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Understanding the dynamics of equilibration processes in quantum systems as well as their interplay
with dissipation and fluctuation is a major challenge in quantum many-body theory. The timescales of such
processes are investigated in collisions of atomic nuclei using fully microscopic approaches. Results from
time-dependent Hartree-Fock and time-dependent random-phase approximation calculations are compared
for 13 systems over a broad range of energies. The timescale for full mass equilibration (∼2 × 10−20 s) is
found to be much larger than timescales for neutron-to-proton equilibration, kinetic energy, and angular
momentum dissipations which are on the order of 10−21 s. Fluctuations of mass numbers in the fragments
and correlations between their neutron and proton numbers build up within only a few 10−21 s. This
indicates that dissipation is basically not impacted by mass equilibration, but is mostly driven by the
exchange of nucleons between the fragments.
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It is well known that two classical systems with dif-
fering properties (e.g., two fluids of different colors or
temperatures) that are able to exchange matter in some way
tend to equilibrate their initial asymmetry over time. This
equilibration process also occurs in quantum systems, a
phenomenon actively studied at present with quantum
simulations using ultracold atoms and trapped ions [1].
The principal challenge is in characterizing the path
followed by a quantum system as it evolves towards
equilibrium. Along this path, the system also encounters
dissipation of collective energy (e.g., kinetic energy of
collision partners) into internal degrees of freedom.
Although equilibration processes are expected to depend
on dissipative mechanisms, the interplay between equili-
bration and dissipation in quantum systems is still not well
understood.
Collisions of atomic nuclei are ideal to investigate

equilibration and dissipative processes in quantum many-
body systems [2,3]. Indeed, these collisions are usually too
fast (on the order of a few zeptoseconds, 1 zs ¼ 10−21 s) to
allow interaction with external environment to affect the
outcome of the collision. For example, emission of γ
photons due to coupling to the electromagnetic field occurs
over a much longer timescale, usually greater than 10−18 s.
Nevertheless, nucleons, which move at about 20% speed of
light in the nucleus can be transferred from one nucleus to
the other when the nuclei are in contact. As a result, the
internal degrees of freedom characterising the nuclear states
encounter a rapid rearrangement, tending to equalize initial
asymmetries between the collision partners as well as

dissipating their kinetic energy and angular momentum.
In addition, the relatively small number of nucleons at play
(up to a few hundred) makes the problem numerically
tractable if one makes relevant approximations to the
quantum many-body problem.
The mass (number of nucleons) of the nuclei and the

difference between their neutron and proton numbers are
among the main collective degrees of freedom which can
encounter equilibration in heavy-ion collisions. A broad
range of masses, and thus chemical potentials, are already
accessible with stable beams. Moreover, the recent develop-
ment of exotic beams has significantly increased the range
of available asymmetries between protons and neutrons,
leading to ambitious reaction mechanism programs at
exotic beam facilities around the world, including FRIB
(U.S.) [4], RIKEN-RIBF (Japan) [5], SPIRAL2 (France)
[6], and FAIR-NUSTAR (Germany) [7]. In particular,
neutron-proton asymmetric collisions are expected to bring
valuable information on the density dependence of the
nuclear symmetry energy, which is highly relevant in
nuclear astrophysics (see [8] for a recent review).
As mass and neutron-proton equilibration occurs via a

flow of nucleons between colliding partners, they are
expected to be significantly impacted by nuclear viscosity.
The latter is also responsible for dissipation of both the
initial kinetic energy and the angular momentum of the
fragments [9]. In turn, as a manifestation of Einstein’s
fluctuation-dissipation theorem, the multinucleon transfer
between the fragments in contact is expected to build up
quantum fluctuations that lead to broad distributions of
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particle numbers in the final fragments [10]. Equilibration,
dissipation, and fluctuation then form a complex network
of interrelated observables.
Investigating the interplay between these quantities

