent need to develop new methods, tools, and techniques,

for successful deployment and broad adoption of these technologies. In this thesis, we

study a central topic for the next-generation network architecture – network through-

put maximization via effective resource allocation. This is motivated by the fact that

while network service providers strive to serve end users, resources that they possess

are inherently scarce since they have a finite amount of resources in their systems yet

the amounts of resources their customers demand can be unbounded. Therefore, the

ability of a network service provider to effectively utilize network resources is crucial

to the success of network services.

1.2.1 Resource Allocation in Software-Defined Networking

In order to achieve the economy of scale expected from SDN, network resources

should be used effectively and efficiently. Veitch et al. [131] showed that default de-

ployment of some current common use cases often leads to sub-optimal resource

allocation and consumption, necessitating efficient algorithms for network resource

allocation with various optimization objectives including load balancing, energy con-

sumption reduction, disaster resiliency, etc. A software-defined network consists of

§1.2 Resource Allocation for Network Throughput Maximization 7

a control plane and a data plane. The data plane consists of network devices, which

is referred to as SDN-enabled switches, which are interconnected by Internet links.

SDN switches forward network packets according to the forwarding rules stored in

forwarding table prepared by the control plane, while the controller implements the

control logic and is responsible for translating high-level network requirements into

forwarding rules to be installed at switches. Due to their great flexibility, forwarding

rules in SDN are more complex and require much more storage space in comparison

with the forwarding rules in conventional networks. Therefore, in order to match in-

coming packets against complex forwarding rules as fast as possible, the forwarding

table at each switch is thus generally implemented by Ternary Content Addressable

Memory (TCAM) that supports fast, parallel lookups. However, TCAM is 400 times

more expensive and 100 times more power consuming per unit than RAM-based stor-

age [85]. Accordingly, the capacity of the forwarding table of an SDN-enabled switch

is typically limited to several thousand entries [79]. Such highly restricted capacity of

forwarding tables has been recognized as a bottleneck to the scalability of SDN [24,

79, 107], and efficient utilization of forwarding tables to serve a scaling number of

users is challenging and vital.

Meanwhile, the amount of traffic that will be carried by SDN is expected to grow

exponentially along with the widespread adoption of SDN [24, 61, 57, 136]. To meet

rapidly growing demands of users for routing their requests in SDN-enabled networks

and Internet backbone networks, there is a need for a large number of forwarding

rules stored at each switch node and a large quantity of bandwidth at each link for

various request admissions. A methodology that can effectively utilize both types of

resources is thus desperately needed.

1.2.2 Resource Allocation for Virtualized Network Functions

Network function virtualization is often offered by network service providers as a

public service. To serve end users, network service providers execute VNF instances

8 Introduction

for users on resources leased from one or more infrastructure providers [103]. The

providers may also need to determine if it is appropriate to chain required network

functions to create services for end users. Furthermore, as NFV relies on dynamic

creation, modification, and removal of connections between devices in networks and

SDN offers these effortlessly, NFV has been integrated into software-defined networks

in order to achieve higher performance through the synergy between SDN and NFV,

e.g., [45]. In these networks, some SDN-enabled switches are attached with data

centers with limited computing and storage resources, and network functions can

be executed in these data centers. Such a network service provider network can be

represented by a graph where each node represents a switch, each link corresponds

to an Internet link between switches, and a subset of switches is connected to servers

or data centers to implement VNF instances. Figure 1.2 is an example of a network

owned by a network service provider.

v2v2

v6v5

v1

v4v3

Figure 1.2: A service provider network G with a set V = {v1, v2, v3, v4, v5, v6} of SDN-
enabled switch nodes and a subset VS = {v1, v4, v5, v6} (VS ⊆ V) of switch nodes
attached with servers or data centers.

In order to admit a user request from its source to its destinations, it is necessary

to allocate (i) space in forwarding tables at switches to set up forwarding rules, (ii)

bandwidth resources at links, and (iii) computing resources at data centers. As these

network resources have capacity constraints and they are shared among all user

requests, resource allocation dramatically impacts the performance of the network.

§1.3 Challenges of Resource Allocation in Next-Generation Networks 9

1.3 Challenges of Resource Allocation in Next-Generation Net-

works

Network service providers have expanded at a fast pace in recent years, continually

striving to meet increasingly higher and rapidly changing user demands [56, 106].

They aim to serve various organizations and users with diverse use-cases by providing

heterogeneous resources for them. To this end, being able to allocate and provision

network resources efficiently and effectively is of paramount importance, this poses

the following challenges.

• One is that user request admissions are subject to capacity constraints of net-

work resources. Specifically, the computing resource of data centers and the

bandwidth resource of links in networks, are limited. Combining this with the

characteristics of software-defined networks, i.e., significant fluctuations in re-

source consumptions and availabilities due to all resources in the networks

being dynamically allocated, and the limited capacity of TCAM, resource allo-

cation is non-trivial in next-generation networks.

• Another is that effective resource allocation demands a joint consideration of

multiple resources, instead of taking into account these resources individually.

In order to operate a large-scale public network service, effective management

of multiple network heterogeneous resources becomes vital, since unbalanced

usages of network resources will result in suboptimal resource utilization. There-

fore, there is an urgent need for a scheme of resource allocation and user admis-

sion that pays as much attention to one type of network resources, e.g., the for-

warding table, as it does to other types of network resources, e.g., the bandwidth

of each link. Only through jointly considering multiple network resources and

therefore balancing usages of network resources can a network service provider

utilize the limited resources in the network to serve an ever-increasing number

of users.

10 Introduction

• Resource utilization in next-generation networks exhibits high dynamics, thereby

requiring online algorithms to be proposed. In these networks, user requests typ-

ically arrive into a network one by one, and hence the knowledge of future

arrivals is not available. Meanwhile, admitted requests might not depart from

the system and continuously occupy the allocated resources for an extended

period. Allocating limited resources at switches and links while taking into ac-

count the dynamic nature of online user requests, i.e., requests arrive one by one

and no knowledge of future arrivals and departures, is challenging, because an

online algorithm for admissions of online user requests is given only a single

request at a time and a decision, either acceptance or rejection, needs to be made

based on the request, cf. the Secretary Problem [40].

• As network service providers offer their services to the public, they are inter-

ested in maximizing their monetary gains by accommodating as many users

as possible. As a result of this drive to maximize their profits and the scarcity

of network resources, admitting user requests into service providers’ networks

with the aim of maximizing the number of accommodated users poses signif-

icant challenges, that is, how to find a cost-optimal routing path for the data

traffic of a request such that the data traffic of the request will pass through the

network functions one by one in their orders in the service chain of the request,

where each user request usually has both bandwidth and computing resource

demands to realize its routing traffic through the network and implementing its

network functions, subject to the aforementioned resource capacity constraints.

• Network services based on the next-generation network architecture have many

promising applications including smart cities and smart connected vehicles [12,

42, 125, 144]. In the near future, the role of network services in the society

will be as fundamental as public utilities, e.g., electricity and water, and ap-

plications based on these network services will be operating continuously for

several months or years. When an organization embraces the next-generation

§1.3 Challenges of Resource Allocation in Next-Generation Networks 11

network architecture, the organization’s IT services will be outsourced to net-

work services, and the organization requires long-term network services from

the provider. As the organization evolves, its resource requirements will change

over time, making the resource allocations performed when the organization

was initially admitted suboptimal. Accordingly, service providers need to dy-

namically adjust existing resource allocations in order to serve admitted requests

better and accommodate more future requests. Such dynamic adjustments of

resource allocations are often referred to as scalings. Specifically, there are two

types of scalings: (i) horizontal scaling, i.e., migrating existing VNF instances from

their current locations to new locations, and (ii) vertical scaling, i.e., instantiating

new VNF instances. These scaling options need to be jointly considered and

performed without causing interruptions to admitted requests. It thus poses the

question of how to perform horizontal and vertical scalings such that no existing

requests are impacted, and more newly arriving requests can be admitted.

• Service providers also provide additional services to users, most notably Quality

of Service (QoS) guarantees, in addition to providing network services through

allocating the required amount of resources. While the additional QoS guaran-

tees generate new sources of income for network service providers, they also put

the burden on service providers to be able to satisfy user-specified requirements.

Specifically, users may have requirements on the end-to-end delay of network

services. Also, users may have requirements on the availability and reliability of

the services. These requirements mandate additional resources to be allocated

while admitting the user requests. For instance, in order to fulfill a user’s relia-

bility requirement, it may be necessary to replicate the same resources for the

service at different geographic locations (servers). This thus poses the question

of how to meet such QoS requirements by striving for the non-trivial trade-off

between the revenue of admitting requests with QoS requirements and the cost

of provisioning extra resources to satisfy the requirements.

12 Introduction

• Providing users with reliable network services is the top priority of most net-

work service providers, as unreliable services or severe service failures can

result in tremendous losses of users, particularly for their mission-critical appli-

cations. Nevertheless, the virtualization of network functions imposes reliability

concerns on VNFs, which are prone to software issues of virtualization technolo-

gies. Thus, how to ensure the reliability of a network service is a fundamental

research topic in the provisioning of NFV-enabled services for users.

To tackle the aforementioned challenges, this thesis will devise efficient algorithms

for network throughput maximization via effective resource allocation. We distinguish

this work from existing ones as follows. (1) this thesis focuses on allocation and pro-

visioning of various network resources for the next-generation network architecture,

(2) this thesis studies dynamic admission of users requests, in which requests arrive

one by one and future request arrivals and departures are not known, (3) this thesis

takes into account various user QoS requirements, including network enforcement

policies, end-to-end delays, and service reliability requirements, and (4) this thesis de-

vises efficient algorithms with performance guarantees whereas most existing works

proposed heuristic algorithms only. This thesis delivers promising solutions to effec-

tive resource allocation and provisioning in the next-generation network architecture,

while jointly taking into account various user requirements and resource capacity

constraints. The proposed solutions are evaluated both analytically and numerically.

1.4 Research Topics and Aims

To meet ever-growing user service demands and facilitate efficient resource allocation

in the next-generation network architecture, this thesis focuses on the following four

main research topics:

1. Network throughput maximization of admitting user requests in software-defined

networks,

§1.4 Research Topics and Aims 13

2. Network throughput maximization of admitting user requests with network

function and QoS requirements,

3. Dynamic scalings of resource allocation for requests with network function and

QoS requirements, and

4. Reliability-aware provisioning of network function services.

These topics are interrelated with each other. Topic (1) studies the admission of

user requests in software-defined networks while taking into account the TCAM

table capacity at SDN-enabled switches and the bandwidth capacity at links. Topic

(2) is a sequel to Topic (1) as it studies how to meet network function requirements

of user requests, while also considering the TCAM capacity constraints and link

bandwidth capacities. In addition, while Topic (1) and Topic (2) address allocating and

provisioning of network resources for user requests upon the arrival of requests, Topic

(3) studies how to dynamically adjust existing resource allocations via horizontal

and vertical scalings. In contrast to Topics (1) to (3), in which failures of network

condiments are considered to be rare, Topic (4) studies resource allocation in next-

generation networks while taking into consideration failures of VNF instances and

meeting user reliability requirements. In the following, we summarize the specific

researches in these topics and the distinctions between existing studies and ours.

1.4.1 Network Throughput Maximization of User Requests in Software-

Defined Networks

Early studies on request admissions in SDNs primarily addressed the challenges in

traffic engineering and steering for incremental deployment of SDN-enabled devices

in existing networks [1, 16, 110]. Most of these studies dealt with data traffic routing,

by considering TCAM of limited sizes at each SDN-enabled switch [24, 61, 79]. Specif-

ically, Kanizo et al. [79] studied unicast routing for a group of unicast requests. To

overcome the limitation of the forwarding table size, they proposed two approaches

14 Introduction

to decompose large SDN forwarding tables into several small ones and to distribute

these small tables across the network, while maintaining the overall SDN policy se-

mantics. Huang et al. [58] tackled the limitation of TCAM size by selectively caching

forwarding rules in local switches and forwarding packets to the centralized con-

troller if necessary, while Katta et al. [81] proposed CacheFlow to equip each switch

with hardware memory implemented by TCAM and secondary software memory

in order to create an abstraction of infinite space for forwarding rules. Cohen et al.

[24] studied the bounded path-degree maximum-flow problem subject to the TCAM

capacity on switches. They proposed an approximate solution with high probability.

Meanwhile, Huang et al. [61] studied the multicast problem in SDNs, by devising an

approximation algorithm.

These mentioned studies only considered the switch node capacity for a single

or a given set of user requests. The most related work due to Huang et al. [60] dealt

with admissions of a set of multicast requests with the aim to minimize the total

bandwidth consumption on realizing the requests, subject to both node and link

capacity constraints. The request admission problem due to Huang et al. [60] thus

is substantially different from the one in this thesis, as a different system model was

adopted. In this thesis, we assume that each switch has a limited TCAM and no

end-to-end delay constraint is imposed on each request. The solution in [60] thus

cannot be extended to solve the problem in this thesis. Moreover, Xu et al. [142]

considered user query processing among cloudlets in a wireless metropolitan area

network such that the network throughput is maximized, while the average access

latency among user requests is minimized. Since Xu et al. focused on load-balancing

among cloudlets with computing capacity constraints, by assigning different user

requests to different cloudlets, neither TCAM nor SDN has ever been considered.

Thus, the solution in [142] is not applicable to the problem in this thesis, either.

Unlike the aforementioned studies, we here deal with dynamic admissions of

unicast or multicast requests without the knowledge of future arrivals, subject to both

§1.4 Research Topics and Aims 15

TCAM capacities at switch nodes and bandwidth capacities at links. In particular, the

joint consideration of these two different types of network resources when performing

online request admission is very challenging, in comparison with existing works that

only focused on one type of resource and all requests are given in advance, as some

admitted requests may still occupy the resources when a new request arrives, thereby

leaving less available resources for later arrived requests. Existing studies failed to

address the following crucial aspects in dynamic admissions of requests.

1. Due to dynamic changes in network resources, there desperately needs a cost

metric or a set of cost measures to model dynamic consumptions of various

network resources and these resources utilization. Building an accurate cost

model to capture such dynamics is crucial, which then can be used to guide

efficient resource allocation for incoming requests. The key to developing such a

cost model is to model the availability and utilization of each resource accurately.

An exponential function of a specific resource and its utilization rate is an

excellent candidate for such cost modeling, which has been adopted for online

request routing in many different types of networks [6, 80, 92, 93, 109].

2. The joint consideration of both the forwarding table capacity at each switch node

and the bandwidth capacity at each link makes the cost modeling of resource

usages in SDNs more difficult. Meanwhile, the joint consideration of resources

at both nodes and links complicates the analysis of the proposed solution, since

the analysis of performance (i.e., the competitive ratios) of online algorithms for

online unicasting and multicasting in ATM networks, virtual circuit networks [6,

109], and wireless sensor networks [93] are only based on the cost modeling of

a single type of resource at either nodes or links.

16 Introduction

1.4.2 Network Throughput Maximization of User Requests with Network

Function Requirements

While network functions are widely used to guarantee security and performance

of routing data packet traffic in contemporary computer networks, the deployment

of traditional hardware network functions incurs high capital investment and op-

erational cost [118, 119]. To tackle these issues, recent efforts on new frameworks

and architectures for NFV [5, 43, 48, 100, 118], have been demonstrated as promis-

ing alternatives to traditional hardware by virtualized network functions in virtual

machines. For example, Sekar et al. [118] devised an architecture that focused on

software-based implementations of network functions on a shared hardware plat-

form. Qazi et al. [110] developed SIMPLE that enforces high-level routing policies for

networks function-specific traffic. Fayazbakhsh et al. [38] proposed FlowTags, because

traditional flow rules do not suffice in the presence of dynamic modifications per-

formed by network functions. Martins et al. [100] introduced a virtualization platform

to improve network performance by revising existing virtualization technologies to

support the deployment of modular, virtual middleboxes on lightweight VMs.

One fundamental problem under the NFV architecture is network throughput

maximization of realizing user routing requests with specified service chains while

meeting various resource constraints and user QoS requirements. A few recent studies

investigated this issue [22, 49], which however neither considered resource constraints

such as the forwarding table size constraints on switches, nor took global optimiza-

tion, thus the solutions delivered are suboptimal, e.g., Charikar et al. [22] assumed

that every switch in a network can perform middlebox functions without consider-

ing forwarding table sizes. Gushchin et al. [49] assumed that the routing traffic of a

request can be split into multiple paths, and proposed a two-stage local optimization

(before and after the virtual middleboxes). Zhang et al. [146] presented a routing

scheme that reduces TCAM space usage without causing network congestion. How-

ever, they did not consider user requests with service chain requirements. Kuo et al.

§1.4 Research Topics and Aims 17

[88] studied a problem of VM placement and path selection, striving for a tradeoff

between link and server usage. This work, however, is different from ours because

they assumed that multiple requests of the network function can be satisfied using a

single VM that implements the network function.

On the other hand, Li et al. [90] presented the design and implementation of a

system that dynamically provisions resources to provide timing guarantees with the

objective of maximizing the number of requests admitted to the cloud, while meeting

the deadlines of admitted requests. Huang et al. [59] considered a joint optimiza-

tion problem of middlebox selection and routing with the objective to maximize the

throughput of an SDN, and proposed an algorithm based on the Markov approxima-

tion technique. Lukovszki et al. [95] considered middlebox placements in a n-node

network so that each source-destination pair in a given set has a path of length at

most L with one middlebox in it, and each middlebox can be used by at most k pairs.

They devised an approximation algorithm for the problem, under the assumption that

only one VM (or a network function) is associated with each request, and each server

can accommodate no more than k VMs. Clearly, this assumption is over-simplified as

the length of a service chain of each request may be far greater than one. Lukovszki

and Schmid [96] achieved several important theoretical results under ideal assump-

tions that each server can accommodate only one VM, and different VMs for different

network functions consume the same amount of computing resource.

Some studies focused on deploying service function chains, through provisioning

VNF instances with various optimization objectives, which have attracted tremendous

attention. Cao et al. [16] studied the problem of policy-aware traffic engineering in

SDNs, by assuming that the traffic has to pass a given sequence of network functions.

For instance, Sallam et al. [115] investigated the shortest path and maximum flow

problems subject to service function chaining constraints by assuming splittable user

traffic. Kuo et al. [87] studied the service function chain embedding problem for a

multicast request with multiple sources and a single destination. Ren et al. [114] tack-

18 Introduction

led the problem of optimally embedding service function trees for a single multicast

request and proposed an approximation algorithm for the problem. Xu et al. [137]

employed the Lyapunov optimization technique to jointly optimize dynamic service

caching and task offloading with the objective of minimizing computation latency

experienced by the user and energy consumption of the system. Agarwal et al. [2]

formulated an optimization problem with the objective of minimizing the ratio of

the actual latency experienced by the user to the user-specified maximum latency.

Tomassilli et al. [128] proposed the optimal placement of network service function

chains in order to satisfy a set of user demands subject to the ordering constraints

specified by service function chains. They devised two logarithmic factor approxi-

mation algorithms by transforming the problem to the Set Cover problem [26, 130].

Little attention has been paid to the trade-off between usages of different resources

while provisioning VNF instances. Kuo et al. [88] considered the deployment of ser-

vice function chains with emphasis on the trade-off between link and server usage,

while He et al. [51] studied the joint service placement and request scheduling in

order to optimally provision edge services while taking into account the demands of

both resources that can be shared, e.g., storage, and resources that cannot be shared,

e.g., communication and computation. They proposed an algorithm with a constant

approximation ratio for a special case of the problem and a heuristic for the general

case.

Following the same spirit as [22, 49], we assume that network functions are im-

plemented as software applications running as VMs in servers or data centers. Mean-

while, there are many possibilities for resource sharing, one of which is to use a

dedicated VM for each NFV. However, considering a service function chain that is

often made up of several functions [119], this approach will clearly not be feasible

as physical resources will quickly be consumed, and will be wasteful of resources

since most functions are light-weight and can, hence, be processed by a single VM,

e.g., by containers within the VM [43]. Therefore, in this thesis, we adopt the idea of

§1.4 Research Topics and Aims 19

consolidated middleboxes [49], where every flow obtains all its required functional

treatment at a single server, because the consolidated middlebox model simplifies

traffic routing, helps reduce the number of routing rules in the switches, and removes

the topology dependence between different middleboxes. Unlike Charikar et al. [22],

we do not allow routing traffic via multiple paths from its source to its destination,

because most network functionalities will be applied to the entire packet flow, e.g.,

encryption and decryption should only be applied to the entire particular traffic. In

particular, we consider three types of network resource capacity constraints on both

switches and links: memory capacities of SDN-enabled switches, computing capaci-

ties of servers that are attached to some switches, and bandwidth capacities of links

between switches.

1.4.3 Dynamic Adjustment of Resource Allocation via Scalings

Most existing studies focused on the optimal placement of VNF instances under a

specific optimization objective while meeting user-specified resource demands and

QoS requirements [116, 138], or on historical VNF instance demand patterns or pre-

dictions [14, 82]. However, the aforementioned studies considered the admission of

each request separately from others without taking into account potential migrations

of VNF instances. As a result, network resources may be overloaded and no future

requests can be admitted. Several studies of NFV migrations dealt primarily with the

development of migration mechanisms [17, 18, 34, 44, 82, 112, 135]. For example, Er-

amo et al. [34] provided one of the earliest studies of vertical scaling of VNF instances

with the objective of minimizing the sum of energy consumptions of network func-

tion instances and the re-configuration cost of network instances. Specifically, with

the increase or decrease of data traffic, the computing capacities of VNF instances

increase or decrease accordingly. Xia et al. [135] studied the problem of migrating

network functions such that the migration cost, defined as the aggregated transfer-

ring traffic rate during the migration progress, is minimized. Carpio et al. [17] and

20 Introduction

Carpio and Jukan [18] tackled the NFV migration problem, by using replications in

place of migrations, because of the adverse effects that migrations have on QoS. They

provided an Integer Linear Programming solution to the problem. While Kawashima

et al. [82] provided a solution to the dynamic placement of VNFs in a network to

follow the traffic variation, they did not take into account the cost of migrating VNFs.

Admitting NFV-enabled requests has been extensively studied in various settings.

For example, [72, 70, 97, 138, 139] devised the very first algorithms with performance

guarantees for NFV-enabled unicasting and multicasting, respectively. However, the

aforementioned studies considered the admission of each request separately from

others without taking into account potential migrations of VNF instances. As a result,

the network resources may be overloaded and no future requests can be admitted.

Several studies of NFV migrations primarily dealt with the development of migration

mechanisms [17, 18, 34, 44, 82, 112, 135]. For example, Eramo et al. [34] provided

one of the earliest studies of vertical scaling of VNF instances with the objective of

minimizing the sum of energy consumptions of network function instances and the

re-configuration cost of network instances. Specifically, with the increase or decrease

of data traffic, the computing capacities of VNF instances increase or decrease accord-

ingly. Xia et al. [135] studied the problem of migrating network functions such that

the migration cost, defined as the aggregated transferring traffic rate during the mi-

gration progress, is minimized. Carpio et al. [17] and Carpio and Jukan [18] recently

tackled the NFV migration problem, by using replications in place of migrations,

because of the adverse effects that migrations have on Quality of Service (QoS). They

provided an Integer Linear Programming solution to the problem. While Kawashima

et al. [82] provided a solution to the dynamic placement of VNFs in a network to

follow the traffic variation, they did not take into account the cost of migrating VNFs.

There are recent works in this topic too [39, 75, 94, 133]. For example, Fei et al. [39]

proposed a proactive approach that provides extra VNF instances for overloaded net-

work functions in advance, based on the estimation of future flow rates. They first

§1.4 Research Topics and Aims 21

adopted an efficient online learning method with the objective of minimizing the er-

ror in predicting the demands of different network functions. Based on the proposed

method, the requested instances with variable processing capacities can be derived.

Wang et al. [133] proposed online algorithms with the aims of minimizing the VNF

provisioning cost for cases with one service chain and multiple service chains, re-

spectively. Liu et al. [94] studied the optimization of service chains deployment for

new users and readjustment of active users service function chains while taking into

account resource consumption and operational overhead. Jia et al. [75] investigated

the dynamic placement of VNF service chains across geo-distributed data centers in

order to serve user requests with the objective of minimizing the operational cost

of the network service provider. They proposed an efficient online algorithm for the

problem based on the regularization approach. Ma et al. [98, 99] investigated dy-

namic request admissions with service delay and function chain requirements in a

distributed cloud. The objective of the problem considered in [98, 99] is to maximize

the profit collected by the service provider. Xu et al. [140] considered user request

admissions with NFV service and QoS requirements by placing new VNF instances

into clodlets and sharing existing VNF instances among requests [140].

We distinguish our work in this thesis from the aforementioned ones as follows.

Existing studies only dealt with either VNF migration [34, 135] or creating multi-

ple VNF instances [17, 39, 75, 94]. We focus on NFV-enabled request admissions

while meeting their end-to-end delay requirements, and aim to maximize the network

throughput while minimizing the operational cost of the network operator by jointly

exploring VNF instance sharing, instantiation, and migration through horizontal and

vertical scalings. We propose a unified framework for this and develop an efficient

algorithm for the problem.

22 Introduction

1.4.4 Reliability-Aware Resource Allocation

Several studies on the provisioning of reliable VNF services have been conducted

recently. Existing methods to improve reliability of NFV are summarized by Han et al.

[50]. For example, Beck et al. [11] conducted one pioneering study related to surviv-

ability of VNF instances in the context of the VNF resource allocation, by admitting

a set of VNF requests with the aim of reducing the amount of network resource allo-

cated to VNF chains, while computing resilient allocations to protect network services

from both link and VNF instance failures. They however did not differentiate reliabil-

ity requirements of different requests. Casazza et al. [19] cast a problem of assigning

virtual machines for network function implementations to servers in order to guaran-

tee the availability of virtual machines via VNF instance replications. They considered

a geo-distributed data center network in which there are sufficient resources to ac-

commodate all user requests. Their objective is to maximize the minimum availability

among all requests by developing heuristics. Ceselli et al. [20] dealt with the design

of edge cloud networks with the aim to determine where to install cloudlets among

the potential AP sites by developing efficient heuristics. Ding et al. [30] proposed

an approach to enhancing the network resilience while maximizing cost-efficiency

of the network through improving the ratio of the reliability to the backup cost of

VNF instances. Fan et al. [36, 37] investigated how to map service function chains

to a network with high end-to-end reliability requirements, by adopting on-site and

off-site VNF instance backups. Their work is one of the first works on this topic, and

recently Li et al. [89] proposed onsite and off-site backup mechanisms by developing

efficient scheduling algorithms for the problem through adopting the primal and dual

update technique. Kang et al. [77] studied the tradeoff between the reliability of a

network service, as measured by the probability that the service is correctly executed,

and the computational load of servers. Engelmann and Jukan [32] studied the end-

to-end service reliability in data center networks (DCNs). They divided large flows

into several smaller flows yet provided only one backup flow for reliability guarantee.

§1.4 Research Topics and Aims 23

Moualla et al. [105] considered the placement of service chains in DCNs, and devised

an algorithm for the placement on the special fat-tree topological network structure.

Kong et al. [84] proposed a mechanism that employs both backup path protection and

VNF instance replication in order to guarantee the availability of a service function

chain. The proposed mechanism determines the number of VNF instance replicas

required for each VNF in the SFC, and allocates the replicas to physical nodes on the

primary and backup paths while taking into account the ordered dependency among

VNFs. Herker et al. [52] introduced several VNF backup strategies for service function

chains, and analyzed the impact of different data-center architectures on the service

provision. They then proposed cost-per-throughput algorithms for a given reliability

requirement. Carpio and Jukan [18] investigated how to improve service reliability

through the joint consideration of replications and migrations. Qu et al. [111] aimed

to minimize the communication bandwidth usage across the network while consid-

ering the availability requirements, by developing a heuristic. Aidi et al. [3] recently

proposed a framework to efficiently manage survivability of service function chains

and the backup VNFs. They aimed to determine both the minimum number and

optimal locations of backup VNFs to protect service function chains. The proposed

heuristics have been empirically demonstrated to deliver near-optimal solutions.

In this thesis, we consider reliability-aware VNF service provisioning in MEC. We

distinguish our work from existing ones as follows. Most existing studies focused on

the placement of service function chains in geo-distributed networks that consists of

many powerful data centers. We provide the very first study of reliability-aware VNF

placement in MEC, where computing resources are pushed to the edge of the access

network in the close proximity of users. We assume that the required network function

service of a user can be implemented by a single, consolidated VNF instance. Addi-

tionally, existing studies mainly focused on the end-to-end requirements of requests

specified as the probability of component failures. In this thesis, we differentiate the

reliability requirements of different users by providing differentiating numbers of sec-

24 Introduction

ondary VNF instances for ensuring their reliability requirements. Meanwhile, most

existing studies only provided heuristic solutions without performance guarantees.

We here devised efficient algorithms with performance guarantees for the problem of

concern. In addition, this thesis formulates a generalized version of the well-known

Generalized Assignment Problem (GAP) [25], thus the solutions provided in this

thesis may be of independent interest to other domains.

1.5 Thesis Contributions

The main contribution of this thesis is to provide a systematic study on resource alloca-

tion and provisioning for SDN- and NFV-based next-generation network architecture

with the objective of provisioning elastic, flexible, and pervasive network services,

through formulating non-trivial optimization problems, proposing new modeling of

network resource usages, and developing novel optimization frameworks and algo-

rithms for the problems. The contributions of this thesis are summarized as follows.

For the online unicasting and multicasting problems in SDNs, we devise online

algorithms with performance guarantees in Chapter 2. Specifically, we consider dy-

namic admissions of a sequence of online unicast or multicast requests that arrive

one by one without the knowledge of future arrivals. The proposed algorithms han-

dle request admissions with the objective of maximizing the network throughput, in

terms of the acceptance ratio of user requests. The contributions include (1) a novel

model for resource usages that accurately captures the usage costs of node and link

resources in the admission of a sequence of unicast or multicast requests without

the knowledge of future request arrivals, (2) algorithms with provable performance

guarantees for online unicasting and multicasting, and (3) the non-trivial proofs of

the competitive ratios of the proposed algorithms. To the best of our knowledge, we

were the very first to study online unicasting and multicasting in SDNs by taking

both node and link constraints into consideration, and devise the very first online

algorithms with provable competitive ratios for the problems.

§1.5 Thesis Contributions 25

For the problem of realizing user requests with each specifying a sequence of

network functions in software-defined networks, we consider how to maximize the

network throughput in Chapter 3. We explore the non-trivial trade-off between the

accuracy/quality of a solution and the running time of obtaining the solution, by

devising two algorithms where the first algorithm has higher time complexity and

delivers near-optimal solutions and the second algorithm delivers comparable so-

lutions yet has much shorter running time. The contributions of this topic include:

(1) an Integer Linear Programming (ILP) solution that delivers optimal solutions to

the problem when the problem size is small, (2) two algorithms for admitting user

requests with network function requirement by exploring the non-trivial trade-off

between the accuracy/quality of a solution and the running time of obtaining the

solution, and (3) an online algorithm for dynamic request admissions.

The problem of maximizing network throughput by dynamically scaling VNF

instances while minimizing the accumulative instance scaling cost is considered in

Chapter 4. We propose a unified framework for two types of resource scaling – vertical

scaling and horizontal scaling, while taking the QoS requirements of user requests

into account, which is the very first to the best of our knowledge. The contributions of

this work are (1) a non-trivial reduction of the problem of concern into several classic

problems, and (2) an algorithm that has been empirically demonstrated to deliver

near-optimal solutions.

Approximation and exact algorithms for reliability-aware provisioning of VNF

instances are proposed in Chapter 5. A novel optimization problem for placing mul-

tiple VNF instances in order to meet the reliability requirement of each request is

considered. The contributions of this research topic are (1) an ILP solution for the

problem when the problem size is small, (2) an approximation algorithm with a loga-

rithmic approximation ratio, and (3) constant approximation and exact algorithm for

two special cases of the problem, respectively.

It is also worth noting that the proposed algorithms and developed algorithm

26 Introduction

design and analysis techniques may of independent interests in many other areas,

especially in combinatorial optimization.

1.6 Thesis Overview

The remainder of the thesis is organized as follows. Chapter 2 will study network

throughput maximization in software-defined networks by admitting as many online

unicasting and multicasting requests as possible. Chapter 3 will consider network

throughput maximization of user requests with service function chain requirements

by implementing each service function chain in a consolidated middlebox. Chapter 4

will investigate dynamic scaling of resource allocation in order to achieve better

network throughput, while taking into account the QoS requirements of requests.

Chapter 5 will deal with the provisioning of virtualized network function instances

subject to reliability requirements of requests. Chapter 6 will summarize the thesis

and discuss future work.

Chapter 2

Online Unicasting and Multicasting

in Software-Defined Networks

2.1 Introduction

Software-Defined Networking (SDN) has emerged as a key enabling technology of

the next-generation network architecture that creates an opportunity to tackle a long-

standing problem in traditional networks, by moving the network control logic from

the underlying routers and switches to a logically centralized controller and offer-

ing the programmability of the network [1, 24, 61, 81]. SDN now is becoming a key

technology for the next-generation network architecture, including Internet backbone

networks and data center networks such as Google’s B4 [68]. However, one funda-

mental problem in the adoption of the SDN technology by network and cloud service

providers is how to enable efficient data traffic routing in the network such that the

network throughput is maximized, considering that not only do SDNs usually have

both node and link resource capacity constraints but also user requests arrive into

SDNs dynamically without the knowledge of future request arrivals.

Low-latency, high-performance matching of forwarding rules in each TCAM plays

a vital role in terms of routing efficiency. Therefore, the forwarding table at each

switch node typically is implemented by a special yet expensive memory – Ternary

Content Addressable Memory (TCAM) that supports fast, parallel lookups [81, 121].

However, the number of entries in each TCAM forwarding table is usually limited to

27

28 Online Unicasting and Multicasting in Software-Defined Networks

several thousands [81]. The highly restricted capacity of TCAM has been recognized

as the main bottleneck to the scalability of SDN [24, 79, 81, 107]. Efficient utilization

of forwarding tables to serve a scaling number of forwarding rules while meeting

network resource capacity constraints is an important and challenging research topic.

In addition, with ever-growing bandwidth demands by users, it urgently needs ef-

ficient routing mechanisms that take into account both the TCAM capacity at each

switch node and the bandwidth capacity at each link in the network. Furthermore,

the dynamics of online user requests without the knowledge of future request arrivals

makes the design of efficient routing protocols for SDNs difficult and challenging.

In this chapter, we study online unicasting and multicasting in SDNs with the aim

to maximize the network throughput (or the acceptance rate of requests), where a

sequence of unicast or multicast requests arrive one by one without the knowledge

of future arrivals. Each incoming request is either accepted or rejected immediately,

depending on whether there are sufficient resources to meet its resource demands. Al-

though extensive effort on online unicasting and multicasting in traditional networks

has been conducted in the past, most studies considered either the node resource

capacity [80, 92, 93] or the link resource capacity [6, 109], none of the studies jointly

considered these two types of resource capacities: the forwarding table capacities at

switch nodes and the bandwidth capacities at links. We will jointly take into account

the resource capacities at both nodes and links, by proposing a novel cost model that

unifies the usage costs of these two types of resources simultaneously. It is noticed

that there are several recent studies on unicast and multicast routing for SDNs [1, 24,

61, 81]. They, however, only considered the forwarding table capacity without taking

into account the link bandwidth constraint. For example, the authors in [1, 24] studied

unicast routing by first reducing the node TCAM capacity constraint into the node-

degree constraint, followed by finding a node-degree-constrained maximum flow for

a given set of unicast routing requests. Such the reduction approach, however, is not

applicable in practice, since the TCAM capacity at each node usually is far greater

§2.1 Introduction 29

than the maximum degree of nodes in the network. Huang et al. [61] dealt with

the admission of a single multicast request. They reduced the problem of finding a

multicast tree for the request to the problem of finding a node-degree-constrained

multicast tree that is NP-hard [41]. An approximate solution to the latter returns an

approximate solution to the former. In contrast, in this chapter, we consider dynamic

admissions of a sequence of online unicast or multicast requests without the knowl-

edge of future request arrivals. The mentioned existing algorithms are not applicable

to the problem of concern. Instead, new online algorithms as well as the analysis

techniques for online unicasting and multicasting need to be developed.

The main contributions of this chapter are summarized as follows. We study the

online unicasting and multicasting problems in SDNs with the aim to maximize the

network throughput, by taking both node and link capacities and user bandwidth

demands into consideration. We first propose a novel cost model to accurately capture

the usage costs of node and link resources in the admission of a sequence of unicast

or multicast requests without the knowledge of future request arrivals. We then

devise efficient online algorithms with provable competitive ratios for them. We

finally evaluate the performance of the proposed algorithms through experimental

simulations. The simulation results demonstrate that the proposed algorithms are

very promising. To the best of our knowledge, we are the very first to study online

unicasting and multicasting in SDNs by taking both node and link constraints into

consideration, and devise the very first online algorithms with provable competitive

ratios for the problems. In particular, the construction of the auxiliary graph and

assignment of their edge weights may be of independent interest and can be applied

to other optimization problems in networks.

The remainder of this chapter is organized as follows. Section 2.2 will introduce

the system model, notions and notations, and provide problem definitions. Section 2.3

will build a cost model for resource usages. Sections 2.4 and 2.5 will propose online

algorithms and analyze their competitive ratios for online unicasting and multicasting

30 Online Unicasting and Multicasting in Software-Defined Networks

in software-defined networks, respectively. Section 2.6 will evaluate the performance

of the proposed algorithms by experimental simulation, and Section 2.7 will summa-

rize the chapter.

2.2 Preliminaries

In this section we first introduce the system model, we then introduce the notions

and notations, and we finally define the problem precisely.

2.2.1 System Model

We consider a software-defined network (SDN) G = (V, E), where V is the set of SDN-

enabled switch nodes, and E is the set of links that connect the switches. There is an

SDN controller co-located with a switch node in G to handle the admission of unicast

or multicast requests, by installing forwarding rules to the forwarding tables at switch

nodes and allocating bandwidth on the links along the routing paths or trees in G for

the requests. Each switch node v ∈ V is equipped with a TCAM forwarding table for

packet forwarding, and the table capacity is Lv rule entries. Each link e = (u, v) ∈ E

has a bandwidth capacity Be (or B(u,v)).

2.2.2 TCAM and Routing Rule Matching in SDNs

The flow table at each SDN switch contains a list of rules that determine how packets

have to be processed by the switch. Each rule consists of three main components: a

matching pattern, an actions field, and a priority [9]. The purpose of the matching pattern

is to test if a packet belongs to a flow according to the attributes of the packet such

as its source IP address, communication protocol, etc. All packets that are matched

by the same matching pattern are considered to belong to the same flow. The actions

specified in the actions field of a rule are applied to every packet of the corresponding

flow. Some common actions including forwarding, dropping, or rewriting the packets.

As a packet may match multiple matching patterns, each rule is also associated with

§2.2 Preliminaries 31

a priority and only the actions of the matching rule with the highest priority are

applied. It is worth noting that a rule may contain other additional components, such

as a counter, which is used to keep track of the number of packets that have been

processed according to this rule.

We adopt the TCAM usage model from [13, 104]. That is, TCAM only stores the

matching pattern and priority of every rule, whereas other components of the rule are

stored in external memory, e.g., Static Random Access Memory (SRAM) [9]. For each

incoming packet, the switch will first undergo a parallel lookup operation to find a

matching rule with the highest priority. Having found (the index of) the matching rule

for the packet, the action part of the rule is retrieved from SRAM and the specified

actions are applied to the packet. Consequently, only one forwarding entry needs to

be stored in TCAM for both unicast and multicast requests. Due to the significantly

higher cost and smaller capacity of TCAM, we here focus on the capacity constraint

of TCAM.

2.2.3 User Routing Requests

We consider two types of user routing requests: unicast and multicast requests that

arrive into the system one by one. Let rk = (sk, tk; bk) be the kth unicast request

arrived into the system, where bk is the bandwidth resource demand of rk from sk to

tk. Similarly, let rk = (sk, Dk; bk) be the k-th multicast request, where sk is the source

switch node, Dk is the destination set of switch nodes with Dk ⊆ V, and bk is the

amount of demanded bandwidth by the request. Following existing studies [1, 24, 58],

we assume that the bandwidth demand of a request can be derived from historical

traces of the same or similar request demands. Even the demand of a request varies

over time, it can be accurately predicted by making use of its historical traces. For

example, we can adopt a popular prediction method such as the auto-regressive

moving average method for this purpose. We further assume that the demanded

bandwidth bk by each request rk is an integer and at least one unit bandwidth, i.e.,

32 Online Unicasting and Multicasting in Software-Defined Networks

bk ≥ 1 for any k.

Given that the forwarding table at each switch node and bandwidth resource at

each link are limited, an incoming request will be admitted by the system only if

there is a routing path (for the unicast request) or a multicast tree (for the multicast

request) that has enough available resources to meet its demands. The system will

allocate its demanded resources to each admitted request, and an admitted request

will release the resources allocated to it back to the system once it finishes. Otherwise,

if the network cannot meet the resource demands of a request, the request will be

rejected. A rejected request can be re-submitted to the network, and it can be admitted

if there are sufficient available resources in the network to meet its demand.

2.2.4 Competitive Ratios of Online Algorithms

If a sequence of unicast or multicast requests is given in advance, assume that there

is an optimal offline algorithm for a maximization problem to admit or reject the

requests. Let OPT be the cost of the optimal solution of the problem, and S be the

cost of the solution delivered by an online algorithmA for the requests in the sequence

that arrive one by one without the knowledge of future arrivals.The competitive ratio

of online algorithm A is ξ (> 1) if S
OPT ≥

1
ξ for any instance of the maximization

problem. Ideally, the competitive ratio is expected to be a small constant. However,

the performance of the SDN can be as bad as O(n) if there is no admission control on

requests, since some requests may consume excessive resources in the network, later

arrived requests cannot be admitted due to lack of demanded resources, where n is

the network size.

2.2.5 Problem Definitions

Given a software-defined network G = (V, E), where each v ∈ V be a switch node

equipped with a TCAM forwarding table of size Lv for packet routing, and let Be be the

bandwidth capacity of link e ∈ E, and a sequence of unicast requests (sk, tk; bk) arrives

§2.3 The Usage Costs of Resources of Links and Nodes 33

into the system one by one without the knowledge of future arrivals, the network

capacity maximization problem for online unicasting in G is to maximize the network

throughput (the accumulated bandwidth of admitted unicast requests), subject to

resource capacity constraints on switch nodes and links in the network.

The network capacity maximization problem for online multicasting can be defined sim-

ilarly. That is, given an SDN G = (V, E), let each v ∈ V be a switch node equipped

with a TCAM of forwarding table of size Lv for packet routing, and let Be be the band-

width capacity of each link e ∈ E. Given a sequence of multicast requests (sk, Dk; bk)

that arrives into the system one by one without the knowledge of future arrivals,

the problem is to maximize the network throughput (the accumulated bandwidth

of admitted multicast requests), subject to resource constraints on switch nodes and

links in the network.

