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RESUMEN 

En este trabajo, proponemos un nuevo método para clasificar entre spectrograms Long-
Period y Volcano-Tectonic utilizando seis diferentes arquitecturas de conocimiento profundo. 
El método desarrollado utiliza tres redes neuronales convolucionales llamadas: DCNN1, 
DCNN2 y  DCNN3. De igual manera tres redes neuronales convolucionales son combinadas 
con redes neuronales recurrentes llamadas: DCNN-RNN1, DCNN-RNN2, y DCNN-RNN3 
para maximizar el valor del area bajo la curva (ROCAUC) en un datases de espectrogramas 
de eventos sísmicos volcánicos. Los modelos DCNN-RNN1, DCNN-RNN2, y DCNN-RNN3 
alcanzaron los desempeños más bajos debido a que presentaron overfitting, y esto puede ser a 
causa de la pequeña cantidad de muestras por clase utilizadas para entrenar estos modelos ta 
complejos. El modelo DCNN1 fue el mejor comparándolo con las restantes redes neuronales 
convolucionales. Se obtuvo un valor ROCAUC de 0.98 y un valor de precision de 95%. Aun 
que estos valores no fueron los valores mas altos por cada métrica, estos no representaron 
diferencias estadísticas entro otros modelos de mayor complejidad algorítmica. El modelo 
DCNN1 propuesto demostró desempeño similar o superior comparado con la mayoría de 
métodos estado del arte en términos de métrica de precision. Por ende puede ser considerado 
como un excelente modelo para clasificar eventos sísmicos del tipo LP y VT basados en sus 
imágenes espectrogramas. 

Palabras Claves: Clasificación de eventos sísmicos volcánicos, modelos de conocimiento 
profundo, inteligencia artificial, imágenes espectrogramas. 
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ABSTRACT 

In this work, we proposed a new method to classify long-period and volcano-tectonic 
spectrogram images using six different deep learning architectures. The developed method 
used three deep convolutional neural networks named: DCNN1, DCNN2, and DCNN3. Also, 
three deep convolutional neural networks combined with deep recurrent neural networks 
named DCNN-RNN1, DCNN-RNN2, and DCNN-RNN3 to maximize the area under the 
curve of the receiver operating characteristic scores on a dataset of volcano seismic 
spectrogram images. The DCNN-RNN1, DCNN-RNN2, and DCNN-RNN3 models reached 
the worst results due to the overfitting, and this happened due to the small number of samples 
per class employed to train these complex models. The DCNN1 was the best model 
comparing with the remaining deep convolutional neural network models. The obtained area 
under the curve of the receiver operating characteristic score of $0.98$ and the accuracy 
value of $95\%$. Although these values were not the highest values per metric,  they did not 
represent statistical differences against other models that were more complex algorithmically. 
The proposed DCNN1 model showed similar or superior performance when compared to the 
majority of the state of the art methods in terms of the ACC metric. Therefore it can be 
considered as an excellent model to classify LP and VT seismic events based on their 
spectrogram images.  

Key Words: volcanic seismic event classification, deep-learning models, artificial 
intelligence, spectrogram images. 
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INTRODUCTION 

 Volcanic monitoring systems are essential to detect early signs of volcanic unrest and 

possible reawakening that can lead to eruptions (Tilling, 1996). Amongst the techniques used 

by scientists to estimate activity inside a volcano, seismicity is considered as one of the most 

effective tools for monitoring and forecasting eruptions (Schmincke, 2004).  

 In this regard, a wide variety of approaches have been used in resent years to address 

the problem of volcano seismic events classification. Machine learning classifiers (MLC) 

such as hidden Markov models (HMM) (Benitez et al, 2007), boosting strategies (Venegas et 

al, 2019), decision trees (DT) (Lara-Cueva et al, 2016), random forest (RF) (Rodgers et al, 

2016) (Pérez et al, 2020), Gaussian mixture models (GMM) (Venegas et al, 2019), support 

vector machine (SVM) methods (Pérez et al, 2020) (Curilem et al, 2014) (Apolloni et al, 

2009) (Lara-Cueva et al, 2016), and artificial neural networks (ANN) (Langer et al, 2006) 

(Curilem et al, 2009) (Scarpetta et al, 2005) (Curilem et al, 2009), have used with time, 

frequency or scale domain features to differentiate the seismic events. 