requires advanced theoretical descriptions. We adopt fully
microscopic time-dependent approaches to the nuclear
many-body problem allowing for parameter-free (except
for the underlying nuclear interaction) dynamical descrip-
tions of the relevant quantities (see [11–13] for recent
reviews). The number of transferred nucleons, the kinetic
energy of the fragments, and their angular momenta are all
described by one-body observables. Average values of
these quantities are computed with the time-dependent
Hartree-Fock (TDHF) mean-field theory, which is opti-
mized for expectation values of one-body operators [14].
In particular, TDHF contains all one-body dissipation
mechanisms which are the most relevant at the energies
considered in this work (see, e.g., discussion in [11]).
However, TDHF often underestimates fluctuations of these
operators [15,16]. We thus compute fluctuations of neutron
and proton numbers (as well as their correlations) in the
fragments from the time-dependent random-phase approxi-
mation (TDRPA) prescription of Balian and Vénéroni [17],
which is indeed optimized on fluctuations of one-body
operators in the limit of small fluctuations.
Probably the most important quantity characterizing

various equilibration, dissipation, and fluctuation processes
is the timescale over which they occur. A first step is then to
investigate these timescales, their potential dependence on
the entrance channel, and compare them to understand their
relationships. Indeed, mechanisms with very different
timescales are unlikely to be correlated while similar time-
scales indicate a potential common origin in the underlying
microscopic mechanisms. In this letter we present a sys-
tematic theoretical study of timescales for mass and
neutron-proton equilibration and fluctuations, as well as
kinetic energy and angular momentum dissipation. TDHF
and TDRPA results are presented for many collisions
spanning a broad range of masses, energies and angular
momenta (see the Supplemental Material [18]). Although
most results are compiled from published data, we have
performed new calculations for completeness with the
TDHF3D code [19] for 40Caþ40;48 Ca, 64Ni (see, e.g.,
[20] for numerical details) and with the code of Ref. [21]
for 176Ybþ 176Yb. These new calculations used the SLy4d
parametrization of the energy density functional [19].
In order to compare various systems with different initial

conditions, let us introduce a generic way of defining a
“normalized” observable δXðτÞ ¼ ½XðτÞ − X∞�=ðX0 −
X∞Þ where XðτÞ is the quantity used to characterise
equilibration, dissipation or fluctuations. It is a function
of the contact time τ between the fragments before they
reseparate. Here, contact is usually defined by two frag-
ments linked by a neck, with a neck density exceeding half
the saturation density ρsat=2 ≃ 0.08 fm−3. The initial value

of X is noted X0. For long contact times, the value of X is
expected to saturate to its equilibrium value X∞, in which
case δX → 0. For quasielastic collisions in which contact
does not occur (with the above definition of contact), the
contact time is obviously τ ¼ 0, leading to δXð0Þ ¼ 1.
However, the nuclei may interact before contact through the
overlap of their density tails, possibly leading to values
of δXð0Þ ≠ 1.
Equilibration of mass asymmetry δΔAðτÞ is studied in

Fig. 1 with ΔA≡ A1 − A2 and A1;2 the number of nucleons
in the outgoing fragments obtained from a series of TDHF
calculations [22–25] for systems at energies near the
Coulomb capture barrier VB [26]. For each system and
energy, a range of angular momenta is considered, thus
producing a distribution of contact times with various exit
channels. Note that each point typically requires several
days of computational time on modern computers. The
equilibrium value for mass asymmetry is chosen to be
ΔA∞ ¼ 0, i.e., with two outgoing fragments of similar
masses. Note that this equilibrium is rarely reached due to
shell effects in the fragments favoring exit channels before
full symmetry is achieved [24,27,28]. Despite large fluc-
tuations of δΔAðτÞ, all systems exhibit a similar pattern,
with an equilibration of mass asymmetry and a full
symmetry expected to be reached at about 20 zs contact
time in average. This indicates that mass equilibration is a
relatively slow process. Such reactions are called quasi-
fission [29] as fissionlike fragments are produced without
formation of an intermediate compound nucleus (which
would require much longer time). These TDHF predictions
of mass equilibration times are in good agreement with
“neutron clock” [30] and fragment mass-angle distribution
[29,31,32] measurements.
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FIG. 1. Fragment mass asymmetry as a function of contact
times from TDHF calculations of 40Caþ 128U [22], 48Ca, 50Tiþ
249Bk [23,24], and 54Cr þ 186W [25]. Energy ranges are given as
function of the barrier height VB [26]. The dashed line shows the
expected equilibration assuming Fermi-type mass drift deter-
mined experimentally by Prasad et al. [31].
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We now investigate equilibration of initial asymmetry
between proton and neutron numbers, quantified by
I ¼ ðN1 − Z1Þ − ðN2 − Z2Þ, with Z1;2 the number of pro-
tons and N1;2 ¼ A1;2 − Z1;2 the number of neutrons in the
fragments. Figure 2 shows δIðτÞ for various systems
studied with TDHF [33–35]. Here, the equilibrium values
I∞ are smaller (in magnitude) than I0, though not neces-
sarily zero, and I∞ needs to be determined for each system.
This is done by taking IðτÞ for large times when it does not
significantly change with τ anymore. The fact that we
usually have I∞ ≠ 0 (see, e.g., Fig. 10 of Ref. [34]) is
essentially due to the remaining charge (Z) asymmetry
which favors different values of N − Z in the fragments
because of different Coulomb energies. We see in Fig. 2
that neutron-proton equilibration is a much faster phe-
nomenon than mass equilibration as δIðτÞ is approximately
zero for τ ∼ 1 zs and above. This timescale is in good
agreement with what has been recently determined exper-
imentally from reactions at intermediate energies [36]
(dashed line in Fig. 2).
Next, we investigate the timescale for dissipation of total