2.3 The Usage Costs of Resources of Links and Nodes

Given a software-defined network G = (V, E), a metric is needed to model the usage

costs of resources at its switch nodes and links. One important characteristic of such

resource usages is that the marginal costs of resource usages inflate with the increase

in the workloads of the resources. Compared with a lightly-loaded switch node, a

heavily-loaded switch node will spend more time and consume more energy on

matching a forwarding rule for an incoming packet, because more rules in such a

heavily-loaded switch node need to be considered. For example, in the process of

installing a forwarding rule into a switch node with the TCAM capacity of 2,000

entries, existing forwarding rules must be matched to make sure the new forwarding

rule does not exist in the TCAM prior to its installation. This process takes five

seconds for the first 1,000 entries, while it takes almost two minutes for the next 1,000

entries [81], which directly translates into more energy costs. Thus, when admitting

a request, we should make use of lower-cost and under-loaded nodes and links to

admit the request, rather than over-loaded ones. Through this observation, we will

34 Online Unicasting and Multicasting in Software-Defined Networks

make use of exponential functions to model the costs of resource usages, which are

the functions of available amounts and the resource workloads. Since usages of over-

loaded/saturated resources usually incur higher costs by the adopted exponential

functions, it can effectively avoid the usage of overloaded/saturated resources. The

exponential functions for the usage costs of edge and node resources are given as

follows.

Let Lv(k) and Be(k) be the numbers of available entries in the forwarding table

at switch node v ∈ V and the residual bandwidth on link e ∈ E, respectively, when

the kth request rk arrives. We use an exponential function to model the cost cv(k) of

using the resource at each switch node v by request rk, which is defined as

cv(k) = Lv(α
1− Lv(k)

Lv − 1), (2.1)

where α > 1 is a constant to be determined later, and 1− Lv(k)
Lv

is the utilization ratio of

the forwarding table of v when request rk arrives.

The cost ce(k) of using the bandwidth of link e ∈ E by request rk can be similarly

defined as

ce(k) = Be(β1− Be(k)
Be − 1), (2.2)

where β > 1 is a constant that is similar to α to be determined later, and 1− Be(k)
Be

is

the utilization ratio of the bandwidth of link e when request rk arrives.

2.4 An Online Algorithm for Dynamic Unicast Routing

In this section, we first describe an online algorithm for the network capacity maxi-

mization problem for online unicasting. We then analyze the competitive ratio and

time complexity of the proposed algorithm.

§2.4 An Online Algorithm for Dynamic Unicast Routing 35

2.4.1 Online Algorithm

The basic idea of the online algorithm is to transform the network capacity maximiza-

tion problem for online unicasting in the original SDN G into the problem of a series

of finding a shortest path in edge-weighted, directed auxiliary graphs. The key is how

to jointly consider node and edge costs in a unified way in the construction of each

auxiliary graph G′(k) for request rk.

For each unicast request rk with (sk, tk, bk), to model the usage costs of the re-

sources at nodes and links in the network G by admitting rk, an edge-weighted,

directed graph G′(k) = (V ′(k), E′(k); ω) will be constructed from G = (V, E), and a

shortest path in G′(k) from node s′k to node t′k will be found. Note that the weight

of each edge in G′(k) is the normalized usage cost of its corresponding switch node

or link, which is an exponential function of the available amount and the workload

of the resource at the node or the link. In the following, we first detail the construc-

tion of G′(k). We then devise an efficient online algorithm for the network capacity

maximization problem for online unicasting.

a b

c

a' a'' b' b''

c' c''
G=(V, E) G'(k)=(V'(k), E'(k))

Figure 2.1: The construction of G′(k) = (V ′(k), E′(k)) for an SDN G = (V, E) for
online unicasting when request rk arrives.

The edge-weighted, directed graph G′(k) = (V ′(k), E′(k); ω) is constructed from

G = (V, E) as follows. For each switch node v ∈ V, two nodes v′ and v′′ are added

to V ′(k), i.e., V ′(k) = {v′, v′′ | v ∈ V}, and a directed edge 〈v′, v′′〉 is added to E′(k).

For each link (u, v) ∈ E, two directed edges 〈u′′, v′〉 and 〈v′′, u′〉 are added to E′(k),

i.e., E′(k) = {〈v′, v′′〉 | v ∈ V} ∪ {〈v′′, u′〉, 〈u′′, v′〉 | (u, v) ∈ E}. For brevity, we refer

36 Online Unicasting and Multicasting in Software-Defined Networks

to the edges in G′(k) derived from switch nodes and links of G as the node-derived

edges and link-derived edges, and denote by E′v(k) and E′e(k) the sets of node-derived

edges and link-derived edges in G′(k), respectively. Clearly, E′(k) = E′e(k)∪ E′v(k) and

E′e(k) ∩ E′v(k) = ∅. Figure 2.1 illustrates the construction of G′(k).

Depending on its type (node-derived or link-derived edge) and the usage cost of

the resource it represents, each edge e ∈ E′(k) is assigned a weight as follows.

ωe(k) =


cv(k)

Lv
= α1− Lv(k)

Lv − 1 if e = 〈v′, v′′〉 ∈ E′v(k),

cu,v(k)
B(u,v)

= β
1−

B(u,v)(k)

B〈u,v〉 − 1 if e = 〈u′′, v′〉 ∈ E′e(k),
(2.3)

where the weight of each node-derived edge reflects the forwarding table entry usage

on its corresponding switch node, while the weight of each link-derived edge reflects

the bandwidth usage on its corresponding link. Notice that the weight of each edge

is the normalized usage cost of the resource it represents.

An edge e′ ∈ E′e(k) derived from a link e ∈ E is omitted if its residual bandwidth

is strictly less than bk, because e cannot meet the bandwidth demand of request rk,

and thus plays no role in the admission of the kth request. For simplicity, the resulting

graph after pruning some edges from it is still denoted as G′(k). Let P(k) be a shortest

path in G′(k) from s′k to t′k. Following the construction of G′(k), the edges in P(k) are

the node-derived and link-derived edges alternatively.

To maximize the network throughput (the accumulated bandwidth of all admitted

requests), an admission control policy will be adopted. That is, when the length of a

shortest path in G′(k) from s′k to t′k for each incoming request rk is greater than a given

threshold, the request will be rejected no matter whether there are sufficient resources

to admit the request. We here adopt the following admission control policy: a unicast

request rk will be rejected, if (i) the weighted sum of node-derived edges in P(k) is

greater than σv; or (ii) the weighted sum of the link-derived edges in P(k) is greater

than σe, where σv (= |V| − 1 = n− 1) and σe (= |V| − 1 = n− 1) are pre-determined

thresholds. In other words, an incoming request rk is admitted if and only if there

§2.4 An Online Algorithm for Dynamic Unicast Routing 37

exists a shortest path P(k) in G′(k) from s′k to t′k such that

(i) ∑e=〈v′,v′′〉∈P(k)∩E′v(k) ωe(k) ≤ σv, and

(ii) ∑e=〈v′′,u′〉∈P(k)∩E′e(k) ωe(k) ≤ σe.

The detailed algorithm for online unicasting is given in Algorithm 2.1.

Algorithm 2.1 Online routing algorithm for unicast requests

Input: a software define network G = (V, E) and the kth unicast request rk =
(sk, tk; bk);

Output: Maximize the network throughput by admitting or rejecting each arriving
unicast request rk. If admitted, a routing path for rk will be found.

1: /* Ensure that the switch table of each node v can contain at least one entry */
2: for each node v ∈ V do
3: if the table size at node v is full, i.e., Lv(k) = 0 then
4: Remove v and its incident links from G;
5: end if
6: end for
7: /* Ensure that the residual bandwidth capacity of each link e is at least bk */
8: for each link e ∈ E do
9: if the residual bandwidth at link e is less than bk, i.e., Be(k) < bk then

10: Remove e from G;
11: end if
12: end for
13: Construct an edge-weighted, directed graph G′(k) = (V ′(k), E′(k); ω) from the

resulting subgraph of G and calculate the edge weights according to the resource
utilization when request rk arrives;

14: Find a shortest path P(k) in G′(k) from s′k to t′k;
15: if P(k) does not exist then
16: Reject unicast request rk;
17: else
18: if (∑e∈P(k)∩E′v(k) ωe(k) ≤ σv) and (∑e∈P(k)∩E′e(k) ωe(k) ≤ σe) then
19: Admit unicast request rk with P(k) as its routing path;
20: Update the residual resource capacities of links in E and nodes in V;
21: else
22: Reject unicast request rk;
23: end if
24: end if

38 Online Unicasting and Multicasting in Software-Defined Networks

2.4.2 Algorithm Analysis

In the following, we analyze the performance of the proposed algorithm. Let Lmin

be the minimum TCAM size, i.e., Lmin = min{Lv | v ∈ V}, let Bmin be the minimum

bandwidth capacity among links, i.e., Bmin = min{Be | e ∈ E}, and bmax the maximum

bandwidth demand by any unicast request, i.e., bmax = {bk′ | 1 ≤ k′ ≤ k}.

We first show the upper bound on the cost of admitted unicast requests as of the

arrival of request rk by Algorithm 2.1 by the following lemma.

Lemma 2.1. Given an SDN G = (V, E) with forwarding table capacity Lv at each switch

node v ∈ V and link bandwidth capacity Be at each link e ∈ E, denote by S(k) the set of

unicast requests admitted by the online algorithm, Algorithm 2.1, until the arrival of request

rk. Then, the cost sums of nodes and links in G are

∑
v∈V

cv(k) ≤ |S(k)|(σv + n− 1) log α, (2.4)

and

∑
e∈E

ce(k) ≤ B(k)(σe + n− 1) log β, (2.5)

respectively, where α and β are constants with 2|V| ≤ α ≤ 2Lmin and 2|V| ≤ β ≤ 2Bmin/bmax ,

and B(k) = ∑k′∈S(k) bk′ .

Proof. Consider a unicast request rk′ ∈ S(k) admitted by the online algorithm. Then,

for any switch node v ∈ V, we have

cv(k′ + 1)− cv(k′)

=Lv(α
1− Lv(k′+1)

Lv − 1)− Lv(α
1− Lv(k′)

Lv − 1)

=Lv
(
α1− Lv(k′+1)

Lv − α1− Lv(k′)
Lv
)

=Lvα1− Lv(k′)
Lv (α

Lv(k′)−Lv(k′+1)
Lv − 1)

≤Lvα1− Lv(k′)
Lv (α

1
Lv − 1) (2.6)

§2.4 An Online Algorithm for Dynamic Unicast Routing 39

=Lvα1− Lv(k′)
Lv (2

1
Lv log α − 1)

≤Lvα1− Lv(k′)
Lv (log α/Lv) (2.7)

=α1− Lv(k′)
Lv log α, (2.8)

where Inequality (2.6) holds because at most one routing entry is added to the for-

warding table of node v, and Inequality (2.7) holds because 2x− 1 ≤ x with 0 ≤ x ≤ 1,

and (1/Lv) log α ≤ (1/Lv)Lmin ≤ (1/Lv)Lv = 1.

Similarly, for any edge e ∈ E, we have

ce(k′ + 1)− ce(k′)

=Be(β1− Be(k′+1)
Be − 1)− Be(β1− Be(k′)

Be − 1)

=Beβ1− Be(k′)
Be (β

Be(k′)−Be(k′+1)
Be − 1)

≤Beβ1− Be(k′)
Be (β

bk′
Be − 1), (2.9)

=Beβ1− Be(k′)
Be (2

bk′
Be log β − 1)

≤β1− Be(k′)
Be · bk′ · log β, (2.10)

where Inequality (2.9) follows since at most bk′ bandwidth units of link e for request rk′

are reserved, and Inequality (2.10) follows because bk′
Be

log β ≤ bk′
Be
· Bmin

bmax
≤ bk′

Be
· Be

bk′
= 1,

and 2x − 1 ≤ x with 0 ≤ x ≤ 1

We then calculate the cost sum of all nodes or links of G when admitting request

rk′ . Notice that if an edge in G′(k′) is not in P(k′), its cost does not change after the

admission of request rk′ . The difference in the cost sum of nodes before and after

admitting request rk′ thus is

∑
v∈V

(
cv(k′ + 1)− cv(k′)

)
= ∑
〈v′,v′′〉∈P(k′)∩E′v(k′)

(cv(k′ + 1)− cv(k′))

≤ ∑
〈v′,v′′〉∈P(k′)∩E′v(k′)

(α1− Lv(k′)
Lv · log α), by Inequality (2.8)

40 Online Unicasting and Multicasting in Software-Defined Networks

= log α ∑
〈v′,v′′〉∈P(k′)∩E′v(k)

α1− Lv(k′)
Lv

= log α ∑
〈v′,v′′〉∈P(k′)∩E′v(k′)

(
(α1− Lv(k′)

Lv − 1) + 1
)

= log α ∑
〈v′,v′′〉∈P(k′)∩E′v(k′)

(
w〈v′,v′′〉(k

′) + 1
)

= log α

(
∑

〈v′,v′′〉∈P(k′)∩E′v(k′)
ω〈v′,v′′〉(k

′) + ∑
〈v′,v′′〉∈P(k′)∩E′v(k′)

1

)

≤(σv + (n− 1)) log α, (2.11)

where Inequality (2.11) holds because request rk′ is admitted only if it meets the

admission control policy (i), and any routing path in G′(k′) contains no more than

n− 1 node-derived edges.

Similarly, the cost sum of edges by request rk′ is

∑
e∈E

(
ce(k′ + 1)− ce(k′)

)
= ∑

e′∈P(k′)∩E′e(k′)
(ce(k′ + 1)− ce(k′))

≤ ∑
e′∈P(k′)∩E′e(k′)

(β1− Be(k′)
Be · bk′ · log β), by Inequality (2.10)

=bk′ log β ∑
e′∈P(k′)∩E′e(k)

(β1− Be(k′)
Be)

=bk′ log β ∑
e′∈P(k′)∩E′e(k′)

((β1− Be(k′)
Be − 1) + 1)

=bk′ log β

(
∑

e′∈P(k′)∩E′e(k′)
(β1− Be(k′)

Be − 1) + ∑
e′∈P(k′)

1

)

=bk′ log β

(
∑

e′∈P(k′∩E′e(k′))
ωe′(k′) + ∑

e′∈P(k′)∩E′e(k′)
1

)

≤bk′ · (σe + n− 1) log β. (2.12)

where Inequality (2.12) holds because request rk′ is admitted only if it meets the

admission control policy (ii), and follows the fact that any routing path in G′(k′)

§2.4 An Online Algorithm for Dynamic Unicast Routing 41

contains no more than n− 1 link-derived edges.

Notice that cv(1) = ce(1) = 0 for all v ∈ V and e ∈ E. Thus, the cost sum of all

nodes when request rk arrives is

∑
v∈V

cv(k)

=
k−1

∑
k′=1

∑
v∈V

(cv(k′ + 1)− cv(k′))

= ∑
k′∈S(k)

∑
v∈V

(cv(k′ + 1)− cv(k′))

≤ ∑
k′∈S(k)

((σv + (n− 1)) log α) (2.13)

=((σv + (n− 1)) log α) ∑
k′∈S(k)

1

=|S(k)|(σv + (n− 1)) log α,

where Inequality (2.13) follows from Inequality (2.11).

Likewise, the cost sum of all edges for routing |S(k)| unicast requests by the online

algorithm is

∑
e∈E

ce(k)

=
k−1

∑
k′=1

∑
e∈E

(ce(k′ + 1)− ce(k′))

= ∑
k′∈S(k)

∑
e∈E

(ce(k′ + 1)− ce(k′))

≤ ∑
k′∈S(k)

(bk′(σe + (n− 1)) log β) (2.14)

=((σe + (n− 1)) log β) ∑
k′∈S(k)

bk′

≤B(k)(σe + (n− 1)) log β,

where B(k) = ∑k′∈S(k) bk′ , and Inequality (2.14) follows from Inequality (2.12).

42 Online Unicasting and Multicasting in Software-Defined Networks

We then provide a lower bound on the length of the routing path to which an

optimal offline algorithm routes a request that is rejected by the online algorithm in

the following lemma.

Lemma 2.2. Let R(k) be the set of unicast requests that are admitted by an optimal offline

algorithm yet rejected by the online algorithm, Algorithm 2.1, prior to the arrival of unicast

request rk, and let Popt(k′) be the routing path in G′(k) found by the optimal offline algorithm

for request rk′ ∈ R(k). Then, for any request rk′ ∈ R(k), we have

∑
e∈Popt(k′)

ωe(k′) ≥ min{σv, σe} = |V| − 1 = n− 1, (2.15)

where α and β are constants with 2|V| = 2n ≤ α ≤ 2Lmin and 2|V| = 2n ≤ β ≤ 2Bmin/bmax .

Proof. Suppose that given an SDN G, there are an optimal offline algorithm and the

proposed online algorithm for the problem of concern in G. Assuming that each

request is revealed to both algorithms one by one. Each algorithm either admits a

request by allocating the demanded resources to the request or rejects the request. The

optimal offline algorithm may reject a request that is admitted by the proposed online

algorithm or vice versa. Thus, for a given monitoring period, the proposed online

algorithm and the optimal offline algorithm may accept different sets of requests,

resulting in a difference between the resource availability in the resulting networks

by these two algorithms when a request arrives. Denote by Gopt(k′) and G(k′) the

networks to which the optimal offline algorithm and the proposed online algorithm

are applied prior to the arrival of request rk′ , respectively.

Consider a unicast request rk′ that is admitted by the optimal offline algorithm

yet rejected by the proposed online algorithm. Since rk′ is admitted by the optimal

offline algorithm, it means that the optimal offline algorithm is able to admit rk′

into Gopt(k′) using a path Popt(k′) in Gopt(k′). We can check whether G′(k′) contains

Popt(k′), and there are exactly two cases. Case 1: every node and edge in Popt(k′) has

its corresponding edges in G′(k′), or Case 2: at least one node or one link in Popt(k′)

§2.4 An Online Algorithm for Dynamic Unicast Routing 43

does not have a corresponding edge in G′(k′), because its available resource cannot

meet the demand of rk′ . In the following, we will argue that in both cases,

∑
e∈Popt(k′)

ωe(k′) ≥ min{σv, σe} = |V| − 1 = n− 1,

where ωe(k′) is calculated based on the availability and workload of the resource in

G(k′).

Case 1: If every node and edge in Popt(k′) has a corresponding edge in G′(k′) as

well, there is at least one path in G′(k′) from s′k′ to t′k′ , namely the one corresponds

to Popt(k′). Consequently, the proposed online algorithm must be able to find a path

P(k′) such that P(k′) can meet the resource demand of request rk′ and

∑
e∈P(k′)

ωe(k′) ≤ ∑
e∈p

ωe(k′)

for any path p in G′(k′) from s′k′ to t′k′ including Popt(k′). Since rk′ is rejected by the

online algorithm, the length of P(k′) is no less than the given threshold, i.e.,

∑
e∈P(k′)

ωe(k′) ≥ min{σv, σe}.

Thus,

min{σv, σe} ≤ ∑
e∈P(k′)

ωe(k′) ≤ ∑
e∈Popt(k′)

ωe(k′).

Case 2: At least one node or one edge in Popt(k′) does not have a corresponding

edge in G′(k′). Recall that a node or a link is not included only if its residual capacity

cannot satisfy the resource demands of rk′ . This case thus can be further divided into

two subcases: (a) if there is a node with no available table entry to route the message

for the unicast request, then there is a node-derived edge e′ = 〈v′, v′′〉 ∈ Popt(k′) in

44 Online Unicasting and Multicasting in Software-Defined Networks

G′(k′) such that Lv(k′) < 1. Consequently, the length of Popt(k′) is greater than σv:

∑
e∈Popt(k′)

ωe(k′)

≥ω〈v′,v′′〉(k
′)

=α1− Lv(k′)
Lv − 1

>α1− 1
Lv − 1, since Lv(k′) < 1

≥α
1− 1

log α − 1, since 2n ≤ α ≤ 2Lmin ≤ 2Lv

=
α

2
− 1 ≥ σv, by the assumption of that α ≥ 2n.

(b) If there is an edge in any routing path found by the online algorithm without

sufficient bandwidth to route request rk′ , then there exists an edge e′ = 〈v′′, u′〉 ∈

Popt(k′) in G′(k′) such that B(v,u)(k′) < bk′ . Therefore, the length of Popt(k′) is greater

than σe:

∑
e∈Popt(k′)

ωe(k′)

≥ω〈v′′,u′〉(k
′)

=β
1−

B(v,u)(k
′)

B(v,u) − 1

>β
1− bk′

B(u,v) − 1, since B(v,u)(k
′) < bk′

≥β
1− 1

log β − 1, since 2n ≤ β ≤ 2Bmin/bmax ≤ 2B(u,v)/bk′

=
β

2
− 1 ≥ σe, by the assumption of that β ≥ 2n.

We finally have the following theorem.

Theorem 2.1. Given an SDN G = (V, E) with both node and link capacities Lv(·) and

Be(·) for all v ∈ V and e ∈ E, assume that there is a sequence of unicast requests r1 =

(s1, t1; b1), . . . , rk = (sk, tk; bk) arriving one by one without the knowledge of future arrivals.

§2.4 An Online Algorithm for Dynamic Unicast Routing 45

There is an online algorithm, Algorithm 2.1, with the competitive ratio of 2(γ log α+ log β) +

1 for the network capacity maximization problem for online unicasting, which takes O(|V|2)

time for each request, where α and β are constants with 2|V| = 2n ≤ α ≤ 2Lmin and

2|V| = 2n ≤ β ≤ 2Bmin/bmax , and γ = Bmin
log β is a value with 1 < γ ≤ Bmin

log(2n) .

Proof. Let Bopt(k) be the total bandwidth of requests admitted by an optimal offline

algorithm when request rk arrives, we then have

(n− 1)(Bopt(k)−B(k))

≤(n− 1) ∑
k′∈R(k)

bk′

= ∑
k′∈R(k)

bk′(n− 1)

≤ ∑
k′∈R(k)

bk′
(

∑
e∈Popt(k′)

ωe(k′)
)

≤ ∑
k′∈R(k)

bk′
(

∑
e∈Popt(k)

ωe(k)
)

(2.16)

= ∑
k′∈R(k)

bk′
(

∑
〈v′,v′′〉∈Popt(k′)∩E′v(k′)

ω〈v′,v′′〉(k) + ∑
〈u′′,v′〉∈Popt(k′)∩E′e(k′)

ω〈u′′,v′〉(k)
)

= ∑
k′∈R(k)

bk′
(

∑
〈v′,v′′〉∈Popt(k′)∩E′v(k′)

cv(k)
Lv

+ ∑
〈u′′,v′〉∈Popt(k′)∩E′e(k′)

c(u,v)(k)
B(u,v)

)
= ∑

k′∈R(k)
∑

〈v′,v′′〉∈Popt(k′)∩E′v(k′)
bk′

cv(k)
Lv

+ ∑
k′∈R(k)

∑
〈u′′,v′〉∈Popt(k′)∩E′e(k′)

bk′
c(u,v)(k)

B(u,v)

≤ ∑
v∈V

cv(k) ∑
k′∈R(k)

∑
〈v′,v′′〉∈Popt(k′)∩E′v(k′)

bk′

Lv

+ ∑
(u,v)∈E

c(u,v)(k) ∑
k′∈R(k)

∑
〈u′′,v′〉∈Popt(k′)∩E′e(k′)

bk′

B(u,v)
(2.17)

= ∑
v∈V

cv(k)
∑k′∈R(k) ∑〈v′,v′′〉∈Popt(k′)∩E′v(k′) bk′

Lv

+ ∑
(u,v)∈E

c(u,v)(k)
∑k′∈R(k) ∑〈u′′,v′〉∈Popt(k′)∩E′e(k′) bk′

B(u,v)

≤ ∑
v∈V

cv(k)γ + ∑
e∈E

c(u,v)(k) (2.18)

=γ ∑
v∈V

cv(k) + ∑
e∈E

c(u,v)(k) (2.19)

46 Online Unicasting and Multicasting in Software-Defined Networks

≤γ|S(k)|(σv + (n− 1)) log α

+ B(k)(σe + (n− 1)) log β, by Lemma 2.1

=2(n− 1)(γ|S(k)| log α + B(k) log β). (2.20)

Notice that Inequality (2.16) holds because the utilization of each resource does not

decrease and consequently the weight of any edge in G′(k) does not decrease with

more request admissions, i.e., ωe(k′) ≤ ωe(k) for any edge e ∈ E′(k) and any k′ with

1 ≤ k′ ≤ k. Inequality (2.17) holds since ∑
p
i=1 ∑

q
j=1 AiBj ≤ ∑

p
i=1 Ai ∑

q
j=1 Bj with Ai ≥ 0

and Bj ≥ 0.

The proof of Inequality (2.19) proceeds as follows. For any switch node v ∈ V,

each forwarding table entry can be used to admit a request with bandwidth at most

bmax(≤ Bmin/ log β = γ), and the forwarding table at each node v has Lv entries. Thus,

the accumulated bandwidth of all unicast requests using switch node v as their relay

node is no more than Lv · bmax. Hence, the accumulated bandwidth of all admitted

requests through node v by an optimal offline algorithm is no more than Lv · bmax,

i.e.,

∑
k′∈R(k)

∑
〈v′,v′′〉∈Popt(k′)∩E′v(k′)

bk′ ≤ Lv · bmax ≤ γ · Lv,

and

(∑
k′∈R(k)

∑
〈v′,v′′〉∈Popt(k′)∩E′v(k′)

bk′)/Lv ≤ γ.

Meanwhile, all algorithms, including optimal offline algorithms for the problem of

concern, the total amount of bandwidth used in any link is no more than its capacity,

thus, for every link e ∈ E, the accumulated bandwidth of all admitted requests on it

by an optimal offline algorithm is no more than its capacity, i.e.,

∑
k′∈R(k)

∑
〈u′′,v′〉∈Popt(k′)∩E′e(k′)

bk′ ≤ Be.

§2.5 An Online Algorithm for Multicast Routing 47

Therefore,

(∑
k′∈R(k)

∑
〈u′′,v′〉∈Popt(k′)∩E′e(k′)

bk′)/Be ≤ 1.

By Inequality (2.20), we have

Bopt(k)−B(k)
B(k)

≤2(γ
|S(k)|
B(k)

log α + log β)

≤2(γ log α + log β), (2.21)

where the last step follows because B(k) = ∑k′∈S(k) bk′ and bk′ ≥ 1. From Inequal-

ity (2.21), we have

Bopt(k)
B(k)

≤2(γ log α + log β) + 1,

=O(log n), when α = β = 2|V| = 2n. (2.22)

The auxiliary graph G′(k) = (V ′(k), E′(k)) contains |V ′(k)| (= 2|V|) nodes and

|E′(k)| (= |V|+ 2|E|) edges, its construction thus takes O(|V ′(k)|+ |E′(k)|) = O(|V|+

|E|) time. In addition, finding a shortest path in G′(k) takes O(|V ′(k)|2) = O(|V|2)

time. Algorithm 2.1 therefore takes O(|V|2 + |V|+ |E|) = O(|V|2) time.

2.5 An Online Algorithm for Multicast Routing

In this section, we deal with the network capacity maximization problem for online

multicasting. We first propose an efficient online algorithm for the problem. We then

analyze the competitive ratio and time complexity of the proposed algorithm.

48 Online Unicasting and Multicasting in Software-Defined Networks

2.5.1 Online Algorithm

The basic idea of the proposed algorithm is to respond to each incoming multicast

request rk (= (sk, Dk; bk)) by either admitting or rejecting it, according to an admission

control policy. To model the node and link resource usages by admitting multicast

request rk, an auxiliary edge-weighted, directed graph G′(k) = (V ′(k), E′(k); ω) will

be constructed, where the weight of each node-derived or link-derived edge of G′(k)

reflects the availability and utilization of the resource in that node or link of G.

In order to reduce the resource consumption of admitting a multicast request

rk and admit more future requests, a multicast tree in G′(k) rooted at the source s′k

and spanning all destination nodes in Dk will be found if it exists. If the weighted

sums of all node-derived edges and link-derived edges in the multicast tree are less

than their corresponding thresholds, then the request will be admitted; otherwise,

it will be rejected. In the following, we detail the construction of G′(k), and then

devise an online algorithm for the network capacity maximization problem for online

multicasting.

Given an SDN G = (V, E) with node and link capacities Lv(·) and Be(·), re-

spectively, an auxiliary edge-weighted, directed graph G′(k) = (V ′(k), E′(k); w) for

each multicast request rk is constructed, and the construction of G′(k) is identical

to the construction of G′(k) for the kth unicast request as shown in Figure 2.1. That

is, for each switch node v ∈ V, two nodes v′ and v′′ are added to V ′(k), and there

is a directed edge 〈v′, v′′〉 added to E′(k). For each edge (u, v) ∈ E, two directed

edges 〈v′′, u′〉 and 〈u′′, v′〉 are added to E′(k), i.e., V ′(k) = {v′, v′′ | v ∈ V} and

E′(k) = {〈v′, v′′〉 | v ∈ V} ∪ {〈v′′, u′〉, 〈u′′, v′〉 | (u, v) ∈ E}.

Now, given a multicast request rk with (sk, Dk; bk), the problem is transformed

to finding a multicast tree T(k) in G′(k) rooted at s′k and spanning all nodes in

D′k = {u′ | u ∈ Dk} such that the weighted sum of the edges in T(k) is minimized,

which is a classic NP-hard directed Steiner tree problem. As it is very unlikely to find an

exact solution for it in polynomial time, an approximate solution suffices, by applying

§2.5 An Online Algorithm for Multicast Routing 49

the approximation algorithm in [21]. The approximation ratio of the approximation

algorithm is |Dk|ε, and its running time is a polynomial function of n and 1
ε , where ε is

a constant with 0 < ε ≤ 1. The choice of ε will determine the accuracy of the solution

obtained and the running time of the algorithm. For the sake of simplicity, in the

rest of this chapter, we abuse the notation of T(k) and denote it as the corresponding

multicast tree in G rooted at sk and spanning all terminal nodes in Dk too.

To prevent admitting some multicast requests that will degrade the performance

of the proposed online algorithm significantly, an admission control policy will be

adopted. That is, a multicast request rk is admitted only if it meets

(i) ∑e∈T(k)∩E′v(k) ωe(k) ≤ σv, and

(ii) ∑e∈T(k)∩E′e(k) ωe(k) ≤ σe,

where σv = σe = |V| − 1 = n− 1.

The detailed online algorithm for the network capacity maximization problem for

online multicasting is given in Algorithm 2.2.

2.5.2 Algorithm Analysis

In the following, we analyze the competitive ratio and time complexity of Algo-

rithm 2.2. Recall that Lmin is the minimum TCAM size among switch nodes, i.e.,

Lmin = min{Lv | v ∈ V}, Bmin is the minimum bandwidth capacity among links, i.e.,

Bmin = min{Be | e ∈ E}, bmax is the maximum bandwidth demand by any multicast

request, K is the maximum number of terminal nodes in any multicast request, i.e.,

K = max{|Dk′ | | 1 ≤ k′ ≤ k}, and ε is a fixed value with 0 < ε ≤ 1. We start with the

following lemma.

Lemma 2.3. Given an SDN G = (V, E) with node capacity Lv for each switch node v ∈ V

and link bandwidth capacity Be for each link e ∈ E, denote by S(k) the set of multicast

requests admitted by the online algorithm, Algorithm 2.2, until the arrival of multicast request

50 Online Unicasting and Multicasting in Software-Defined Networks

Algorithm 2.2 Online routing algorithm for multicast requests

Input: An SDN G = (V, E) and an incoming multicast request rk with (sk, Dk; bk) and
Dk ⊆ V;

Output: Maximize the network throughput by admitting or rejecting each arriving
multicast request rk. If admitted, a routing multicast tree for rk will be found.

1: /* Ensure that the switch table of each node v has at least |Dk| available entries
*/;

2: for each node v ∈ V do
3: if the available table size at node v is zero then
4: Remove v and its incident links from G;
5: end if
6: end for
7: /* Ensure that the residual bandwidth capacity of each link e is at least bk */
8: for each link e ∈ E do
9: if the residual bandwidth at link e is less than bk, i.e., Be(k) < bk then

10: Remove e from G;
11: end if
12: end for
13: Construct an edge-weighted, directed graph G′(k) = (V ′(k), E′(k); ω) from the

resulting subgraph of G and calculate the edge weights according to the resource
utilization when request rk arrives;

14: Find an approximate multicast tree T(k) in G′(k) rooted at s′k and spanning all
nodes in D′k, by applying the algorithm due to Charikar et al. [21];

15: if T(k) does not exist then
16: Reject multicast request rk;
17: else
18: if (∑e∈T(k)∩E′v(k) ωe(k) ≤ σv) and (∑e∈T(k)∩E′e(k) ωe(k) ≤ σe) then
19: Admit multicast request rk with T(k);
20: Update the residual resource capacities of links in E and nodes in V;
21: else
22: Reject request rk;
23: end if
24: end if

§2.5 An Online Algorithm for Multicast Routing 51

rk. Then, the cost sums of nodes and of links of G when multicast request rk arrives are

∑
v∈V

cv(k) ≤ |S(k)|(σv + n− 1) log α, (2.23)

and

∑
e∈E

ce(k) ≤ B(k)(σe + n− 1) log β, (2.24)

respectively, where α and β are constants with 2|V| ≤ α ≤ 2Lmin and 2|V| ≤ β ≤ 2Bmin/bmax ,

and B(k) = ∑k′∈S(k) bk′ .

Proof. Consider an admitted multicast request rk′ ∈ S(k) by the online algorithm. If

the edge derived from a switch node v ∈ V is not in T(k′), then cv(k′+ 1)− cv(k′) = 0.

The cost sum of all nodes in G for admitting multicast request rk′ is

∑
v∈V

(cv(k′ + 1)− cv(k′))

= ∑
v∈V∩T(k′)

(cv(k′ + 1)− cv(k′))

= ∑
v∈T(k′)

(
Lv(α

1− Lv(k′+1)
Lv − 1)− Lv(α

1− Lv(k′)
Lv − 1)

)
= ∑

v∈T(k′)

(
Lvα1− Lv(k′)

Lv
(
α

Lv(k′)−Lv(k′+1)
Lv − 1

))
≤ ∑

v∈T(k′)

(
Lvα1− Lv(k′)

Lv
(
α

1
Lv − 1

))
(2.25)

= ∑
v∈T(k′)

(
Lvα1− Lv(k′)

Lv
(
2log α· 1

Lv − 1
))

≤ ∑
v∈T(k′)

Lvα1− Lv(k′)
Lv · log α · 1

Lv
(2.26)

≤(σv + (n− 1)) log α, (2.27)

where Inequality (2.25) holds, because only one forwarding table entry in the switch

table at node v is required to admit multicast request rk′ [13, 104]. Inequality (2.26)

follows, as 2x − 1 ≤ x with 0 ≤ x ≤ 1, and α ≤ 2Lmin ≤ 2Lv/dv , and Inequality (2.27)

holds from the fact that request rk′ is admitted only if the admission control policy (i)

52 Online Unicasting and Multicasting in Software-Defined Networks

is met, and a multicast tree cannot have more than n− 1 node-derived edges.

Notice that cv(1) = 0 for all v ∈ V. The cost sum of nodes by routing all requests

in S(k) is

∑
v∈V

cv(k)

=
k−1

∑
k′=1

∑
v∈V

(cv(k′ + 1)− cv(k′))

= ∑
k′∈S(k)

∑
v∈V

(cv(k′ + 1)− cv(k′))

≤ ∑
k′∈S(k)

(
σv + (n− 1)

)
log α, by Inequality (2.27)

=|S(k)|(σv + (n− 1)) log α.

Thus, Inequality (2.23) holds.

Inequality (2.24) can be similarly proven by adopting the technique for Inequal-

ity (2.12), omitted.

We then show the lower bound on the cost sum of node-derived and link-derived

edges of the multicast tree T(k′) for a multicast request rk′ , which is admitted by an

optimal offline algorithm but rejected by the online algorithm, as follows.

Lemma 2.4. LetR(k) be the set of multicast requests admitted by an optimal offline algorithm

yet rejected by the online algorithm, Algorithm 2.2, prior to the arrival of multicast request

rk. Let Topt(k′) be the multicast tree in G′(k) found by the optimal offline algorithm for

request rk′ ∈ R(k). Then, for each multicast request rk′ ∈ R(k), we have ∑e∈Topt(k′) ωe(k′) ≥
min{σv,σe}

Kε , where α and β are constants with 2|V| = 2n ≤ α ≤ 2Lmin and 2|V| = 2n ≤ β ≤

2Bmin/bmax .

Proof. Suppose that given an SDN G and there are an optimal offline algorithm and

the proposed online algorithm for the network capacity maximization problem for

online multicasting. Assuming that each request is revealed to both algorithms one

by one. Each algorithm can either admit the request by allocating the demanded

§2.5 An Online Algorithm for Multicast Routing 53

resources to it or reject it. However, the optimal offline algorithm may reject a request

that is admitted by the proposed online algorithm, or vice versa. Thus, for a given

monitoring period, the proposed online algorithm and the optimal offline algorithm

may accept different sets of requests, resulting in a difference between the resource

availability in the resulting networks by these two algorithms when a request arrives.

Denote by Gopt(k′) and G(k′) the networks to which the optimal offline algorithm

and the proposed online algorithm are applied prior to the arrival of request rk′ ,

respectively.

Consider a multicast request rk′ that is admitted by the optimal offline algorithm

yet rejected by the proposed online algorithm. Since rk′ is admitted by the optimal

offline algorithm, it means that the optimal offline algorithm is able to admit rk′ into

Gopt(k′) using a tree Topt(k′) in Gopt(k′). We check whether G′(k′) derived from G(k′)

contains Topt(k′), and there are exactly two cases. Case 1: every node and edge in

Topt(k′) has a corresponding edge in G′(k′), or Case 2: at least one node or one link in

Topt(k′) does not have a corresponding edge in G′(k′), because its available resource

capacity cannot meet the demand of rk′ . In the following, we will show that for both

cases,

∑
e∈Topt(k′)

ωe(k′) ≥
min{σv, σe}

Kε
,

where ωe(k′) is calculated based on the availability and workload of the resource in

G(k′).

Case 1. If every node and edge in Topt(k′) has a corresponding edge in G′(k′),

there is at least one tree in G′(k′) that roots at s′k′ and spans the nodes in Dk′ , namely

the one corresponds to Topt(k′). Consequently, the proposed online algorithm must

be able to find a tree T(k′) in G′(k′) such that T(k′) can meet the resource demand of

request rk′ and

∑
e∈T

ωe(k′) ≥
∑e∈T(k′) ωe(k′)
|Dk′ |ε

≥
∑e∈T(k′) ωe(k′)

Kε

for any tree T in G′(k′) that roots at s′k′ and spans the nodes in Dk′ , including Topt(k′).

54 Online Unicasting and Multicasting in Software-Defined Networks

Since rk′ is rejected by the online algorithm, the weighted sum of edges in T(k′) is no

less than the given threshold, i.e.,

∑e∈T(k′) ωe(k′)
Kε

≥ min{σv, σe}
Kε

.

Thus,

∑
e∈Topt(k′)

ωe(k′) ≥
∑e∈T(k′) ωe(k′)

Kε
≥ min{σv, σe}

Kε
.

Case 2. At least one node or one edge in Topt(k′) does not have a corresponding

edge in G′(k′). Recall that a node or a link is not included only if its residual capacity

cannot satisfy the resource demands of rk′ . This case thus can be further divided

into two subcases: (a) if there is not any multicast tree with sufficient available table

entries to route the message of the request, then there must have a node-derived edge

e′ = 〈v′′, wvu〉 ∈ Topt(k′) ∩ E′v(k′) derived from node v ∈ V such that Lv(k′) < dv ≤ K.

Consequently, the weighted sum of edges in Topt(k′) is greater than σv/Kε as follows.

∑
e∈Topt(k′)

ωe(k′)

≥ω〈v′,v′′〉(k
′)

=α1− Lv(k′)
Lv − 1

>α1− dv
Lv − 1, since Lv(k′) < dv

≥α
1− 1

log α − 1, since 2n ≤ α ≤ 2Lmin ≤ 2Lv/dv

=
α

2
− 1

≥σv

≥ σv

Kε
.

(b) If there is not any multicast tree with sufficient bandwidth on one of its links to

admit multicast request k′, then the weighted sum of edges in Topt(k′) is greater than

σe/Kε, which can be proved using the similar method as the one for online unicasting

§2.5 An Online Algorithm for Multicast Routing 55

in the proof body of Lemma 2.2, and thus omitted.

We finally have the following theorem.

Theorem 2.2. Given an SDN G = (V, E) with both node and link capacities Lv(·) and

Be(·) for all v ∈ V and e ∈ E, assume that there is a sequence of multicast requests rk =

(sk, Dk; bk) arriving one by one without the knowledge of future arrivals with Dk ⊆ V.

There is an online algorithm, Algorithm 2.2, with the competitive ratio of 2Kε(γ log α +

log β) + 1 for the network capacity maximization problem for online multicasting, which

takes O((|V|+ |E|)1/εK2/ε) time, where α and β are constants with 2|V| = 2n ≤ α ≤ 2Lmin

and 2|V| = 2n ≤ β ≤ 2Bmin/bmax , γ = Bmin/ log β, and ε is a constant with 0 < ε ≤ 1.

Proof. Let Bopt(k) be the total bandwidth of all admitted multicast requests by an

optimal offline algorithm. Combining Lemmas 2.3 and 2.4, we have

(n− 1)
Kε

(Bopt(k)−B(k))

≤ (n− 1)
Kε ∑

k′∈R(k)
bk′

= ∑
k′∈R(k)

bk′
(n− 1)

Kε

≤ ∑
k′∈R(k)

bk′
(

∑
e∈Topt(k′)

ωe(k′)
)
, by Lemma 2.4

= ∑
k′∈R(k)

bk′
(

∑
〈v′′,wvu〉∈Topt(k′)∩E′v(k′)

ω〈v′′,wvu〉(k
′)

+ ∑
〈wvu,u′〉∈Topt(k′)∩E′e(k′)

ω〈wvu,u′〉(k
′)
)

≤ ∑
k′∈R(k)

bk′
(

∑
〈v′′,wvu〉∈Topt(k′)∩E′v(k′)

ω〈v′′,wvu〉(k)

+ ∑
〈wvu,u′〉∈Topt(k′)∩E′e(k′)

ω〈wvu,u′〉(k)
)

(2.28)

= ∑
k′∈R(k)

bk′
(

∑
〈v′′,wvu〉∈Topt(k′)∩E′v(k′)

cv(k)
Lv

+ ∑
〈wvu,u′〉∈Topt(k′)∩E′e(k′)

c(v,u)(k)
B(v,u)

)

56 Online Unicasting and Multicasting in Software-Defined Networks

= ∑
k′∈R(k)

∑
〈v′′,wvu〉∈Topt(k′)∩E′v(k′)

bk′
cv(k)

Lv

+ ∑
k′∈R(k)

∑
〈wvu,u′〉∈Topt(k′)∩E′e(k′)

bk′
c(v,u)(k)

B(v,u)

≤ ∑
v∈V

cv(k) ∑
k′∈R(k)

∑
〈v′′,wvu〉∈Topt(k′)∩E′v(k′)

bk′

Lv

+ ∑
(v,u)∈E

c(v,u)(k) ∑
k′∈R(k)

∑
〈wvu,u′〉∈Topt(k′)∩E′e(k′)

bk′

B(v,u)

= ∑
v∈V

cv(k)
∑k′∈R(k) ∑〈v′′,wvu〉∈Topt(k′)∩E′v(k′) bk′

Lv

+ ∑
(v,u)∈E

c(v,u)(k)
∑k′∈R(k) ∑〈wvu,u′〉∈Topt(k′)∩E′e(k′) bk′

B(v,u)

≤ ∑
v∈V

cv(k)γ + ∑
e∈E

ce(k)

≤γ ∑
v∈V

cv(k) + ∑
e∈E

ce(k)

≤γ|S(k)|(σv + (n− 1)) log α

+ B(k)(σe + (n− 1)) log β

=2(n− 1)(γ|S(k)| log α + B(k) log β) (2.29)

where Inequality (2.28) follows because the resource utilization is always nondecreas-

ing.