 Recently, in  (Pérez et al, 2020), a new descriptor to represent volcano seismic event 

signals using image processing techniques instead of classic seismic signal processing 

strategies was proposed. In such a method, the apparent differences in the pattern of 

spectrogram images of long-period (LP) and volcano-tectonic (VT) seismic events, as 

illustrated in Fig. 1,  are exploited, and features are computed using the intensity shape, and 

texture statistics from their corresponding gray-scale images. 

 On the other hand, convolutional neural networks (CNN) are particular ANN 

architectures that are gaining more attention in image analysis contexts (Shin et al, 2016) 

(Chauhan et al, 2018). They avoid using intermediate, fully connected layers to employ 
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pooling ones and thus optimizing the information pass-through from layer to layer. Lately, 

there is evidence of using deep CNN models to classify spectrogram images with successful 

performance (Curilem et al, 2018). Another well known deep learning architecture is the one 

based on recurrent neural network (RNN) where the information flows sequentially, it is 

shared between layers and kept as a factor for decision making during the weight calculations 

(Lecun and Bengio, 2015). The combination of both the CNN and RNN approach is quite 

possible, as it was demonstrated in (Wang et al, 2016) to classify different objects on 

individual images. However, the model growing is a vital aspect to take care of. As long as 

more internal layers are included in the desired model, more complexity is adding as well 

(Canziani et al, 2016).  

 Up to date, there are some deep learning-based approaches for object detection (Lecun 

and Bengio, 2015) (Wang et al, 2016), classification (Yu et al, 2015), and even tracking 

(Redmon and Farhadi, 2018) . But, there is a lack of research in the context of volcano 
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seismic event classification based on their spectrogram image. Therefore, in this work, we 

explore the use of six different deep learning architectures to classify LP and VT spectrogram 

images. The developed method used single and combined deep CNN and RNN architectures 

to maximize the Area Under The Curve (AUC ) of the Receiver Operating Characteristics 

(ROC) curve on a dataset of volcano seismic spectrogram images taken from the Cotopaxi 

volcano, in Ecuador. 
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MATERIALS AND METHODS 

Spectrogram images dataset 

 This work considered the use of a public dataset (MicSigV1) from the ESeismic 

repository, which contains several seismic event samples recorded at the Cotopaxi volcano 

(Pérez et al, 2020). Available at http://www.igepn.edu.ec/eseismic_web_site/index.php. 

 The MicSigV1 has a total of 1187 seismic records from two different seismic stations 

(VC1 and BREF) installed at the Cotopaxi volcano. This dataset contains samples distributed 

in five classes: LP, VT, regional (REG), hybrid (HB), and icequakes (ICE). Some examples 

of seismic events inside this dataset are shown in Fig. 1. Due to the small number of recorded 

samples from REG, HB, and ICE events, we considered only the LP and VT events classes 

from the MicSigV1 dataset. The selected samples belong to the same seismic station (BREF) 

to guarantee the same acquisition protocol and to avoid mixed signals. Therefore, the formed 

experimental dataset contains a total of 668 spectrogram images distributed in 587 and 81 

samples of LP and VT event classes, respectively. 

Deep-learning networks 

 Deep learning has given the ability to enhance computational models by including 

multiple layers to process large amounts of data and to improve the learning process. Thus, 

difficult problems regarding image classification and recognition in the past are presently 

easier to tackle. The deep CNN and RNN are two special deep learning models (Lecun and 

Bengio, 2015) (Wang et al, 2016), which are increasing their popularity on sequential data 

analysis and image labeling respectively. 

 The deep CNN is a multilayered approach of conventional convolutional neural 

networks that includes an input layer, a set of hidden layers (which could vary depending on 



14
the network architecture from two to hundreds of layers) and an output layer (fully connected 

layer). In deep CNN learning, each hidden layer is mainly composed of the CNN architecture 

core, consisting of at least the convolutional and max-pooling layers. Other configurations 

extend the basic scheme by adding dropout and flatten layers. This multi-layer structure 

enables the network to learn different data abstractions while transitioning from layer to layer 

until reaching the output result (Curilem et al, 2018). 

 The deep learning RNN is based on the classic feed-forward ANN architecture but it 

includes an extra working piece called loops in connections. In contrast to the feed-forward 

ANN, the RNN architecture processes the inputs in a sequential way considering a recurrent 

hidden state in which the current activation is dependent on the previous step activation. The 

main drawback is related to long-term sequential data, where the gradients tend to vanish 

during the training. However, there is a more sophisticated approach to design recurrent units 

and to avoid vanishing problems known as long short-term memory (Hochreiter and 

Schmidhuber, 1997). It allows for recurrent units to learn long-term dependencies which are a 

vital key when developing deep RNN models (Mou et al, 2017). 