kinetic energy (TKE) of the fragments. This usually
involves reactions well above the barrier, in which collision
terms (not included in TDHF) could affect the reaction
mechanisms. Nevertheless, the fact that fully damped
collisions are obtained in TDHF [13,23,24,34,35,37,38],
together with comparison between TKE predictions and
experimental data [37], indicate that one-body dissipation
mechanisms (the only ones included in TDHF) are suffi-
cient up to these energies. Fully damped collisions have
a value of TKE∞ which depends on the system. It roughly
corresponds to the Coulomb repulsion between the

fragments at scission, and is usually well approximated
by Viola systematics [39,40]. However, the final TKE for a
given system can also be affected by initial conditions such
as the orientation of a deformed collision partner in the
entrance channel [23]. Therefore, we determine the value of
TKE∞ for each system and each energy (when a broad
range of energies is considered).
The resulting δTKEðτÞ, as predicted by TDHF calcu-

lations [23,24,34,35,37,38], are shown in Fig. 3. A full
dissipation is obtained after typically 1–2 zs, indicating a
fast process with similar timescale as in neutron-to-proton
equilibration. Experimentally, a possible way to extract
timescales is through fragment angular distributions.
Recent TDHF predictions of TKE-angle correlations in
58Niþ 60Ni deep-inelastic collisions have been found to be
in good agreement with experiment [37], supporting our
extracted timescale for energy dissipation.
We also investigated dissipation of orbital angular

momentum L between the fragments. Let us define
LlossðτÞ ¼ L0 − LðτÞ as the difference between initial
and final angular momentum, giving Lloss0 ¼ 0. The
behavior of LlossðτÞ for a given system at a given energy
(i.e., varying only L0), is first to rise with τ due to
dissipation, and then to decrease slowly at large contact
times, as the latter correspond to more central collisions,
i.e., with less initial angular momentum L0 available for
dissipation. We thus define the equilibrium value Lloss∞ as
the maximum value of LlossðτÞ. Figure 4 shows the
resulting evolution of δLloss with contact time for a set
of reactions studied with TDHF [11,34,38,41]. Note that
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FIG. 2. Asymmetry between proton and neutron numbers as a
function of contact times from TDHF calculations of 40Caþ
208Pb [33], 78Kr þ 208Pb [34], 40Caþ 48Ca, 64Ni (this work), and
58Niþ 124Sn [35]. Energy ranges are given as function of the
barrier height VB [26]. The dashed line shows the expected
equilibration assuming the rate constant of 3 zs−1 determined
experimentally by Jedele et al. [36].
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FIG. 3. Evolution of δTKE as a function of contact times from
TDHF calculations of 60Niþ 60Ni [37], 40Caþ 40Ca [38] (and this
work), 48Caþ 249Bk [23,24], 78;92Kr þ 208Pb [34], 40Caþ 48Ca,
64Ni (this work), 176Ybþ 176Yb [41] (and this work), and 58Niþ
124Sn [35]. Energy ranges are given as function of the barrier
height VB [26].
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δLloss > 1 is sometimes observed for collisions of
deformed nuclei that allow transfer from intrinsic to orbital
angular momentum. Nevertheless, most reactions have
dissipated their angular momentum within 1 zs.
Let us finally study the dynamics of mass fluctuations