From Inequality (2.29), we have

Bopt(k)−B(k)
B(k)

≤ 2Kε(
|S(k)|
B(k)

γ log α + log β). (2.30)

Hence,

Bopt(k)
B(k)

≤2Kε(
|S(k)|
B(k)

γ log α + log β) + 1,

≤2Kε(γ log α + log β) + 1, since
|S(k)|
B(k)

≤ 1,

§2.6 Performance Evaluation 57

≤2Kε(γ log(2n)) + 1, if α = β = 2|V| = 2n,

=O(Kε log n).

The rest is to analyze the time complexity of Algorithm 2.2. Recall that given

an SDN G = (V, E), we first construct an auxiliary graph G′(k) = (V ′(k), E′(k)),

which contains |V ′(k)| (= |V|+ |E|) nodes and |E′(k)| (= |V|+ 4|E|) edges. Thus, the

construction of G′(k) takes O(|V|+ |E|) time. It then takes O(|V ′(k)|1/ε|Dk|2/ε) time

to find an approximate Steiner tree in G′(k) for a multicast request rk, by employing

the algorithm in [21]. As a result, Algorithm 2.2 takes O((|V|+ |E|)1/εK2/ε) time.

2.6 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms through

experimental simulations. We also investigate the impact of important parameters on

the performance of the proposed algorithms.

2.6.1 Experimental Environment Settings

We consider networks with 50, 100, 150, 200, and 250 nodes, respectively. For each

network size, 30 network instances are generated, using the tool GT-ITM [15]. The size

of TCAM Lv of each switch node v ∈ V varies from 500 to 5, 000, and the bandwidth

capacity Be of each link e ∈ E varies from 1, 000 Mbps to 10, 000 Mbps [79, 85, 107].

The bandwidth demand bk of each unicast or multicast request rk is randomly drawn

between 1 Mbps and 50 Mbps. The number of destinations in a multicast request is

randomly chosen between 1% and 15% of the network size. The value in each figure

is the mean of the results out of 30 network instances with 30 different sequences of

50, 000 unicast requests or 20, 000 multicast requests.

To speed up the running time of the proposed algorithm, Algorithm 2.2, we em-

ploy a simpler approach based on the single-source shortest path algorithm to find an

approximate, minimum Steiner tree, instead of the time-consuming approximation

58 Online Unicasting and Multicasting in Software-Defined Networks

algorithm in [21] that delivers a better solution.

Since the proposed algorithms in this chapter are the very first ones that jointly

consider node and edge capacities in SDNs, comparing the performance of the pro-

posed algorithms with those only considered either one type of resource capacity may

be unfair. To evaluate the performance of the proposed algorithms against the bench-

marks, we here propose two heuristics SHORTEST-UC and SHORTEST-MC for online

unicasting and multicasting respectively. Specifically, for each request rk, the heuristic

algorithms first remove the links and nodes from the network G that do not have

enough residual resources to support the admission of the request, and then assign

each link the same weight. SHORTEST-UC finds a shortest path with the minimum

number of links from the source to the destination of request rk, while SHORTEST-MC

finds a single-source shortest path tree spanning all destination nodes rooted at the

source and spanning all destinations of a multicast request rk.

2.6.2 Performance Evaluation of Different Algorithms

We first evaluate the proposed two online algorithms Algorithm 2.1 and Algorithm 2.2

against algorithms SHORTEST-UC and SHORTEST-MC, by varying network size n from

50 to 250 while keeping other parameters fixed, i.e., α = β = 2n and σe = σv = n− 1.

50 100 150 200 250
Network Size n

500

1,000

1,500

A
cc

u
m

u
la

te
d

 B
an

d
w

id
th

 i
n

 G
b

p
s

Algorithm 1
SHORTEST-UC

(a) Accumulated bandwidth for online unicast-
ing

50 100 150 200 250
Network Size n

130

140

150

160

A
cc

u
m

u
la

te
d

 B
an

d
w

id
th

 i
n

 G
b

p
s

Algorithm 2
SHORTEST-MC

(b) Accumulated bandwidth for online multi-
casting

Figure 2.2: The accumulated bandwidth delivered by different algorithms in networks.

§2.6 Performance Evaluation 59

Figure 2.2 plots the performance curves of different algorithms, from which it

can be seen both Algorithm 2.1 and Algorithm 2.2 outperform SHORTEST-UC and

SHORTEST-MC. Specifically, Algorithm 2.1 outperforms algorithm SHORTEST-UC. As

shown in Figure 2.2 (a), Algorithm 2.1 delivers 10% more accumulated bandwidth

than that of SHORTEST-UC. Meanwhile, Algorithm 2.2 delivers more accumulated

bandwidth and admits more requests than that of SHORTEST-MC, too. In particular,

As shown in Figure 2.2 (b), the accumulated bandwidth delivered by Algorithm 2.2

is 10% more than that by SHORTEST-MC when n = 50. However, Algorithm 2.2 still

delivers 9% more accumulated bandwidth compared with SHORTEST-MC when the

network size is 250. The reason is that with the growth of the network size n, the

number of destinations in each multicast request increases, requiring more node and

link resources for the request realization.

2.6.3 Parameter Impacts on Algorithmic Performance

We first investigate the impact of parameters α and β on the performance of the

proposed algorithms, by varying them from 21n to 25n while keeping σv = σe = n− 1.

Figure 2.3 and 2.4 plot the performance curves of Algorithm 2.1 and Algorithm 2.2,

by varying either α or β while fixing the other.

It can be seen from Figures 2.3 (a) to 2.3 (c) that when α is fixed, the larger the

value of β, the less the accumulated bandwidth delivered by Algorithm 2.1 and vice

versa. For instance, when α = 21n and n = 50, Algorithm 2.1 with β = 21n delivers

15% more the accumulated bandwidth than itself with β = 25n. It also can be seen that

the performance gap of Algorithm 2.1 under different α and β is flat with the increase

of network size n. Similarly, Figure 2.4 plots the performance curves of Algorithm 2.2,

by varying the values of exactly one of α and β each time, from which it can be

seen when α is fixed, the larger the value of β, the less the accumulated bandwidth

delivered by Algorithm 2.2 and vice versa.

We then study the impact of the admission thresholds σv and σe on the perfor-

60 Online Unicasting and Multicasting in Software-Defined Networks

50 100 150 200 250
Network Size n

400

600

800

1,000

1,200

A
cc

u
m

u
la

te
d

 B
an

d
w

id
th

 i
n

 G
b

p
s

l = 1
l = 2
l = 3
l = 4
l = 5

(a) The performance of Algorithm 2.1 by vary-
ing β (= 2ln) when α = 21n

50 100 150 200 250
Network Size n

400

600

800

1,000

1,200

A
cc

u
m

u
la

te
d

 B
an

d
w

id
th

 i
n

 G
b

p
s

l = 1
l = 2
l = 3
l = 4
l = 5

(b) The performance of Algorithm 2.1 by vary-
ing β (= 2ln) when α = 23n

50 100 150 200 250
Network Size n

400

600

800

1,000

1,200

A
cc

u
m

u
la

te
d

 B
an

d
w

id
th

 i
n

 G
b

p
s

l = 1
l = 2
l = 3
l = 4
l = 5

(c) The performance of Algorithm 2.1 by vary-
ing β (= 2ln) when α = 25n

50 100 150 200 250
Network Size n

400

600

800

1,000

1,200

A
cc

u
m

u
la

te
d

 B
an

d
w

id
th

 i
n

 G
b

p
s

l = 1
l = 2
l = 3
l = 4
l = 5

(d) The performance of Algorithm 2.1 by vary-
ing α (= 2ln) when β = 21n

50 100 150 200 250
Network Size n

400

600

800

1,000

1,200

A
cc

u
m

u
la

te
d

 B
an

d
w

id
th

 i
n

 G
b

p
s

l = 1
l = 2
l = 3
l = 4
l = 5

(e) The performance of Algorithm 2.1 by vary-
ing α (= 2ln) when β = 23n

50 100 150 200 250
Network Size n

400

600

800

1,000

1,200

A
cc

u
m

u
la

te
d

 B
an

d
w

id
th

 i
n

 G
b

p
s

l = 1
l = 2
l = 3
l = 4
l = 5

(f) The performance of Algorithm 2.1 by vary-
ing α (= 2ln) when β = 25n

Figure 2.3: The performance of Algorithm 2.1 for online unicasting by varying α and
β, when σv = σe = n− 1.

§2.6 Performance Evaluation 61

50 100 150 200 250
Network Size n

110

120

130

140

150

160

170

A
cc

u
m

u
la

te
d
 B

an
d
w

id
th

 i
n
 G

b
p
s

l = 1
l = 2
l = 3
l = 4
l = 5

(a) The performance of Algorithm 2.2 by vary-
ing β (= 2ln) when α = 21n

50 100 150 200 250
Network Size n

110

120

130

140

150

160

170

A
cc

u
m

u
la

te
d
 B

an
d
w

id
th

 i
n
 G

b
p
s

l = 1
l = 2
l = 3
l = 4
l = 5

(b) The performance of Algorithm 2.2 by vary-
ing β (= 2ln) when α = 23n

50 100 150 200 250
Network Size n

110

120

130

140

150

160

170

A
cc

u
m

u
la

te
d
 B

an
d
w

id
th

 i
n
 G

b
p
s

l = 1
l = 2
l = 3
l = 4
l = 5

(c) The performance of Algorithm 2.2 by vary-
ing β (= 2ln) when α = 25n

50 100 150 200 250
Network Size n

110

120

130

140

150

160

170
A

cc
u
m

u
la

te
d
 B

an
d
w

id
th

 i
n
 G

b
p
s

l = 1
l = 2
l = 3
l = 4
l = 5

(d) The performance of Algorithm 2.2 by vary-
ing α (= 2ln) when β = 21n

50 100 150 200 250
Network Size n

110

120

130

140

150

160

170

A
cc

u
m

u
la

te
d
 B

an
d
w

id
th

 i
n
 G

b
p
s

l = 1
l = 2
l = 3
l = 4
l = 5

(e) The performance of Algorithm 2.2 by vary-
ing α (= 2ln) when β = 23n

50 100 150 200 250
Network Size n

110

120

130

140

150

160

170

A
cc

u
m

u
la

te
d
 B

an
d
w

id
th

 i
n
 G

b
p
s

l = 1
l = 2
l = 3
l = 4
l = 5

(f) The performance of Algorithm 2.2 by vary-
ing α (= 2ln) when β = 25n

Figure 2.4: The performance of Algorithm 2.2 for online multicasting by varying α
and β when σv = σe = n− 1.

62 Online Unicasting and Multicasting in Software-Defined Networks

mance of algorithms 2.1 and 2.2. Figure 2.5 plots the performance curves of Algo-

rithm 2.1 and Algorithm 2.2 with and without the admission control thresholds, from

which it can be seen that both of them with admission control significantly outper-

form themselves without the admission control. Specifically, for online unicasting, the

performance gap of Algorithm 2.1 with and without the thresholds becomes larger

and larger with the increase in network size n, as shown in Figure 2.5 (a). For example,

the ratio of the accumulated bandwidths delivered by Algorithm 2.1 with and with-

out the admission control grows from 1.25 to 2.5 when n = 25, 250 respectively. For

the online multicasting, the performance gap of Algorithm 2.2 with and without the

admission control is relatively stable, as shown in Figure 2.5 (b). The difference in the

accumulated bandwidth only drops from approximately 30 Gbps to approximately

24 Gbps for a monitoring period when the network size increases from 100 to 250.

50 100 150 200 250
Network Size n

0

500

1,000

1,500

A
cc

u
m

u
la

te
d

 B
an

d
w

id
th

 i
n

 G
b

p
s

σ
v
 = σ

e
 = n - 1

σ
v
 = σ

e
 = ∞

(a) Accumulated bandwidth by Algorithm 2.1

50 100 150 200 250
Network Size n

100

120

140

160

180

A
cc

u
m

u
la

te
d

 B
an

d
w

id
th

 i
n

 G
b

p
s

σ
v
 = σ

e
 = n - 1

σ
v
 = σ

e
 = ∞

(b) Accumulated bandwidth by Algorithm 2.2

Figure 2.5: The accumulated bandwidth delivered by Algorithm 2.1 for online unicas-
ting and Algorithm 2.2 for online multicasting with thresholds σv = σe = n− 1 and
without the thresholds σv = σe = ∞ when α = β = 2n.

2.6.4 Impact of Request Implementation Durations on Algorithm Perfor-

mance

We now investigate the impact of the durations (numbers of time slots) of admitted

requests on the performance of the proposed online algorithms Algorithm 2.1 and

§2.6 Performance Evaluation 63

50 100 150 200 250
Network Size n

900

1,000

1,100

1,200

1,300

A
cc

u
m

u
la

te
d

 B
an

d
w

id
th

 i
n

 G
b

p
s

Max. duration = 10
Max. duration = 20
Max. duration = 30
Max. duration = 40
Max. duration = 50

(a) Accumulated bandwidth by Algorithm 2.1

50 100 150 200 250
100

150

200

250

300

350

400

450

500

A
cc

u
m

u
la

te
d

 B
an

d
w

id
th

 i
n

 G
b

p
s

Max. duration = 4
Max. duration = 8
Max. duration = 12
Max. duration = 16
Max. duration = 20

 Network Size n
(b) Accumulated bandwidth by Algorithm 2.2

Figure 2.6: The network throughput delivered by Algorithm 2.1 for online unicasting
and Algorithm 2.2 for online multicasting by varying the maximum duration of
admitted requests in terms of numbers of time slots.

Algorithm 2.2, by varying the maximum duration of admitted requests, where each

admitted request will release the resources allocated to it when it departs from the

network. From Figure 2.6 (a)–(b), we can see that the longer the maximum duration

is, the less the number of requests the proposed online algorithms admit. The reason

behind is that longer resource holding durations by the admitted requests result in

fewer resources for later request admissions, which limits the ability of the network

to admit more requests. Specifically, Figure 2.6 (a) indicates that the impact of the

maximum duration of admitted unicast requests is significant on the performance

of the algorithm when the network size is small, because a small network has fewer

resources, it cannot accommodate more requests if the currently admitted requests

do not depart from it. On the other hand, from Figure 2.6 (b), we can see that the gap

between the performance of the online multicast algorithm is roughly the same for

all network sizes when the maximum duration of admitted requests changes, due to

the fact that multicast requests require much more resources and readily consume all

the resources in the network even if some admitted requests depart from the network

shortly.

64 Online Unicasting and Multicasting in Software-Defined Networks

2.7 Summary

In this chapter, we studied online unicasting and multicasting in SDNs with resource

capacity constraints on switch nodes and links, and user request bandwidth demands.

We first proposed a novel cost model to model the usage costs of different resources.

We then devised novel online algorithms with provable competitive ratios for online

unicasting and multicasting. We finally evaluated the performance of the proposed

algorithms through experimental simulation. Simulation results indicate that the

proposed algorithms are very promising.

Chapter 3

Throughput Maximization in

Software-Defined Networks with

Consolidated Middleboxes

3.1 Introduction

Computer networks nowadays rely on various middleboxes, including firewall, Intru-

sion Detection Systems (IDSs), WAN optimizers, and Deep Packet Inspections (DPIs),

to enhance the performance and security of different network services [44, 54, 119].

Unfortunately, the management and deployment of these hardware middleboxes are

complex and costly [119]. For example, statistics indicated that large networks (10k-

100k nodes) spent over a million dollars on deploying and maintaining hardware

middleboxes while medium and small networks (1k-10k nodes) spent between $5,000

and $50,000 in the last five years [119]. With the advancement of the Network Function

Virtualization (NFV), middleboxes can be implemented in Virtual Machines (VMs)

that run in Physical Machines (PMs) [43, 110, 119]. The NFVs can be relocated and

instantiated at servers located at different locations in a network without needs of

purchasing and installing expensive middleboxes. By decoupling network functions

from the hardware platform on which network functions are executed, NFV has the

great potential to lead to significant reductions in operating expenses (OPEX) and

capital expenses (CAPEX) of network service providers and facilitate the deployment

65

66 Throughput Maximization in SDN with Consolidated Middleboxes

of new services with increased agility and faster time-to-value [103]. We refer to the

software implementation of middleboxes as the consolidated middleboxes. Along with

the technique of Software-Defined Networking (SDN), consolidated middleboxes of-

fer a promising alternative way to provide cheap and simplified management of

middleboxes [49, 118].

In this chapter, we deal with realizing user requests with each specifying a se-

quence of middleboxes in SDNs with the aim to maximize the network throughput.

This problem poses great challenges. One challenge is that different types of resources

in SDNs have different capacities. For instance, the forwarding table of an SDN-

enabled switch usually is made by Ternary Content-Addressable Memory (TCAM)

to facilitate fast, parallel lookups of forwarding rules. TCAM however is expensive

and energy-hungry, its capacity thus is restricted to a few thousand table entries [85].

Meanwhile, the computing resource of the PM attached to an SDN-enabled switch is

limited too. Another challenge is that all resources in an SDN are dynamically allo-

cated, causing significant fluctuations in their consumptions and availabilities. The

time-varying nature of resource demands and consumptions complicates the cost

modeling of resource usages. In addition, each user request requires its traffic to tra-

verse a specified sequence of middleboxes that is referred to the service chain of the

request. In this chapter, we will address the aforementioned challenges.

In spite of several studies of consolidated middleboxes [22, 49, 110], none of the

studies has taken the forwarding table size into consideration. Almost all existing

solutions adopt a strategy that decomposes the routing path finding and the service

chain execution into two separate subtasks [49], the solutions thus are suboptimal. To

the best of our knowledge, we are the first to formulate a novel routing optimization

problem with consolidated middleboxes in SDNs by jointly taking into account both

routing path finding and consolidated middlebox placement while meeting different

user QoSs, by providing efficient heuristic solutions.

The main contributions of this chapter are as follows. We consider the network

§3.2 Preliminaries 67

throughput maximization problem of realizing user requests with service chains in

SDNs, subject to various network resource capacity constraints. We first formulate

an Integer Linear Program (ILP) solution to the problem when the problem size is

small. We then devise a heuristic by providing a novel cost model to model resource

consumptions. We also propose a faster heuristic to quickly respond to user requests,

by exploring non-trivial tradeoffs between the accuracy (quality) of a solution and

the running time of obtaining the solution. Furthermore, we consider dynamic admis-

sions of user requests where user requests arrive one by one without the knowledge

of future arrivals, by showing how to extend the proposed algorithms for dynamic ad-

missions of requests. We finally evaluate the performance of the proposed algorithms

through simulations, based on real and synthetic network topologies. Experimental

results demonstrate that the proposed algorithms are very promising, compared to a

baseline algorithm and the ILP, which delivers optimal solutions.

The rest of the chapter is organized as follows. Section 3.2 will introduce the

system model and notations, and define the problem. Section 3.3 will formulate an

ILP solution to the problem. Section 3.4 and Section 3.5 will present two heuristic

algorithms that strive for non-trivial tradeoffs between the accuracy of a solution

and the running time of obtaining the solution. Section 3.6 will devise an online

algorithm for dynamic request admissions. Section 3.7 will evaluate the performance

of the proposed algorithms through simulations, and Section 3.8 will summarize the

chapter.

3.2 Preliminaries

3.2.1 System Model

We consider a software-defined network represented by a directed graph G = (V, E),

where V is the node set and E is the edge set. Each node v ∈ V represents an SDN-

enabled switch, while each directed edge 〈u, v〉 ∈ E represents a link from switch

68 Throughput Maximization in SDN with Consolidated Middleboxes

u to switch v. Each switch v ∈ V is equipped with a Ternary Content-Addressable

Memory (TCAM) forwarding table that can accommodate at most Lv forwarding

rules. A subset of switches in V connected to physical machines (PMs) to implement

middleboxes as virtual machines. As such a switch and its attached PM usually are

connected by a high-speed optical link, the latency between them is negligible. In the

rest of this chapter, the switches and their attached PMs will be used interchangeably.

Denote by Vpm (⊆ V) the set of switches that have attached PMs. Without loss of gen-

erality, we assume that each PM attached to a switch v ∈ Vpm has limited computing

resource capacity, denoted by Cv. If switch v ∈ V \Vpm, then Cv = 0. Similarly, each

link e ∈ E has a bandwidth capacity Be. We assume that there is a logically centralized

SDN controller for network G that collects and processes user requests, by installing

forwarding rules into the forwarding tables in switches, assigning the middleboxes

for the requests to PMs, and allocating bandwidth on links.

3.2.2 User Requests

We assume that time is slotted into equal time slots. User requests are scheduled by

the centralized SDN controller in the beginning of each time slot. Let S(t) be the

set of arrived user requests in time slot t. Each user request has a certain amount of

bandwidth demand to route its traffic in G from a source switch to a destination

switch that passes through a sequence of middleboxes, and the request also has

the end-to-end delay requirement. Let ri ∈ S(t) be a user request, represented by

a quintuple ri = 〈si, ti, bi, SCi, di〉, where si, ti ∈ V are, respectively, its source and

destination switches, bi is its bandwidth demand, SCi is its service chain, and di ∈ R+

is its end-to-end delay constraint. Admission of request ri therefore involves routing

the traffic from the source switch si to the destination switch ti via a routing path

Pi = 〈si, . . . , ti〉 subject to the specified constraints.

Following the same assumption as in [49, 100, 110, 118], we assume that services

in SCi are run in a single VM and different VMs serving different requests can be

§3.2 Preliminaries 69

consolidated to a single Physical machine (PM). Specifically, when the traffic of request

ri arrives at the PM hosting the VM for its service chain SCi, the traffic will be directed

to the VM and the services in SCi are applied in the specified order. Performing the

services in SCi for ri thus will consume the computing resource of a PM. Denote by

C(i, j) the amount of computing resource needed by SCi in a PM attached to switch

vj ∈ Vpm. Notice that some services in SCi may alter the volume of the traffic of

request ri. For instance, the volume of traffic increases if encryption is applied to the

traffic, while the volume of traffic decreases if compression is applied to the traffic. We

here define λi ∈ R+ as the ratio between the volumes of the traffic of request ri before

and after processing at a PM. Since request ri requires an amount bi of bandwidth to

route its traffic before processing, it needs an amount λi · bi of bandwidth to route the

processed traffic. The value of λi for each request ri is given and can be derived from

historical traces of similar requests [23]. In addition, each request ri has a tolerant

end-to-end delay requirement di. Suppose that request ri is admitted with a routing

path Pi from its source si to its destination ti, and its service chain SCi is implemented

on a PM-attached switch v ∈ Vpm on Pi. Let d(Pi) and d(i, v) be the network delay

experienced by ri via path Pi and the processing delay of ri at PM v, respectively. The

network delay d(Pi) is proportional to the number of switches on Pi, and the average

processing delay d(i, v) depends on the complexity of the service chain SCi which

usually is given as a priori. Then, the end-to-end delay Di of ri via path Pi is the sum

of the network delay of Pi and the processing delay of SCi, i.e., d(Pi) + d(i, v). It has

to be guaranteed that d(Pi) + d(i, v) ≤ di for every admitted request ri.

3.2.3 Problem Definition

Given an SDN G = (V, E), a subset of switches Vpm (⊆ V) with each attaching a

PM with computing capacity Cv, the forwarding table capacity Lv for each switch

v ∈ V, the bandwidth capacity Be for each link e ∈ E, and a set of user requests S(t) at

time slot t, the network throughput maximization problem in G is to admit as many user

70 Throughput Maximization in SDN with Consolidated Middleboxes

requests in S(t) as possible such that the number of requests admitted is maximized

while the end-to-end delay di, bandwidth demand bi, and computing demand C(i, j)

of the service chain SCi of each admitted request ri ∈ S(t) is met, subject to resource

capacity constraints in G.

Given an SDN G = (V, E), a subset of switches Vpm (⊆ V) with each attaching

a PM with computing capacity Cv, the forwarding table capacity Lv for each switch

v ∈ V, the bandwidth capacity Be for each link e ∈ E, and a given time horizon T that

consists of T equal time slots, assume that the set of requests arrived at time slot t is

S(t) and the duration of each request ri = 〈si, ti, bi, SCi, di, τi〉 ∈ S(t) in the system is

τi time slots with 1 ≤ τi ≤ τmax, the online network throughput maximization problem in

G is to admit as many user requests as possible during time horizon T such that the

number of requests admitted is maximized while the end-to-end delay di, bandwidth

demand bi, and computing demand C(i, j) of the service chain SCi of each admitted

request ri ∈ S(t) is met, subject to resource capacity constraints in G.

3.2.4 NP-Hardness

We show that the network throughput maximization problem is NP-hard by the

following lemma.

Lemma 3.1. The network throughput maximization problem in a software-defined network

G = (V, E) is NP-hard.

Proof. We show that the network throughput maximization problem in G = (V, E)

is NP-hard, by a polynomial reduction from the generalized assignment problem (GAP)

which is a well-known NP-hard problem [25]. Given an instance of the GAP in the

form of a set of bins B = {b1, . . . , bn}, a set of items I = {i1, . . . , im}, bin capacities

cap : B 7→ R+ and size : B × I 7→ R+. For each item ij with 1 ≤ j ≤ m and bin bk

with 1 ≤ k ≤ n, we are given a size size(j, k) and a profit pro f it(j, k). The problem is

to pack a subset U ⊆ I of items to the bins in B such that the total profit by these

items is maximized. The GAP problem is a well-studied problem.

§3.2 Preliminaries 71

We first construct an SDN G = (V, E), through adding a stand-alone switch i for

each item i in I , a PM-attached switch b for each bin b in B, a virtual sink v0 that

is serving as the common destination for all requests, a link from each stand-alone

switch to each PM-attached switch, and a link from each PM-attached switch to the

virtual sink v0. That is, V = I ∪B ∪{v0} and E = {〈i, b〉 | i ∈ I , b ∈ B}∪ {〈b, v0〉 | b ∈

B}. Figure 3.1 shows an example of the constructed SDN G = (V, E).

i1

i2

i3

i4

b1

b2

b3

b4

v0

Figure 3.1: An example of the SDN G constructed from an instance of the GAP with
four items and four bins.

The forwarding table size at each node in V and the bandwidth resource capacity

of each link in E are set to infinity. Moreover, Vpm = B and the computing capacity of

each node m in Vpm is set to cap(m), the capacity of bin m.

We then generate a set of requests S: For each item n ∈ I , we add to S a request

ri = 〈si, ti, bi, SCi, di〉, where si is set to the switch n ∈ V, ti is set to the virtual sink t,

bi = 0, the computing resource demand C(n, m) to process its service chain at m ∈ Vpm

is size(n, m), and di = ∞. Therefore, routing the set of requests S into network G is

an instance of the network throughput maximization problem. We finish by noting

that the network throughput maximization problem has a solution of admitting K

requests if and only if the GAP with identical profits has a solution of profit K.

72 Throughput Maximization in SDN with Consolidated Middleboxes

3.3 Integer Linear Program

In this section, we formulate the network throughput maximization problem as an

Integer Linear Program (ILP), where xi is a decision variable with value 1 if request

ri is admitted and 0 otherwise. zv
i is a decision variable with value 1 if and only if the

traffic of ri is processed by the PM attached to switch v ∈ Vpm. For brevity, denote by

δ+(v) and δ−(v) the sets of leaving and entering edges of a switch v ∈ V, respectively.

In addition, to distinguish between traffic before and after being processed at a PM, we

introduce two decision variables wpre
i (e) and wpost

i (e) with value 1 if and only if link

e carries the unprocessed and processed traffic, respectively. The detailed description

is given in Figure 3.2.

Constraint (3.2) ensures that if and only if a request ri ∈ S(t) is admitted, it

will be processed in exactly one PM. The volume of the traffic may change after the

processing at v, while the volume is conserved at other non-terminal switches except

the switch v ∈ Vpm where it is processed.

Constraints (3.3) and (3.4) capture traffic changing at PM-attached switches that

process traffic of user requests and traffic conservation at non-terminal switches. Specif-

ically, if request ri is processed at v ∈ Vpm, then (i) exactly one incoming edge of v

carries the unprocessed traffic and none of the outgoing edges of v carries the unpro-

cessed traffic; and (ii) exactly one of the outgoing edges of v carries the processed

traffic, and none of the incoming edges of v carries the processed traffic. Otherwise,

if the traffic of ri is not processed by the PM attached to switch v ∈ Vpm but goes

through v, either (i) exactly one incoming edge and one outgoing edge of v carry the

unprocessed traffic, or (ii) exactly one incoming edge and one outgoing edge of v

carry the processed traffic.

Constraints (3.5) and (3.8) ensure that no unprocessed traffic enters any source

switch si and no processed traffic leaves the terminal switch ti.

Constraints (3.6) and (3.7) handle the cases where the traffic of a request vi is

processed at the source switch si or the terminal switch ti.

§3.3 Integer Linear Program 73

maximize
|S(t)|

∑
i=1

xi, (3.1)

subject to

∑
v∈V

zv
i = xi, i = 1, . . . , |S(t)| (3.2)

∑
e∈δ−(v)

wpre
i (e)− ∑

e∈δ+(v)
wpre

i (e) = zv
i , ∀v ∈ V \ {si}, i = 1, . . . , |S(t)|

(3.3)

∑
e∈δ+(v)

wpost
i (e)− ∑

e∈δ−(v)
wpost

i (e) = zv
i , ∀v ∈ V \ {ti}, i = 1, . . . , |S(t)|

(3.4)

∑
e∈δ−(si)

wpre
i (e) = 0, i = 1, . . . , |S(t)| (3.5)

∑
e∈δ+(si)

wpre
i (e) = xi − zti

i , i = 1, . . . , |S(t)| (3.6)

∑
e∈δ−(ti)

wpost
i (e) = xi − zti

i , i = 1, . . . , |S(t)| (3.7)

∑
e∈δ+(ti)

wpost
i (e) = 0, i = 1, . . . , |S(t)| (3.8)

∑
e∈E

(
wpre

i (e) + wpost
i (e)) + ∑

v∈V
zv

i · Dp(i, v) ≤ di, i = 1, . . . , |S(t)| (3.9)

|S(t)|

∑
i=1

(
bi · w

pre
i (e) + λi · bi · w

post
i (e)

)
≤ Be, ∀e ∈ E (3.10)

|S(t)|

∑
i=1

∑
e∈δ+(v)

(wpre
i (e) + wpost

i (e)) ≤ Lv, ∀v ∈ V (3.11)

|S(t)|

∑
i=1

zv
i ≤ Cv, ∀v ∈ V (3.12)

wpre
i (e), wpost

i (e) ∈ {0, 1}, ∀e ∈ E, i = 1, . . . , |S(t)| (3.13)

xi ∈ {0, 1}, i = 1, . . . , |S(t)| (3.14)

zv
i ∈ {0, 1}, ∀v ∈ Vpm, i = 1, . . . , |S(t)| (3.15)

zv
i = 0, ∀v ∈ V \Vpm, i = 1, . . . , |S(t)|.

(3.16)

Figure 3.2: An ILP formulation of the network throughput maximization problem

74 Throughput Maximization in SDN with Consolidated Middleboxes

Constraint (3.9) enforces that the end-to-end delay requirement, which is the sum

of the network delay Dn(Pi) and the processing delay Dp(i, v), of every admitted re-

quest is met, where the network delay Dn(Pi) is calculated by ∑e∈E
(
wpre

i (e)+wpost
i (e))

and the processing delay Dp(i, v) is ∑v∈V zv
i ·Dp(i, v). Since zv

i is 1 only for node v that

implements the consolidated middleboxes for request ri, only the processing delay at

the node v is incurred.

Constraint (3.10) enforces the bandwidth capacity constraint for each link e ∈ E.

Constraint (3.11) imposes the forwarding table capacity constraint for each switch v ∈

V, and Constraint (3.12) models the computing capacity constraint of PMs attached

to each switch v ∈ Vpm.

Constraint (3.13), (3.14), and (3.15) restrict the range of decision variables to 0 and

1 inclusively. Constraint (3.16) indicates that if there is no PM at a switch v ∈ V \Vpm,

then it cannot process any request.

Since the ILP solution is time-consuming, it is only applicable when the problem

size is small. The rest of this chapter will develop efficient, scalable solutions to the

problem.

3.4 A Heuristic Algorithm

In this section, we focus on devising an efficient heuristic for the problem. We first

propose a cost model to capture the dynamic resource usages in G, and then devise the

algorithm through a reduction that reduces the problem into shortest path findings

in a series of auxiliary graphs derived from G.

3.4.1 A Novel Cost Model of Resource Usages and the Construction of an

Auxiliary Graph

Given an SDN G, it contains different types of resources such as computing resources

at servers, TCAM sizes at switches, and bandwidth resources at links. Designing an

efficient algorithm for the network throughput maximization problem needs to utilize

§3.4 A Heuristic Algorithm 75

these resources judiciously, through the guidance of an efficient cost metric that can

accurately capture the usages and utilizations of different resources. In the following,

we first propose a cost model of resource usages. We then reduce the problem of

concern in G into another problem of finding shortest paths in a series of auxiliary

graphs G′i that are derived by implementing the service chain at different servers in

G.

Given an SDN G = (V, E) and a request ri = 〈si, ti, bi, SCi, di〉, the auxiliary graph

G′i = (V ′i , E′i ; ωi) for request i is constructed as follows. For each switch v in V, two

vertices v′ and v′′ are added to V ′i , and a directed edge 〈v′, v′′〉 is added to E′i . For

each link 〈u, v〉 in E, an edge 〈u′′, v′〉 is added to E′i , i.e., V ′i = {v′, v′′ | v ∈ V} and

E′i = {〈v′, v′′〉 | v ∈ V} ∪ {〈u′′, v′〉 | 〈u, v〉 ∈ E}. Intuitively, each edge 〈v′, v′′〉 in G′i

represents switch node v and an edge 〈u′′, v′〉 represents link 〈u, v〉 in G. An example

of such an auxiliary graph is given in Figure 3.3.

a b

c

(a) G = (V,E)

a′ a′′

c′ c′′

b′ b′′

(b) G′
i = (V ′

i , E
′
i)

Figure 3.3: The auxiliary graph construction of G′i from G for the ith request: (a) the
original SDN G = (V, E); and (b) the corresponding auxiliary graph G′i = (V ′i , E′i) of
G.

The cost model of resource usages in G is proposed as follows. For a given type

of resource, the marginal cost of its usage dramatically inflates with the increase of

its utilization ratio, since the larger proportion of the resource is occupied, the higher

risk the resource capacity will be violated. We therefore use an exponential function

to model the cost of resource usage.

Denote by RLv,i the residual capacity of the forwarding table at v ∈ V and RBe,i

76 Throughput Maximization in SDN with Consolidated Middleboxes

the residual bandwidth of link e = 〈v, u〉 ∈ E when request ri arrives. Then, the

weights of their corresponding edge e′ ∈ E′i in G′i are

ωi(e′) =


α1− RLv,i

Lv if e′ = 〈v′, v′′〉 ∈ E′i ,

β
1−

RB〈v,u〉,i
B〈v,u〉 if e′ = 〈v′′, u′〉 ∈ E′i ,

(3.17)

where α and β are constants with α, β > 1. The larger the values of α and β, the more

the resources with high utilizations will be discouraged to use, since their marginal

costs will increase with the increase of their utilization ratios.

Notice that the usage cost of computing resource in PMs has not been incorporated

into the auxiliary graph G′i , because admitting a request ri via a PM-attached switch

v ∈ Vpm does not necessarily consume the computing resource of the PM. Only if the

service chain SCi of ri is realized in it will the computing resource of its attached PM

be consumed.

3.4.2 Algorithm

The basic idea behind the proposed algorithm is to reduce the problem in G into

finding the shortest paths in a series of graphs G′i with 1 ≤ i ≤ |S|. In the following

we first consider a single request admission. We then extend the solution to the

admissions of a set of requests.

The detailed algorithm is described as follows. We first consider admitting a

request ri ∈ S(t) where ri = 〈si, ti, bi, SCi, di〉. We find a shortest path in G′i = (V ′i , E′i)

from si to ti such that its corresponding routing path in G meets both its bandwidth

demand bi and its end-to-end delay di and there is a switch v ∈ Vpm attached a

PM in the path with sufficient computing resource to process its service chain SCi.

Specifically, we first remove the edges without adequate resources from G, and then

construct G′i = (V ′i , E′i) from the resulting graph G.

To include computing resource in PMs for the admission of request ri, we then

augment G′i for each PM-attached switch v ∈ Vpm and denote by G′i,v = (V ′i,v, E′i,v)

§3.4 A Heuristic Algorithm 77

the graph obtained by augmenting G′i for a PM-attached switch v ∈ Vpm. The only

difference between G′i,v and G′i is that the directed edge 〈v′, v′′〉 is removed, and a new

node v′′′ and edges 〈v′, v′′′〉 and 〈v′′′, v′′〉 are added to V ′i,v and E′i,v, respectively, as

shown in Figure 3.4 (b).

v′ v′′

a′′

b′′

c′′

d′

e′

f ′

(a) Part of auxiliary graph G′
i =

(V ′
i , E

′
i)

v′

v′′′

v′′

a′′

b′′

c′′

d′

e′

f ′

(b) Part of augmented auxiliary
graph G′

i,v = (V ′
i,v, E

′
i,v)

Figure 3.4: Augmenting auxiliary graph G′i on the left to G′i,v on the right for switch
v ∈ Vpm

Moreover, the weight of edge 〈v′′′, v′′〉 is identical to the weight of 〈v′, v′′〉 in G′i

while the weight of 〈v′, v′′′〉 is γ1− RCv
Cv , where γ > 1 is a tuning parameter which

usually is a constant, RCv is the residual computing capacity, and Cv is the capacity

of v. Therefore, if v ∈ Vpm is considered to process service chain SCi of request

ri, routing the traffic of ri is to find a path Pi(v) in G′i,v that is the concatenation

of a shortest path in G′i,v from si to v and a shortest path in G′i,v from v to ti. Let

l(Pi(v)) and d(Pi(v)) be the length and delay of Pi(v), i.e., l(Pi(v)) = ∑e∈Pi(v) ωi(e)

and d(Pi(v)) = ∑e∈Pi(v) d(e) + d(i, v), where d(i, v) is the processing duration of SCi

of ri at the PM attached to switch v.

The problem of admitting request ri in G is then reduced to the problem of finding

a shortest path Pi(v) from one of the augmented auxiliary graphs G′i,v derived from

node v with the minimum length min{l(Pi(v)) | v ∈ Vpm} that meets the end-to-end

delay di. The detailed description of the algorithm is given in Procedure 3.1.

We say that the derived “routing path” Pi for request ri at step 6 in Procedure 3.1

is a pseudo-routing path or a walk, i.e., the nodes and links on Pi may appear multiple

times, it can even contain cycles. This is unavoidable for a certain type of network

78 Throughput Maximization in SDN with Consolidated Middleboxes

Procedure 3.1 Admitting a single request ri

Input: an SDN G = (V, E) and the current considering request ri = 〈si, ti, bi, SCi, di〉
Output: find a routing path Pi = 〈si, . . . , v ∈ Vpm, . . . , ti〉 that satisfies bi, SCi, and di

if it exists.

1: Construct the auxiliary graph G′i = (V ′i , E′i ; ωi) for G;
2: Psel

i ← ∞; /* a path in an augmented auxiliary graph with the minimum sum of
edge weights */

3: lmin ← ∞; /* the minimum length of routing paths */
4: for each PM-attached switch v ∈ Vpm do
5: Construct G′i,v by augmenting G′i ;
6: Let Pi(v) be the concatenation of a shortest path in G′i,v from s′i to v′′′ and a

shortest path in G′i,v from v′′′ to t′i;
7: if (d(Pi(v)) + d(i, v) ≤ di) & (l(Pi(v)) ≤ lmin) then
8: Psel

i ← Pi(v);
9: lmin ← l(Pi(v));

10: vmin ← v; /* which PM will be used */
11: end if
12: end for
13: The corresponding pseudo-routing path (walk) Pi in G is then derived from Psel

i via
PM vmin if it exists.

topologies. In the following, we show the existence of a simple shortest path Pi in G

for request ri if G meets certain conditions.

Lemma 3.2. Given a directed weighted graph G = (V, E), a specific node v, and a request

r with source s and destination t, there is a simple shortest path in G from s to t that

passes through node v if any path in another graph H from nodes v0 to v does not contain

any articulation points, where v0 is a virtual node and edges 〈v0, s〉 and 〈t, v0〉 are two

virtual edges with weights of zeros, and they are added to graph G, i.e., H = (V ∪ {v0}, E ∪

{〈v0, s〉, 〈t, v0〉}) is then obtained.

Proof. It is known that v0 is only connected with nodes s and t in H, if there is an

articulation point u in any path from v0 to v, this implies that any path between s (or

t) and node v must pass through u, thus, if a path in G from s to t must contain u,

then it appears in the path at least twice.

Lemma 3.2 provides a necessary condition of the existence of a simple path in G

from s to t that passes through v. That is, such a simple path exists if any path in H

§3.4 A Heuristic Algorithm 79

from v0 to v does not contain articulation points. If for any request r and a specified

node v, the condition in Lemma 3.2 holds, a simple shortest path in G from s to t via

v can be found as follows.

We start with the minimum-cost two edge-disjoint path problem: Given two nodes s

and t in G = (V, E), the problem is to find two edge-disjoint paths between s and

t such that the sum of weighted edges in these two paths is minimum. There is an

efficient algorithm for this problem due to Suurballe [123], and an improved algorithm

later is proposed by Suurballe and Tarjan [124].

To find two edge-disjoint paths in graph G from s to t such that the cost sum of

the two paths is minimum, Suurballe’s algorithm proceeds as follows. It first finds

a shortest path in G from s to t. It then reverses the direction of the edges in the

shortest path, and finds a shortest path in the resulting graph from s to t. As a result,

two edge-disjoint paths between s and t are then found through the exclusive union

of the two found paths, and the cost sum of the two paths is the minimum one [123].

Clearly, this algorithm can be modified to find two node-disjoint paths between a pair

of nodes so that the cost sum of the two paths is minimum, by adopting the node

splitting technique due to Suurballe [123].

We now consider the simple shortest path problem in G between a pair of nodes

s and t that passes through a specified node v. We reduce this problem in G to the

problem of finding two node-disjoint paths in another graph H′ such that the cost

sum of the two paths is minimum. We first construct a directed auxiliary graph H′ =

(VH′ , EH′) where VH′ = {v′, v′′ | v ∈ V} ∪ {v0} and EH′ = {〈u′, v′′〉, 〈v′, u′′〉 | (u, v) ∈

E} ∪ {〈v0, s〉, 〈v0, t〉}, by adding a virtual node v0 and virtual edges into H′ and

assigned both newly added virtual edges 〈v0, s〉 and 〈v0, t〉 with weights of zeros. We

then find two edge-disjoint paths in H′ between v0 and v′ such that the weighted sum

of the paths is minimum. We finally have a simple path in G from s to t via v that is

derived from the found two node-disjoint paths, by removing the virtual node v0 and

its incident two edges. The resulting path between s and t is a simple path via v and

80 Throughput Maximization in SDN with Consolidated Middleboxes

the sum of its weighted edges is the minimum one.

Having considered a single request admission, in the following we deal with the

admissions of a set of requests S(t) at time slot t, by admitting the requests one by one

until no more requests can be admitted. A non-admitted request in S(t) is admitted

immediately if it has the minimum implementation cost at that moment. Specifically,

given a to-be-admitted request ri ∈ S(t), Procedure 3.1 is employed to find a routing

path for ri without committing the admission which means that the SDN controller does

not allocate resources to meet the demands by this request. A found path Psel
i with

the minimum cost among all remaining requests in S(t) will be admitted and its

demanded resources will be allocated to it, the residual resource availabilities in G

are updated accordingly. Meanwhile, if Procedure 3.1 fails to find a path Psel
i for ri,

request ri will be rejected at time slot t. This procedure repeats until every request in

S(t) is either rejected or admitted. The detailed description is given by Algorithm 3.1.

Algorithm 3.1 A heuristic for admitting a set of requests S(t)

Input: an SDN G = (V, E) and a set of requests S(t)
Output: Determine which request ri ∈ S(t) to be admitted and its routing path Psel

i

1: S′ ← S(t); /* the set of requests to be admitted */
2: while S′ 6= ∅ do
3: for each request ri ∈ S′ do
4: Find a routing path Psel

i for request ri, by invoking Procedure 3.1;
5: if path Psel

i does not exist then
6: S′ ← S′ \ {ri}; /* remove ri from S′ */
7: end if
8: end for
9: Let ri0 be the request with l(Psel

i0) = minri∈S(t){l(Psel
i)};

10: Admit request ri0 using the routing path Psel
i0 , and update the resource availabil-

ities of G by deducting the resources for accommodating Psel
i0 ;

11: S′ ← S′ \ {ri0}.
12: end while

3.4.3 Algorithm Analysis

In the following, we first show that the solution delivered by Algorithm 3.1 is feasible,

and then analyze its time complexity.

§3.4 A Heuristic Algorithm 81

Lemma 3.3. Given the augmented auxiliary graph G′i,v = (V ′i,v, E′i,v) derived from G =

(V, E) and a switch v ∈ Vpm for request ri = 〈si, ti, bi, SCi, di〉 ∈ S(t), the concatenation of a

shortest path from s′i to v′′′ and another shortest path in G′i,v from v′′′ to t′i will result in a valid

pseudo-routing path in G from si to ti with PM-attached switch v in the path. Alternatively,

a simple shortest path from s′i to t′i through v′′′ delivered by applying Suurballe’s algorithm is

also a feasible solution if G meets the condition in Lemma 3.2.

Proof. Let Pi(v) be the concatenation of a shortest path from s′i to v′′′ and a shortest

path from v′′′ to t′i in G′i,v. For simplicity, we use a link-derived edge to represent an

edge 〈u′′, v′〉 in E′i,v that is derived from edge 〈u, v〉 in E, and a switch-derived edge

to denote an edge 〈v′, v′′〉 in E′i,v that is derived from switch v ∈ V. We claim that

(i) path Pi(v) consists of link-derived and switch-derived edges alternatively; and (ii)

path Pi(v) can satisfy the requirements of request ri, i.e., the bandwidth demand bi,

the forwarding table demand, the computing resource demand for its service chain

SCi, and the end-to-end requirement di. Claim (i) is obvious because there is only an

outgoing edge for each switch v′, i.e., 〈v′, v′′〉. Claim (ii) holds because the augmented

auxiliary graph G′i,v is the result of removing the edges and switches in G′i that cannot

meet resource requirements of request ri, and path Pi(v) is feasible only when its

end-to-end delay is no greater than di.

The feasibility of the simple shortest path via a data center if it does exist can be

proven similarly, omitted.

Theorem 3.1. Given an SDN G = (V, E) with a set V of switches and a set E of links,

a subset Vpm ⊆ V of switches with attached PMs, a set of user requests S(t) at time slot

t, there is an algorithm, Algorithm 3.1, for the network throughput maximization problem,

which delivers a feasible solution in O(|S(t)|2|V|4) time.

Proof. The solution delivered by Algorithm 3.1 is feasible because each auxiliary graph

is constructed from the subgraph of G that only includes the resources with sufficient

residual capacities for the request. Consequently, the routing path in G derived from

the found path in G′i is feasible.

82 Throughput Maximization in SDN with Consolidated Middleboxes

The time complexity of Algorithm 3.1 is analyzed as follows. In Procedure 3.1,

the construction and augmentation of the auxiliary graph G′i take O(|V|+ |E|) time,

while finding a shortest path in each of the |Vpm| augmented auxiliary graphs G′i,v

takes O(|V|3) time. Procedure 3.1 thus takes O(|V|3 + |V| + |E|) = O(|V|3) time.

For each request ri ∈ S(t), Procedure 3.1 is invoked at most |Vpm| times. The num-

ber of requests is O(|S(t)|). If we make use of Suurballe’s algorithm to find a sim-

ple shortest path from s′i to t′i in G′i,v through v′′′, it takes O(|E′i | + |V ′i | log |V ′i |) =

O(|E|+ |V| log |V|) time as the construction of the auxiliary graph H′ and finding

shortest paths in H take no more than that amount of time. The time complexity of

Algorithm 3.1 thus is O(|S(t)|2|Vpm||V|3) = O(|S(t)|2|V|4). The theorem holds.

3.5 A Faster Heuristic Algorithm

Although Algorithm 3.1 delivers a near optimal solution empirically, which can be

seen in later experimental evaluations, its running time is quite high and may fail to

respond to user requests on time, considering user requests arrive one by one without

the knowledge of future request arrivals. In this section we devise a faster heuristic

that strives for the non-trivial trade-off between the accuracy of a solution and the

running time of obtaining the solution.

3.5.1 Overview

A key ingredient of this faster heuristic is that a candidate solution to admit a subset

of S(t) of requests based on the residual resource capacities of G in the beginning of

time slot t, and there is no updating to these residual capacities when all requests

in S(t) are considered. Thus, a candidate solution is identified first. It then further

refines the candidate solution iteratively until no resource capacity violation occurs.

§3.5 A Faster Heuristic Algorithm 83

3.5.2 Algorithm

We first find a set of candidate routing paths Pi in G for each request ri = 〈si, ti, bi, SCi, di〉 ∈

S(t), without considering the resource capacity constraints of G, where a shortest path

from si to ti is treated as a candidate path of ri as long as it has one PM-attached

switch in Vpm that satisfies bi, SCi, and di. As the service chain SCi of ri must be

served at one of |Vpm| PM-attached switches, we can find at most |Vpm| candidate

shortest paths for each ri. Notice that we find candidate routing paths for requests

in S(t) on the augmented auxiliary graphs based on the resource availability of G

as of the beginning of time slot t, through finding a shortest path from s′i to v′′′ and

a shortest path from v′′′ to t′i in G′i,v for each request ri ∈ S(t) and v ∈ Vpm. Let

Pi(vj) = 〈si, . . . , vj, . . . , ti〉 be a found path in Gi,vj for request ri, whereas vj (∈ Vpm) is

a switch that fulfills the service chain SCi and Pi(vj) meets the resource and end-to-

end delay constraints of ri. Denote by Pi be the set of candidate paths for request ri,

we then have,

Pi = {Pi(vj) | vj ∈ Vpm}. (3.18)

Having the set of candidate paths Pi for each request ri, we then pick only one

candidate path Pi(vj) in Pi for request ri in a way such that the cost sum of the selected

paths for all requests is minimized, while ensuring that the computing capacity of

each PM is not violated. In essence, selecting a path Pi(vj) ∈ Pi to route request

ri ∈ S(t) is equivalent to selecting a PM attached to a switch v ∈ Vpm to implement

SCi for ri. As different PMs may have different computing capacities, this means

that the processing SCi of ri at different PMs will incur different computing resource

demands. We thus reduce this problem to the GAP, which is defined as follows. Given

a set of items I and a set of bins B, where each bin b ∈ B has a capacity cap(b), each

item i ∈ I has a size size(i, b), and a profit pro f it(i, b) if item i is placed in bin b,

the problem is to place a subset of items U (⊆ I) in bins B such that the sum of the

profits of items in U is maximized and the sum of sizes of items placed in every bin

is no more than the capacity of the bin.

84 Throughput Maximization in SDN with Consolidated Middleboxes

We now treat each PM-attached switch vj ∈ Vpm as a bin and each request ri in

S(t) as an item, whereas the capacity of each bin vj is its residual computing capacity,

i.e., cap(vj) = LCvj , the size of an item ri in a bin vj is the computing demand of the

service chain SCi in the PM attached to vj, i.e., size(ri, vj) = C(i, j), and the profit of

placing an item ri in a bin vj is the reciprocal of the length of the candidate path that

fulfills ri on vj, i.e., pro f it(i, j) = 1
l(Pi(vj))

.

Having reduced the network throughput maximization problem to the GAP, we

now solve the GAP and each solution to the GAP yields a solution to the original

problem. Specifically, we use the algorithm proposed by Cohen et al. [25] that guar-

antees a (2− ε)-approximation ratio, where ε is a constant with 0 < ε ≤ 1, to solve

the GAP. Denote by U a solution found by this algorithm as a placement of a subset

of items in bins. U yields a potential admission of requests in S(t): for every request

ri treated as an item, if it is placed in a bin representing vj ∈ Vpm, then it is admitted

with the routing path Pi(vj); otherwise, ri is rejected.

Due to the construction of the GAP, admitting requests in S based on the solution

U to the GAP ensures that the sum of computing demands of requests of which the

service chains are fulfilled in the same PM will not exceed the computing capacity

of the PM. However, the bandwidth and forwarding table capacities may be violated,

as routing paths may have overlapping resources. Now, for each request allocated to

a bin, its computing demand can be met without violating the computing capacity

of the bin. Some requests however may violate the bandwidth and forwarding table

size capacities of some links and nodes while routing their traffic. We thus perform

adjustments to eliminate such potential resource violations by selectively rejecting

some requests. Let Psel
i = Pi(vj) = 〈si, . . . , vj, . . . , ti〉 be the path to route the traffic of

request ri according to U, where vj ∈ Vpm. The basic idea behind the adjustment here

is to carefully find such a path with resource capacity violations iteratively and remove

its request from admission. This procedure continues until there is no violation of

resource capacity. To this end, a bipartite graph Gb = (Ub, Vb, Eb) is constructed,

§3.5 A Faster Heuristic Algorithm 85

where Ub is the set of selected routing paths for all potentially admitted requests, Vb

is the set of edges in ∪ri∈S(t)E(Psel
i) which each corresponds to a resource in G. There

is an edge between a node Psel
i ∈ Ub and a node e ∈ Vb if e is in Psel

i . The weight

of edge (Psel
i , e) ∈ Eb is the ratio of the demand of ri on that resource to the sum of

those of all requests on that resource, which represents the contribution of ri to the

resource capacity violation of e. An example of such a bipartite graph Gb is shown in

Figure 3.5.

Psel
1

e1 e2

Psel
2

e3

2

3

2
2 2

Figure 3.5: An example of a bipartite graph Gb.

To eliminate resource capacity violations, we iteratively remove one node Psel
i and

its incident edges in Gb with the maximum weighted sum of the incident edges, and

update Gb by removing nodes in Vb that their resource overloadings are avoided due

to the removal of node Psel
i . For example, in Figure 3.5, both Psel

1 and Psel
2 violate the

computing capacity constraints of e1, e2, and e3. Since Psel
2 results in more violations of

resource capacity constraints than Psel
1 does, it will be removed first. This procedure

continues until no edge is left in Eb, a feasible solution will be obtained ultimately.

The detailed description is given in Algorithm 3.2.

3.5.3 Algorithm Analysis

In the following, we show that the solution delivered by Algorithm 3.2 is a feasible

solution. We then analyze the time complexity of the proposed algorithm.

Theorem 3.2. Given an SDN G = (V, E) with a set V of switches and a set E of links,

a subset Vpm ⊆ V of switches with each attaching with a PM, a set of user requests S(t),

86 Throughput Maximization in SDN with Consolidated Middleboxes

Algorithm 3.2 A faster heuristic for routing a set of requests S(t) into a G

Input: an SDN G = (V, E) and a set of user requests S(t)
Output: Routing decisions for each request ri ∈ S(t)

1: Build an auxiliary graph G′ = (V ′, E′) for G;
2: Initialize P , the set of candidate routing paths in G for all requests in S(t), to ∅;
3: for each user request ri ∈ S(t) do
4: Pi ← ∅; /* the set of candidate paths for request ri */
5: for each PM-attached switch vj ∈ Vpm do
6: Find a path Pi(vj) for ri via node vj, by invoking Procedure 3.1;
7: if Pi(vj) exists then
8: Pi ← Pi ∪ {Pi(vj)};
9: end if

10: end for
11: if Pi is empty then
12: Reject request ri;
13: else
14: P ← P ∪ {Pi};
15: end if
16: end for
17: Construct an instance of the GAP by representing each request as an item and

each node in Vpm as a bin;
18: Solve the GAP instance by invoking the algorithm in [25];
19: Construct a bipartite graph Gb = (Ub, Vb, Eb) that reflects potential capacity viola-

tions;
20: while there are edges in Eb do
21: Update Gb by the removal of such a node in Ub that has the maximum weighted

sum of its incident edges and its incident edges from Eb.
22: end while

there is an algorithm for the network throughput maximization problem, Algorithm 3.2, which

delivers a feasible solution in O(|S(t)||V|3 + |V| · |S(t)|
3

ε) time, where ε is a given constant

with 0 < ε ≤ 1.

Proof. Recall that Algorithm 3.2 consists of three phases: (i) find a set of candidate

routing paths for each request; (ii) select only one routing path for each request to

meet computing capacities of nodes in Vpm; and (iii) eliminate the requests that violate

bandwidth or forwarding table capacities. The feasibility of the solution delivered by

Algorithm 3.2 immediately follows from Phase (ii).

The rest is to analyze the time complexity of Algorithm 3.2. Phase (i) takes

§3.6 An Online Algorithm 87

O(|S(t)||V|3) time, because O(|Vpm|) = O(|V|) shortest paths are found for each

request ri ∈ S(t) in augmented auxiliary graphs and each shortest path takes O(|V|2)

time. The running time of Phase (ii) is dominated by the time required to solve the

GAP, which is O(|V| · |S(t)|
3

ε) [25]. Phase (iii) takes O(|S(t)|(|V|+ |E|)) time, there are

O(|S(t)|(|V|+ |E|)) edges in the bipartite graph Gb, following the construction of the

bipartite graph. In the worst scenario, each request violates the resource capacities on

all switches and links. The theorem thus holds.

3.6 An Online Algorithm

In this section, we study the online network throughput maximization problem, by

considering dynamic admissions of user requests within a finite time horizon T. We

will make use of the proposed algorithms in the previous section to solve this problem.

We assume that the system evolves over time. The time is partitioned into equal time

slots, and the user request admission scheduling proceeds in the beginning of each

time slot. Some implementing requests may also leave the system, and the resources

occupied by them will be released back to the system in the end of the current time

slot. The released resources will be available in the beginning of the next time slot. The

detailed online algorithm for dynamic request admissions is given in Algorithm 3.3.

Algorithm 3.3 Online algorithm within a finite time horizon T

Input: an SDN G = (V, E) and time horizon T
Output: determine which request ri ∈ S(t) to be admitted and its routing path Psel

i
at each time slot t with 1 ≤ t ≤ T.

1: for t← 1 to T do
2: Release all resources occupied by the requests that left in the end of time slot

(t− 1), and recalculate the residual resources in G;
3: Let S(t) be the set of arrived requests in the beginning of time slot t;
4: if S(t) 6= ∅ then
5: Find a subset S′(t) ⊆ S(t) of requests that are admissible at time slot t,

by invoking either Algorithm 3.1 or Algorithm 3.2 based on the available
resources in G.

6: end if
7: end for

88 Throughput Maximization in SDN with Consolidated Middleboxes

Theorem 3.3. Given an SDN G = (V, E) with a set V of switches and a set E of links,

a subset Vpm ⊆ V of switches with each attaching with a PM, and a finite time horizon T,

there is an algorithm for the online network throughput maximization problem, Algorithm 3.3,

which delivers a feasible solution in O(∑T
t=1(|S(t)||V|3 + |V| ·

|S(t)|3
ε)) time if Algorithm 3.2

is used as its subroutine, where ε is a given constant with 0 < ε ≤ 1.

Proof. The time complexity of Algorithm 3.3 per time slot is the identical to the one

for Algorithm 3.2, omitted.

3.7 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms through

experimental simulations, using real and synthetic SDNs. We start with the experi-

mental environments, we then evaluate the performance of the proposed heuristic

algorithms for the network throughput maximization problem. We then evaluate the

performance of the online algorithms for the online network throughput maximiza-

tion problem. We finally investigate the impact of parameters on the performance of

the proposed algorithms.

3.7.1 Experimental Environment Settings

We adopt commonly used, real network topologies including GÉANT [100] and sev-

eral ISP networks from [122] in the simulations, where GÉANT [100] is a European

network consisting of 40 nodes and 122 links. The size of the forwarding table of

each switch is set from 1,000 to 8,000 randomly [85]. The bandwidth of each Internet

link varies from 1,000 Mbps to 10,000 Mbps [83]. There are nine PMs for the GÉANT

topology as set in [49] and the number of PMs in ISP networks are provided by [110].

The computing capacity of each PM is from 4,000 to 8,000 MHz [53]. The delay of a

link is between 2 milliseconds (ms) and 5 ms [83, 85]. We consider five types of middle-

boxes: Firewall, Proxy, NAT, IDS, and Load Balancing, and their computing demands

§3.7 Performance Evaluation 89

are adopted from [49, 100]. The running time is obtained based on a machine with a

3.40GHz Intel i7 Quad-core CPU and 16 GiB RAM. The default accuracy parameter

ε in solving GAP is set to 0.1. Unless otherwise specified, these parameters will be

adopted in the default setting. Each request ri = 〈si, ti, bi, SCi, di〉 ∈ S(t) is generated

as follows. Given a network G = (V, E), two nodes in V are randomly drawn as the

source si and the destination ti of request ri. The bandwidth demand bi is randomly

drawn from 10 to 120 Mbps [4] and the end-to-end delay di is set from 40 ms to 400

ms randomly [102].

We evaluate Algorithm 3.1 and Algorithm 3.2 against a baseline heuristic which is

described as follows. Sort all requests in S(t) in increasing order of their computing

resource demands, and then, for each request ri = 〈si, ti, bi, SCi, di〉 in S(t), find a

shortest path in G from si to a PM-attached switch v (∈ Vpm) with the minimum

number of hops from si and a shortest path from v to ti. We refer to this minimum-hop-

based baseline as algorithm MH, and algorithm ILP, Algorithm 3.1 and Algorithm 3.2

as ILP, ALG-1 and ALG-2, respectively. Each value in figures is the mean of the results

of 30 trials.

3.7.2 Performance of Different Algorithms within One Time Slot

In the following, we investigate the performance of the proposed algorithms ILP,

ALG-1, ALG-2, and MH in the GÉANT topology within a single time slot.

Figure 3.6 (a) shows the number of requests admitted by different algorithms,

when the number of requests arrived at a time slot is in the range from 40 to 160. It

can be seen that both algorithms ALG-1 and MH can admit as many requests as ILP

does if there are less than 100 requests. Otherwise, only algorithm ALG-1 can achieve a

comparable throughput as ILP. This means that the network throughput of algorithm

ALG-2 is inferior to algorithm ALG-1, and the gap between their performance enlarges

from nearly zero at |S(t)| = 40 to 21 at |S(t)| = 160. The reason is that algorithm

ALG-2 will reject more requests with the increase on the number of requests, as the

90 Throughput Maximization in SDN with Consolidated Middleboxes

40 60 80 100 120 140 160
Number of Requests |S(t)|

0

40

80

120

160

N
u
m

b
er

 o
f

A
d
m

it
te

d
 R

eq
u
es

ts

ALG-1
ALG-2
MH
ILP

(a) The number of requests admitted if the
number of requests arrived is fixed

40 60 80 100 120 140 160
Number of Requests |S(t)|

100

10,000

1e+06

1e+08

R
u
n
n
in

g
 T

im
e

in
 M

il
li

se
co

n
d
s

ALG-1
ALG-2
MH
ILP

(b) The running times (in milliseconds) on a loga-
rithmic scale if the number of requests arrived is
fixed

Figure 3.6: Performance of different algorithms on the GÉANT within one time slot
if the number of request is fixed.

likelihood of routing paths that algorithm ALG-2 finds for different requests being

overlapping and resource violation soars. Meanwhile, it can be seen that algorithm MH

outperforms algorithm ALG-2 only when the number of requests is small. Specifically,

when there are 160 requests, the number of requests admitted by algorithm MH is

only 60% of that by algorithm ALG-2 but runs much faster. The reason behind is that

algorithm MH does not guarantee that the routing path of request ri from its source si

to its destination ti has the minimum weight, since it finds shortest paths from si to a

PM-attached switch and from that PM-attached switch to ti separately. Figure 3.6 (b)

illustrates the amounts of time spent by different algorithms, from which it can be

seen that the running time of algorithm ILP is several orders of magnitude of the

other mentioned algorithms, while algorithm MH is the fastest one, and ALG-2 is faster

than ALG-1 significantly. In addition, the running time of algorithm ILP starts rising

when there are more than 80 requests. The reason is that when the number of requests

is small and their resource demands are relatively small compared to the network

capacity, many feasible solutions that achieves the best performance exist, yet as the

resource demands become increasingly considerable relative to the network capacity,

fewer optimal solutions exist, and thus ILP spends a significant amount of time on

§3.7 Performance Evaluation 91

searching for such an optimal solution. Figure 3.6 also demonstrates that algorithm

ILP suffers poor scalability and cannot finish within a reasonable amount of time

when the problem size is large.

40 60 80 100 120 140 160
Average Number of Requests |S(t)|

0

50

100

150

200

N
u
m

b
er

 o
f

A
d
m

it
te

d
 R

eq
u
es

ts

ALG-1
ALG-2
MH
ILP

(a) The number of requests admitted if the num-
ber of requests arrived follows a Poisson distri-
bution

40 60 80 100 120 140 160
Average Number of Requests |S(t)|

1

100

10,000

1e+06

R
u
n
n
in

g
 T

im
e

in
 M

il
li

se
co

n
d
s

ALG-1
ALG-2
MH
ILP

(b) The running times (in milliseconds) on a loga-
rithmic scale if the number of requests arrived fol-
lows a Poisson distribution

Figure 3.7: Performance of different algorithms on the GÉANT within one time slot
if the number of requests follows a Poisson distribution.

We now evaluate the performance of different algorithms if the number of requests

arrived follows a Poisson distribution with the mean between 40 and 160. The results

of the four mentioned algorithms are summarized in Figure 3.7 (a)-(b), from which

it can be seen that the similar behavior patterns are present in Figure 3.6 (a)-(b). For

instance, it can be seen that the number of requests admitted by algorithm ALG-1

is identical to that by algorithm ILP when the number of requests is no more than

70. Meanwhile, the number of admitted requests by algorithm ALG-2 is on a par

with that of algorithm ALG-1, and it outperforms algorithm MH by 40% when there

are more than 120 requests in the set. Similarly, algorithm ILP is the slowest one

while algorithm MH is the fastest one. In particular, when the mean of the number

of requests is set at 140, the running time of algorithm ILP is more than 1,000 times

of that of algorithm ALG-1, whilst algorithm ALG-1 is more than six times slower

than algorithm ALG-2. Although the running time of algorithm MH is the fastest, the

number of requests admitted by it is the smallest one.

92 Throughput Maximization in SDN with Consolidated Middleboxes

We finally evaluate the performance of different algorithms by varying the network

size. As publicly available topologies such as [83, 122] have limited sizes, we adopt

the widely used Barabási-Albert model [10] to generate networks of different sizes.

Namely, we vary the number of switches in an SDN from 100 to 600 while fixing the

number of requests at 160. The results are depicted in Figure 3.8.

It can be seen that from Figure 3.8 (a) that algorithms ALG-1 and ALG-2 achieve the

similar throughput, while algorithm MH admits only no more than half the requests

admitted by either of the two heuristics. Figure 3.8 (b) reveals that algorithm ALG-2

runs much faster than algorithm ALG-1. In contrast to high admission ratios delivered

by algorithms ALG-1 and ALG-2, algorithm MH admits less than one half as many as

requests as the other two algorithms, neutralizing its advantage of having the lowest

running time among all three algorithms indicated in Figure 3.8 (b). Figure 3.8 (b) also

reveals that algorithm ALG-2 runs much faster than algorithm ALG-1, e.g., algorithm

ALG-1 spends 61,208 ms on admitting 160 requests to a network with 600 switches,

while algorithm ALG-2 takes only 2,106 ms.

100 200 300 400 500 600
Network Size |V|

30
40
50
60
70
80
90

100
110
120

N
u
m

b
er

 o
f

A
d
m

it
te

d
 R

eq
u
es

ts

ALG-1
ALG-2
MH

(a) The number of requests admitted by differ-
ent algorithms

100 200 300 400 500 600
Network Size |V|

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

R
u
n
n
in

g
 T

im
e

in
 M

il
li

se
co

n
d
s

ALG-1
ALG-2
MH

(b) Running time of different algorithms in mil-
liseconds

Figure 3.8: Performance of different algorithms in the GÉANT by varying the number
of switches from 100 to 600, while the number of requests is fixed at 160 per time slot.

§3.7 Performance Evaluation 93

3.7.3 Algorithm Performance within a Finite Time Horizon

We now consider a time horizon that consists of 200 time slots, under which we

evaluate the performance of the online versions of the proposed algorithms, assuming

that the number of requests at each time slot follows a Poisson distribution with a

mean of 30, and each admitted request spans from 1 to 10 time slots randomly.

The results are summarized in Figure 3.9. It can be seen from Figure 3.9 (a) that

algorithm MH has the lowest network throughput among the mentioned algorithms.

On the other hand, algorithms ALG-1 and ALG-2 utilize resources more efficiently,

and hence admit much more requests than that of algorithm MH by 150% and 50%,

respectively. It can also be seen from Figure 3.9 (b) that the running time of algorithm

MH is negligible compared with those of algorithms ALG-1 and ALG-2. It must be

noticed that this running time comes at the cost of admitting much fewer requests.

Although the running time of algorithm ALG-2 is less than that of algorithm ALG-1,

the gap between them becomes smaller. Specifically, algorithm ALG-2 is only half of

the running time of algorithm ALG-1 while it has only 10% of the running time of

algorithm ILP. The main reason is that the additional time incurred from constructing

an instance of the GAP cannot be ignored when the number of requests is relatively

small, which will be offset when the number of requests is greater.

0 40 80 120 160 200
Time slot

0

500

1,000

1,500

2,000

2,500

3,000

A
cc

u
m

u
la

ti
v

e
N

u
m

b
er

 o
f

A
d

m
it

te
d

 R
eq

u
es

ts ALG-1
ALG-2
MH

(a) Accumulative number of requests admitted

0 40 80 120 160 200
Time slot

0

2000

4000

6,000

8,000

10,000

12,000

A
cc

u
m

u
la

ti
v

e
R

u
n

n
in

g
 T

im
e

 i
n

 M
il

li
se

co
n

d
s

ALG-1
ALG-2
MH

(b) Accumulative running time of algorithms

Figure 3.9: Performance of different online algorithms in the GÉANT within a time
horizon of 200 time slots, where the number of requests arrives at each time slot
follows a Poisson distribution with a mean of 30.

94 Throughput Maximization in SDN with Consolidated Middleboxes

The rest is to evaluate algorithms ALG-1, ALG-2, and MH in three network topologies

from [122]: AS-4755 is a network with 121 switches and 296 links, AS-1755 with 172

switches and 762 links, and AS-3967 with 212 switches and 886 links.

The results are illustrated in Figure 3.10, from which it can be seen that in terms

of the performance, algorithm ALG-1 is the best while algorithm MH is the worst. The

performance gap between algorithm ALG-1 and algorithm ALG-2 is small compared

to that in the GÉANT, since the size of these three networks is larger than that of

the GÉANT, and routing paths delivered by algorithm ALG-2 for different requests

at each time slot are less likely to overlap. In AS-4755, the difference on requests

admitted by algorithms ALG-1 and ALG-2 is less than 500, while algorithm MH admits

no more than 40% the number of requests by the other two algorithms. On the other

hand, the performance of algorithm MH in both AS-1755 and AS-3967 improves due

to the larger resource capacity of the network. The accumulative running time of

these three algorithms when admitting requests into different networks are shown in

Figure 3.10 (d)-(f). The results in both Figure 3.10 (d) and (e) are similar: the running

time of algorithm MH is slightly smaller than that of algorithm ALG-2, and algorithm

ALG-1 is much slower than both algorithms ALG-1 and MH. However, we notice from

Figure 3.10 (f) that algorithm ALG-2 is faster than algorithm MH, since algorithm ALG-2

only needs to find shortest paths in a graph once.

3.7.4 Impact of Request Durations on the Performance of Different Online

Algorithms

We finally evaluate the impact of the maximum duration of requests on the perfor-

mance of different online algorithms based on algorithms ALG-1, ALG-2, and MH, by

varying the maximum duration from 5 time slots to 25 time slots. The results are

presented in Figure 3.11. From Figure 3.11 (a)-(b) we can see that the longer the max-

imum duration, the fewer requests admitted by all mentioned algorithms, because

longer durations result in less available resources in the network. Figure 3.11 (a)-(c)

§3.7 Performance Evaluation 95

0 40 80 120 160 200
Time slot

0

1,000

2,000

3,000

4,000

5,000

A
cc

u
m

u
la

ti
v

e
N

u
m

b
er

 o
f

A
d

m
it

te
d

 R
eq

u
es

ts ALG-1
ALG-2
MH

(a) The accumulative number of requests admit-
ted in the AS-4755 network

0 40 80 120 160 200
Time slot

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

A
cc

u
m

u
la

ti
v

e
N

u
m

b
er

 o
f

A
d

m
it

te
d

 R
eq

u
es

ts ALG-1
ALG-2
MH

(b) The accumulative number of requests admit-
ted in the AS-1755 network

0 40 80 120 160 200
Time slot

0

1,000

2,000

3,000

4,000

5,000

A
cc

u
m

u
la

ti
v

e
N

u
m

b
er

 o
f

A
d

m
it

te
d

 R
eq

u
es

ts ALG-1
ALG-2
MH

(c) The accumulative number of requests admit-
ted in the AS-3967 network

0 40 80 120 160 200
Time slot

0

1e+05

2e+05

3e+05

4e+05

T
o

ta
l

R
u

n
n

in
g

 T
im

e

in

 M
il

li
se

co
n

d
s

ALG-1
ALG-2
MH

(d) The accumulative running time of different
algorithms in the AS-4755 network

0 40 80 120 160 200
Time slot

0

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

T
o

ta
l

R
u

n
n

in
g

 T
im

e

in

 M
il

li
se

co
n

d
s

ALG-1
ALG-2
MH

(e) The accumulative running time of different
algorithms in the AS-1755 network

0 40 80 120 160 200
Time slot

0

1e+05

2e+05

3e+05

4e+05

5e+05

T
o

ta
l

R
u

n
n

in
g

 T
im

e

in

 M
il

li
se

co
n

d
s

ALG-1
ALG-2
MH

(f) The accumulative running time of different
algorithms in the AS-3967 network

Figure 3.10: The accumulative number of admitted requests and the running time
of different online algorithms based on algorithms ALG-1, ALG-2 and MH for a time
horizon of 200 time slots in ISP networks.

96 Throughput Maximization in SDN with Consolidated Middleboxes

0 50 100 150 200
Time Slot

0

1,000

2,000

3,000

4,000

5,000

6,000

A
cc

u
m

u
la

ti
v

e
A

d
m

it
te

d
 R

eq
u

es
ts

Max. duration = 5
Max. duration = 10
Max. duration = 15
Max. duration = 20
Max. duration = 25

(a) The number of requests admitted by ALG-1

0 50 100 150 200
Time Slot

0

1,000

2,000

3,000

4,000

5,000

6,000

A
cc

u
m

u
la

ti
v

e
A

d
m

it
te

d
 R

eq
u

es
ts

Max. duration = 5
Max. duration = 10
Max. duration = 15
Max. duration = 20
Max. duration = 25

(b) The number of requests admitted by ALG-2

0 50 100 150 200
Time Slot

0

500

1,000

1,500

2,000

2,500

3,000

A
cc

u
m

u
la

ti
v

e
A

d
m

it
te

d
 R

eq
u

es
ts

Max. duration = 5
Max. duration = 10
Max. duration = 15
Max. duration = 20
Max. duration = 25

(c) The number of requests admitted by MH

0 50 100 150 200
Time Slot

0

1,000

2,000

3,000

4,000

5,000

6,000

A
cc

u
m

u
la

ti
v

e
A

d
m

it
te

d
 R

eq
u

es
ts

Max. duration = 5
Max. duration = 10
Max. duration = 15
Max. duration = 20
Max. duration = 25

(d) The number of requests admitted by ALG-1

0 50 100 150 200
Time Slot

0

1,000

2,000

3,000

4,000

5,000

6,000

A
cc

u
m

u
la

ti
v

e
A

d
m

it
te

d
 R

eq
u

es
ts

Max. duration = 5
Max. duration = 10
Max. duration = 15
Max. duration = 20
Max. duration = 25

(e) The number of requests admitted by ALG-2

0 50 100 150 200
Time Slot

0

500

1,000

1,500

2,000

2,500

3,000

A
cc

u
m

u
la

ti
v

e
A

d
m

it
te

d
 R

eq
u

es
ts

Max. duration = 5
Max. duration = 10
Max. duration = 15
Max. duration = 20
Max. duration = 25

(f) The number of requests admitted by MH

Figure 3.11: The accumulative number of admitted requests and running time of
different online algorithms based on algorithms ALG-1, ALG-2, and MH with different
maximum durations of requests when the network is of the GÉANT

§3.8 Summary 97

show that when the maximum duration of requests is five time slots, algorithm ALG-2

admits as many requests as algorithm ALG-1, yet algorithm MH only admits half the

number of requests as the two heuristics. We also see that an increase in the request

durations has a greater impact on algorithms ALG-2 and MH than that on algorithm

ALG-1, as algorithm ALG-1 is more exhaustive. In addition, it can also be seen from

Figure 3.11 (d)-(f) that longer durations are associated with less running time, because

if other parameters keep unchanged and request durations become longer, more re-

sources will be fully occupied and accordingly, the auxiliary graphs will have fewer

vertices and edges, shortening operations on the auxiliary graphs and reducing the

running time of all algorithms.

3.8 Summary

In this chapter, we studied the admissions of user requests with each having a se-

quence of network functions in an SDN so that the network throughput can be max-

imized, subject to the constraints of forwarding table capacity, network bandwidth

capacity, and computing resource capacity at PMs. We first formulated an ILP solu-

tion when the problem size is small. We then devised two heuristic algorithms that

strive for a fine tradeoff between the solution accuracy and the running time to obtain

the solutions. We also investigated the dynamic admissions of requests within a finite

time horizon by extending the proposed algorithms to solve dynamic request ad-

missions. We finally evaluated the performance of the proposed algorithms through

simulations, using real and synthetic network topologies. Experimental results demon-

strated that both proposed algorithms admit more requests than a baseline algorithm,

and the quality of solutions delivered is on a par with that of optimal solutions yet

the proposed algorithms are significantly faster.

98 Throughput Maximization in SDN with Consolidated Middleboxes

Chapter 4

Virtualized Network Function

Placements for Delay-Sensitive

Network Function

Virtualization-Enabled Requests

Network Function Virtualization (NFV) has attracted significant attention from both

industry and academia as an important paradigm shift on network service provi-

sioning. Under this new NFV architecture, a service chain that consists of various

network functions such as Firewall, Intrusion Detection System (IDS), WAN opti-

mizer, and Deep Packet Inspection (DPI) can be decomposed into a set of Virtualized

Network Functions (VNFs) that are implemented as software components in off-the-

shelf physical servers [103], and these VNF implementations are often referred to

as VNF instances. Each VNF instance can be relocated or instantiated at different

locations (servers) in a network without necessarily purchasing and installing new

hardware. By decoupling network functions from their traditional dedicated hard-

ware implementation, NFV has great potentials to significantly reduce the operating

expenses (OPEX) and capital expenses (CAPEX) of network service providers. NFV

also facilitates the deployment of new network function services with agility and

faster time-to-value [103].

99

100 VNF Placements for Delay-Sensitive NFV-Enabled Requests

Most existing studies focused on the optimal placement of VNF instances under

a specific optimization objective while meeting user-specified resource demands and

Quality of Service (QoS) requirements [116, 138, 139], or on historical VNF instance

demand patterns or predictions [14, 82], yet little attention has been paid on maximiz-

ing network throughput via VNF instance vertical and horizontal scalings at the same

time. In this chapter, we focus on maximizing the network throughput by admitting as

many as NFV-enabled user requests through jointly exploring VNF instance horizon-

tal and vertical scalings, where horizontal scaling is to migrate existing VNF instances

from their current locations (servers) to other locations (servers) to meet the delay

requirements of both currently executing and newly admitted requests, and vertical

scaling is to instantiate new VNF instances for newly admitted requests if horizontal

scaling is infeasible. Figure 4.1 is an illustrative example of vertical and horizontal

scalings. where network G consists of six nodes v1, v2, . . ., v6. Given two requests r1

v1

v3

v2

v4

v5 v6

s1 f3f1

s2 f4 f2

t1

t2

f2

f5

Network G

Service Chain of Request r1

Service Chain of Request r2

s1

t1 t2

s2

Figure 4.1: An example network G with six nodes and two requests r1 and r2

and r2 with each having its end-to-end delay requirement, request r1 requires data

traffic from its source s1 (co-located with v1) to its destination t1 (co-located with v5)

to traverse network functions f1, f2, and f3, while request r2 requires data traffic from

its source s2 (co-located with v2) to its destination t2 (co-located with v6) to traverse

network functions f4, f2, and f5. Suppose that each node in G is co-located with a

101

server (or a server cluster) that can accommodate VNF instances. Assume that request

r1 is admitted first, a VNF instance of network function f2 is instantiated in v3 for the

request, because v3 is close to the source and destination of request r1. As a result,

when admitting request r2 that also requires network function f2, the network service

operator can either (a) let requests r1 and r2 share the existing VNF instance of f2 in

node v3, or (b) migrate the existing VNF instance from node v3 to another location

closer to the source and destination of request r2, or (c) instantiate a new VNF instance

of f2 in node v4. Apparently, (a) is feasible only if the data traffic routing of request

r2 through v3 can satisfy its end-to-end delay requirement and the VNF instance of

f2 in v3 can handle the data traffic of both requests r1 and r2 simultaneously; (b) is

applicable only if the end-to-end delay requirement of request r1 will not be violated

after migrating the VNF instance serving r1 from v3 to v4; and (c) should be applied

if the first two options are infeasible, because it creates an additional VNF instance

and may incur a higher cost.

In this chapter, we focus on network throughput maximization by dynamically

admitting as many as NFV-enabled requests with end-to-end delay requirements into

a network while minimizing the operational cost of the network service provider

through joint considerations of VNF instance horizontal and vertical scalings. This

problem poses two major challenges. One is to how to admit a new request to meet its

service chain, and for each VNF in its service chain, there are three options: sharing

existing VNF instances, vertical scaling, and horizontal scaling, which option should

be adopted? When different user requests demand the same type of network functions,

these requests can be admitted by sharing the same VNF instance in the same server

if that instance is able to handle the data traffic of all the requests. Despite lower

the operational cost by sharing existing VNF instances among requests, sometimes

vertical and horizontal scalings are necessary to avoid the violation of end-to-end

delay requirements of some of the requests. In vertical scaling, each user request can be

satisfied by instantiating a new instance for each of its network functions individually.

102 VNF Placements for Delay-Sensitive NFV-Enabled Requests

However, vertical scaling may incur a high operational cost due to higher resource

consumption than needed. On the other hand, in horizontal scaling, user requests

can be admitted by migrating existing VNF instances from their current locations

to new locations, incurring a one-time scaling cost. Another challenge is how to

perform dynamic admissions of incoming requests in a non-disruptive way. When

performing either horizontal or vertical scaling, we must ensure that both resource

demands and end-to-end delay requirements of all currently executing requests are

not violated, yet different admission strategies of admitting incoming requests heavily

impact on the currently executing requests. Allowing arriving requests to share the

same VNF instance with currently executing requirements will not affect the end-

to-end delay experienced by executing requests, provided that the total data traffic

of requests sharing the same VNF instance does not exceed the processing capacity

of the VNF instance. In comparison, horizontal scaling has a significant impact on

currently executing requests and arriving requests, as the VNF instances used by

executing requests will be migrated from their current locations to new locations

and data traffic of executing requests will be routed via different paths. On the other

end of the spectrum, vertical scaling has minimum influence on currently executing

requests, because arriving requests are admitted by instantiating new VNF instances

in vertical scaling.

In this chapter, we will address the aforementioned challenges. To the best of our

knowledge, we are the first to provide a unified framework for dynamic NFV-enabled

request admissions by jointly performing both vertical and horizontal scalings to

maximize the number of requests admitted while minimizing the total operational

cost. We also devise an efficient algorithm for the problem.

The rest of the section is organized as follows. Section 4.1 will introduce the system

model, notions and notations, and the problem definition. Section 4.2 will formulate

an Integer Linear Programming solution for the problem. Section 4.3 will propose an

efficient algorithm for the problem. Section 4.4 will conduct a performance evaluation

§4.1 Preliminaries 103

of the proposed algorithm, and Section 4.5 will conclude the section.

4.1 Preliminaries

In this section, we first introduce the system model, notations and notions used in

this chapter. We then define the problem formally.

4.1.1 System model

v2v2

v6v5

v1

v4v3

Figure 4.2: An example network

The service provider network is represented by an undirected graph G = (V, E),

where V is the set of switch nodes and E is the set of links that interconnect the nodes

in V. A subset of switch nodes VS (⊆ V) is attached with servers that can implement

network functions as VNF instances. Each server attached to switch v ∈ VS has com-

puting capacity capv, and the connection between the server and its attached switch

is by a high-speed optical cable, their communication bandwidth and communication

delay usually are negligible. Each link e = (u, v) ∈ E between two switch nodes

has a transmission delay De (= Du,v). We assume that switches in G are connected

via high-capacity optical links so that the bandwidth capacity of the link is not a

bottleneck. Figure 4.2 demonstrates a service provider network G with a set of switch

104 VNF Placements for Delay-Sensitive NFV-Enabled Requests

nodes V = {v1, v2, v3, v4, v5, v6} and a subset of switch nodes VS = {v1, v4, v5, v6} that

are attached with servers.