σA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hÂ2i − hÂi2
q

and proton-neutron correlations

σNZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hN̂ Ẑi − hN̂ihẐi
q

, where Â, N̂; and Ẑ count

particles in the fragments. These fluctuations and correla-
tions have been determined with TDRPA in deep inelastic
collisions (DIC) [37,38,41]. These systems are symmetric
to avoid possible spurious effects due to skewed fragment
mass distributions, which may occur in asymmetric sys-
tems, and which prevent the interpretation of TDRPA
results as fluctuations [37]. As the particle numbers in
the incoming fragments are well defined, we have
σA0

¼ σNZ0
¼ 0. It is also found that, in most central

DIC, TDRPA fluctuations exhibit relatively large fluctua-
tions around an average value which we choose for σA;NZ∞

.
The evolutions of δσAðτÞ and δσNZðτÞ as a function of

contact time are shown in Fig. 5. The observed decrease of
δσAðτÞ and δσNZðτÞ indicates that fluctuations and corre-
lations build up within a timescale of about 3 zs. Naturally,
the choices of σA∞

and σNZ∞
are quite arbitrary, and

changing these values would impact the slopes of δσðτÞ.
Nevertheless, as all three systems reach their maximum
fluctuations at similar contact times, this would not have a
significant influence on the resulting timescales. However,
the small number of systems, together with the large
variations of fluctuations due to the sensitivity to initial
condition in DIC, prevent to draw definitive conclusions
with respect to the universality of the behavior of mass
fluctuations. More studies would be welcome.

A comparison between the different timescales for
equilibration, dissipation, and fluctuation processes leads
to several conclusions. First, it is quite remarkable that each
process exhibits similar timescales despite being derived
from extremely different systems and energies. This is a
strong indication that the underlying mechanisms are
universal and do not depend much on the specifics of
the entrance channel. Note that the present systematics also
include calculations by several teams with different TDHF
[19,21,42–44] and TDRPA [37,38,41] codes and two
different energy density functionals [19,45], showing the
robustness of the results.
Second, it is noticeable that neutron-to-proton equilibra-

tion occurs on very similar timescales as angular momen-
tum and kinetic energy dissipations. This points toward a
strong correlation between these mechanisms. However,
neutron-to-proton equilibration cannot be the sole dissipa-
tive mechanism as collisions in systems with neutron-to-
proton symmetry have a similar timescale for dissipation
(see Fig. 3).
The main mechanism for dissipation is expected to be

multinucleon transfer between the fragments [10]. The least
bound nucleons (closest to the Fermi surface) are usually
more freely transferred. In neutron-to-proton asymmetric
systems, this essentially leads to protons flowing one way
and neutrons being transferred the other way. In the case of
symmetric systems, however, protons and/or neutrons flow
both ways. If the corresponding timescale is the same as for
neutron-to-proton equilibration, this would explain why
dissipation timescales are the same in neutron-to-proton
symmetric and asymmetric systems.
Another observation is that mass equilibration is much

slower (by more than one order of magnitude) than
dissipation. It takes place in systems in which energy
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and angular momentum have already been damped. From
this separation of timescales we can conclude that mass
equilibration is not expected to be a significant contributor
to dissipation processes.
Finally, the fluctuations and correlations in particle

numbers build up within a few zeptoseconds, which is a
bit slower than dissipation. Nevertheless, it is still much
faster than mass equilibration. Note, however, that TDRPA
predictions of fluctuations are only available for symmetric
systems. The increase of mass fluctuations with contact
time in symmetric collisions is a clear signature that
multinucleon transfer has happened (both ways due to
symmetry) within this time frame. It would be interesting to
investigate timescales for fluctuations and correlations in
asymmetric systems with beyond TDRPA models such as
the stochastic mean-field approach [46].
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