4.1.2 Virtualized network functions

The operator of network G offers L types of VNFs to serve different users. Let

F = { f1, f2, . . . , fL} be the set of VNFs and let ci be the computing resource re-

quirement of VNF fi ∈ F . An instance of network function fi can be instantiated in

a switch node v ∈ VS if the server attached to v has sufficient computing resource

to accommodate the instance, i.e., its residual computing resource is no less than the

computing resource demand ci by a VNF instance of fi. For a given network function

fi, there may exist multiple its VNF instances. We thus distinguish different instances

of the same network function by denoting the jth instance of fi as Iij . A VNF instance

may be used to serve multiple user requests at the same time, yet the maximum data

packet processing rate mi that each instance of a network function fi can process is given

in advance. We assume that each VNF instance can serve at least one request. If exist-

ing VNF instances of network function fi are inadequate to handle request demands,

its additional VNF instances can be instantiated, and each newly instantiated one will

incur a setup cost of Csetup
i with 1 ≤ i ≤ L. Denote by Cser(i) the service cost of a VNF

instance of network function fi per time slot.

4.1.3 User requests

Each NFV-enabled user request rk consists of a traffic routing request from its source to

its destination, a service chain, and the end-to-end delay requirement, where each data

packet traffic must pass through each network function in the service chain, while

the end-to-end delay of its routing path is no greater than its specified one. Formally

speaking, each request rk is defined as a quintuple (sk, tk, bk, dk, SCk), where sk and

tk are the source and destination nodes, respectively, bk is the request packet rate,

dk is the end-to-end delay requirement, and SCk is the service chain of the request.

§4.1 Preliminaries 105

Specifically, SCk is a sequence of `k (≥ 1) network functions that request rk requires,

i.e., SCk = 〈 fk1 , fk2 , . . . , fk`k
〉, where fk j ∈ F is the jth VNF in the service chain of

request rk. In other words, each data packet traffic of request rk must pass through

the VNF instances in SCk in their specified order. Assuming that the data traffic of rk

is routed via a routing path Pk = (v1 = sk, v2, . . . , vn = tk) in G between sk and tk, the

end-to-end delay D(Pk) on the routing path experienced by rk is

D(Pk) =
n−1

∑
i=1

Dvi ,vi+1 , (4.1)

where Dvi ,vi+1 is the transmission delay on link (vi, vi+1) ∈ E. We focus on network

transmission delays experienced by requests because they are the dominating factor.

In order to admit an NFV-enabled request rk, a routing path Pk in G between source

sk and destination tk needs to be identified, such that (i) path Pk must traverse VNF

instances of the specified sequence of network functions in SCk = 〈 fk1 , fk2 , . . . , fk`k〉;

and (ii) the end-to-end transmission delay D(Pk) according to Equation (4.1) is no

greater than its delay requirement dk.

4.1.4 Dynamic admissions of user requests

We assume that time is equally slotted into time slots, and these time slots are num-

bered as 1, 2, . . . , T, where T is the length of a monitoring period. When a request rk

arrives, it will be either admitted or rejected in the beginning of the next time slot of

its arrival.

Denote by R(t) the set of newly arrived requests in the beginning of time slot

t ∈ {1, 2, . . . , T}. Due to limited network resources, the network service provider

of G may only accommodate a subset of requests in R(t) by allocating demanded

network resources to them. Once a request is admitted, its data traffic will occupy

or share the allocated resources it demanded for a certain amount of time. When its

data traffic finishes, all resources occupied by its data traffic will be released back

to the network for the admissions of other requests. Accordingly, let A(t) be the set

106 VNF Placements for Delay-Sensitive NFV-Enabled Requests

of admitted requests that have not departed from the system in the beginning of

time slot t with A(0) = ∅. In other words, A(t) is the set of admitted requests that

still occupy the system resources at least for time slot t. Similarly, for each network

function fi ∈ F , denote by Ii(t) the set of VNF instances of fi in the end of time slot

t− 1 with Ii(0) = ∅.

As requests are dynamically admitted or departed, the amounts of residual re-

sources in the beginning of different time slots are different. Let REv(t) be the residual

computing capacity of the server attached to v ∈ VS in the beginning of time slot t

with REv(0) = capv.

4.1.5 Vertical and horizontal scalings

v1

v3

v2

v4

v5 v6

1. Instance Sharing

s1

t1 t2

s2

f1

f2

f3

f4

f5

v1

v3

v2

v4

v5 v6

2. Horizontal Scaling

s1

t1 t2

s2

f1

f3

f4

f5

f2

v1

v3

v2

v4

v5 v6

3. Vertical Scaling

s1

t1 t2

s2

f1

f2

f3

f4

f5

f2
Migration Path of f2

Figure 4.3: Different options for admitting r2 after request r1 has been admitted in
network G in Figure 4.1

The deployment of VNF instances of a specific network function typically is based

on information available at the time of its deployment. For instance, the initial deploy-

ment of VNF instances can be based on historical traffic data or previous requests

that requested which types of network functions, the request data packet rates, their

QoS requirements, and so on. When new requests arrive, either vertical scaling or

horizontal scaling should be performed. However, it is worth noting that resource

and delay requirements of existing user requests must not be violated, regardless of

what scaling should be performed for a particular network function.

In the beginning of each time slot t, assume that some of VNF instances have

been instantiated for request admissions in previous time slots. Some of the VNF

§4.1 Preliminaries 107

instances can be shared to admit newly arrived requests in R(t), provided that (i) the

resource requirements of existing admitted requests in A(t) are not violated; and (ii)

the computing capacities of existing VNF instances are not violated. If either of the

two conditions is not met, additional VNF instances need to be instantiated or existing

VNF instances need to be migrated to other locations to meet the requirements of

both currently executing requests and newly admitted requests.

Horizontal scaling of VNF instances is applicable if existing VNF instances can

be migrated to new locations such that the resource requirements of both newly

admitted requests in R(t) and currently executing requests in A(t) can be satisfied

simultaneously.

Denote by Ai,j(t) (⊆ A(t)) the set of requests processed by the VNF instance Iij

in the beginning of time slot t. As the location of a VNF instance Iij may change at

different time slots, denote by li,j(t) (∈ VS) the location of instance Iij during time slot

t. The VNF instance Iij may be migrated from li,j(t− 1) in the beginning of time slot

t. The cost of migrating an existing VNF instance Iij from its current location vi,j
a to its

destination location vi,j
b through a given path Pi,j = (vi,j

a = vi,j
0 , vi,j

1 , . . . , vi,j
n = vi,j

b) is

Cmig
i,j (Pi,j) = ∑

rk∈Ai,j(t)
bk · |Pi,j|, (4.2)

where bk is the packet rate (the bandwidth demand) of request rk and |Pi,j| is the

number of links on path Pi,j, while Pi,j usually is the shortest path in G from node vi

to node vj with 1 ≤ i, j ≤ |V|.

Notice that if VNF instance Iij is migrated from location li,j(t) to location li,j(t + 1),

the end-to-end transmission delays experienced by requests in Ai,j(t) may change

because these requests need to be served by the VNF instance Iij in location li,j(t + 1),

instead of location li,j(t). Consequently, the traffic of these executing requests needs

to be re-routed through different paths. To avoid any service disruption to currently

executing requests in Ai,j(t), the migration of every VNF instance Iij should be per-

formed only if none of the delay requirement of all admitted requests in it will be

108 VNF Placements for Delay-Sensitive NFV-Enabled Requests

violated. However, sometimes due to the network characteristics or user requests, hor-

izontal scaling cannot satisfy newly arrived requests that demand network function

fi, because it will violate the delay requirements of admitted requests. As a result,

new instances of fi must be instantiated at the expense of the setup cost of Csetup
i .

Take the two requests r1 and r2 in Figure 4.1 for instance. Figure 4.3 demonstrates

different strategies for the admission of request r2 after r1 has been admitted: (1)

instance sharing, i.e., r1 and r2 share the instance of f2 in node v3; (2) horizontal

scaling, i.e., migrating the instance of f2 from v3 to v4 in order to serve both requests

r1 and r2; and (3) vertical scaling, i.e., instantiating a new instance of f2 in node v4 to

serve request r2 only.

4.1.6 The operational cost

The network service provider of G is interested in minimizing the network operational

cost to maximize its profit. Recall that Ii(t) is the set of VNF instances of network

function fi ∈ F at the end of time slot t. Accordingly, Ii(t − 1) is the set of VNF

instances in network G at the beginning of time slot t. The network operational cost

at each time slot t consists of the following two costs.

Service cost Each VNF instance Iij in Ii(t) will have a service cost of Cser(i). The

total service cost SC(t) in time slot t thus is the sum of service costs of all VNF

instances, i.e.,

SC(t) = ∑
fi∈F

∑
Iij∈Ii(t)

Cser(i). (4.3)

§4.1 Preliminaries 109

Scaling cost Each VNF instance Iij ∈ Ii(t) is also associated with a scaling cost,

which is defined as follows.

Cscal(Iij , t) =


0, if Iij ∈ Ii(t− 1) and li,j(t) = li,j(t− 1)

Cmig
i,j (Pi,j), if Iij ∈ Ii(t− 1) and li,j(t) 6= li,j(t− 1)

Csetup
i , if Iij /∈ Ii(t− 1)

(4.4)

where li,j(t) is the location of VNF instance Iij at the end of time slot t, Case 1 in

Equation (4.4) corresponds to the case in which no scaling is applied to instance Iij ,

i.e., instance Iij already exists in previous time slot t− 1 and the location of Iij does

not change; Case 2 in Equation (4.4) corresponds to the case in which horizontal

scaling is applied to instance Iij , i.e., instance Iij already exists in previous time slot

t− 1 yet its location changes; and Case 3 in Equation (4.4) corresponds to the case

in which vertical scaling is applied to instance Iij , i.e., instance Iij does not exist in

previous time slot t− 1.

The total scaling cost of all VNF instances in network G for time slot t is

Cscal(t) = ∑
fi∈F

∑
Iij∈Ii(t)

Cscal(Iij , t). (4.5)

The total operational cost of network G in time slot t is

TC(t) = SC(t) + Cscal(t). (4.6)

Table 4.1 lists the notations used in this chapter.

4.1.7 Problem definition

Given the defined service provider network G = (V, E), a time slot t ∈ {1, 2, . . . , T}, in

which there are a set of executing requests A(t) and a set of VNF instances Ii(t− 1) of

network function fi ∈ F at the end of time slot t− 1, and a set of newly arrived NFV-

110 VNF Placements for Delay-Sensitive NFV-Enabled Requests

Table 4.1: Table of Symbols

Notations Descriptions
G = (V, E) the service provider network
VS (⊆ (V)) the subset of switch nodes with servers attached

capv the computing capacity of server attached to v ∈ VS
De the transmission delay of link e ∈ E

F (= { f1, f2, . . . , fL}) the set of network functions
ci the computing resource demand of VNF fi ∈ F
Ii(t) the set of VNF instances of fi in the end of time slot t− 1

Iij (∈ Ii(t)) the jth instance of fi

mi the maximum data packet processing rate that each instance of a network
function fi

Csetup
i the setup cost of a new instance of fi

Cser(i) the service cost of a VNF instance network function fi per time slot
Cscal(Iij , t) the scaling cost of all NFV instances in Iij in time slot t

rk (= (sk, tk, bk, dk, SCk)) a user request with resource sk, destination tk, request packet rate bk, end-
to-end delay requirement dk, and service chain SCk

R(t) the set of newly arrived requests in the beginning of time slot t
A(t) the set of admitted requests that have not departed from the system in

the beginning of time slot t
li,j(t) (∈ VS) the location of instance Iij during time slot t

Cmig
i,j (Pi,j) the cost of migrating an existing VNF instance Iij via a given path Pi,j

enabled requests R(t) with end-to-end delay requirements, the network throughput

maximization problem via VNF instance scalings in G is to admit as many as requests

in R(t) by determining the set Ii(t) of VNF instances and their locations for every

network function fi ∈ F , and the assignment of each admitted request to one or

multiple VNF instances, while minimizing the total operational cost of the network

service provider, subject to computing capacities on servers in G.

4.1.8 NP-hardness of the defined problem

Lemma 4.1. The network throughput maximization problem via VNF instance scalings in G

is NP-hard.

Proof. We show NP-hardness of the problem by a reduction from a special case of the

Generalized Assignment Problem (GAP). Since this special case of the GAP is NP-

hard [25], the network throughput maximization problem via VNF instance scalings

is NP-hard as well.

§4.2 Integer Linear Programming 111

Given a GAP instance consisting of a set B of bins, a set I of items, bin capacities

cap : B 7→ R+, and the size of placing item i ∈ I in bin b ∈ B: size(i, b), the GAP is

to assign a maximum subset U ⊆ I of items to the bins in B such that the capacity of

each bin is not violated.

We can generate an instance of the network throughput maximization problem via

VNF instance scalings as follows. We first construct network G = (V, E). We create a

node i for each item i in I , and a node b for each bin b in B. We also add a virtual

node s that serves as the destination of all requests. In order to construct the edge set,

we create a link between each node i and each node b, and a link from b to node s.

That is, V = I ∪ B ∪ {s} and E = {(i, b) | i ∈ I , b ∈ B} ∪ {(b, s) | b ∈ B}.

We then generate a set of requests R(t): For each item i ∈ I , we add to R(t) a

request rk = 〈sk, tk, bk, di, SCk〉, where sk is set to the node i ∈ V, tk is set to node s, the

traffic rate bk is size(i, m), and di = ∞. Therefore, routing the set of requests R(t) into

network G is an instance of the network throughput maximization via VNF instance

scalings problem.

4.2 Integer Linear Programming

In this section, we formulate the network throughput maximization problem via VNF

instance scalings as an Integer Linear Program (ILP). For brevity, denote by N(v) the

set of neighbors of node v in G. The ILP includes the following decision variables.

Hu,v
ij

is a decision variable of value 1 if VNF instance Iij is migrated from node

u to node v and value 0 otherwise. Mu,v
ij

(r, s) is a decision variable that is 1 if the

migration of VNF instance Iij from node u to node v is routed through edge (r, s),

and 0 otherwise.

Vv
j is a decision variable that has value 1 if an additional instance of VNF f j is

instantiated in node v.

Yv
i,k is a variable that has value 1 if the k-th network function required by request

ri is satisfied by an instance in switch node v and value 0 otherwise.

112 VNF Placements for Delay-Sensitive NFV-Enabled Requests

maximize ∑
1≤i≤|A(t)|

Xi, (4.7)

subject to

CH
total = ∑

1≤i≤|A(t)∪R(t)|
∑

1≤j≤L
∑

u,v∈VS ,u 6=v
∑

r,s∈V
Mu,v

i,j (r, s) (4.8)

CV
total = ∑

1≤j≤L
∑

v∈VS

Csetup
j ·Vv

j (4.9)

CH
total + CV

total + ∑
fi∈F

∑
Iij∈Ii(t)

Cser(i) ≤ B (4.10)

Yv
i,k ≤ Vv

j + ∑
u

Hu,v
ij

∀1 ≤ i ≤ |A(t) ∪R(t)|, 1 ≤ j ≤ L, 1 ≤ k ≤ li, v ∈ V

(4.11)

∑
u∈N(v)

(Wk
i (u, v)−Wk

i (v, u)) = Yv
i,k, ∀1 ≤ i ≤ |A(t) ∪R(t)|, 1 ≤ k ≤ li, SCik

= f j, v ∈ V

(4.12)

∑
u∈N(v)

(Wk+1
i (v, u)−Wk+1

i (u, v)) = Yv
i,k, ∀1 ≤ i ≤ |A(t) ∪R(t)|, 1 ≤ k ≤ li, SCik

= f j, v ∈ V

(4.13)

∑
u∈N(si)

W0
i (u, si) = 0, ∀1 ≤ i ≤ |A(t) ∪R(t)| (4.14)

∑
u∈N(ti)

W li
i (ti, u) = 0, ∀1 ≤ i ≤ |A(t) ∪R(t)|, v ∈ V (4.15)

∑
u∈N(si)

W0
i (si, u) = Xi −Ysi

i,1, ∀1 ≤ i ≤ |A(t) ∪R(t)| (4.16)

∑
u∈N(ti)

W li
i (u, ti) = Xi −Yti

i,k, ∀1 ≤ i ≤ |A(t) ∪R(t)| (4.17)

∑
u∈N(si)

W li
i (si, u) = Ysi

i,K−1, ∀1 ≤ i ≤ |A(t) ∪R(t)| (4.18)

∑
u,v∈V

∑
0≤j≤li

(
W j

i (u, v) · D(u,v)) ≤ di, ∀1 ≤ i ≤ |A(t) ∪R(t)| (4.19)

∑
ri∈R(t)∪A(t)

ci ·Yv
i,k ≤ capv(t), ∀v ∈ V (4.20)

∑
ri∈R(t)∪A(t)

bi ·Yv
i,k ≤ mi, ∀v ∈ V (4.21)

∑
w∈N(v)

Mu,v
ij

(w, v)− ∑
w∈N(v)

Mu,v
ij

j(v, w) = 0, ∀Iij ∈ Ii(t), 1 ≤ j ≤ L (4.22)

∑
w∈N(u)

Mu,v
ij

j(w, v) = Hu,v
ij

, ∀Iij ∈ Ii(t), 1 ≤ j ≤ L (4.23)

∑
w∈N(v)

Mu,v
ij

j(u, w) = Hu,v
ij

, ∀Iij ∈ Ii(t), 1 ≤ j ≤ L (4.24)

Xi = 1 ∀ri ∈ A(t) (4.25)

Xi ∈ {0, 1} ∀ri ∈ R(t) (4.26)

Yv
i,k ∈ {0, 1} ∀1 ≤ i ≤ |A(t) ∪R(t)|, 1 ≤ k ≤ L, v ∈ V

(4.27)

Vv
j ∈ {0, 1} ∀1 ≤ j ≤ L, v ∈ VS (4.28)

Vv
j = 0 ∀1 ≤ j ≤ L, v ∈ V \VS (4.29)

Hu,v
ij

= Hv,u
ij

= Hu,u
ij

= 0 ∀1 ≤ j ≤ L, v ∈ V \VS, u ∈ V (4.30)

Hu,v
ij
∈ {0, 1} ∀1 ≤ j ≤ L, v, u ∈ VS, v 6= u (4.31)

W j
i (u, v) ∈ {0, 1}, ∀e ∈ E, i = 1, . . . , |R(t)|, j (4.32)

Mu,v
ij

(r, s) ∈ {0, 1}, ∀u, v, r, s ∈ V (4.33)

Figure 4.4: An ILP formulation of the network throughput maximization via VNF
instance scaling problem

§4.2 Integer Linear Programming 113

Wk
i (u, v) is a decision variable that is 1 if edge (u, v) carries the traffic of request

ri after k-th network function in the service chain is applied and before (k + 1)-th

network function is applied; otherwise, the value is 0.

Xi is 1 if request ri is admitted or 0 otherwise.

Constraint (4.8) calculates the total cost of horizontal scaling according to Equa-

tion (4.2). Meanwhile, Constraint (4.9) calculates the total cost of vertical scaling. These

calculations reflect with those defined in Equation (4.4).

In order to capture the objective of the problem, i.e., maximizing the network

throughput while minimizing the total operational cost of the network operator, we

here introduce the concept of a budget B on the total operational cost. Specifically,

Constraint (4.10) requires that the total operational cost of G, which is calculated

according to Equation (4.6), is no greater than a given budget B. The value of B can be

initially set to a large value, and a tighter bound of B can be obtained later by binary

search iteratively.

Constraint (4.11) enforces that switch v can be used to implement network function

f j required by a request ri only if a new instance is instantiated in v or an existing

instance is migrated to v.

Constraints (4.12) and (4.13) capture traffic changing at switch nodes that accom-

modate VNF instances that process traffic of requests and traffic conservation at

non-destination switches. Specifically, if request ri is processed at v ∈ VS, then (i)

exactly one incoming edge of v carries the unprocessed traffic and none of the out-

going edges of v carries the unprocessed traffic; and (ii) exactly one of the outgoing

edges of v carries the processed traffic, and none of the incoming edges of v carries

the processed traffic. Otherwise, if the traffic of ri is not processed at switch v ∈ VS

but goes through v, either (i) exactly one incoming edge and one outgoing edge of

v carries the unprocessed traffic, or (ii) exactly one incoming edge and one outgoing

edge of v carries the processed traffic.

Constraints (4.14) and (4.15) ensure that if the traffic of a given request ri any

114 VNF Placements for Delay-Sensitive NFV-Enabled Requests

source switch si and no traffic leaves the terminal switch ti. Constraints (4.16) and (4.17)

handle the cases where the traffic of a request vi is processed at the source switch si

or the terminal switch ti. Constraint (4.18) handles the cases where VNF instances for

request ri are instantiated in its source node si.

Constraint (4.19) enforces the end-to-end delay requirement of each admitted

request.

Constraints (4.20) and (4.21) model the computing capacity constraint of each

switch v ∈ Vpm and the processing capacity constraint of each VNF instance, respec-

tively.

Constraints (4.22) to (4.24) deal with the migration paths. They ensure that the

migration of VNF instance Iij follows a valid path.

Constraints (4.25) to (4.33) restrict the ranges of decision variables to 0 and 1, if

applicable.

The formulated ILP serves for two purposes. One is that it can find an optimal

solution to the problem when its size is small; another is that it serves as a benchmark

for the performance evaluation of proposed algorithms.

4.3 Heuristic Algorithm

Since the problem is NP-hard and the proposed ILP solution takes prohibitive time

when the problem size is large, it is only applicable when the problem size is small.

In this section, we devise an efficient, scalable algorithm for the problem. We start

by introducing the basic idea behind the proposed algorithm. We then detail the two

stages of the proposed algorithm and the description of the algorithm itself. We finally

analyze the time complexity of the proposed algorithm.

4.3.1 Overview of the proposed algorithm

The basic idea of the proposed algorithm is described as follows. In order to place VNF

instances of different network functions to servers while meeting the end-to-end delay

§4.3 Heuristic Algorithm 115

requirements of NFV-enabled requests, we are not just considering each request alone,

we instead take all the VNF instances needed by all requests into consideration. To this

end, we use a directed graph to model the relationships between the VNF instances of

different network functions among the service chains of all being considered requests.

We then prioritize the VNF instance scalings of different network functions. That is,

which VNF instance should be considered first. We order the network functions in F ,

by incorporating VNF dependency in service chains of requests in R(t) ∪A(t). We

finally perform VNF instance scalings by reducing this subproblem to a series of GAP

instances, while each GAP instance will determine which type of scaling should be

performed. The algorithm thus consists of two stages: (i) prioritize the order of network

functions in F ; and (ii) perform VNF instance vertical or horizontal scaling for each ordered

network function in F one by one. In the following, we deal with these two stages in

detail.

4.3.2 VNF ordering

Each request rk in R(t) ∪ A(t) has a service chain SCk. The network functions in

the service chain must be applied to each data packet traffic of the request in their

specified order. Furthermore, the appearance order of a specific network function in

the service chains of different requests is different, which makes prioritizing scaling

orders of VNF instances of different network functions become difficult. For example,

take four requests in Figure 4.5 for consideration. If we consider scaling network

function f4 for request r3 first, we may not fully exploit the fact that requests r1 and

r2 require network function f6 to be executed before network function f4, and thus

the VNF instances of these two network functions should be placed in reasonably

close proximity to each other to meet the delay requirement of requests r1 and r2 and

reduce their resource consumptions. As a result, considering VNF instance scaling

for f4 first will be not as effective as considering f4 after f6.

We thus utilize the constraints imposed by the service chains of requests to order

116 VNF Placements for Delay-Sensitive NFV-Enabled Requests

s1 f2f6

s3 f4 f3

t1

t3

f4

f5

Request r1:

Request r3:

s2 f6 f3 t2f1Request r2:

f2

f6

f4

f5

f3

f1

A Directed Graph Hs4 f1f6 t4f4Request r4:

2

1

1

1
1 1

1

Figure 4.5: The four service chains demanded by four requests r1, r2, r3, and r4 can be
represented by the directed graph H

network functions in F such that if a network function fi appears before another

network function f j in the ordering, then the number of requests that require f j before

fi is minimized. The detailed ordering of network functions is described as follows.

If network function fi appears immediately before f j in the service chain of request

rk, then there exists an ordering constraint between fi and f j. Let fi ≺rk f j represent

the ordering constraint between fi and f j in request rk, e.g., f6 ≺r1 f4 and f4 ≺r3 f3

for Figure 4.5. Then, given a set of requests in R, ordering constraints inducted by

these requests form a set O = { fk j ≺rk fk j+1 | rk ∈ R, 1 ≤ j ≤ lk − 1}. For instance,

given the service chains of request r1, r2, and r3 in Figure 4.5, the set of ordering

constraints is { f6 ≺r1 f4, f4 ≺r1 f2, f6 ≺r2 f3, f3 ≺r2 f1, f4 ≺r3 f3, f3 ≺r3 f5}. Having

the set of ordering constraints O, we can identify an ordering of network functions.

For instance, given three service chains in Figure 4.5 with ordering constraints O =

{ f6 ≺r1 f4, f4 ≺r1 f2, f6 ≺r2 f3, f3 ≺r2 f1, f4 ≺r3 f3, f3 ≺r3 f5}, one ordering

of the network functions in F is 〈 f6, f4, f3, f2, f1, f5〉. Notice that there exist many

other orderings that satisfy the ordering constraints including 〈 f6, f4, f3, f2, f5, f1〉 and

〈 f6, f4, f3, f1, f2, f5〉.

Given a set of arrived requests R(t) and a set of admitted requests A(t), and a

set of network functions F , a weighted directed graph H = (N, A; ω) is constructed,

where each network function fi ∈ F is represented by a node in N, i.e., N = F .

§4.3 Heuristic Algorithm 117

For each request ri ∈ R(t) ∪ A(t) with service chain SCi = 〈 fi1 , fi2 , . . . , fi`i
〉 and

1 ≤ j ≤ `i − 1, if set A does not contain arc 〈Iij , fij+1〉, one arc 〈Iij , fij+1〉 is added to A

and the weight on it is set to 1; otherwise, its weight is incremented by one. As a result,

graph H = (N, A; ω) is a directed graph that may be or may not be a Directed Acyclic

Graph (DAG) [26], because it is very likely that for some network functions fi and f j,

network function fi appears before network function f j in the service chain of one

request, yet fi appears after f j in the service chain of another request, resulting in a

directed cycle in H. If such a cycle exists, an ordering of network functions in F is not

achievable. Instead, all directed cycles in H must be removed to make the resulting

graph a DAG. It thus is desirable to eliminate all directed cycles in H by removing

a minimum weight set of arcs from H to minimize the number of requests whose

network function order in their service chains are violated. However, identifying such

a minimum weight set of removal arcs from H is NP-hard [29], we have the following

lemma.

Lemma 4.2. Given a set of admitted requests A(t), a set of arrived requests R(t), and a set

of network functions F , the auxiliary weighted, directed graph H = (N, A; ω) constructed

may contain directed cycles. Eliminating all directed cycles by removing a minimum weight

directed set of arcs from A is NP-hard.

Due to NP-hardness of the problem of concern, we instead remove a set E′ (E′ ⊂ A)

of arcs from H to make the resulting graph become a DAG, and E′ can be obtained

by applying an approximation algorithm due to Demetrescu et al. [29], and the ap-

proximate solution E′ is bounded by the number of arcs of a longest simple cycle of

the directed graph [29].

Denote by H′ = (N, A′; ω) the DAG after the removal of arcs in E′ from H. We then

perform topological sorting on H′. As a result, each network function (corresponding

a node in H) is sorted and all network functions in F have their sorted order.

The detailed procedure of ordering network functions in F is given in Procedure 4.1.

118 VNF Placements for Delay-Sensitive NFV-Enabled Requests

Procedure 4.1 Ordering network functions in F
Input: a set of network functions F , a set of arrived requests R(t), and a set of admitted

requests A(t)
Output: each network function in F is ordered at time slot t with 0 < t ≤ T.

1: Construct a directed weighted graph H = (N, A; ω) with N = F , using the service chains
of requests in R(t) ∪A(t) and A = ∅;

2: for each request ri ∈ R(t) ∪A(t) with service chain SCi = 〈 fi1 , fi2 , . . . , fi`i
〉 do

3: for k← 1 to `i − 1 do
4: if A contains arc 〈 fik , fik+1

〉 then
5: ω(〈 fik , fik+1

〉)← ω(〈 fik , fik+1
〉) + 1; /* increment the weight of an existing arc */

6: else
7: A← A ∪ {〈 fik , fik+1

〉}; /* add a new arc to A and set its weight to 1 */
8: ω(〈 fik , fik+1

〉)← 1;
9: end if

10: end for
11: end for
12: Find an approximate, minimum weight set E′ (⊂ A), by applying the approximation

algorithm due to Demetrescu et al. [29] on graph H;
13: A DAG H′ = (N, A′; ω′) is obtained, by removing all arcs in E′ from H, where A′ = A \ E′;

14: return a topological ordering of nodes (or network functions in F) in N;

4.3.3 VNF instance placements and migrations

We then deal with the second stage of the proposed algorithm. Having ordered

network functions in F , we now determine which scaling among the two scaling

techniques should be applied to the VNF instances of each network function, and we

examine the network functions one by one by its topological sorting order.

Let fi be the network function that is currently being examined. We determine

which scaling should be applied to a VNF instance of fi, by constructing an instance

of the Generalized Assignment Problem (GAP) that is defined as follows.

Given a set of items I and a set of bins B, where each bin b ∈ B has a capacity

cap(b), each item i ∈ I has a size of size(i, b) and a profit pro f it(i, b) if item i is placed

in bin b, the problem is to assign a subset of items U (⊆ I) to bins B such that the

total profit of the items in U is maximized, while the sum of sizes of placed items in

each bin is no more than the capacity of the bin.

We construct an instance of the GAP for the currently considering network func-

tion fi as follows. Each existing VNF instance Iij of fi is represented by a bin with

§4.3 Heuristic Algorithm 119

capacity cap = mi. Each bin representing Iij corresponds to sharing the existing in-

stance Iij of fi. For each node u ∈ VS with sufficient residual computing capacity to

accommodate an instance of fi, a bin V i
u is added to a collection B of bins, represent-

ing instantiating a new VNF instance at the node u. The capacity of each of the bins

is cap(V i
u) = mi.

For each existing VNF instance Iij at node u (∈ VS) and v ∈ VS \ {u}, Hi
u,v,j is

added to the set of bins B. Note that migrating an existing VNF instance Iij of fi

may violate the end-to-end network transmission requirements of currently executing

requests. Thus, bin Hi
u,v,j is added only if migrating VNF instance Iij from node

u to node v does not violate the end-to-end network transmission requirements of

executing requests in A(t) that use Iij . The capacity of bin Hi
u,v,j is cap(Hi

u,v,j) = mi.

Each request rk in R(t) ∪ A(t) with SCk containing fi is represented as an item

rk. The size size(rk, b) is the traffic rate bk of request rk for all bins b ∈ B. Notice that

GAP is a maximization problem, whereas the objective of the network throughput

maximization problem via VNF instance scalings is to admit as many as requests

while minimizing the total operational cost. The profit pro f it(rk, b) of putting item rk

into bin b ∈ B thus is pro f it(rk, b), which is defined as follows.

If bin b is of the form Iij , which represents sharing the existing VNF instance

Iij , then pro f it(rk, Iij) is set to 1, because sharing an existing VNF instance incurs

little additional costs and it should be highly encouraged. If bin b is of the form

V i
u, which represents instantiating a new VNF instance at u, then pro f it(rk,V i

u) is

the reciprocal of the setup cost of VNF instances for network function fi, Csetup
i , i.e.,

pro f it(rk,V i
u) = 1/Csetup

i . If bin b is of the form Hi
u,v,j, which represents migrating

the existing VNF instance from u to v, then pro f it(rk,Hi
u,v,j) is the reciprocal of the

migration cost as given by Equation (4.2).

The rationale behind the construction of a GAP instance for each network function

is that it aims to maximize the number of requests admitted while minimizing the

total operational cost of the network operator. The profit setting reflects the costs

120 VNF Placements for Delay-Sensitive NFV-Enabled Requests

associated with different scaling options defined in Equation (4.5). Thus, the solution

to the GAP instance, in terms of assignments of a subset of items to bins, corresponds

to a solution in which as many as requests are admitted and the total operational cost

of their admissions is minimized.

Given each network function fi ∈ F , its corresponding instance of the GAP can

be solved, using an approximation algorithm with a 1
2+ε -approximation ratio due to

Cohen et al. [25], where ε is a constant with 0 < ε ≤ 1. Let S be the solution delivered

by the approximation algorithm, which consists of pairs of admitted requests and

bins. If request rk is assigned to a bin representing sharing an existing VNF instance

Iij , then the request should share the existing VNF instance Iij ; (ii) if the request is

placed in a bin V i
u, which represents a VNF instance instantiation of fi at node u,

then a new VNF instance of fi should be instantiated at node u; (iii) otherwise, if it is

placed in a bin Hi
u,v,j, which represents horizontal scaling from u to v, then the VNF

instance Iij in u should be migrated to v. If request ri will not be assigned to any bin,

then the request should be rejected.

4.3.4 Algorithm

The aforementioned process handles the instance placements and migrations of one

network function fi at each time. By repetitively applying the process for every net-

work function in its topological sorting order, we can consider VNF instance scaling

of all network functions in F . Note that resource allocations for vertical (VNF instance

instantiation) and horizontal scalings (VNF instance migration) are not actually per-

formed on G until all network functions have been examined. Instead, in each iteration

of the process, we work on a copy of the original network.

After iteratively examining all network functions, we then calculate the end-to-

end network transmission delays of all involved requests. If the end-to-end delay

requirement of a request rk ∈ R(t) is not met or the algorithm fails to identify a VNF

instance for one or more network functions in its service chain SCk, request rk will be

§4.3 Heuristic Algorithm 121

rejected, and its related scalings will not be performed unless those scalings are also

demanded by the other requests.

Due to the construction of the GAP instance for each network function fi, request

rk may be assigned to a bin that represents either an instance sharing, a vertical scaling,

or a horizontal scaling. If rk is assigned to a bin that represents either vertical scaling

or horizontal scaling and rk is the only request that is assigned to the bin, then the

scaling corresponds to the bin will not be performed, because rk should be rejected

and no scaling should be applied for the sake of it. Note that the horizontal scaling

of existing VNF instances should not violate the end-to-end delay requirements of all

admitted requests in A(t).

To calculate the end-to-end delay of every request rk in A(t) experienced at each

VNF instance of its service chain, and if this delay is greater than its delay require-

ment dk, the violation occurs due to the VNF instance migrations of network functions

demanded by request rk. To resolve this potential violation on the end-to-end delay re-

quirement of request rk, for each VNF instance that is used by rk needs to be migrated

from its current location u to a new location v, the VNF instance is not migrated to v,

and a new VNF instance of the network function is instantiated in v instead.

The detailed algorithm is given in Algorithm 4.1.

4.3.5 Analysis of the proposed algorithm

In the following, we first show that the solution delivered by Algorithm 4.1 is feasible.

We then analyze its time complexity.

Theorem 4.1. Given a network G = (V, E) with a set V of switches and a set E of links,

a subset VS ⊆ V of switches with attached servers to implement VNF instances, a set of

network functions F provided by the network, a set of admitted requests A(t) that are still

being executed in G in the beginning of time slot t, and a set of newly arrived requests

R(t), there is an algorithm, Algorithm 4.1, for the network throughput maximization problem

via VNF instance scalings, which delivers a feasible solution in O(`max(|R(t)|+ |A(t)|) +

122 VNF Placements for Delay-Sensitive NFV-Enabled Requests

Algorithm 4.1 An efficient heuristic for admitting a set of requests R(t) into G at
time slot t
Input: a service provider network G = (V, E), a set of network functions F , a set of user

requests R(t), and a set of admitted requests A(t) that are still executing in the network
Output: If each request in R(t) should be admitted and the VNF instances used for each

admitted request
1: R′(t)← R(t); /* the set of requests that have not been marked as non-admitted */
2: for each request rk in R′(t) do
3: Associate rk with an attribute rk.scalings, which is the set of scalings to be performed

for request rk, and initialize the attribute rk.scalings to ∅;
4: end for
5: Order network functions in F by invoking Procedure 4.1;
6: for each network function fi in the sorted order do
7: Let Ri(t) be the subset of requests in R′(t) ∪A(t) that require network function fi;
8: Construct an instance of the GAP with the set of items representing requests Ri(t) and

the set of bins representing different scaling options;
9: Let S be an approximate solution to the GAP instance, by invoking the algorithm due

to Cohen et al. [25];
10: for each request rk in Ri(t) do
11: if request rk is not assigned to a bin in the solution obtained in Step 9 then
12: R′(t)← R′(t) \ {rk}; /* Mark request rk as a non-admitted request */
13: else
14: Add to rk.scalings the scaling corresponding to the bin to which request rk is

assigned in the obtained solution;
15: end if
16: end for
17: end for
18: for each request rk ∈ R′(t) do
19: if the end-to-end requirement of rk calculated according to Equation (4.1) is not met

then
20: R′(t)← R′(t) \ {rk};
21: end if
22: end for
23: return the set of scalings rk.scalings to be performed for every request rk in R′(t);

§4.3 Heuristic Algorithm 123

L3 + L|V|2 · |R(t)∪A(t)|
3

ε) time, where L is the number of network functions provided by G,

i.e., L = |F |, `max is the maximum length of service chains of all requests, i.e., `max =

max{the length `k of the service chain of rk | rk ∈ A(t) ∪R(t)}, and ε is a given constant

with 0 < ε ≤ 1.

Proof. The solution delivered by Algorithm 4.1 is feasible because each instance of

the GAP is constructed from the subgraph of G that only includes the resources with

sufficient residual capacities for request admissions. For instance, a bin that represents

vertical scaling at node u is added only if u has sufficient residual computing capacity

to accommodate an additional VNF instance. Furthermore, the construction of each

GAP instance ensures that the capacity constraints of servers and VNF instances are

not violated. Consequently, the scaling and admission decisions based on solving

each the GAP instance are feasible.

We now analyze the running time of Algorithm 4.1 as follows. Recall that Algo-

rithm 4.1 consists of two stages: (i) finding an ordering of network functions in F

by constructing an auxiliary directed graph and eliminating all directed cycles in the

auxiliary graph; and (ii) constructing an instance of the GAP and finding a solution

for each network function in its topological order. in the resulting auxiliary graph.

Stage (i) takes O(`max(|R(t)|+ |A(t)|) + L3) time, because the procedure exam-

ines the service chain of every request to construct the auxiliary graph H = (N, A; ω),

which results in O(`max(|R(t)| + |A(t)|)) running time, and removing cycles in

H using the algorithm due to Demetrescu et al. [29] takes O(|N| · |A|) = O(L3)

time. The running time of Stage (ii) is dominated by the time required to solve

a GAP instance for each of L network functions in F . Given O(|R(t)| + |A(t)|)

items and O(|VS|2) = O(|V|2) bins, the algorithm due to Cohen et al. [25] takes

O(|V|2 · |R(t)∪A(t)|
3

ε) time for each of L network function. The theorem thus holds.

124 VNF Placements for Delay-Sensitive NFV-Enabled Requests

4.4 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithm through exper-

imental simulations using both real and synthetic network topologies. We start with

the experimental environments, and then evaluate the performance of the proposed

algorithm.

4.4.1 Experimental environment

We adopt both real network topologies [83] and synthetic network topologies [10] in

the simulations. The real network topologies are adopted from the Internet Zoo Project

by Knight et al. [83], which is an ongoing initiative to collect data network topologies of

different countries. We also adopt the widely used Barabási-Albert model [10], which

can generate sythentic networks that follow the well-known network characteristic

- scale-free, i.e., the degree distribution in a network typically follows a power law.

Both sets of topologies are widely used in evaluating algorithm performance.

The parameter settings are consistent with previous studies, including the number

of servers [62], the computing capacity of each server and link delays [135], and types

of network functions and their computing resource demands [34, 62]. In the case

of a single time slot, we assume that some VNF instances are randomly placed in

the network already. Each request ri ∈ R(t) is generated randomly by choosing two

nodes in V as source si and destination ti, and assigning its traffic rate bi and end-to-

end delay requirement di as per [62]. The generation of the service chain SCi of each

request ri is consistent with the one in [34, 135]. The default accuracy parameter ε in

solving the GAP is set at 0.1. The running time is obtained based on a machine with

a 3.40GHz Intel i7 Quad-core CPU and 16 GB RAM.

We evaluate the performance of the proposed algorithm against a baseline algo-

rithm that is inspired by the devised algorithms in [33, 101]. The baseline algorithm

is described as follows. For every arriving request ri ∈ R(t), the greedy algorithm

constructs a multi-stage graph, in which each stage corresponds to a network function

§4.4 Performance Evaluation 125

in the service chain SCi of request ri, and then the baseline algorithm finds a shortest

path in the multi-stage graph from si to ti. Additionally, we evaluate the impact of

horizontal scaling by running a variant of Algorithm 4.1 without horizontal scaling,

i.e., the algorithm does not migrate any existing VNF instances. We refer to the ILP

solution, Algorithm 4.1, Algorithm 4.1 with vertical scaling and without horizontal

scaling, and the greedy algorithm as ILP, ALG, ALG-V, and Baseline respectively. Each

value in figures is the average of the results of 30 trials.

4.4.2 Performance evaluation of different algorithms within a single time

slot

We first study the performance of different algorithms at a single time slot.

Figure 4.6 (a) shows the number of requests admitted by different algorithms in

a real network, by varying the number of requests. Due to the small problem size,

we are able to obtain optimal solutions using ILP. It can be seen that algorithm ALG

achieves near-optimal throughput and performs the best among different algorithms.

Specifically, when the number of requests is small, all algorithms perform well by

admitting from 70% to 90% of all requests. However, with the increase on the number

of requests, only the proposed algorithm ALG can achieve high network throughput.

Despite the narrow performance gap between algorithms ALG and Baseline when the

number of requests is 40, algorithm ALG admits 20% more requests when there are 160

requests. This demonstrates the superiority of the proposed algorithm. Meanwhile, it

can be seen from Figure 4.6 (a) that algorithm ALG-V outperforms algorithm Baseline

except when the number of requests is very small. The reason is that there is abundant

network resource in the system if the number of reuqests is small and the demanded

resource by the requests is small too. Therefore, the impact of VNF instance sharing

and scaling is not as significant as when there is a number of requests, and Baseline

can easily find a path in the constructed multi-stage graph that satisfies the delay

requirement.

126 VNF Placements for Delay-Sensitive NFV-Enabled Requests

40 60 80 100 120 140 160
Number of Requests |R(t)|

0

40

80

120

160

N
u
m

b
er

 o
f

A
d
m

it
te

d
 R

eq
u
es

ts

ALG
ALG-V
Baseline
ILP

(a) The number of admitted requests

40 60 80 100 120 140 160
Number of Requests |R(t)|

1

1.2

1.4

1.6

N
o
rm

al
iz

ed
 s

O
p
er

at
io

n
al

 C
o
st

ALG
ALG-V
Baseline
ILP

(b) The normalized operational cost

40 60 80 100 120 140 160
Number of Requests |R(t)|

1

100

10,000

R
u
n
n
in

g
 T

im
e

in
 S

ec
o
n
d
s

ALG
ALG-V
Baseline
ILP

(c) The running time

Figure 4.6: Performance of different algorithms within one time slot, using a real
network topology with 40 nodes

§4.4 Performance Evaluation 127

Figure 4.6 (b) shows the operational costs of different algorithms for a single time

slot. The costs have been normalized with respect to the optimal cost found by the ILP

for ease of discussion. When the number of requests is less than 100, we notice two

trends. First, the operational costs of all algorithms except the ILP increase with more

requests due to more request admissions. Second, among algorithms ALG, ALG-V, and

Baseline, ALG has the lowest operational cost, because it constructs instances of the

GAP that accurately capture the costs of different options to admit user requests,

thereby network resources being efficiently utilized. Moreover, when the number of

requests is greater than 100, only the normalized operational cost of algorithm ALG

increases whereas those of algorithms ALG-V and Baseline decrease. This is due to

different numbers of requests admitted by different algorithms. Although the solution

delivered by algorithm ALG has a higher operational cost, the algorithm achieves a

much higher network throughput than the other two comparison algorithms.

Figure 4.6 (c) illustrates the running times of different algorithms. Meanwhile,

algorithm ALG-V is an order of magnitude faster than ALG, because there are only

O(|V|) bins that represent vertical scaling in the GAP instances by algorithm ALG-V,

whereas algorithm ALG has additional O(|V|2) bins to represent horizontal scaling

of VNF instances. More importantly, Figure 4.6 demonstrates that the running time

of ILP is prohibitively high, thus, the algorithm suffers from poor scalability and is

not applicable to the problem with large scale. This necessitates an effective, scalable

method that can find near-optimal solutions in a much shorter amount of time, for

which algorithm ALG is an excellent candidate.

Figure 4.7 (a) plots the curves of numbers of requests admitted by different algo-

rithms at a single time slot, by varying the network size from 100 to 600 while fixing

the number of requests at 100. Notice that due to the large network sizes, ILP does

not finish in a reasonable amount of time, thus the optimal results are not included

in these figures. Similar to Figure 4.6 (a), it can be observed that the proposed al-

gorithm ALG achieves the highest throughput among all algorithms, and algorithm

128 VNF Placements for Delay-Sensitive NFV-Enabled Requests

100 200 300 400 500 600
Network Size |V|

30
40
50
60
70
80
90

100
110
120

N
u
m

b
er

 o
f

A
d
m

it
te

d
 R

eq
u
es

ts

ALG
ALG-V
Baseline

(a) The number of requests admitted

100 200 300 400 500 600
Network Size |V|

600

700

800

900

1,000

1,200

1,300

O
p
er

at
io

n
al

 C
o
st

ALG
ALG-V
Baseline

(b) The operational cost

100 200 300 400 500 600
Network Size |V|

0

2,000

4,000

6,000

8,000

R
u
n
n
in

g
 T

im
e

in
 M

il
li

se
co

n
d
s

ALG
ALG-V
Baseline

(c) The running time

Figure 4.7: Performance of different algorithms within one time slot, using synthetic
networks of various sizes

ALG-V outperforms algorithm Baseline in all network sizes. Figure 4.7 (b) plots the

operational costs of different algorithms, from which we notice that the operational

cost of an algorithm is highly correlated to the number of requests admitted by it.

Take algorithm ALG for instance. It has the highest network throughput and the high-

est operational cost as well among the three algorithms. The rationale behind is that

the more requests admitted, the larger the resource consumption needed to meet the

resource demands of admitted requests. In addition, Figure 4.7 (c) shows the running

times of different algorithms. Both algorithms ALG and ALG-V have large running

times. This can be explained by noticing that during the construction of a GAP in-

stance, algorithm ALG adds a bin that represents horizontal scaling of an instance only

if the scaling does not violate the resource requirements. When the network size is

§4.4 Performance Evaluation 129

large, the possible violation of resource requirements increases, thereby reducing the

size of the GAP instance constructed by algorithm ALG. Thus, the difference in the

sizes of GAP instances constructed by algorithms ALG and ALG-V is small and these

algorithms run in similar amounts of time.

4.4.3 Performance evaluation of different algorithms within a finite time

horizon

We then evaluate the performance of the proposed algorithm within a time horizon

consisting of 200 time slots. The number of requests at each time slot follows a Poisson

distribution with a mean of 30, and each admitted request spans 1 to 10 time slots

randomly. In the beginning of each time slot, some executing requests will depart

from the network and the allocated resources for them will be released back to the

network, before handling newly arrived requests.

The results are summarized in Figure 4.8. It can be seen from Figure 4.8 (a)

that algorithm Baseline has the lowest network throughput among all three afore-

mentioned algorithms. On the contrary, algorithms ALG and ALG-V can admit more

requests through effectively scaling VNF instances to meet the resource requirements

of requests. The total operational cost of each algorithm in the end of each time slot

is shown in Figure 4.8 (b), from which we can see the similar patterns as shown in

Figure 4.7 (b). That is, due to the larger number of requests admitted by ALG, the oper-

ational cost of algorithm ALG is higher than the other two algorithms. The differences

in operational costs of different algorithms do not mean algorithm ALG is inferior,

because the network throughput is the main optimization objective, and algorithm

ALG indeed has the highest network throughput. Meanwhile, Figure 4.8 (c) shows that

the running time of algorithm Baseline is much smaller in comparison with the ones

of algorithms ALG and ALG-V. It must be reiterated that this running time comes at the

expense of admitting much fewer requests. Specifically, although the running time

of algorithm Baseline is approximately one-fifth of that of algorithmALG, algorithm

130 VNF Placements for Delay-Sensitive NFV-Enabled Requests

0 40 80 120 160 200
Time slot

0

500

1,000

1,500

2,000

2,500

3,000

A
cc

u
m

u
la

ti
v
e

N
u
m

b
er

 o
f

A

d
m

it
te

d
 R

eq
u
es

ts ALG
ALG-V
Baseline

(a) The number of requests admitted for a pe-
riod

0 40 80 120 160 200
Time slot

0

10,000

20,000

30,000

40,000

50,000

60,000

T
o
ta

l
O

p
er

at
io

n
al

 C
o
st

ALG
ALG-V
Baseline

(b) The total operational cost

0 40 80 120 160 200
Time slot

0

2,000

4,000

6,000

8,000

10,000

12,000

A
cc

u
m

u
la

ti
v
e

R
u
n
n
in

g
 T

im
e

in

 S
ec

o
n
d
s

ALG
ALG-V
Baseline

(c) The total running time

Figure 4.8: Performance of different algorithms within a finite time horizon, using a
real network topology

§4.5 Summary 131

Baseline only admits half the number of requests as algorithm ALG does in the end

of the time horizon. The performance difference demonstrates the effectiveness of the

proposed algorithm in maximizing the throughput of a network.

4.5 Summary

In this chapter, we studied the network throughput maximization problem, by ad-

mitting as many as NFV-enabled requests while meeting their QoS requirements,

through jointly considering vertical scaling by instantiating new VNF instances and

horizontal scaling by migrating existing VNF instances to new locations. We first

formulated the problem as an ILP. We then proposed an efficient heuristic for the

problem. We finally evaluated the performance of the proposed algorithm through

conducting experiments. Experimental results demonstrated that the proposed algo-

rithm outperforms a baseline algorithm, and the solution quality of the proposed

algorithm is on a par with that of the optimal solution delivered by the ILP.

132 VNF Placements for Delay-Sensitive NFV-Enabled Requests

Chapter 5

Reliability-Aware Virtualized

Network Function Services

Provisioning in Mobile Edge

Computing

5.1 Introduction

Mobile devices, including smartphones and tablets, have experienced exponential

growth in recent years. This trend is coupled with the evolution of new mobile ap-

plications with stringent requirements such as real-time and interactive applications.

However, executing computation-intensive applications on mobile devices of portable

sizes is heavily constrained by their limited computing, storage, and battery capacities.

Mobile edge computing (MEC) has emerged, which brings computation and storage

resources, which are referred to as cloudlets [117], to the edge of mobile networks [28].

These cloudlets are co-located with access points (APs) in the networks and they are

accessible by mobile users via wireless access. A key advantage of deployment of

cloudlets is that the close physical proximity between cloudlets and users introduces

shorter communication delays, thereby improving the user experience. It thus has

been envisioned that MEC has many promising applications including in smart cities

and smart connected vehicles [12, 42, 125, 144].

133

134 Reliability-Aware VNF Services Provisioning in MEC

Many network service providers recently have started migrating their infrastruc-

ture to take advantage of network functions virtualization (NFV) [67, 103]. Due to

the continuous advances in computing hardware, it is possible to replace resource

demanding user applications, such as voice recognition, image processing, and other

supporting tasks for smart cities, with software components that provide the same

capability on top of commodity servers. Each network function, such as a software-

based video transcoder for a smart city system, runs in a virtual machine, referred to

as a virtualized network function (VNF) instance, hosted in cloudlets. NFV enables

users to offload their tasks to nearby cloudlets via wireless APs for processing.

While implementing user applications as VNF instances promises significant flex-

ibility and ease of the management of networks, it also brings more concerns on

the reliability of running VNF instances. Traditional carrier-grade systems have been

engineered to offer nearly 99.999% (five nines) reliability and designed to be highly

fault-tolerant [36]. Achieving this level of reliability is extremely difficult for NFV in

an MEC environment due to various reasons including the cloudlets hosting VNF

instances are more prone to errors and failures compared to the dedicated hardware

appliances, and software for implementing VNF instances may contain bugs [36]

and is prone to failures. As a result, in order to provide reliable VNF services to

users while meeting their requirement of the service and mitigate the risk of failures,

additional VNF instances should be created at other peer cloudlets in the MEC.

In this chapter, we consider reliability-aware VNF services provisioning in an

MEC. We assume that each user request needs a VNF service with a specified relia-

bility requirement. In order to meet the reliability requirement of the user, multiple

VNF instances need to be placed at different cloudlets. We distinguish between the

single primary VNF instance and one or multiple secondary VNF instances for each

offloaded user request [50]: the former is an active VNF instance while the latter are

idle ones until the primary one fails. Moreover, as the usage of network resources fol-

lows pay-as-you-go, there are multiple users competing for limited network resources,

§5.1 Introduction 135

yet the resources at each cloudlet have capacity constraints. Hence, it needs to be de-

termined which requests should be admitted, subject to the capacity constraints on

cloudlets.

The novelty of the work in this chapter lies in the provisioning of reliability-

aware VNF instances for network function services in MEC, by formulating a novel

reliability-aware VNF instances provisioning problem. Efficient approximation and

exact algorithms are proposed for allocating network resources to accommodate pri-

mary and secondary VNF instances in different cloudlets to meet individual user

reliability requirements. Furthermore, the formulated optimization problem may be

of independent interests as the Generalized Assignment Problem (GAP) is a special

case of the problem. To the best of our knowledge, there is no prior study on similarly

formulated problems, and this problem, which generalizes the GAP problem, has

wide potential applications in practice, particularly in the fault-tolerance domain.

The main contributions of this chapter are described as follows. We study the

provisioning of reliability-aware VNF instances in an MEC to meet individual user

reliability requirements. We first formulate a novel optimization problem for provi-

sioning multiple VNF instances at different cloudlets in MEC to meet the reliability

requirement of each request. We then show the NP-hardness of the problem and

formulate an integer linear programming (ILP) solution to the problem when its size

is small, otherwise, we develop an approximation algorithm with an approximation

ratio of O(log K), where K is the number of cloudlets in the MEC. Moreover, we also

consider two special cases of the problem. Specifically, we devise a constant approxi-

mation algorithm for a special case of the problem where each request needs only one

primary and one secondary VNF instances. We also develop a dynamic programming

algorithm that delivers an exact solution to another special case of the problem where

the VNF instances of different types of virtual network functions demand the same

amount of computing resources. We finally evaluate the performance of the proposed

algorithms through experimental simulations. Experimental results demonstrate that

136 Reliability-Aware VNF Services Provisioning in MEC

the proposed algorithms are promising and the empirical results outperform their

analytical counterparts as the theoretical estimations usually are very conservative.

The rest of the chapter is organized as follows. Section 5.2 introduces notions,

notations, and the problem definitions. Section 5.3 shows the NP-hardness of the

problem. Section 5.4 provides an ILP formulation of the problem, while Section 5.5

devises an algorithm with a logarithmic approximation ratio for the problem. More-

over, Section 5.6 deals with two special cases of the problem and proposes a constant

approximation algorithm and an exact solution for the two special cases, respectively.

Section 5.7 evaluates the proposed algorithms empirically, and Section 5.8 concludes

the chapter.

5.2 Preliminaries

In this section, we first introduce the system model, notions and notations. We then

define the problem precisely.

5.2.1 Network model

We consider an MEC environment for a metropolitan region. Given a wireless metropoli-

tan area network (WMAN) G = (V, E) consisting of Access Points (APs) and K

cloudlets, where each cloudlet k is co-located with an AP and they are interconnected

by a high-speed optical cable, yet not all APs have co-located cloudlets, i.e., the num-

ber of cloudlets in the network is far less than the number of APs. Each cloudlet k has

a (residual) computing capacity Ck. E is the set of links in which a link e ∈ E between

two APs if they are interconnected by an optical cable. We assume that there are |F |

different types of network function services offered by the network service provider.

Denote by F = { f1, f2, . . . , f|F |} the set of network functions. The computing resource

demand of each VNF instance of a network function fi ∈ F is ci. Mobile users can

access the network ubiquitously through their nearby APs. Figure 5.1 is an illustrative

example of such a network that consists of five APs and three cloudlets.

§5.2 Preliminaries 137

Access Point

Cloudlet

Figure 5.1: An MEC consists of five APs and three cloudlets co-located with APs. User
devices access the network through their nearby APs and APs are interconnected by
optical links of the MEC.

138 Reliability-Aware VNF Services Provisioning in MEC

5.2.2 User requests

Denote by R the set of user requests. Each user request rj ∈ R is defined by a quadru-

ple (f j, Rj, cj, pj), where f j (∈ F) is the requested type of VNF, Rj is the reliability

requirement of request rj with 0 < Rj ≤ 1, cj is the amount of computing resource

demanded for implementing the VNF instance of f j in a cloudlet, and pj (∈ R+) is

the revenue collected by the service provider if request rj is admitted. In contrast

to some previous studies, we here assume that a user request can be served by a

single VNF instance [74, 140], or a consolidated VNF instance [63]. This assumption

is in alignment with real world deployments of VNF instances, such as Google’s

enterprise software-defined networks (SDN) [8], in which a single general-purpose

computer implements multiple network functions, including network address transla-

tion (NAT), firewall, Intrusion Detection System (IDS), Dynamic Host Configuration

Protocol (DHCP) daemon.

We assume that each request rj needs (nj + 1) VNF instances of its network func-

tion f j, to meet its reliable service requirement, where nj is calculated by the reliability

requirement of the request. Without loss of generality, we assume that nj + 1 ≤ K,

i.e., the reliability provided by the system through duplicating the VNF instances to

different cloudlets is no more than the number of cloudlets K in the system. Among

the (nj + 1) VNF instances for request rj, one of the VNF instances will serve as its

primary VNF instance, and the remaining ni VNF instances will serve as its secondary

VNF instances. Specifically, the value of nj ≥ 0 is determined by the reliability require-

ment Rj of request rj, which is a minimum non-negative integer to meet the following

inequality.

Pr(at least one of the (nj + 1) VNF instances is available)

= 1− Pr(f j)
nj+1 ·

nj

∏
l=0

Pr(Kjl) (5.1)

= 1− Pr(f j)
nj+1 · Pr(K)nj+1 (5.2)

§5.2 Preliminaries 139

≥ Rj, (5.3)

where Pr(fi) is the failure probability of an instance of network function fi and

Pr(Kjl) is the failure probability of the lth instance of request rj, and step (5.1) in

Equation (5.3) follows because, in order to be functionally identical to the primary

instance, the secondary VNF instances are often running on the same software version

and using the same configuration as their primary VNF instance, thereby having the

same failure probabilities as the failure probability of the primary VNF instance.

Step (5.2) in Equation (5.3) follows we assume that cloudlets in the system have the

same failure probabilities. This assumption is in alignment with the common industry

practice where network operators keep their equipments to a limited range so that

they can standardize the process and minimize their OPEX. We also assume that

failures of VNF instance are independent with each other and links (optical cables) in

G are reliable.

As most network functions are stateful, the primary and secondary VNF instances

of a network function need to synchronize with each other so that there is minimum

interruptions when the primary VNF instance fails. It is worth noting that the internal

state of a VNF instance often contain sensitive information, e.g., encryption keys. If

synchronization of the internal states of primary and secondary VNF instances is

via the same links as user traffic, sensitive information may be exposed. Instead,

the internal state of the primary VNF instance should be periodically distributed to

secondary VNF instances over a dedicated out-of-band, i.e., separate from user traffic,

network. The commonly used Control Plane Network (CPN) [47, 120] is an excellent

candidate for synchronization between the primary and secondary VNF instances of

a network function.

140 Reliability-Aware VNF Services Provisioning in MEC

5.2.3 Problem definition

Given an MEC G = (V, E), a set R of requests, associated with each request rj ∈ R,

there is a payment pj, a network function f j ∈ F , and a reliability requirement repre-

sented by the number nj (0 ≤ nj < K) of secondary VNF instances with each of them

being placed at a different cloudlet, the reliability-aware VNF instances provisioning prob-

lem is to admit as many requests in R as possible such that the total revenue collected

by the service provider is maximized, subject to computing capacity constraint on

each cloudlet and the specified reliability guarantee of each admitted request.

A request rj is admitted if its (nj + 1) VNF instances are placed at (nj + 1) different

cloudlets, and each cloudlet has sufficient computing resource to meet the computing

resource demand cj of its network function f j, assuming that max1≤j≤|R|{nj} ≤ K− 1.

There are a set R of requests, each request rj ∈ R needs nj + 1 replicas of its VNF f j,

and its admission will result in a revenue of pj where each instance of f j demands

the amount cji of computing resource from each of the nj + 1 cloudlets. The problem

is to admit as many requests in R as possible to maximize the revenue, subject to the

cloudlet computing capacity constraint.

Notice that in this chapter we do not explicitly consider user mobility. However,

we assume the users are allowed to move in the MEC, and they can issue their requests

for services through the APs in which they are located.

Table 5.1 lists the frequently used notations used in this chapter.

5.3 NP-Hardness

Theorem 5.1. The reliability-aware VNF instances provisioning problem in an MEC G(V, E)

is NP-complete.

Proof. We show the claim through a reduction from the well-known NP-complete

knapsack problem that is described as follows. Given n items, each item ai has a

weight wi and a profit pi with 1 ≤ i ≤ n. There is a bin with capacity W. If an item

§5.3 NP-Hardness 141

Table 5.1: Table of Symbols

Notations Descriptions

G = (V, E) a WMAN

k ∈ K a cloudlet co-located with an AP

Ck the residual computing capacity of cloudlet k

F (= f1, f2, . . . , f|F |) the set of network functions offered in G

fi a network functions offered in G

ci the computing resource demand of network function fi

R the set of user requests

rj = (f j, Rj, cj, pj) ∈ R a user request, where f j (∈ F) is the requested type of
VNF, Rj is the reliability requirement with 0 < Rj ≤ 1, cj
is the demanded amount of computing resource, and pj
(∈ R+) is the revenue

nj the number of secondary VNF instances for request rj to
meet its reliable service requirement

aj can be packed into the bin, it brings a profit of pj. The knapsack problem is to pack

as many items as possible such that the total profit of packed items is maximized,

subject to the bin capacity W.

Given an instance of the knapsack problem, we construct an instance of the

reliability-aware VNF instances provisioning problem as follows. We assume that

there are two cloudlets (K = 2) with each having W computing capacity. There are n

requests, which correspond the n items in the knapsack problem. We further assume

that each request rj has only one secondary VNF instance, i.e., nj = 1. As each request

implementation has a primary VNF instance. Thus, there are two VNF instances for

each request allocated to two cloudlets. The computing demand of each of the two

VNF instances of rj is wj. If request rj is admitted, the revenue brought by its im-

plementation is pj. Then, the reliability-aware VNF instances provisioning problem

is to admit as many requests as possible such that the total revenue collected from

admitted requests is maximized, subject the computing capacity constraints on the

two cloudlets.

It can be seen that a solution to the latter in turn returns a solution to the former,

142 Reliability-Aware VNF Services Provisioning in MEC

while the reduction from an instance of the knapsack problem to an instance of the

reliability-aware VNF instances provisioning problem takes polynomial time. Also,

verifying the solution of the latter can be easily done in polynomial time. As the

knapsack problem is NP-complete, the reliability-aware VNF instances provisioning

problem is NP-complete, too.

5.4 Integer Linear Programming

In this section, we formulate an ILP solution for the problem. We assume that xj is a

boolean variable, where xj = 1 implies that request rj is admitted; otherwise, it will

not be admitted. Furthermore, if rj is admitted, there are exactly nj + 1 cloudlets with

each having the amount cj of computing resource to meet the computing resource de-

mand by its primary and secondary VNF instances. The optimization objective thus is

maximize ∑n
j=1 pjxj,

subject to the following constraints.

|R|

∑
j=1

cj · yj,k ≤ Ck, ∀k, 1 ≤ k ≤ K (5.4)

(nj + 1) · xj =
K

∑
k=1

yj,k, ∀rj ∈ R (5.5)

xj ∈ {0, 1}, ∀rj ∈ R (5.6)

yj,k ∈ {0, 1}, ∀rj ∈ R, ∀k, 1 ≤ k ≤ K, (5.7)

where yj,k is a boolean variable, yj,k = 1 if a VNF instance of request rj is allocated to

cloudlet k; yj,k = 0 otherwise. Constraint (5.4) says that the total computing demand

by the VNF instances of all different requests rj in any cloudlet k is no greater than

its residual computing resource capacity. Constraint (5.5) ensures that the number of

secondary VNF instances at different cloudlets for each admitted request rj is exactly

§5.5 Approximation Algorithm for the Reliability-Aware VNF Instances Provisioning Problem143

nj + 1. Constraints (5.6) and (5.7) limit the ranges of boolean variables xj and yj,k to

either 0 or 1.

5.5 Approximation Algorithm for the Reliability-Aware VNF

Instances Provisioning Problem

In this section, we propose an approximation algorithm for the reliability-aware VNF

instances provisioning problem. We start with cost modeling, and then provide an

overview of the proposed algorithm and details of the algorithm. We finally analyze

the approximation ratio and time complexity of the proposed algorithm.

5.5.1 Cost modeling

The approximation algorithm examines the requests inR one by one. When request rj

is considered, the resource availability of cloudlets affects whether rj can be admitted.

We thus denote by Ck(j) the amount of residual computing resource at cloudlet k

with Ck(0) = Ck.

The key to the approximation algorithm is that we use an exponential function

to model the cost wk(j) of instantiating a VNF instance of request rj with computing

resource demand cj at cloudlet k, which is defined as follows.

wk(j) =
Ck

cj
(α

1− Ck(j)
Ck − 1), (5.8)

where α > 1 is a constant to reflect the sensitivity of the workload at each cloudlet,

which will be determined later, and 1− Ck(j)
Ck

is the utilization ratio of cloudlet k when

request rj is considered. The rationale is that the high utilization a resource has, the

higher the risk associated with the resource utilization, thus the usage of resources

with high utilization should be discouraged. The proposed exponential function will

guide the resource allocations.

144 Reliability-Aware VNF Services Provisioning in MEC

5.5.2 Algorithm description

We first sort all requests by the ratio of the payment of each request to the total

amount of its computing resource demand to meet its VNF instance reliability. In

other words, we rank request rj ahead of request ri if pj
(nj+1)cj

≥ pi
(ni+1)ci

for any two

requests ri ∈ R and rj ∈ R. For the sake of convenience, we assume that the sorted

request sequence is r1, r2, . . . , r|R|. We then examine requests in the sequence one by

one to determine whether a request will be admitted immediately.

For each request rj, we calculate its normalized cost if one of its VNF instances is

instantiated at cloudlet k as follows.

ψk(j) =
wk(j)

Ck
=

α
1− Ck(j)

Ck − 1
cj

. (5.9)

For each request rj, we identify top-(nj + 1) cloudlets with the lowest normalized

costs, and denote by Kj the set of cloudlets. We here introduce an admission control

policy for request admissions. That is, if the sum of normalized costs of the identified

top-(nj + 1) cloudlets for request rj is greater than K, i.e.,

∑k∈Kj
ψk(j)

pj
> K, (5.10)

then request rj will be rejected. Otherwise, it will be admitted, and its (nj + 1) VNF

instances will be placed in the top-(nj + 1) cloudlets. The algorithm detail for the

reliability-aware VNF instances provisioning problem is given in Algorithm 5.1.

5.5.3 Algorithm analysis

In the following, we first provide an upper bound on the sum of costs of all cloudlets

in G after a subset of requests in R is admitted. We then show a lower bound on the

sum of costs of cloudlets that an optimal solution uses to admit a request rejected

by the proposed algorithm, and we finally analyze the approximation ratio of the

proposed approximation algorithm.

§5.5 Approximation Algorithm for the Reliability-Aware VNF Instances Provisioning Problem145

Algorithm 5.1 Approximation algorithm for the reliability-aware VNF instances pro-
visioning problem
Input: A set of K cloudlets with each having a residual computing capacity C, a set of requests
R with each request rj = (f j, Rj, cj, pj)

Output: Admit a subset of requests in R that maximizes the sum of revenues of admitted
requests while meeting the reliability requirement of each admitted request.

1: A ← ∅ /* the set of admitted requests */;
2: Sort requests in R by the ratio of the payment of each request to the total amount of its

computing resource demand to meet its VNF instance reliability;
3: for each request rj in the sorted order do
4: Calculate the number nj of secondary VNF instances of its network function by Inequal-

ity (5.3);
5: Assign each cloudlet k a cost by Equation (5.9) if rj is admitted;
6: Identify top-(nj + 1) cloudlets Cj1 , Cj2 , . . . , Cjnj

, Cj(nj+1)
, with smallest costs, by a linear

time selection algorithm;
7: if there is a cloudlet jk among the nj + 1 identified cloudlets such that Cjk < cj or the

sum of costs of the (nj + 1) identified cloudlets is greater than K · pj (by Inequality (5.10))
then

8: Reject request rj;
9: else

10: Allocate a VNF instance of request rj to each of the top-(nj + 1) cloudlets;
11: Update the residual computing capacity of each of these cloudlets as Cjk ← Cjk − cj

for all k with 1 ≤ k ≤ nj + 1;
12: A ← A∪ {rj};
13: end if
14: end for
15: return Set A of admitted requests and their primary and secondary VNF instance place-

ments in cloudlets.

146 Reliability-Aware VNF Services Provisioning in MEC

Lemma 5.1. Given an MEC G(V, E) and a set of requests R, denote by A the set of requests

admitted by Algorithm 5.1, then, the sum of costs of all K cloudlets is

K

∑
k=1

wk(j) ≤ 2K · log α · ∑
rj′∈A

pj′ ,

where α is a constant with 2K · Qmax + 2 ≤ α ≤ 2Cmin/cmax , Cmin (= min{Ck | 1 ≤

k ≤ K}) is the minimum cloudlet computing capacity, R is the set of requests, and Qmax

(= max{pj′ · cj′ | rj′ ∈ R}) is the maximum product of the profit and computing resource

demand among requests.

Proof. Consider a request rj′ ∈ A admitted by the approximation algorithm. Then, for

any cloudlet k with 1 ≤ k ≤ K, we have

wk(j′ + 1)− wk(j′)

=
Ck

cj′+1
· (α1− Ck(j′+1)

Ck − 1)− Ck

cj′
· (α1− Ck(j′)

Ck − 1)

≤Ck

cj′
· (α1− Ck(j′+1)

Ck − 1)− Ck

cj′
· (α1− Ck(j′)

Ck − 1) (5.11)

=
Ck

cj′
·
(
α

1− Ck(j′+1)
Ck − α

1− Ck(j′)
Ck
)

=
Ck

cj′
· α1− Ck(j′)

Ck (α
Ck(j′)−Ck(j′+1)

Ck − 1)

≤Ck

cj′
· α1− Ck(j′)

Ck (α
cj′
Ck − 1) (5.12)

=
Ck

cj′
· α1− Ck(j′)

Ck (2
cj′
Ck

log α − 1)

≤Ck

cj′
· α1− Ck(j′)

Ck (cj′ · log α/Ck) (5.13)

=α
1− Ck(j′)

Ck · log α. (5.14)

where Inequality (5.11) follows because requests are sorted, Inequality (5.12) holds

because at most cj′ amount of computing resource is consumed at cloudlet k, and

Inequality (5.13) holds because 2x − 1 ≤ x with 0 ≤ x ≤ 1.

§5.5 Approximation Algorithm for the Reliability-Aware VNF Instances Provisioning Problem147

Recall that Kj′ is the set of cloudlets in which the proposed approximation algo-

rithm places a VNF instance of rj′ . We then calculate the sum of costs of cloudlets in

G when admitting request rj′ . Notice that if none of the VNF instances of rj′ is created

at a cloudlet k, the cost of the cloudlet does not change after the admission of request

rj′ . The difference in the cost sum of all cloudlets before and after admitting request

rj′ thus is

K

∑
k=1

(
wk(j′ + 1)− wk(j′)

)
= ∑

k∈Kj′

(wk(j′ + 1)− wk(j′))

≤ ∑
k∈Kj′

(α
1− Ck(j′)

Ck · log α), by Inequality (5.14)

= log α ∑
k∈Kj′

(wk(j′)
Ck

+ 1
)

= log α

 ∑
k∈Kj′

wk(j′)
Ck

+ ∑
k∈Kj′

1


≤ log α · ((pj′ · K) + K) (5.15)

= log α · K · (pj′ + 1)

≤ log α · K · (pj′ + pj′) (5.16)

=2 log α · K · pj′ , (5.17)

where Ineq. (5.15) follows from the fact that rj′ is admitted and Ineq. (5.10), Ineq. (5.16)

follows because pj′ ≥ 1.

The cost sum of all cloudlets after having examined last request r|R| thus is

K

∑
k=1

wk(|R|+ 1) =
|R|

∑
j′=1

K

∑
k=1

(wk(j′ + 1)− wk(j′))

= ∑
rj′∈A

K

∑
k=1

(wk(j′ + 1)− wk(j′))

≤ ∑
rj′∈A

(2K · pj′ · log α) (5.18)

148 Reliability-Aware VNF Services Provisioning in MEC

= 2K · log α · ∑
rj′∈A

pj′ ,

where Inequality (5.18) follows from Inequality (5.17).

Let D (⊆ R) be the set of requests that are admitted by an optimal algorithm but

rejected by the proposed approximation algorithm. We now prove a lower bound on

the sum of normalized costs of all cloudlets used to admit any request in D.

Lemma 5.2. LetD be the set of requests that are admitted by an optimal algorithm yet rejected

by the approximation algorithm, and let Kopt
j′ be the set of (nj′ + 1) cloudlets to which the

optimal algorithm places VNF instances for request rj′ ∈ D. Then, for any request rj′ ∈ D,

we have
∑k∈Kopt

j′
ψk(j′)

pj′
≥ K, (5.19)

where α is a constant with 2K ·Qmax + 2 ≤ α ≤ 2Cmin/cmax , Cmin (= min{Ck | 1 ≤ k ≤ K})

is the minimum cloudlet computing capacity, and Qmax (= max{pj′ · cj′ | rj′ ∈ R}) is the

maximum product of the profit and computing resource demand among requests.

Proof. Consider a request rj′ that is admitted by the optimal algorithm yet rejected by

the proposed approximation algorithm. Since rj′ is admitted by the optimal algorithm,

it means that the optimal algorithm is able to admit rj′ using a set Kopt
j′ of cloudlets.

There are exactly two cases. Case 1: every cloudlet in Kopt
j′ has sufficient resources to

admit rj′ ; and Case 2: at least one cloudlet in Kopt
j′ does not have sufficient resources

to meet the resource demand of rj′ .

In the following we show that Inequality (5.19) holds in both of the two cases.

Case 1: If every cloudlet in Kopt
j′ has sufficient resources to admit rj′ , the proposed

approximation algorithm must be able to find a set Kj′ of cloudlets such that Kj′

can meet the resource demand of request rj′ and for any set including Kopt
j′ of nj′ + 1

cloudlets. That is, ∑k∈Kj′
ψk(j′) ≤ ∑k∈Kopt

j′
ψk(j′). Since rj′ is rejected by the proposed

algorithm, the cost sum of cloudlets in Kopt
j′ when admitting request rj′ is no less than

the given threshold in the admission control policy (5.10), i.e., K · pj′ ≤ ∑k∈Kj′
ψk(j′) ≤

§5.5 Approximation Algorithm for the Reliability-Aware VNF Instances Provisioning Problem149

∑k∈Kopt
j′

ψk(j′).

Case 2: At least one cloudlet in Kopt
j′ does not have sufficient available resource to

meet the demand of request rj′ . Thus, there must exist at least one cloudlet k′ such

that its residual computing capacity Ck′(j′) is less than the computing demand cj′ .

Consequently, the sum of the normalized costs of cloudlets in Kopt
j′ is greater than

Kpj′ :

∑
k∈Kopt

j′

ψk(j′) ≥ ψk′(j′) =
α

1− Ck′ (j′)
Ck′ − 1
cj′

>
α

1−
cj′
Ck′ − 1
cj′

, since Ck(j′) < cj′

≥ α
1− 1

log α − 1
cj′

, since α ≤ 2Cmin/cmax ≤ 2Ck′/cj′

=
α
2 − 1

cj′
≥ Kpj′ , since α ≥ 2K ·Qmax + 2 ≥ cj′ · pj′ + 2.

Theorem 5.2. Given an MEC G(V, E), K cloudlets in G, and a set R of requests, there is an

approximation algorithm, Algorithm 5.1, with an approximation ratio of O(log K) for the

reliability-aware VNF instances provisioning problem, which takes O(|R| · log |R|+ |R| ·K)

time.

Proof. Let Popt and P be the total revenues of admitted requests by an optimal algo-

rithm and the proposed approximation algorithm for requests in R, respectively, we

then have

K(Popt −P) ≤ K ∑
rj′∈D

pj′ = ∑
rj′∈D

K · pj′

≤ ∑
rj′∈D

(∑
k∈Kopt

j′

wk(j′)
Ck

), by Lemma 5.2

150 Reliability-Aware VNF Services Provisioning in MEC

≤ ∑
rj′∈D

(∑
k∈Kopt

j′

wk(j)
Ck

) (5.20)

≤
K

∑
k=1

wk(j) ∑
rj′∈D

(∑
k′∈Kopt

j′

1
Ck′

) (5.21)

≤
K

∑
k=1

wk(j) · 1 (5.22)

=
K

∑
k=1

wk(j) ≤ 2K log α · ∑
j′∈A

pj′ by Lemma 5.1. (5.23)

Notice that Inequality (5.20) holds because the utilization of each resource does not

decrease and consequently the cost of any cloudlet k with 1 ≤ k ≤ K does not

decrease with more request admissions. Inequality (5.21) holds since ∑
p
i=1 ∑

q
j=1 AiBj ≤

∑
p
i=1 Ai ∑

q
j=1 Bj for all Ai ≥ 0 and Bj ≥ 0. The proof of Inequality (5.22) proceeds as

follows. All algorithms, including an optimal algorithm for the problem of concern,

the total amount of allocated computing resources in any cloudlet is no more than

the capacity of the cloudlet.

By Inequality (5.23), we have

Popt

P
=

Popt −P

P
+ 1

≤
2 log α ·∑rj′∈A pj′

∑rj′∈A pj′
+ 1 ≤ 2 log α + 1

= O(log(K ·Qmax)), when α = 2K ·Qmax + 2.

= O(log K + log Qmax)

= O(log K), as Qmax usually is a constant,

where Qmax is the maximum product of the profit and computing resource demand

among requests, i.e., Qmax = max{pj′ · cj′ | rj′ ∈ R}.

The running time of Algorithm 5.1 is dominated by the time required to sort

all requests by their ratio, which takes O(|R · | log |R|) time. Then, there are |R|

iterations, and within each iteration j, it identifies the top-(nj + 1) cloudlets with the

§5.6 Approximation and Exact Algorithms for Special Cases of the Reliability-Aware VNF Instances Provisioning Problem151

smallest weights using a linear time selection algorithm. The algorithm thus takes

O(|R| · log |R|+ |R| · K) time.

5.6 Approximation and Exact Algorithms for Special Cases of

the Reliability-Aware VNF Instances Provisioning Prob-

lem

In this section, we study two special cases of the reliability-aware VNF instances

provisioning problem, and propose a constant approximation algorithm and an exact

algorithm for the cases, respectively.

5.6.1 A constant approximation algorithm for a special reliability-aware

VNF instances provisioning problem

We start dealing with a special case of the reliability-aware VNF instances provisioning

problem where each request has only one primary and secondary VNF instances, i.e.,

nj = 1 for all requests rj ∈ R. Even for this special case, it is still NP-hard, for which

we develop a constant approximation algorithm by a non-trivial reduction to the

well-known Generalized Assignment Problem (GAP) [25], and a solution to the latter

in turn returns a feasible solution to the former.

The Generalized Assignment Problem (GAP) is defined as follows. Given a set B of

K bins with each bin Bk ∈ B having identical capacity of C, a set I of N items, and

for each pair of item Ij ∈ I and bin Bk ∈ B, a profit p(Ij, Bk) is obtained if item Ij is

placed to bin Bk with size s(Ij, Bk), the GAP is to pack as many as items in set I into

the bins in B such that the total profit is maximized, subject to the capacity constraint

on each bin.

Given an instance of this special reliability-aware VNF instances provisioning

problem, we construct an instance of the GAP as follows. We first assume that the K

cloudlets are indexed into 1, 2, . . . , K and K is even. Otherwise, we assume that there

152 Reliability-Aware VNF Services Provisioning in MEC

are K + 1 cloudlets, and one cloudlet is a virtual one that implies that it does not exist.

We pair the K cloudlets into K/2 pairs, let B′1, B′2, . . . , B′K/2 be the K/2 pair-bins with

each having 2C computing capacity as the instance of the GAP problem. Each request

rj ∈ R has a corresponding item Ij and with resource demand 2cj for its primary and

secondary VNF instances.

If the primary and secondary VNF instances of request rj ∈ R will be placed into

one pair of cloudlets, corresponding to one bin B′k with size 2cj, then the capacity 2C

of bin B′k is no less than the total resource demand 2cj by these two VNF instances,

and this placement will result in a profit (revenue) p(Ij, B′k) that is defined as

p(Ij, B′k) = pj,

where 1 ≤ j ≤ |R| and 1 ≤ k ≤ K/2.

The size of placing item Ij into B′k is s(Ij, B′k) = 2cj, corresponding to the resource

demand 2cj of VNF instances of request rj.

The constructed GAP instance can be solved by invoking the approximation al-

gorithm due to Cohen et al. [25] with an approximation ratio of 1
2+ε , where ε is a

constant with 0 < ε ≤ 1.

The solution delivered by the approximation algorithm will be in the form of

assigning a set I ′ ⊆ I of requests. Specifically, each item Ij ∈ I ′ that corresponds to

the primary and secondary VNF instances of request rj are assigned to cloudlets B2k

and B2k+1 if its corresponding item Ij is assigned to bin B′k with 1 ≤ k ≤ K/2.

We then extend the solution from the even K to the odd K, for which we create

a virtual cloudlet with the same capacity as other cloudlets. Thus, we now have K′ =

K + 1 bins. They are corresponding K′/2 pair-bins B′1, B′2, . . . , B′K+1
2

with each having

the computing capacity of 2C. Assume that the virtual cloudlet is paired with the

cloudlet indexed K. We then apply the approximation algorithm for the GAP problem

due to Cohen et al. [25].

Let I ′ be the approximate solution and I ′1.I ′2, . . . , I ′K′/2 the sets of admitted re-

§5.6 Approximation and Exact Algorithms for Special Cases of the Reliability-Aware VNF Instances Provisioning Problem153

quests in bins B′1, B′2, . . . , B′K′/2, respectively. Let P′1, P′2, . . . , P′K′/2 be the profit sum of

requests admitted in their corresponding pair-bins.

Denote by ∑K′/2
i=1 P′i the total revenue collected by admitting the requests in I ′. The

average profit among the K′/2 pair-bins thus is ∑K′
i=1 P′i
K′/2 . Let P′min = min1≤i≤K′/2{P′i }. If

P′K′/2 = P′min, we discard the requests in B′K′/2 from the solution, i.e., I ′ = I ′ \ I ′K′/2;

otherwise, let P′i0 = P′min and i0 6= K′/2, we swap the admitted requests between

pair-bin B′i0 and pair-bin B′K′/2, i.e., I ′i0 = I
′
K′/2 and I ′K′/2 = I ′i0 . Then, the solution is

I ′ = I ′ \ I ′K′/2. The detailed algorithm is given in Algorithm 5.2.

Theorem 5.3. Given an MEC G(V, E) that contains K cloudlets with each having identical

residual computing capacity C, and a set of requestsR with each request rj ∈ R having exactly

one secondary VNF instance, there is an approximation algorithm with an approximation ratio

of 1
6+ε′ , Algorithm 5.2, for this special reliability-aware VNF instances provisioning problem.

The proposed algorithm takes O(|R|·Kε′ + K
ε′4
) time, where ε′ is a constant with 0 < ε′ ≤ 3.

Proof. We first show that the solution delivered by Algorithm 5.2 is feasible. Since a

pair-bin B′k that corresponds to cloudlets 2k and 2k + 1 has the computing capacity

of 2C, and the size s(Ij, B′k) = 2cj of placing item Ij (admitting request rj by instanti-

ating its primary and secondary VNF instances into B2k and B2k+1) is equal to their

resource demand 2cj, it follows that the allocation of VNF instances by solving the

GAP problem, i.e., the capacity constraint on each cloudlet will not be violated.

We then analyze the approximation ratio of Algorithm 5.2, by distinguishing it

into two cases, depending on whether the value of K is even or not. If K is even, then

the solution is an approximate solution, which is 1
2+ε times the optimal by the approx-

imation algorithm in [25]; otherwise (K is odd), we create a virtual cloudlet indexed

as K′ (= K + 1). Let I ′ be the approximate solution delivered by the approximation

algorithm. As this solution is built upon the assumption that there are K′ cloudlets,

we in fact have only K cloudlets in the network. Following Algorithm 5.2, let A be the

total profit of the approximate solution, the minimum profit among the K′/2 pairs of

cloudlets thus is no greater than A
K′/2 . As we will remove all admitted requests in the

154 Reliability-Aware VNF Services Provisioning in MEC

Algorithm 5.2 An approximation algorithm for the special reliability-aware VNF
instances provisioning problem with nj = 1 for every request rj ∈ R
Input: A set of K cloudlets with each having a residual computing capacity C, a set of requests
R with each request rj = (f j, Rj, cj, pj)

Output: Admit a subset I ′ of requests in R that maximizes the sum of revenues of admitted
requests while meeting the reliability of each admitted request.

1: if K is even then
2: Construct an instance of the GAP, where each request rj ∈ R has a corresponding item

Ij and each pair of cloudlets has a corresponding bin B′k with bin capacity cap(B′k) = 2C
with 1 ≤ k ≤ K/2;

3: Find an approximate solution I ′ to the GAP problem using the approximation algo-
rithm due to Cohen et al. [25];

4: else
5: Construct an instance of the GAP, where each request rj ∈ R has a corresponding item

Ij and each pair of cloudlets has a corresponding bin B′k with bin capacity cap(B′k) = 2C
with 1 ≤ k ≤ K+1

2 , where a virtual cloudlet (bin) is added to the system, and let
K′ = K + 1, which is even;

6: Find an approximate solution I ′ to the GAP problem using the approximation algo-
rithm due to Cohen et al. [25];

7: P′min ← ∞;
8: for i← 1 to K′/2 do
9: Calculate P′i from I ′ i;

10: if P′i < P′min then
11: P′min ← P′i ; i0 ← i; I ′temp ← I ′i0 ;
12: end if;
13: end for;
14: if i0 = K′/2 then
15: I ′ ← I ′ \ I ′K′/2;
16: else
17: I ′i0 ← I

′
K′/2; I ′K′/2 ← I

′
temp; I ′ ← I ′ \ I ′K′/2;

18: end if;
19: end if;
20: for each item Ij ∈ I ′k assigned to bin B′k with 1 ≤ k ≤ dK/2e do
21: if k ≤ bK/2c then
22: Instantiate the primary and secondary VNF instances of f j for request rj in cloudlets

2k− 1 and 2k;
23: end if;
24: end for;
25: return the set of admitted requests and their primary and secondary VNF instance

placements in cloudlets.

minimum profit pair-bin from the solution, the resulting profit by the solution thus

is at least A− A
K′/2 = A(1− 2

K+1) ≥ A/3 due to the fact that K ≥ 2. Since A ≥ OPT
2+ε ,

A
3 ≥

OPT
6+ε′ , where OPT is the optimal solution to the problem, and ε′ = 3ε is a constant

with 0 < ε′ ≤ 3.

§5.6 Approximation and Exact Algorithms for Special Cases of the Reliability-Aware VNF Instances Provisioning Problem155

We finally analyze the running time of Algorithm 5.2. The construction of the

GAP instance takes O(|R| ·K) time, while invoking the approximation algorithm due

to Cohen et al. [25] takes O(|R|·Kε′ + K
ε′4
) time. The solution delivered by the proposed

algorithm, Algorithm 5.2, thus is no less than 1
6+ε′ times the optimal one, where ε′ is

a constant with 0 < ε′ ≤ 3.

5.6.2 A dynamic programming algorithm for another special reliability-

aware VNF instances provisioning problem

We then study another special case of the reliability-aware VNF instances provisioning

problem where different VNF instances of different network functions have the same

amounts of computing resource demands, i.e., ci = cj for all fi ∈ F and f j ∈ F .

For the sake of convenience, we assume that the computing resource demand by

each network function is one computing unit. We propose an exact algorithm for the

problem through a reduction to a profit maximization problem (defined later), and

the solution to the latter in turn returns a solution to the former. The reduction is as

follows.

5.6.2.1 A dynamic programming algorithm

Denote by n the number of requests r1, r2, . . . , rn in R, which correspond n jobs

J1, J2, . . . , Jn. There are K cloudlets in G, and each can be treated as a bin Bi with

computing capacity Ci, 1 ≤ i ≤ K. The reliability requirement of request rj is im-

plemented by placing (nj + 1) VNF instances to nj + 1 cloudlets with each being

allocated a computing unit at each cloudlet. The implementation of job Jj will take

Uj bins and consume one computing unit in each of the chosen Uj bins. The profit

(revenue) obtained by implementing job Jj is pj. The profit maximization problem then

is to find a subset A of R (A ⊆ R) such as the sum of profits of admitted requests in

A is maximized, subject to the computing capacity on each cloudlet in the network.

The defined profit maximization problem can be solved, using dynamic program-

156 Reliability-Aware VNF Services Provisioning in MEC

ming as follows. Without loss of generality, we assume

C1 ≥ C2 ≥ . . . ≥ CK, (5.24)

and

U1 ≥ U2 ≥ . . . ≥ Un. (5.25)

Because each job needs at most one computing unit from any bin, we assume

n ≥ C1, otherwise excessive capacity larger than n will be useless.

Let Wi = |{j | Cj ≥ i}| be the number of bins that have at least i computing units,

for each and every i with 1 ≤ i ≤ n. Notice that some Wi may be zero. We then have

W1 ≥W2 ≥ . . . ,≥Wn. (5.26)

Definition: If a job J is selected which needs U computing units, then we assign

one computing unit starting from the bin with the largest remaining capacity in

an non-increasing order of remaining capacities until U computing units have been

assigned. We refer to this scheduling method as the canonical scheduling.

Theorem 5.4. All jobs J1, J2, . . . , Jn can be selected if and only if the following condition is

satisfied.
i

∑
j=1

Uj ≤
i

∑
j=1

Wj for all i with 1 ≤ i ≤ n. (5.27)

Proof. We prove Claim (5.27) by induction on the number of jobs n.

We start with induction basis. When n = 1, there is only one job that requires U1

computing units. Therefore, if J1 can be selected, we must have U1 ≤W1. On the other

hand, if U1 ≤W1, then J1 can be selected because its demanded U1 computing units

can be satisfied. We then assume that Claim (5.27) holds for all n with 1 ≤ n ≤ h. We

finally show that Claim (5.27) also holds when n = h + 1 as follows.

On one hand, suppose that all h + 1 jobs can be selected. In this case, since the

first h jobs can be selected by the induction assumption, we have ∑i
j=1 Uj ≤ ∑i

j=1 Wj

§5.6 Approximation and Exact Algorithms for Special Cases of the Reliability-Aware VNF Instances Provisioning Problem157

for all i with 1 ≤ i ≤ h. Now, because the first h + 1 jobs can also be selected, we then

must have ∑h+1
j=1 Uj ≤ ∑h+1

j=1 Wj where ∑h+1
j=1 Uj is the total number of computing units

required by the h + 1 jobs and ∑h+1
j=1 Wj is the total number of available computing

units provided by all bins, because any bin with a capacity larger than h + 1 can only

contribute at most h + 1 computing units.

On the other hand, suppose Claim (5.27) holds, i.e., ∑i
j=1 Uj ≤ ∑i

j=1 Wj for all i with

1 ≤ i ≤ h + 1. We show that all h + 1 jobs can be selected by canonically scheduling J1

and distinguishing two cases: Case A and Case B, to deal with the remaining h jobs.

Case A: if U1 = W1, then we have ∑i
j=2 Uj ≤ ∑i

j=2 Wj for all i with 2 ≤ i ≤ h + 1.

Because there are h remaining jobs, by the induction assumption, all the remaining h

jobs can be selected.

Case B: if U1 < W1, then not all W1 bins are used, and there are W1 −U1 bins not

used. We relabel the h remaining jobs by labeling job J2 as J′1, J3 as J′2, . . ., and Jh+1

as J′h. Accordingly, we have U′1 = U2, U′2 = U3, . . ., U′h = Uh+1. Denote by W ′i the

number of bins that have at least i remaining computing units for all i with 1 ≤ i ≤ n.

We further distinguish Case B into two subcases: (i) W2 ≤ U1; and (ii) W2 > U1,

respectively.

Subcase (i): if W2 ≤ U1, then

W ′1 = W2 + W1 −U1, (5.28)

W ′2 = W3,

...

W ′h = Wh+1.

We thus have U′1 = U2 ≤ W2 + W1 −U1 = W ′1, because U1 + U2 ≤ W1 + W2. In

general, for all i with 2 ≤ i ≤ h, we have

i

∑
j=1

U′j =
i+1

∑
j=2

Uj =
i+1

∑
j=1

Uj −U1

158 Reliability-Aware VNF Services Provisioning in MEC

≤
i+1

∑
j=1

Wj −U1, by Claim (5.27)

=
i+1

∑
j=3

Wj + (W2 + W1 −U1), by Equation (5.28)

=
i

∑
j=2

W ′j + W ′1 =
i

∑
j=1

W ′j (5.29)

By the induction assumption, all h remaining jobs can be selected by the bins.

Subcase (ii): Assume that there is a p such that W2 > U1, W3 > U1, . . ., Wp > U1

but Wp+1 ≤ U1. We then have

W ′1 = W2 + (W1 −W2) = W1,

W ′2 = W3 + (W2 −W3) = W2,

...

W ′p−1 = Wp + (Wp−1 −Wp) = Wp−1, (5.30)

W ′p = Wp+1 + (Wp −U1), (5.31)

W ′p+1 = Wp+2,

...

W ′h = Wh+1. (5.32)

Note that if p = h + 1, then from Inequality (5.25) we have Wj > Uj for all j with

1 ≤ j ≤ h + 1. Then, all jobs can be selected. We thus assume that p ≤ h, and this

situation is illustrated in Figure 5.2. We now have W ′1 = W1 ≥W2 > U1 ≥ U2 = U′1.

For i = 2, . . . , p− 1, we have

i

∑
j=1

U′j =
i+1

∑
j=2

Uj ≤
i+1

∑
j=2

U1, from inequality (5.25)

≤
i

∑
j=1

Wj, from the assumption of subcase (ii)

≤
i

∑
j=1

W ′j . (5.33)

§5.6 Approximation and Exact Algorithms for Special Cases of the Reliability-Aware VNF Instances Provisioning Problem159

C
ap

ac
it

y

W1

W2

 W3 = W4

W5
W6

U1

P = 4

bins bin 1 bin 2 bin 5 bin 7 bin 9 bin 11 bin 13

Figure 5.2: An illustration of the proof of Theorem 5.4.

For i = p, p + 1, . . . , h, we have

i

∑
j=1

W ′j =
p−1

∑
j=1

W ′j + W ′p +
i

∑
j=p+1

W ′j ,

=
p−1

∑
j=1

Wj + Wp+1 + (Wp −U1) +
i

∑
j=p+1

W ′j , by Equation (5.31).

=
p+1

∑
j=1

Wj −U1 +
i+1

∑
j=p+2

Wj, by Equation (5.32).

=
i+1

∑
j=1

Wj −U1 ≥
i+1

∑
j=1

Uj −U1 =
i+1

∑
j=2

Uj =
i

∑
j=1

U′j . (5.34)

Therefore, by the induction assumption, all h remaining jobs can be selected by

the bins. The theorem thus follows.

We thus can derive the following corollary from Theorem 5.4.

Corollary 5.4.1. Given any subset of jobs {Jj1 , Jj2 , . . . , Jjp} of a set of jobs {J1, J2, . . . , Jn}

with Uj1 ≥ Uj2 ≥ . . . ≥ Ujp , jl ∈ {1, 2, . . . , n} and 1 ≤ l ≤ p, each job Jjl demands Ujl

(1 ≤ Ujl ≤ K) bins with one computing unit per bin. Assume that there are K bins with each

bin Bk having Ck computing units and C1 ≥ C2 ≥ . . . ≥ CK, all the jobs in the subset is

160 Reliability-Aware VNF Services Provisioning in MEC

admissible by the K bins if and only if the following condition is satisfied.

h

∑
i=1

Uji ≤
h

∑
i=1

Wi, for all h with 1 ≤ h ≤ p. (5.35)

Recall the admission of a job Jj leads to a profit of pj. Let U = ∑n
j=1 Uj. Define

Li = ∑i
j=1 Wj for all i with 1 ≤ i ≤ n. Denote by P(i, h, Y) the maximum profit

from selecting i jobs from the first h jobs with i ≤ h ≤ n, whose total number of

computing units needed is Y. Clearly 0 ≤ Y ≤ ∑n
j=1 Uj = U. If there is no solution,

then P(i, h, Y) = 0. The initiation of P(0, h, Y) is 0 for any 1 ≤ h ≤ n and 0 ≤ Y ≤ U.

The recurrence is defined as follows.

P(i, h, Y) = max


ph + P(i− 1, h− 1, Z),

if Y = Z + Uh and Y ≤ Lh,

P(i, h− 1, Y), otherwise.

(5.36)

where ph is the revenue collected if request rh is admitted and Uh = nh + 1 is the

number of VNF instances placed for request rh, and Z is the total number of comput-

ing units required by the first h− 1 jobs admitted prior to the admission of job h, i.e.,

Z = ∑h−1
i=1 Uji . Note that from Corollary 5.4.1, Y ≤ Li is to guarantee that the solution

is valid.

Denote by V(i, h, Y) = {j1, j2, . . . , ji} the set of indices of the selected i jobs that

achieves P(i, h, Y) – the maximum profit for this sub-problem. Then, V(i, h, Y) is

recursively defined as follows.

V(i, h, Y) =


V(i, h− 1, Y) if P(i, h, Y) = P(i, h− 1, Y),

V(i− 1, h− 1, Z) ∪ {h}.
(5.37)

The solution to the problem is max{P(i, h, Y) | 1 ≤ i ≤ h ≤ n, 0 ≤ Y ≤ U}.

Specifically, given a set R of requests, a set of K cloudlets with each cloudlet k accom-

modating Ck VNF instances, Recurrence (5.36) can be used to derive the maximum

§5.6 Approximation and Exact Algorithms for Special Cases of the Reliability-Aware VNF Instances Provisioning Problem161

revenue by admitting a subset of requests in R. An exact algorithm for the reliability-

aware VNF instances provisioning problem then follows, and the detailed algorithm

is given in Algorithm 5.3.

Algorithm 5.3 An exact algorithm for the special reliability-aware VNF instances
provisioning problem
Input: K cloudlets with each cloudlet j accommodating Cj VNF instances with the same

computing resource demand by different network function instances, a set of requests R
with each request rj = (f j, Ri, cj, pj) ∈ R

Output: Admit a subset of requests in R such that the sum of revenues of admitted requests
is maximized while the reliability requirement of each admitted request is met.

1: for each request rj ∈ R do
2: Calculate the number nj of secondary VNF instances by Inequality (5.3);
3: end for
4: Identify a subset A of requests in R to maximize the revenue collected by solving Recur-

rence (5.36) for all i, h, and C, and let a subset A is identified such that the revenue is
maximized;

5: Let r′1, r′2, . . . , r′|A| be the sequence of the ordered requests in the solution obtained in A;
6: for j← 1 to |A| do
7: Perform nj + 1 VNF instance allocations to nj + 1 cloudlets, where nj VNF instances

serve as secondary VNFs and one VNF instance serves as the primary VNF instance
for each admitted request r′j ∈ A.

8: end for

The rest is to analyze the time complexity of Algorithm 5.3 by the following

theorem.

Theorem 5.5. Given an MEC G(V, E) and a set of requestsR, assume that each cloudlet k of

the K cloudlets in G has a computing capacity Ck with 1 ≤ k ≤ K, there is an exact algorithm,

Algorithm 5.3, for the reliability-aware VNF instances provisioning problem with different

VNF instances have demanded the same amount of computing resource, which delivers an

exact solution within O(K · |R|3) time, where K is the number of cloudlets in G.

Proof. The running time of Algorithm 5.3 is dominated by solving the recurrence

in the dynamic programming and subsequently VNF instances allocations for each

admitted request, both take O(K · |R|3) time since 0 ≤ i ≤ |R|, 1 ≤ h ≤ |R|. The

time complexity for solving Recurrence (5.36) is as follows. Consider how to select i

jobs from the first h jobs with i ≤ h, such that the total required computing unit is

Y. Obviously, 0 ≤ W ≤ ∑n
j=1 Uj ≤ Kn, as each request has at most K VNF instances

162 Reliability-Aware VNF Services Provisioning in MEC

with each placed at one of the K cloudlets. For each fixed i, h, and W, we find a

solution that has the maximum total profit. Since 1 ≤ i ≤ h ≤ |R|, there are O(K|R|3)

sub-problems need to solve.

5.7 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms for the

reliability-aware VNF instances provisioning problem. We also investigate the im-

pact of parameters on the performance of the proposed algorithms.

5.7.1 Experimental environment settings

We assume that a MEC G = (V, E) consists of 100 APs, in which the number of

cloudlets K is 10% of the network size, and the cloudlets are randomly co-located

with some of the APs. Each network topology is generated using the widely adopted

approach due to Barabási and Albert [10]. The computing capacity Ck of each cloudlet

is drawn in a range from 2,000 to 4,000 MHz [53]. The network offers 20 different

types of network functions, i.e., |F | = 20, where the computing resource demand ci

of a VNF instance of network function fi ∈ F is randomly drawn between 40MHz

and 400MHz [4]. The number nj of secondary VNF instances of the network function

for request rj is randomly drawn between 0 and 4, because in the extreme case where

the failure rate of each cloudlet is 10%, allocating four secondary VNF instances and

one primary VNF instance to a request is able to guarantee a carrier-grade reliability

of 99.999% (five nines). The running time obtained of each mentioned algorithm is

based on a desktop with a 4GHz quad-core Intel i7 CPU and 16 GB RAM.

We evaluate the proposed algorithms Algorithm 5.1, Algorithm 5.2, Algorithm 5.3,

and the ILP solution, which are referred to as ALG-1, ALG-2, ALG-3, and ILP, respec-

tively. Each value in figures is the mean of the results of 30 trials.

§5.7 Performance Evaluation 163

5.7.2 Algorithm performance evaluation for the reliability-aware VNF in-

stances provisioning problem

We first evaluate the proposed approximation algorithm Algorithm 5.1 for the reliability-

aware VNF instances provisioning problem against a baseline algorithm Greedy that

adopts a linear cost model. Given a request rj = (f j, Rj, cj, pj) that needs (nj + 1) VNF

instances, algorithm Greedy places its VNF instances into top-(nj + 1) cloudlets with

the largest residual computing capacity. It takes O(K) time to identify the top-(nj + 1)

cloudlets if a linear-time selection algorithm is applied. Thus, the running of algo-

rithm Greedy is O(K · |R|), where K is the number of cloudlets and R is the set of

requests.

100 200 300 400 500 600 700 800 9001000
Number of Requests

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

T
o

ta
l

R
ev

en
u

e
in

 D
o

ll
ar

s

ILP
ALG-1
Greedy

(a) Total revenues by
different algorithms
with different numbers
of requests

100 200 300 400 500 600 700 800 9001000
Number of Requests

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o
rm

al
iz

ed
 R

ev
en

u
e

ILP
ALG-1
Greedy

(b) Normalized rev-
enues by different al-
gorithms with differ-
ent numbers of re-
quests

20 40 60 80 100
Number of Cloudlets

25,000

30,000

35,000

40,000

45,000

50,000

T
o

ta
l

R
ev

en
u

e
in

 D
o

ll
ar

s

ILP
ALG-1
Greedy

(c) Total revenues by
different algorithms
with different number
of cloudlets

20 40 60 80 100
Number of Cloudlets

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o

rm
al

iz
ed

 R
ev

en
u

e

ILP
ALG-1
Greedy

(d) Normalized rev-
enues by different
algorithms with
different number of
cloudlets

Figure 5.3: Performance evaluation of the approximation algorithm ALG-1 for the
reliability-aware VNF instances provisioning problem

Figure 5.3 (a)-(b) shows the curves of the total revenues and the normalized

revenues delivered by algorithms ILP, ALG-1 and Greedy, respectively, where the nor-

malized revenue refers to the average revenue of admitting a request. It can be observed

from these two figures that when the number of requests is very small, algorithm

Greedy achieves a slightly better performance than algorithm ALG-1. However, with

more and more request arrivals over time, the total revenue delivered by algorithm

ALG-1 increases steadily while algorithm Greedy grows at a much slower rate. When

the number of requests reaches 1,000, the total revenue of algorithm Greedy is ap-

proximately 70% of that of algorithm ALG-1. The reason behind is that algorithm

ALG-1 is more conservative: it rejects those requests with high costs by the admis-

164 Reliability-Aware VNF Services Provisioning in MEC

sion control policy to alleviate overloading of network resources, thereby achieving

better performance. We also evaluate the approximation ratio of algorithm ALG-1

empirically through comparing the total revenue delivered by algorithm ALG-1 and

the optimal one by the optimal algorithm ILP. It can be seen from Figure 5.3 (c)-(d)

that the empirical approximation ratio of algorithm ALG-1 is at most 1.17 in all cases,

compared with the analytical approximation ratio of 20 according to Theorem 5.2

when K = 100. This demonstrates that the empirical performance of algorithm ALG-1

is significantly better than its analytical counterpart.

5.7.3 Algorithm performance evaluation for special reliability-aware VNF

instances provisioning problems

100 200 300 400 500 600 700 800 9001000
Number of Requests

0

10,000

20,000

30,000

40,000

T
o
ta

l
R

ev
en

u
e

in
 D

o
ll

ar
s

ILP
ALG-1
ALG-2

(a) Total revenues

100 200 300 400 500 600 700 800 9001000
Number of Requests

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o
rm

al
iz

ed
 R

ev
en

u
e

ILP
ALG-1
ALG-2

(b) Normalized revenues

100 200 300 400 500 600 700 800 9001000
Number of Requests

10

0.1

1

10

100

1,000

10,000

R
u
n
n
in

g
 T

im
e

in
 S

ec
o
n
d
s

ILP
ALG-1
ALG-2

(c) Running time on a logarithmic scale

Figure 5.4: Performance of different algorithms for the special case of the reliability-
aware VNF instances provisioning problem where each request requires exactly one
secondary instance

§5.7 Performance Evaluation 165

What follows is to study the performance of the proposed approximation algo-

rithm ALG-2 against algorithms ALG-1 and ILP for the special case of the problem

where every request needs only one secondary VNF instance. It can be observed

from Figure 5.4 (a)-(b) that the total revenue delivered by algorithm ALG-2 is nearly

close to the exact one delivered by algorithm ILP, while the solution delivered by

algorithm ALG-1 is the worst. Specifically, when the number of requests is 1,000, the

total revenue by algorithm ALG-2 is around 93% of the optimal solution, which is an

8% improvement over the one delivered by algorithm ALG-1. It also can be seen from

Figure 5.4 (c) that among the three comparison algorithms, algorithm ALG-1 runs

fastest, while algorithm ILP is the slowest. This demonstrates a non-trivial tradeoff

between the quality of a solution and the running time to deliver the solution.

We thirdly evaluate the performance of ALG-3 against ILP and ALG-1 for the

special reliability-aware VNF instances provisioning problem where the computing

demand by each network function instance is identical, by varying the number of

requests from 100 to 1,000.

Figure 5.5 (a)-(c) show the total revenue, normalized revenue, running time of

the mentioned algorithms, respectively. It can be seen from Figure 5.5 (a)-(b) that

both algorithms ALG-3 and ILP deliver exact solutions to the problem, while the

heuristic algorithm ALG-1 delivers a very good solution. The total revenue delivered

by algorithm ALG-1 is no less than 80% of that by algorithms ALG-3 and ILP. Despite

the optimal solutions delivered by both algorithms ALG-3 and ILP, it can be seen

from Figure 5.5 (c) that algorithm ILP is very time-consuming and exhibits poor

scalability while algorithm ALG-3 runs significantly faster. It is observed that when

there are 100 requests, the running time of algorithm ALG-3 is larger than that of

algorithm ILP, due to the overhead of constructing data structures for solving the

recurrence in dynamic programming. However, when the number of requests reaches

1,000, algorithm ALG-3 takes less than one minute while algorithm ILP takes more

than two hours to find an optimal solution. Meanwhile, Figure 5.5 (c) also indicates

166 Reliability-Aware VNF Services Provisioning in MEC

100 200 300 400 500 600 700 800 9001000
Number of Requests

0

10,000

20,000

30,000

40,000

50,000

60,000

T
o
ta

l
R

ev
en

u
e

in
 D

o
ll

ar
s

ILP
ALG-3
ALG-1

(a) Total revenues

100 200 300 400 500 600 700 800 9001000
Number of Requests

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o
rm

al
iz

ed
 R

ev
en

u
e

ILP
ALG-3
ALG-1

(b) Normalized Revenues

100 200 300 400 500 600 700 800 9001000
Number of Requests

0.1

1

10

100

1,000

10,000

R
u
n
n
in

g
 T

im
e

in
 S

ec
o
n
d
s

ILP
ALG-3
ALG-1

(c) Running time on a logarithmic scale

Figure 5.5: Performance of different algorithms for the special reliability-aware VNF
instances provisioning problem

§5.7 Performance Evaluation 167

that the running time of algorithm ALG-1 is only a small fraction of algorithm ALG-3,

not to mention algorithm ILP.

5.7.4 Parameter impacts on algorithm performance

We finally study the impact of important parameters on the performance of algorithms

ALG-1.

In all experiments so far we assumed that the maximum number nmax of secondary

VNF instances of each request is set at 4. We now investigate the impact of nmax on the

performance of algorithm ALG-1, by varying nmax while fixing the number of cloudlets

at 20. Figure 5.6 (a) shows the total revenue delivered by it when the number of

requests grows from 100 to 1,000. Notice that when the number of requests is less than

300, the total revenues of different algorithms with different nmax are nearly identical,

meaning the network has a relatively abundant amount of resources to accommodate

different requests. However, with more requests, the larger the value of nmax, the

smaller the total revenue delivered by algorithm ALG-1. The reason behind this is that

the amount of available resources in the network and the payments of requests do

not change, yet each request demands more resources when nmax increases.

We also evaluate the total revenues delivered by algorithm ALG-1 by varying the

number of cloudlets K while fixing the number of requests at 1,000. The results are

shown in Figure 5.6 (b). When the number K of cloudlets increases, the amount of

available resources increases accordingly. As a result, the larger K is, the higher the

total revenue delivered by algorithm ALG-1 is. Meanwhile, for the same K, the larger

the value of nmax, the lower the total revenue delivered by ALG-1, because the revenue

of a request does not increase yet the resource demand of the request increases.

The rest is to investigate the impacts of both the admission control policy and the

parameter α in Equation (5.9) on the performance of algorithm ALG-1. Figure 5.7 (a)

shows the performance of algorithm ALG-1 with and without adopting the admission

control policy. It can be seen that algorithm ALG-1 achieves a higher revenue if it does

168 Reliability-Aware VNF Services Provisioning in MEC

100 200 300 400 500 600 700 800 9001000
Number of Requests

0

10,000

20,000

30,000

40,000

50,000

60,000

T
o
ta

l
R

ev
en

u
e

in
 D

o
ll

ar
s

n
max

 = 0

n
max

 = 1

n
max

 = 2

n
max

 = 3

n
max

 = 4

n
max

 = 5

(a) Total revenues by varying nmax for different
numbers of requests

20 40 60 80 100

Number of Cloudlets

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

T
o

ta
l

R
e
v

e
n

u
e
 i

n
 D

o
ll

a
rs n

max
 = 0

n
max

 = 1

n
max

 = 2

n
max

 = 3

n
max

 = 4

n
max

 = 5

(b) Total revenues by varying nmax for different
numbers of cloudlets

Figure 5.6: Performance impact of parameter nmax on algorithm ALG-1

100 200 300 400 500 600 700 800 9001000
Number of Requests

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

T
o
ta

l
R

ev
en

u
e

in
 D

o
ll

ar
s

With Admission Control
Without Admission Control

(a) Total revenues by algorithm ALG-1 with and
without the admission control policy

100 200 300 400 500 600 700 800 9001000
Number of Requests

0

5,000

10,000

15,000

20,000

25,000

30,000

T
o
ta

l
R

ev
en

u
e

in
 D

o
ll

ar
s

l = 1
l = 2
l = 3
l = 4
l = 5

(b) Total revenues by algorithm ALG-1 with dif-
ferent α (= 2l · K)

Figure 5.7: Impacts of the admission control policy and the value of α on the perfor-
mance of algorithm ALG-1

not adopt the admission control policy for the first four hundred requests. However,

with more and more request arrivals, it achieves a higher revenue in the long term if

the admission control policy is adopted. The rationale is that without any admission

control policy, requests that consume excessive resources will be admitted if there

are sufficient resources for them. Consequently, such resource allocations will heavily

impact the admissions of future requests. As a result, the total revenue by algorithm

ALG-1 without the admission control policy is only two-thirds of that by itself with

the admission control policy. Figure 5.7 (b) plots the performance curves of algorithm

ALG-1 by varying the value of α in Equation (5.9) from 21K to 25K, where K is the

§5.8 Summary 169

number of cloudlets in the network. It can be seen from Figure 5.7 (b) that the larger

the value of α, the less the total revenue delivered by ALG-1 and vice versa. This is due

to the fact that the larger the value of α, the higher the cost of using an overloaded

resource will be, leading to more conservative resource usage.

5.8 Summary

In this chapter, we studied reliability-aware VNF instances provisioning in MEC,

by casting a novel optimization problem. We first showed that the problem is NP-

hard and formulated an integer linear program solution for it. We then proposed a

logarithmic-approximation algorithm for the problem. Particularly for a special case

of the problem where each request needs only one secondary VNF instance, we devel-

oped a constant approximation algorithm. Moreover, we proposed an exact algorithm

for another special case of the problem where resource consumptions of different

VNF instances are identical. We finally evaluated the performance of the proposed al-

gorithms through experimental simulations. Experimental results demonstrated that

the proposed algorithms are promising, and the empirical results delivered by the pro-

posed algorithms outperform their analytical counterparts as theoretical estimation

usually are very conservative.

170 Reliability-Aware VNF Services Provisioning in MEC

Chapter 6

Conclusion and Future Works

We can only see a short distance

ahead, but we can see plenty there

that needs to be done.

Computing Machinery and Intelligence

Alan Turing

This chapter summarizes the contributions we made in this thesis, followed by a

discussion of potential research topics derived from this work.

6.1 Summary of Contributions

Efficient resource allocation for throughput maximization in the SDN- and NFV-based

next-generation networks has been studied in this thesis. Novel concepts, models,

and optimization techniques were proposed in order to enable efficient resource al-

location and achieve high network throughput. We devised online algorithms with

performance guarantees for the problem of dynamic admissions of a sequence of user

requests arriving one by one without the knowledge of future arrivals. We proposed

two algorithms for the problem of realizing user requests with specified network

functions service chains. To tackle the problem of maximizing network throughput

by dynamically scaling network resources while minimizing the operational cost of a

network service provider, we presented the very first unified optimization framework

for vertical scaling and horizontal scaling, while taking the Quality of Service (QoS)

171

172 Conclusion and Future Works

requirements of user requests into account. We also developed approximation and

exact algorithms for reliability-aware provisioning of VNF instances with the aim

of maximizing the network throughput while satisfying the reliability requirement

of each request and the capacity constraints on network resources. The proposed

algorithms and associated algorithm design and analysis techniques may be of inde-

pendent interests in many other areas, particularly in the combinatorial optimization

domain.

The main contributions of this thesis are summarized as follows.

• We addressed the online request admission problem in software-defined net-

works with an objective of maximizing the network throughput, for which we

proposed a novel admission cost model to accurately capture various resource

consumptions. We also devised an online algorithm for admitting user requests,

subject to TCAM capacities at SDN-enabled switches and bandwidth capacities

at links in the network.

• We studied a novel resource allocation problem in the presence of user-specified

network function requirements that aims to maximize the network throughput,

subject to resource capacity and users QoS constraints. We explored the non-

trivial trade-off between the accuracy/quality of a solution and the running time

of the algorithm obtaining the solution by devising two algorithms, where the

first algorithm has higher time complexity and delivers near-optimal solutions

and the second algorithm delivers comparable solutions yet has much shorter

running time.

• We formulated a novel optimization problem of maximizing the network through-

put by dynamically scaling VNF instances while minimizing the operational

cost of the network service provider, for which we first proposed a unified frame-

work that jointly takes into account both vertical scaling and horizontal scaling,

subject to the QoS requirements of user requests. We then performed non-trivial

reductions to transform the problem to classic optimization problems, based

§6.2 Future Works 173

on which we designed an algorithm that has been empirically demonstrated to

deliver a near-optimal solution.

• We investigated reliability-aware provisioning of VNF instances with the aim

to maximize the network throughput, subject to user QoS requirements and

resource capacities, for which we first formulated a novel optimization problem

that generalizes various optimization problems. We then devised a logarithmic-

factor approximation algorithm for the problem. For two special cases of the

problem, we provided a constant approximation and an exact algorithm, respec-

tively.

• We conducted extensive experiments by simulations, using both real and syn-

thetic datasets to evaluate all proposed algorithms and investigate the impact

of constraint parameters on their performance. Experimental results showed

that the proposed algorithms outperform existing ones significantly in aspects

of maximizing network throughput, minimizing operational costs, and meeting

QoS requirements.

6.2 Future Works

There are several potential research topics that can be further explored based on the

work in this thesis.

Firstly, we will investigate how emerging technologies for offloading interac-

tive, computation-intensive tasks, e.g., Google’s Project Stream [46], Valve’s Steam

Link [129], and Nvidia’s GameStream [108], impact resource allocation. The concept of

computation offloading, where a computation-intensive task such as face recognition

is offloaded to a remote, powerful server for processing, instead of being executed

locally, has been introduced for more than a decade [91], and cloud computing is

one of the many forms of computation offloading [86]. Offloading delay-sensitive

interactive applications, such as massively multiplayer online games, which technolo-

174 Conclusion and Future Works

gies such as Google’s Project Stream envision to solve, is still a novel concept. Such

technologies often promise to enable an interactive computer game to be offloaded

to remote servers or clusters of servers with abundant computing capacity to pro-

cess computation-intensive tasks including updating the game state and rendering

graphics of the game, whereas clients simply display the rendered video stream, cf.

“dumb terminals” in the mainframe era [113]. This computing paradigm will have a

profound influence on resource allocation as end-to-end delays play a critical role,

particularly for virtual reality (VR) and augmented reality (AR) applications. John

Carmack recommended a “motion-to-photons latency” of no more than 20 millisec-

onds [76] for VR systems, yet the network latency between Seattle and San Francisco

alone is already 20 milliseconds [7]. This demands a resource allocation scheme that

prioritizes both network throughput and stringent end-to-end delay requirements of

these applications.

Secondly, we will study improving resource allocations through exploiting his-

torical resource allocation traces. In this thesis, we formulated several resource allo-

cation problems mathematically as optimization problems and solved them online

with instantaneous user request and network information. Since the problems are NP-

complete, the optimal solutions are very difficult to obtain in real time. With the

increase in user QoS and end-to-end delay requirements, conventional methods are

facing great challenges in designing more sophisticated resource allocation schemes

to further improve system performance with scarce network resources. Inexpensive

cloud storage makes it very easy to save the information as data on historical requests

that were previously ignored and discarded. Using the similarities among user re-

quests, the solutions of resource allocation in historical user requests can be exploited

to improve the resource allocation of the current user request. More specifically, the

solutions for resource allocation in historical user requests can be searched offline

and stored in advance. When a user request arrives, it is not necessary to use conven-

tional optimization methods to solve the resource allocation problem online. Instead,

§6.2 Future Works 175

we only need to compare the current user request with historical user requests and

find the most similar one. Then, we use the solution of the most similar historical

user requests to allocate network resources for the current user request. The offline

characteristic makes it possible to use advanced cloud computing techniques to find

optimal or near-optimal solutions of resource allocation for historical user requests,

which can improve the performance of resource allocation accordingly.

Thirdly, we will research how to handle user mobility. Mobile devices, including

mobile phones and tablets, are the dominating mean of computing for the majority

of the population. These devices rely on Wi-Fi, Bluetooth, and cellar networks for

Internet access, and these networks are characterized by intermittent network connec-

tivity and volatile user locations. As a result of the intrinsic trait of high user mobility,

provisioning seamless, uninterrupted services to delay-sensitive applications is vital.

There are two techniques to cope with user mobility. One is to passively migrate ser-

vices between servers, following user mobility trajectories. Specifically, when a user

moves out from one area, the most suitable target area to accommodate the migrated

service will be identified, and then a migration of service will be performed. Another

is to proactively replicate services for users at some strategic locations to where users

are likely to move, given their mobility profiles.

Fourthly, we will look at the optimization objectives from the perspective of users.

This thesis focused on several optimization problems with objectives aligning with

the interests of network service providers, e.g., the throughput and operational cost

of a network. It is worth noting that the ecosystem consists of both network service

providers and their customers, and the interests of customers do not necessarily

overlap with those of network service providers. A plausible extension of this thesis

is thus to take into account several optimization objectives that better aligns with the

interests of users.

Fifthly, we will evaluate the performance increase provided by “almost shortest

paths” [31]. Our proposed algorithms focus on finding shortest paths for one or a

176 Conclusion and Future Works

group of user requests at a time. One possible extension to this is to identify the

“almost shortest paths” [31]. There are two potential benefits: (i) finding shortest paths

for individual users can introduce artificial network congestions and bottlenecks,

limiting network capacity in accepting more users, and (ii) the lower computation

complexity of identifying almost shortest paths is more versatile to suit situations

where real-time responses are highly desirable. We will conduct both numerical and

empirical analyses of the performance benefits brought by this extension.

Bibliography

[1] S. Agarwal, M. Kodialam, and T. V. Lakshman. “Traffic engineering in software

defined networks”. In: 2013 Proceedings IEEE INFOCOM. 2013, pp. 2211–2219.

doi: 10.1109/INFCOM.2013.6567024.

[2] S. Agarwal, F. Malandrino, C. Chiasserini, and S. De. “Joint VNF Placement and

CPU Allocation in 5G”. In: IEEE INFOCOM 2018 - IEEE Conference on Computer

Communications. 2018, pp. 1943–1951. doi: 10.1109/INFOCOM.2018.8485943.

[3] S. Aidi, M. F. Zhani, and Y. Elkhatib. “On Improving Service Chains Sur-

vivability Through Efficient Backup Provisioning”. In: 2018 14th International

Conference on Network and Service Management (CNSM). 2018, pp. 108–115.

[4] Amazon Web Services Inc. AWS | Amazon Elastic Compute Cloud (EC2) - Scalable

Cloud Hosting. http://aws.amazon.com/ec2/. 2018.

[5] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat. “xOMB: Ex-

tensible Open MiddleBoxes with commodity servers”. In: 2012 ACM/IEEE

Symposium on Architectures for Networking and Communications Systems (ANCS).

2012, pp. 49–60.

[6] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. “On-line Routing of

Virtual Circuits with Applications to Load Balancing and Machine Scheduling”.

In: J. ACM 44.3 (May 1997), pp. 486–504. doi: 10.1145/258128.258201.

[7] AT&T. U.S. Network Latency. http://ipnetwork.bgtmo.ip.att.net/pws/

network_delay.html. 2018.

[8] J. Bailey and S. Stuart. “FAUCET: Deploying SDN in the Enterprise”. In: ACM

Queue 14 Issue 5 (2016), pp. 54–68.

177

https://doi.org/10.1109/INFCOM.2013.6567024
https://doi.org/10.1109/INFOCOM.2018.8485943
http://aws.amazon.com/ec2/
https://doi.org/10.1145/258128.258201
http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html
http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html

178 BIBLIOGRAPHY

[9] S. Banerjee and K. Kannan. “Tag-In-Tag: Efficient flow table management in

SDN switches”. In: 10th International Conference on Network and Service Man-

agement (CNSM) and Workshop. 2014, pp. 109–117. doi: 10.1109/CNSM.2014.

7014147.

[10] A.-L. Barabási and R. Albert. “Emergence of Scaling in Random Networks”. In:

Science 286.5439 (1999), pp. 509–512. doi: 10.1126/science.286.5439.509.

eprint: http://science.sciencemag.org/content/286/5439/509.full.

pdf.

[11] M. T. Beck, J. F. Botero, and K. Samelin. “Resilient allocation of service Function

chains”. In: 2016 IEEE Conference on Network Function Virtualization and Software

Defined Networks (NFV-SDN). 2016, pp. 128–133. doi: 10.1109/NFV-SDN.2016.

7919487.

[12] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. “Fog Computing and Its Role in

the Internet of Things”. In: Proceedings of the First Edition of the MCC Workshop

on Mobile Cloud Computing. MCC ’12. Helsinki, Finland: ACM, 2012, pp. 13–16.

doi: 10.1145/2342509.2342513.

[13] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica,

and M. Horowitz. “Forwarding Metamorphosis: Fast Programmable Match-

action Processing in Hardware for SDN”. In: Proceedings of the ACM SIGCOMM

2013 Conference on SIGCOMM. SIGCOMM ’13. Hong Kong, China: ACM, 2013,

pp. 99–110. doi: 10.1145/2486001.2486011.

[14] C. Bu, X. Wang, M. Huang, and K. Li. “SDNFV-Based Dynamic Network Func-

tion Deployment: Model and Mechanism”. In: IEEE Communications Letters

22.1 (2018), pp. 93–96. doi: 10.1109/LCOMM.2017.2654443.

[15] K. Calvert and E. Zegura. GT internetwork topology models (GT-ITM). 1996.

https://doi.org/10.1109/CNSM.2014.7014147
https://doi.org/10.1109/CNSM.2014.7014147
https://doi.org/10.1126/science.286.5439.509
http://science.sciencemag.org/content/286/5439/509.full.pdf
http://science.sciencemag.org/content/286/5439/509.full.pdf
https://doi.org/10.1109/NFV-SDN.2016.7919487
https://doi.org/10.1109/NFV-SDN.2016.7919487
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2486001.2486011
https://doi.org/10.1109/LCOMM.2017.2654443

BIBLIOGRAPHY 179

[16] Z. Cao, M. Kodialam, and T. V. Lakshman. “Traffic Steering in Software De-

fined Networks: Planning and Online Routing”. In: DCC ’14 (2014), pp. 65–70.

doi: 10.1145/2627566.2627574.

[17] F. Carpio, W. Bziuk, and A. Jukan. “Replication of Virtual Network Functions:

Optimizing Link Utilization and Resource Costs”. In: CoRR abs/1702.07151

(2017). arXiv: 1702.07151.

[18] F. Carpio and A. Jukan. “Balancing the Migration of Virtual Network Functions

with Replications in Data Centers”. In: CoRR abs/1705.05573 (2017). arXiv:

1705.05573.

[19] M. Casazza, P. Fouilhoux, M. Bouet, and S. Secci. “Securing virtual network

function placement with high availability guarantees”. In: 2017 IFIP Networking

Conference (IFIP Networking) and Workshops. 2017, pp. 1–9. doi: 10.23919/

IFIPNetworking.2017.8264850.

[20] A. Ceselli, M. Premoli, and S. Secci. “Mobile Edge Cloud Network Design

Optimization”. In: IEEE/ACM Transactions on Networking 25.3 (2017), pp. 1818–

1831. doi: 10.1109/TNET.2017.2652850.

[21] M. Charikar, C. Chekuri, T. yat Cheung, Z. Dai, A. Goel, S. Guha, and M.

Li. “Approximation Algorithms for Directed Steiner Problems”. In: Journal of

Algorithms 33.1 (1999), pp. 73 –91. doi: https://doi.org/10.1006/jagm.

1999.1042.

[22] M. Charikar, Y. Naamad, J. Rexford, and X. K. Zou. “Multi-commodity flow

with in-network processing”. In: arXiv preprint arXiv:1802.09118 (2018).

[23] C.-H. Chi, J. Deng, and Y.-H. Lim. “Compression Proxy Server: Design and

Implementation.” In: USENIX Symposium on Internet Technologies and Systems.

1999.

[24] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz. “On the effect of forward-

ing table size on SDN network utilization”. In: IEEE INFOCOM 2014 - IEEE

https://doi.org/10.1145/2627566.2627574
https://arxiv.org/abs/1702.07151
https://arxiv.org/abs/1705.05573
https://doi.org/10.23919/IFIPNetworking.2017.8264850
https://doi.org/10.23919/IFIPNetworking.2017.8264850
https://doi.org/10.1109/TNET.2017.2652850
https://doi.org/https://doi.org/10.1006/jagm.1999.1042
https://doi.org/https://doi.org/10.1006/jagm.1999.1042

180 BIBLIOGRAPHY

Conference on Computer Communications. 2014, pp. 1734–1742. doi: 10.1109/

INFOCOM.2014.6848111.

[25] R. Cohen, L. Katzir, and D. Raz. “An efficient approximation for the Gen-

eralized Assignment Problem”. In: Information Processing Letters 100.4 (2006),

pp. 162 –166. doi: https://doi.org/10.1016/j.ipl.2006.06.003.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms, Third Edition. 3rd. The MIT Press, 2009.

[27] C Cui et al. “Network functions virtualisation: Network operator perspectives

on industry progress. White Paper No. 3, Issue 1”. In: SDN and OpenFlow

World Congress, Dusseldorf-Germany. 2014.

[28] A. V. Dastjerdi and R. Buyya. “Fog Computing: Helping the Internet of Things

Realize Its Potential”. In: Computer 49.8 (2016), pp. 112–116. doi: 10.1109/MC.

2016.245.

[29] C. Demetrescu and I. Finocchi. “Combinatorial algorithms for feedback prob-

lems in directed graphs”. In: Information Processing Letters 86.3 (2003), pp. 129

–136. doi: https://doi.org/10.1016/S0020-0190(02)00491-X.

[30] W. Ding, H. Yu, and S. Luo. “Enhancing the reliability of services in NFV with

the cost-efficient redundancy scheme”. In: 2017 IEEE International Conference

on Communications (ICC). 2017, pp. 1–6. doi: 10.1109/ICC.2017.7996840.

[31] D. Dor, S. Halperin, and U. Zwick. “All-Pairs Almost Shortest Paths”. In: SIAM

Journal on Computing 29.5 (2000), pp. 1740–1759. doi: 10.1137/S0097539797327908.

eprint: https://doi.org/10.1137/S0097539797327908.

[32] A. Engelmann and A. Jukan. “A Reliability Study of Parallelized VNF Chain-

ing”. In: 2018 IEEE International Conference on Communications (ICC). 2018, pp. 1–

6. doi: 10.1109/ICC.2018.8422595.

https://doi.org/10.1109/INFOCOM.2014.6848111
https://doi.org/10.1109/INFOCOM.2014.6848111
https://doi.org/https://doi.org/10.1016/j.ipl.2006.06.003
https://doi.org/10.1109/MC.2016.245
https://doi.org/10.1109/MC.2016.245
https://doi.org/https://doi.org/10.1016/S0020-0190(02)00491-X
https://doi.org/10.1109/ICC.2017.7996840
https://doi.org/10.1137/S0097539797327908
https://doi.org/10.1137/S0097539797327908
https://doi.org/10.1109/ICC.2018.8422595

BIBLIOGRAPHY 181

[33] V. Eramo, M. Ammar, and F. G. Lavacca. “Migration Energy Aware Reconfigu-

rations of Virtual Network Function Instances in NFV Architectures”. In: IEEE

Access 5 (2017), pp. 4927–4938. doi: 10.1109/ACCESS.2017.2685437.

[34] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca. “An Approach for Service

Function Chain Routing and Virtual Function Network Instance Migration in

Network Function Virtualization Architectures”. In: IEEE/ACM Transactions on

Networking 25.4 (2017), pp. 2008–2025. doi: 10.1109/TNET.2017.2668470.

[35] K. R. Fall and W. R. Stevens. TCP/IP illustrated, volume 1: The protocols. Addison-

Wesley, 2011.

[36] J. Fan, C. Guan, Y. Zhao, and C. Qiao. “Availability-aware mapping of ser-

vice function chains”. In: IEEE INFOCOM 2017 - IEEE Conference on Computer

Communications. 2017, pp. 1–9. doi: 10.1109/INFOCOM.2017.8057153.

[37] J. Fan, M. Jiang, and C. Qiao. “Carrier-grade availability-aware mapping of

Service Function Chains with on-site backups”. In: 2017 IEEE/ACM 25th In-

ternational Symposium on Quality of Service (IWQoS). 2017, pp. 1–10. doi: 10.

1109/IWQoS.2017.7969152.

[38] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul. “Enforcing

Network-wide Policies in the Presence of Dynamic Middlebox Actions Using

Flowtags”. In: Proceedings of the 11th USENIX Conference on Networked Systems

Design and Implementation. NSDI’14. Seattle, WA: USENIX Association, 2014,

pp. 533–546.

[39] X. Fei, F. Liu, H. Xu, and H. Jin. “Adaptive VNF Scaling and Flow Routing

with Proactive Demand Prediction”. In: IEEE INFOCOM 2018 - IEEE Conference

on Computer Communications. 2018, pp. 486–494. doi: 10.1109/INFOCOM.2018.

8486320.

[40] T. S. Ferguson. “Who Solved the Secretary Problem?” In: Statist. Sci. 4.3 (Aug.

1989), pp. 282–289. doi: 10.1214/ss/1177012493.

https://doi.org/10.1109/ACCESS.2017.2685437
https://doi.org/10.1109/TNET.2017.2668470
https://doi.org/10.1109/INFOCOM.2017.8057153
https://doi.org/10.1109/IWQoS.2017.7969152
https://doi.org/10.1109/IWQoS.2017.7969152
https://doi.org/10.1109/INFOCOM.2018.8486320
https://doi.org/10.1109/INFOCOM.2018.8486320
https://doi.org/10.1214/ss/1177012493

182 BIBLIOGRAPHY

[41] M. Furer and B. Raghavachari. “Approximating the Minimum-Degree Steiner

Tree to within One of Optimal”. In: Journal of Algorithms 17.3 (1994), pp. 409

–423. doi: https://doi.org/10.1006/jagm.1994.1042.

[42] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,

M. Barcellos, P. Felber, and E. Riviere. “Edge-centric Computing: Vision and

Challenges”. In: SIGCOMM Comput. Commun. Rev. 45.5 (Sept. 2015), pp. 37–42.

doi: 10.1145/2831347.2831354.

[43] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand, T.

Benson, A. Akella, and V. Sekar. “Stratos: A Network-Aware Orchestration

Layer for Middleboxes in the Cloud”. In: CoRR abs/1305.0209 (2013). arXiv:

1305.0209.

[44] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das,

and A. Akella. “OpenNF: Enabling Innovation in Network Function Con-

trol”. In: Proceedings of the 2014 ACM Conference on SIGCOMM. SIGCOMM

’14. Chicago, Illinois, USA: ACM, 2014, pp. 163–174. doi: 10.1145/2619239.

2626313.

[45] Google. Partnering toward the next generation of mobile networks. https : / /

blog . google / topics / internet - access / partnering - toward - next -

generation-mobile-networks/. 2017.

[46] Google Inc. Project Stream - Google. https://projectstream.google.com/.

2018.

[47] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat. “Evolve or Die:

High-Availability Design Principles Drawn from Google’s Network Infrastruc-

ture”. In: 2016.

[48] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker, N. Feamster, J.

Rexford, S. Shenker, R. Clark, and E. Katz-Bassett. “SDX: A Software Defined

Internet Exchange”. In: Proceedings of the 2014 ACM Conference on SIGCOMM.

https://doi.org/https://doi.org/10.1006/jagm.1994.1042
https://doi.org/10.1145/2831347.2831354
https://arxiv.org/abs/1305.0209
https://doi.org/10.1145/2619239.2626313
https://doi.org/10.1145/2619239.2626313
https://blog.google/topics/internet-access/partnering-toward-next-generation-mobile-networks/
https://blog.google/topics/internet-access/partnering-toward-next-generation-mobile-networks/
https://blog.google/topics/internet-access/partnering-toward-next-generation-mobile-networks/
https://projectstream.google.com/

BIBLIOGRAPHY 183

SIGCOMM ’14. Chicago, Illinois, USA: ACM, 2014, pp. 551–562. doi: 10.1145/

2619239.2626300.

[49] A. Gushchin, A. Walid, and A. Tang. “Scalable Routing in SDN-enabled Net-

works with Consolidated Middleboxes”. In: Proceedings of the 2015 ACM SIG-

COMM Workshop on Hot Topics in Middleboxes and Network Function Virtualiza-

tion. HotMiddlebox ’15. London, United Kingdom: ACM, 2015, pp. 55–60. doi:

10.1145/2785989.2785999.

[50] B. Han, V. Gopalakrishnan, G. Kathirvel, and A. Shaikh. “On the Resiliency

of Virtual Network Functions”. In: IEEE Communications Magazine 55.7 (2017),

pp. 152–157. doi: 10.1109/MCOM.2017.1601201.

[51] T. He, H. Khamfroush, S. Wang, T. L. Porta, and S. Stein. “It’s Hard to Share:

Joint Service Placement and Request Scheduling in Edge Clouds with Sharable

and Non-Sharable Resources”. In: 2018 IEEE 38th International Conference on

Distributed Computing Systems (ICDCS). 2018, pp. 365–375. doi: 10.1109/

ICDCS.2018.00044.

[52] S. Herker, X. An, W. Kiess, S. Beker, and A. Kirstaedter. “Data-Center Archi-

tecture Impacts on Virtualized Network Functions Service Chain Embedding

with High Availability Requirements”. In: 2015 IEEE Globecom Workshops (GC

Wkshps). 2015, pp. 1–7. doi: 10.1109/GLOCOMW.2015.7414158.

[53] Hewlett-Packard Development Company. L.P. Servers for enterprise bladeSys-

tem, rack & tower and hyperscale. http://www8.hp.com/us/en/products/

servers/. 2015.

[54] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and H. Tokuda.

“Is It Still Possible to Extend TCP?” In: Proceedings of the 2011 ACM SIGCOMM

Conference on Internet Measurement Conference. IMC ’11. Berlin, Germany: ACM,

2011, pp. 181–194. doi: 10.1145/2068816.2068834.

https://doi.org/10.1145/2619239.2626300
https://doi.org/10.1145/2619239.2626300
https://doi.org/10.1145/2785989.2785999
https://doi.org/10.1109/MCOM.2017.1601201
https://doi.org/10.1109/ICDCS.2018.00044
https://doi.org/10.1109/ICDCS.2018.00044
https://doi.org/10.1109/GLOCOMW.2015.7414158
http://www8.hp.com/us/en/products/servers/
http://www8.hp.com/us/en/products/servers/
https://doi.org/10.1145/2068816.2068834

184 BIBLIOGRAPHY

[55] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Wat-

tenhofer. “Achieving high utilization with software-driven WAN”. In: ACM

SIGCOMM Computer Communication Review 43.4 (2013), pp. 15–26.

[56] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, K. N. B., C. Bhagat, S.

Jain, J. Kaimal, S. Liang, K. Mendelev, S. Padgett, F. Rabe, S. Ray, M. Tewari,

M. Tierney, M. Zahn, J. Zolla, J. Ong, and A. Vahdat. “B4 and After: Managing

Hierarchy, Partitioning, and Asymmetry for Availability and Scale in Google’s

Software-defined WAN”. In: Proceedings of the 2018 Conference of the ACM Spe-

cial Interest Group on Data Communication. SIGCOMM ’18. Budapest, Hungary:

ACM, 2018, pp. 74–87. doi: 10.1145/3230543.3230545.

[57] F. Hu, Q. Hao, and K. Bao. “A Survey on Software-Defined Network and

OpenFlow: From Concept to Implementation”. In: IEEE Communications Sur-

veys Tutorials 16.4 (2014), pp. 2181–2206. doi: 10.1109/COMST.2014.2326417.

[58] H. Huang, S. Guo, P. Li, W. Liang, and A. Y. Zomaya. “Cost Minimization

for Rule Caching in Software Defined Networking”. In: IEEE Transactions on

Parallel and Distributed Systems 27.4 (2016), pp. 1007–1016. doi: 10.1109/TPDS.

2015.2431684.

[59] H. Huang, S. Guo, J. Wu, and J. Li. “Joint middlebox selection and routing for

software-defined networking.” In: ICC. 2016, pp. 1–6.

[60] L.-H. Huang, H.-C. Hsu, S.-H. Shen, D.-N. Yang, and W.-T. Chen. “Multicast

traffic engineering for software-defined networks”. In: INFOCOM 2016-The

35th Annual IEEE International Conference on Computer Communications, IEEE.

IEEE. 2016, pp. 1–9.

[61] L.-H. Huang, H.-J. Hung, C.-C. Lin, and D.-N. Yang. “Scalable steiner tree for

multicast communications in software-defined networking”. In: arXiv preprint

arXiv:1404.3454 (2014).

https://doi.org/10.1145/3230543.3230545
https://doi.org/10.1109/COMST.2014.2326417
https://doi.org/10.1109/TPDS.2015.2431684
https://doi.org/10.1109/TPDS.2015.2431684

BIBLIOGRAPHY 185

[62] M. Huang, W. Liang, Z. Xu, and S. Guo. “Efficient Algorithms for Through-

put Maximization in Software-Defined Networks With Consolidated Middle-

boxes”. In: IEEE Transactions on Network and Service Management 14.3 (2017),

pp. 631–645. doi: 10.1109/TNSM.2017.2725240.

[63] M. Huang, W. Liang, Z. Xu, and S. Guo. “Efficient Algorithms for Through-

put Maximization in Software-Defined Networks With Consolidated Middle-

boxes”. In: IEEE Transactions on Network and Service Management 14.3 (2017),

pp. 631–645. doi: 10.1109/TNSM.2017.2725240.

[64] M. Huang, W. Liang, Z. Xu, and S. Guo. “Efficient Algorithms for Through-

put Maximization in Software-Defined Networks With Consolidated Middle-

boxes”. In: IEEE Transactions on Network and Service Management 14.3 (2017),

pp. 631–645. doi: 10.1109/TNSM.2017.2725240.

[65] M. Huang, W. Liang, Z. Xu, M. Jia, and S. Guo. “Throughput Maximization in

Software-Defined Networks with Consolidated Middleboxes”. In: 2016 IEEE

41st Conference on Local Computer Networks (LCN). 2016, pp. 298–306. doi: 10.

1109/LCN.2016.58.

[66] M. Huang, W. Liang, Z. Xu, W. Xu, S. Guo, and Y. Xu. “Online unicasting and

multicasting in software-defined networks”. In: Computer Networks 132 (2018),

pp. 26 –39. doi: https://doi.org/10.1016/j.comnet.2017.12.011.

[67] R. Jain and S. Paul. “Network virtualization and software defined networking

for cloud computing: a survey”. In: IEEE Communications Magazine 51.11 (2013),

pp. 24–31. doi: 10.1109/MCOM.2013.6658648.

[68] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J.

Wanderer, J. Zhou, M. Zhu, et al. “B4: Experience with a globally-deployed

software defined WAN”. In: ACM SIGCOMM Computer Communication Review

43.4 (2013), pp. 3–14.

https://doi.org/10.1109/TNSM.2017.2725240
https://doi.org/10.1109/TNSM.2017.2725240
https://doi.org/10.1109/TNSM.2017.2725240
https://doi.org/10.1109/LCN.2016.58
https://doi.org/10.1109/LCN.2016.58
https://doi.org/https://doi.org/10.1016/j.comnet.2017.12.011
https://doi.org/10.1109/MCOM.2013.6658648

186 BIBLIOGRAPHY

[69] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer. “Interfaces,

attributes, and use cases: A compass for SDN”. In: IEEE Communications Maga-

zine 52.6 (2014), pp. 210–217.

[70] M. Jia, W. Liang, M. Huang, Z. Xu, and Y. Ma. “Routing Cost Minimization and

Throughput Maximization of NFV-Enabled Unicasting in Software-Defined

Networks”. In: IEEE Transactions on Network and Service Management 15.2 (2018),

pp. 732–745. doi: 10.1109/TNSM.2018.2810817.

[71] M. Jia, W. Liang, M. Huang, Z. Xu, and Y. Ma. “Routing Cost Minimization and

Throughput Maximization of NFV-Enabled Unicasting in Software-Defined

Networks”. In: IEEE Transactions on Network and Service Management 15.2 (2018),

pp. 732–745. doi: 10.1109/TNSM.2018.2810817.

[72] M. Jia, W. Liang, M. Huang, Z. Xu, and Y. Ma. “Throughput Maximization

of NFV-Enabled Unicasting in Software-Defined Networks”. In: GLOBECOM

2017 - 2017 IEEE Global Communications Conference. 2017, pp. 1–6. doi: 10.

1109/GLOCOM.2017.8254756.

[73] M. Jia, W. Liang, Z. Xu, M. Huang, and Y. Ma. “QoS-Aware Cloudlet Load

Balancing in Wireless Metropolitan Area Networks”. In: IEEE Transactions on

Cloud Computing (2018), pp. 1–1. doi: 10.1109/TCC.2017.2786738.

[74] M. Jia, W. Liang, and Z. Xu. “QoS-Aware Task Offloading in Distributed

Cloudlets with Virtual Network Function Services”. In: Proceedings of the 20th

ACM International Conference on Modelling, Analysis and Simulation of Wireless

and Mobile Systems. MSWiM ’17. Miami, Florida, USA: ACM, 2017, pp. 109–116.

doi: 10.1145/3127540.3127561.

[75] Y. Jia, C. Wu, Z. Li, F. Le, and A. Liu. “Online Scaling of NFV Service Chains

Across Geo-Distributed Datacenters”. In: IEEE/ACM Transactions on Networking

26.2 (2018), pp. 699–710. doi: 10.1109/TNET.2018.2800400.

https://doi.org/10.1109/TNSM.2018.2810817
https://doi.org/10.1109/TNSM.2018.2810817
https://doi.org/10.1109/GLOCOM.2017.8254756
https://doi.org/10.1109/GLOCOM.2017.8254756
https://doi.org/10.1109/TCC.2017.2786738
https://doi.org/10.1145/3127540.3127561
https://doi.org/10.1109/TNET.2018.2800400

BIBLIOGRAPHY 187

[76] John Carmack. John Carmack’s Latency Mitigation Strategies. https://www.

twentymilliseconds.com/post/latency-mitigation-strategies/. 2013.

[77] J. Kang, O. Simeone, and J. Kang. “On the Trade-Off Between Computational

Load and Reliability for Network Function Virtualization”. In: IEEE Communi-

cations Letters 21.8 (2017), pp. 1767–1770. doi: 10.1109/LCOMM.2017.2698040.

[78] Y. Kanizo, O. Rottenstreich, I. Segall, and J. Yallouz. “Optimizing Virtual

Backup Allocation for Middleboxes”. In: IEEE/ACM Transactions on Networking

25.5 (2017), pp. 2759–2772. doi: 10.1109/TNET.2017.2703080.

[79] Y. Kanizo, D. Hay, and I. Keslassy. “Palette: Distributing tables in software-

defined networks”. In: INFOCOM, 2013 Proceedings IEEE. IEEE. 2013, pp. 545–

549.

[80] K. Kar, M. Kodialam, T. V. Lakshman, and L. Tassiulas. “Routing for network

capacity maximization in energy-constrained ad-hoc networks”. In: IEEE IN-

FOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and

Communications Societies (IEEE Cat. No.03CH37428). Vol. 1. 2003, 673–681 vol.1.

doi: 10.1109/INFCOM.2003.1208717.

[81] N. Katta, O. Alipourfard, J. Rexford, and D. Walker. “Infinite CacheFlow in

Software-defined Networks”. In: Proceedings of the Third Workshop on Hot Topics

in Software Defined Networking. HotSDN ’14. Chicago, Illinois, USA: ACM, 2014,

pp. 175–180. doi: 10.1145/2620728.2620734.

[82] K. Kawashima, T. Otoshi, Y. Ohsita, and M. Murata. “Dynamic placement of

virtual network functions based on model predictive control”. In: NOMS 2016 -

2016 IEEE/IFIP Network Operations and Management Symposium. 2016, pp. 1037–

1042. doi: 10.1109/NOMS.2016.7502957.

[83] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. “The in-

ternet topology zoo”. In: IEEE Journal on Selected Areas in Communications 29.9

(2011), pp. 1765–1775.

https://www.twentymilliseconds.com/post/latency-mitigation-strategies/
https://www.twentymilliseconds.com/post/latency-mitigation-strategies/
https://doi.org/10.1109/LCOMM.2017.2698040
https://doi.org/10.1109/TNET.2017.2703080
https://doi.org/10.1109/INFCOM.2003.1208717
https://doi.org/10.1145/2620728.2620734
https://doi.org/10.1109/NOMS.2016.7502957

188 BIBLIOGRAPHY

[84] J. Kong, I. Kim, X. Wang, Q. Zhang, H. C. Cankaya, W. Xie, T. Ikeuchi, and J. P.

Jue. “Guaranteed-Availability Network Function Virtualization with Network

Protection and VNF Replication”. In: GLOBECOM 2017 - 2017 IEEE Global Com-

munications Conference. 2017, pp. 1–6. doi: 10.1109/GLOCOM.2017.8254730.

[85] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,

and S. Uhlig. “Software-defined networking: A comprehensive survey”. In:

Proceedings of the IEEE 103.1 (2015), pp. 14–76.

[86] K. Kumar and Y. Lu. “Cloud Computing for Mobile Users: Can Offloading

Computation Save Energy?” In: Computer 43.4 (2010), pp. 51–56. doi: 10.

1109/MC.2010.98.

[87] J. Kuo, S. Shen, M. Yang, D. Yang, M. Tsai, and W. Chen. “Service Overlay For-

est Embedding for Software-Defined Cloud Networks”. In: 2017 IEEE 37th In-

ternational Conference on Distributed Computing Systems (ICDCS). 2017, pp. 720–

730. doi: 10.1109/ICDCS.2017.62.

[88] T. Kuo, B. Liou, K. C. Lin, and M. Tsai. “Deploying Chains of Virtual Network

Functions: On the Relation Between Link and Server Usage”. In: IEEE/ACM

Transactions on Networking 26.4 (2018), pp. 1562–1576. doi: 10.1109/TNET.

2018.2842798.

[89] J. Li, W. Liang, M. Huang, and X. Jia. “Providing reliability-aware virtualized

network function services for mobile edge computing.” In: 2019 IEEE 39th

International Conference on Distributed Computing Systems (ICDCS). 2019, pp. 1–

10.

[90] Y. Li, L. T. X. Phan, and B. T. Loo. “Network functions virtualization with soft

real-time guarantees”. In: INFOCOM 2016-The 35th Annual IEEE International

Conference on Computer Communications, IEEE. IEEE. 2016, pp. 1–9.

[91] Z. Li, C. Wang, and R. Xu. “Computation Offloading to Save Energy on Hand-

held Devices: A Partition Scheme”. In: Proceedings of the 2001 International

https://doi.org/10.1109/GLOCOM.2017.8254730
https://doi.org/10.1109/MC.2010.98
https://doi.org/10.1109/MC.2010.98
https://doi.org/10.1109/ICDCS.2017.62
https://doi.org/10.1109/TNET.2018.2842798
https://doi.org/10.1109/TNET.2018.2842798

BIBLIOGRAPHY 189

Conference on Compilers, Architecture, and Synthesis for Embedded Systems. CASES

’01. Atlanta, Georgia, USA: ACM, 2001, pp. 238–246. doi: 10.1145/502217.

502257.

[92] W. Liang and Y. Liu. “Online Data Gathering for Maximizing Network Lifetime

in Sensor Networks”. In: IEEE Transactions on Mobile Computing 6.1 (2007),

pp. 2–11. doi: 10.1109/TMC.2007.250667.

[93] W. Liang and X. Guo. “Online Multicasting for Network Capacity Maximiza-

tion in Energy-Constrained Ad Hoc Networks”. In: IEEE Transactions on Mobile

Computing 5.9 (2006), pp. 1215–1227. doi: 10.1109/TMC.2006.133.

[94] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu. “On Dynamic Service Function Chain

Deployment and Readjustment”. In: IEEE Transactions on Network and Service

Management 14.3 (2017), pp. 543–553. doi: 10.1109/TNSM.2017.2711610.

[95] T. Lukovszki, M. Rost, and S. Schmid. “It’s a Match!: Near-Optimal and Incre-

mental Middlebox Deployment”. In: SIGCOMM Comput. Commun. Rev. 46.1

(Jan. 2016), pp. 30–36. doi: 10.1145/2875951.2875956.

[96] T. Lukovszki and S. Schmid. “Online Admission Control and Embedding of

Service Chains”. In: Post-Proceedings of the 22Nd International Colloquium on

Structural Information and Communication Complexity - Volume 9439. SIROCCO

2015. Montserrat, Spain: Springer-Verlag, 2015, pp. 104–118. doi: 10.1007/

978-3-319-25258-2_8.

[97] Y. Ma, W. Liang, and J. Wu. “Online NFV-enabled multicasting in mobile

edge cloud networks.” In: 2019 IEEE 39th International Conference on Distributed

Computing Systems (ICDCS). 2019, pp. 1–10.

[98] Y. Ma, W. Liang, and Z. Xu. “Online Revenue Maximization in NFV-Enabled

SDNs”. In: 2018 IEEE International Conference on Communications (ICC). 2018,

pp. 1–7. doi: 10.1109/ICC.2018.8422333.

https://doi.org/10.1145/502217.502257
https://doi.org/10.1145/502217.502257
https://doi.org/10.1109/TMC.2007.250667
https://doi.org/10.1109/TMC.2006.133
https://doi.org/10.1109/TNSM.2017.2711610
https://doi.org/10.1145/2875951.2875956
https://doi.org/10.1007/978-3-319-25258-2_8
https://doi.org/10.1007/978-3-319-25258-2_8
https://doi.org/10.1109/ICC.2018.8422333

190 BIBLIOGRAPHY

[99] Y. Ma, W. Liang, Z. Xu, and S. Guo. “Profit Maximization for Admitting

Requests with Network Function Services in Distributed Clouds”. In: IEEE

Transactions on Parallel and Distributed Systems 30.5 (2019), pp. 1143–1157. doi:

10.1109/TPDS.2018.2874257.

[100] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and F. Huici.

“ClickOS and the Art of Network Function Virtualization”. In: 11th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 14). Seattle,

WA: USENIX Association, 2014, pp. 459–473.

[101] M. Mechtri, C. Ghribi, and D. Zeghlache. “A Scalable Algorithm for the Place-

ment of Service Function Chains”. In: IEEE Transactions on Network and Service

Management 13.3 (2016), pp. 533–546. doi: 10.1109/TNSM.2016.2598068.

[102] Microsoft. Plan network requirements for Skype for business. https://technet.

microsoft.com/en-us/library/gg425841.aspx. 2015.

[103] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba. “Net-

work Function Virtualization: State-of-the-Art and Research Challenges”. In:

IEEE Communications Surveys Tutorials 18.1 (2016), pp. 236–262. doi: 10.1109/

COMST.2015.2477041.

[104] T. Mishra and S. Sahni. “PETCAM – A Power Efficient TCAM Architecture for

Forwarding Tables”. In: IEEE Transactions on Computers 61.1 (2012), pp. 3–17.

doi: 10.1109/TC.2011.84.

[105] G. Moualla, T. Turletti, and D. Saucez. “An Availability-aware SFC placement

Algorithm for Fat-Tree Data Centers”. In: 2018 IEEE International Conference on

Cloud Networking (CloudNet). 2018, pp. 1–6.

[106] NTT Communications. NTT communications and jba’s sdn project wins ibc 2013

innovation award. https://www.ntt.com/aboutus_e/news/data/20130918.

html. 2013.

https://doi.org/10.1109/TPDS.2018.2874257
https://doi.org/10.1109/TNSM.2016.2598068
https://technet.microsoft.com/en-us/library/gg425841.aspx
https://technet.microsoft.com/en-us/library/gg425841.aspx
https://doi.org/10.1109/COMST.2015.2477041
https://doi.org/10.1109/COMST.2015.2477041
https://doi.org/10.1109/TC.2011.84
https://www.ntt.com/aboutus_e/news/data/20130918.html
https://www.ntt.com/aboutus_e/news/data/20130918.html

BIBLIOGRAPHY 191

[107] B. A. A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti. “A

Survey of Software-Defined Networking: Past, Present, and Future of Pro-

grammable Networks”. In: IEEE Communications Surveys Tutorials 16.3 (2014),

pp. 1617–1634. doi: 10.1109/SURV.2014.012214.00180.

[108] NVIDIA Corporation. NVIDIA GameStream | Play PC Games on NVIDIA SHIELD.

https://www.nvidia.com/en-us/shield/games/gamestream/. 2018.

[109] S. Plotkin. “Competitive routing of virtual circuits in ATM networks”. In: IEEE

Journal on Selected Areas in Communications 13.6 (1995), pp. 1128–1136. doi:

10.1109/49.400667.

[110] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. “SIMPLE-fying

Middlebox Policy Enforcement Using SDN”. In: Proceedings of the ACM SIG-

COMM 2013 Conference on SIGCOMM. SIGCOMM ’13. Hong Kong, China:

ACM, 2013, pp. 27–38. doi: 10.1145/2486001.2486022.

[111] L. Qu, C. Assi, K. Shaban, and M. J. Khabbaz. “A Reliability-Aware Network

Service Chain Provisioning With Delay Guarantees in NFV-Enabled Enterprise

Datacenter Networks”. In: IEEE Transactions on Network and Service Management

14.3 (2017), pp. 554–568. doi: 10.1109/TNSM.2017.2723090.

[112] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield. “Split/Merge: Sys-

tem Support for Elastic Execution in Virtual Middleboxes”. In: Proceedings of

the 10th USENIX Conference on Networked Systems Design and Implementation.

nsdi’13. Lombard, IL: USENIX Association, 2013, pp. 227–240.

[113] E. S. Raymond. The Art of UNIX Programming. Pearson Education, 2003.

[114] B. Ren, D. Guo, G. Tang, X. Lin, and Y. Qin. “Optimal Service Function Tree

Embedding for NFV Enabled Multicast”. In: 2018 IEEE 38th International Con-

ference on Distributed Computing Systems (ICDCS). 2018, pp. 132–142. doi: 10.

1109/ICDCS.2018.00023.

https://doi.org/10.1109/SURV.2014.012214.00180
https://www.nvidia.com/en-us/shield/games/gamestream/
https://doi.org/10.1109/49.400667
https://doi.org/10.1145/2486001.2486022
https://doi.org/10.1109/TNSM.2017.2723090
https://doi.org/10.1109/ICDCS.2018.00023
https://doi.org/10.1109/ICDCS.2018.00023

192 BIBLIOGRAPHY

[115] G. Sallam, G. R. Gupta, B. Li, and B. Ji. “Shortest Path and Maximum Flow

Problems Under Service Function Chaining Constraints”. In: IEEE INFOCOM

2018 - IEEE Conference on Computer Communications. 2018, pp. 2132–2140. doi:

10.1109/INFOCOM.2018.8485996.

[116] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye. “Provably efficient algorithms for

joint placement and allocation of virtual network functions”. In: IEEE INFO-

COM 2017 - IEEE Conference on Computer Communications. 2017, pp. 1–9. doi:

10.1109/INFOCOM.2017.8057036.

[117] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. “The Case for VM-

Based Cloudlets in Mobile Computing”. In: IEEE Pervasive Computing 8.4

(2009), pp. 14–23. doi: 10.1109/MPRV.2009.82.

[118] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. “Design and Imple-

mentation of a Consolidated Middlebox Architecture”. In: Presented as part

of the 9th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 12). San Jose, CA: USENIX, 2012, pp. 323–336.

[119] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar.

“Making middleboxes someone else’s problem: network processing as a cloud

service”. In: ACM SIGCOMM Computer Communication Review 42.4 (2012),

pp. 13–24.

[120] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving,

G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E.

Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat. “Jupiter Rising: A

Decade of Clos Topologies and Centralized Control in Google’s Datacenter

Network”. In: Sigcomm ’15. 2015.

[121] E. Spitznagel, D. Taylor, and J. Turner. “Packet classification using extended

TCAMs”. In: 11th IEEE International Conference on Network Protocols, 2003. Pro-

ceedings. 2003, pp. 120–131. doi: 10.1109/ICNP.2003.1249762.

https://doi.org/10.1109/INFOCOM.2018.8485996
https://doi.org/10.1109/INFOCOM.2017.8057036
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1109/ICNP.2003.1249762

BIBLIOGRAPHY 193

[122] N. Spring, R. Mahajan, and D. Wetherall. “Measuring ISP topologies with

Rocketfuel”. In: ACM SIGCOMM Computer Communication Review 32.4 (2002),

pp. 133–145.

[123] J. W. Suurballe. “Disjoint paths in a network”. In: Networks 4.2 (1974), pp. 125–

145. doi: 10 . 1002 / net . 3230040204. eprint: https : / / onlinelibrary .

wiley.com/doi/pdf/10.1002/net.3230040204.

[124] J. W. Suurballe and R. E. Tarjan. “A quick method for finding shortest pairs

of disjoint paths”. In: Networks 14.2 (1984), pp. 325–336. doi: 10.1002/net.

3230140209. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.

1002/net.3230140209.

[125] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck. “Mobile Edge Com-

puting Potential in Making Cities Smarter”. In: IEEE Communications Magazine

55.3 (2017), pp. 38–43. doi: 10.1109/MCOM.2017.1600249CM.

[126] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck. “Mobile Edge Com-

puting Potential in Making Cities Smarter”. In: IEEE Communications Magazine

55.3 (2017), pp. 38–43. doi: 10.1109/MCOM.2017.1600249CM.

[127] A. S. Tanenbaum and D. J. Wetherall. Computer Networks. 5th. Upper Saddle

River, NJ, USA: Prentice Hall Press, 2010.

[128] A. Tomassilli, F. Giroire, N. Huin, and S. Pérennes. “Provably Efficient Algo-

rithms for Placement of Service Function Chains with Ordering Constraints”.

In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. 2018,

pp. 774–782. doi: 10.1109/INFOCOM.2018.8486275.

[129] Valve Corporation. Steam Link. https://store.steampowered.com/steamlink/

about. 2018.

[130] V. V. Vazirani. Approximation Algorithms. Berlin, Heidelberg: Springer-Verlag,

2001.

https://doi.org/10.1002/net.3230040204
https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230040204
https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230040204
https://doi.org/10.1002/net.3230140209
https://doi.org/10.1002/net.3230140209
https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230140209
https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230140209
https://doi.org/10.1109/MCOM.2017.1600249CM
https://doi.org/10.1109/MCOM.2017.1600249CM
https://doi.org/10.1109/INFOCOM.2018.8486275
https://store.steampowered.com/steamlink/about
https://store.steampowered.com/steamlink/about

194 BIBLIOGRAPHY

[131] P. Veitch, M. J. McGrath, and V. Bayon. “An instrumentation and analytics

framework for optimal and robust NFV deployment”. In: IEEE Communications

Magazine 53.2 (2015), pp. 126–133.

[132] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser. “Service Entity Placement for

Social Virtual Reality Applications in Edge Computing”. In: IEEE INFOCOM

2018 - IEEE Conference on Computer Communications. 2018, pp. 468–476. doi:

10.1109/INFOCOM.2018.8486411.

[133] X. Wang, C. Wu, F. Le, A. Liu, Z. Li, and F. Lau. “Online VNF Scaling in

Datacenters”. In: 2016 IEEE 9th International Conference on Cloud Computing

(CLOUD). 2016, pp. 140–147. doi: 10.1109/CLOUD.2016.0028.

[134] Z. Wang, W. Liang, M. Huang, and Y. Ma. “Delay-Energy Joint Optimization

for Task Offloading in Mobile Edge Computing”. In: CoRR abs/1804.10416

(2018). arXiv: 1804.10416.

[135] J. Xia, Z. Cai, and M. Xu. “Optimized Virtual Network Functions Migration

for NFV”. In: 2016 IEEE 22nd International Conference on Parallel and Distributed

Systems (ICPADS). 2016, pp. 340–346. doi: 10.1109/ICPADS.2016.0053.

[136] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie. “A Survey on Software-

Defined Networking”. In: IEEE Communications Surveys Tutorials 17.1 (2015),

pp. 27–51. doi: 10.1109/COMST.2014.2330903.

[137] J. Xu, L. Chen, and P. Zhou. “Joint Service Caching and Task Offloading for

Mobile Edge Computing in Dense Networks”. In: IEEE INFOCOM 2018 - IEEE

Conference on Computer Communications. 2018, pp. 207–215. doi: 10.1109/

INFOCOM.2018.8485977.

[138] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis. “Approximation and

Online Algorithms for NFV-Enabled Multicasting in SDNs”. In: 2017 IEEE

37th International Conference on Distributed Computing Systems (ICDCS). 2017,

pp. 625–634. doi: 10.1109/ICDCS.2017.43.

https://doi.org/10.1109/INFOCOM.2018.8486411
https://doi.org/10.1109/CLOUD.2016.0028
https://arxiv.org/abs/1804.10416
https://doi.org/10.1109/ICPADS.2016.0053
https://doi.org/10.1109/COMST.2014.2330903
https://doi.org/10.1109/INFOCOM.2018.8485977
https://doi.org/10.1109/INFOCOM.2018.8485977
https://doi.org/10.1109/ICDCS.2017.43

BIBLIOGRAPHY 195

[139] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis. “Efficient NFV-Enabled

Multicasting in SDNs”. In: IEEE Transactions on Communications 67.3 (2019),

pp. 2052–2070. doi: 10.1109/TCOMM.2018.2881438.

[140] Z. Xu, W. Liang, M. Jia, M. Huang, and G. Mao. “Task Offloading with Network

Function Requirements in a Mobile Edge-Cloud Network”. In: IEEE Transac-

tions on Mobile Computing (2018), pp. 1–1. doi: 10.1109/TMC.2018.2877623.

[141] Z. Xu, W. Liang, M. Jia, M. Huang, and G. Mao. “Task Offloading with Network

Function Requirements in a Mobile Edge-Cloud Network”. In: IEEE Transac-

tions on Mobile Computing (2018), pp. 1–1. doi: 10.1109/TMC.2018.2877623.

[142] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo. “Efficient Algorithms for Capac-

itated Cloudlet Placements”. In: IEEE Transactions on Parallel and Distributed

Systems 27.10 (2016), pp. 2866–2880. doi: 10.1109/TPDS.2015.2510638.

[143] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang. “A comprehensive survey of

Network Function Virtualization”. In: Computer Networks 133 (2018), pp. 212

–262. doi: https://doi.org/10.1016/j.comnet.2018.01.021.

[144] S. Yi, C. Li, and Q. Li. “A Survey of Fog Computing: Concepts, Applica-

tions and Issues”. In: Proceedings of the 2015 Workshop on Mobile Big Data. Mo-

bidata ’15. Hangzhou, China: ACM, 2015, pp. 37–42. doi: 10.1145/2757384.

2757397.

[145] Q. Zhang, Y. Xiao, F. Liu, J. C. S. Lui, J. Guo, and T. Wang. “Joint Optimization

of Chain Placement and Request Scheduling for Network Function Virtual-

ization”. In: 2017 IEEE 37th International Conference on Distributed Computing

Systems (ICDCS). 2017, pp. 731–741. doi: 10.1109/ICDCS.2017.232.

[146] S. Q. Zhang, Q. Zhang, A. Tizghadam, B. Park, H. Bannazadeh, R. Boutaba,

and A. Leon-Garcia. “Sector: TCAM Space Aware Routing on SDN”. In: 2016

28th International Teletraffic Congress (ITC 28). Vol. 01. 2016, pp. 216–224. doi:

10.1109/ITC-28.2016.138.

https://doi.org/10.1109/TCOMM.2018.2881438
https://doi.org/10.1109/TMC.2018.2877623
https://doi.org/10.1109/TMC.2018.2877623
https://doi.org/10.1109/TPDS.2015.2510638
https://doi.org/https://doi.org/10.1016/j.comnet.2018.01.021
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1109/ICDCS.2017.232
https://doi.org/10.1109/ITC-28.2016.138

	Acknowledgments
	Publications
	Abstract
	Contents
	Introduction
	Next-Generation Network Architecture
	Software-Defined Networking
	Network Function Virtualization
	The Synergy between Software-Defined Networking and Network Function Virtualization

	Resource Allocation for Network Throughput Maximization
	Resource Allocation in Software-Defined Networking
	Resource Allocation for Virtualized Network Functions

	Challenges of Resource Allocation in Next-Generation Networks
	Research Topics and Aims
	Network Throughput Maximization of User Requests in Software-Defined Networks
	Network Throughput Maximization of User Requests with Network Function Requirements
	Dynamic Adjustment of Resource Allocation via Scalings
	Reliability-Aware Resource Allocation

	Thesis Contributions
	Thesis Overview

	Online Unicasting and Multicasting in Software-Defined Networks
	Introduction
	Preliminaries
	System Model
	TCAM and Routing Rule Matching in SDNs
	User Routing Requests
	Competitive Ratios of Online Algorithms
	Problem Definitions

	The Usage Costs of Resources of Links and Nodes
	An Online Algorithm for Dynamic Unicast Routing
	Online Algorithm
	Algorithm Analysis

	An Online Algorithm for Multicast Routing
	Online Algorithm
	Algorithm Analysis

	Performance Evaluation
	Experimental Environment Settings
	Performance Evaluation of Different Algorithms
	Parameter Impacts on Algorithmic Performance
	Impact of Request Implementation Durations on Algorithm Performance

	Summary

	Throughput Maximization in Software-Defined Networks with Consolidated Middleboxes
	Introduction
	Preliminaries
	System Model
	User Requests
	Problem Definition
	NP-Hardness

	Integer Linear Program
	A Heuristic Algorithm
	A Novel Cost Model of Resource Usages and the Construction of an Auxiliary Graph
	Algorithm
	Algorithm Analysis

	A Faster Heuristic Algorithm
	Overview
	Algorithm
	Algorithm Analysis

	An Online Algorithm
	Performance Evaluation
	Experimental Environment Settings
	Performance of Different Algorithms within One Time Slot
	Algorithm Performance within a Finite Time Horizon
	Impact of Request Durations on the Performance of Different Online Algorithms

	Summary

	Virtualized Network Function Placements for Delay-Sensitive Network Function Virtualization-Enabled Requests
	Preliminaries
	System model
	Virtualized network functions
	User requests
	Dynamic admissions of user requests
	Vertical and horizontal scalings
	The operational cost
	Problem definition
	NP-hardness of the defined problem

	Integer Linear Programming
	Heuristic Algorithm
	Overview of the proposed algorithm
	VNF ordering
	VNF instance placements and migrations
	Algorithm
	Analysis of the proposed algorithm

	Performance Evaluation
	Experimental environment
	Performance evaluation of different algorithms within a single time slot
	Performance evaluation of different algorithms within a finite time horizon

	Summary

	Reliability-Aware Virtualized Network Function Services Provisioning in Mobile Edge Computing
	Introduction
	Preliminaries
	Network model
	User requests
	Problem definition

	NP-Hardness
	Integer Linear Programming
	Approximation Algorithm for the Reliability-Aware VNF Instances Provisioning Problem
	Cost modeling
	Algorithm description
	Algorithm analysis

	Approximation and Exact Algorithms for Special Cases of the Reliability-Aware VNF Instances Provisioning Problem
	A constant approximation algorithm for a special reliability-aware VNF instances provisioning problem
	A dynamic programming algorithm for another special reliability-aware VNF instances provisioning problem
	A dynamic programming algorithm

	Performance Evaluation
	Experimental environment settings
	Algorithm performance evaluation for the reliability-aware VNF instances provisioning problem
	Algorithm performance evaluation for special reliability-aware VNF instances provisioning problems
	Parameter impacts on algorithm performance

	Summary

	Conclusion and Future Works
	Summary of Contributions
	Future Works