Proposed method 

 We adopted both types of neural networks to build the proposed method on the bases 

of six different deep learning architectures, which are briefly described next: 

• DCNN1: this model is based on two convolutional layers with 16 filters and 3x3 kernel size 

each. Two max-pooling layers (one by each convolutional layer) with a pool size of 4x4, 

one flatten layer, and a fully connected layer (output) formed by two dense layers (32 and 1 

neurons). 
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• DCNN2: this model contains three convolutional layers with 32, 64, and 128 filters with a 

kernel size of 3x3each. Three max-pooling layers (one by each convolutional layer) with a 

pool size of 6x6 each, one flatten layer, and a fully connected layer (output) composed of 

three dense layers (32, 32 and 1 neurons). 

• DCNN3: this model uses two convolutional layers with 20 filters each, and kernel size of 

2x2 and 3x3, respectively. Two max-pooling layers (one by each convolutional layer) with 

a pool size of 3x3, one flatten layer, and a fully connected layer (output), containing three 

dense layers (32, 32, and 1 neurons). 

• DCNN-RNN1: this model combines two convolutional layers with 20 filters each, and 

kernel size of 2x2 and 5x5, respectively. Two max-pooling layers (one by each 

convolutional layer) with a pool size of 3x3, one flatten layer, one dense layer with 32 

neurons, one repeat vector layer with a repetition factor of 30 units, two long short-term 

memory (LSTM) layers the first one with 1024 recurrent units and input shape 30x32, and 

the second one with 512 recurrent units and a fully connected layer (output), containing 

three dense layers (32, 32 and 1 neurons). 

• DCNN-RNN2: this model uses three convolutional layers with 20 filters each and kernel 

size of 2x2, 5x5 and 5x5, respectively. Three max-pooling layers (one by each 

convolutional layer) with a pool size of 3x3, one flatten layer, one dense layer with 32 

neurons, one repeat vector layer with a repetition factor of 30 units, two LSTM layers: the 

first one with 1024 recurrent units and input shape 30x32, and the second one with 512 

recurrent units and a fully connected layer (output), composed of three dense layers (32, 32 

and 1 neurons). 

• DCNN-RNN3: this model uses three convolutional layers with 32 filters each, and with a 

kernel size of 2x2 each. Three max-pooling layers (one by each convolutional layer) with a 
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pool size of 3x3, one flatten layer, one dense layer with 32 neurons, one repeat vector layer 

with a repetition factor of 30 units, two LSTM layers with 512 and 256 recurrent units, an 

input shape of 30x32, and a fully connected layer (output), containing three dense layers 

(32, 32 and 1 neurons). 

Experimental Setup 

Spectrogram image preprocessing. 

 For all spectrogram images in the MicSigV1 dataset, we downscaled the image 

dimension to 50% of the original image size. Reducing the number of pixels per image will 

decrease the volume of information used to feed the learning models. This dataset provides 

spectrogram images without noise; therefore, the seismic event pattern presented on each 

image is invariant to the downscaling operation. This operation is widely used in image 

analysis context with deep learning (Curilem et al, 2018) (Eduardo et al, 2017).  Besides, the 

pixels values of each spectrogram image were normalized using the min-max method (Jain 

and Bhandare, 2011) to bring them into the range from $0$ to $1$, thus, avoiding data 

dispersion. 

 Additionally, we used a data augmentation technique to increase and balance the 

number of samples per class. The experimental dataset is distributed in 587 and 81 LP and 

VT seismic events, respectively. Thus, each spectrogram image was submitted through three 

operations, such as shearing, scaling, and rotation, as defined in (Mikołajczyk and 

Grochowski, 2018). Affinity transformations are widely used (Curilem et al, 2018) and 

allowed us to reach a total of 1108 spectrogram images, which reinforces the models learning 

process by training them with more samples per class, helping to avoid overfitting. 
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Training and test partitions. 

 The stratified 10-fold cross-validation method (López et al, 2006) was applied before 

the classification step to build disjoint training and test partitions, and to ensure the sample 

ratio between both types of events for all folds. Thus,  individual deep learning models were 

trained using different training sets, which enable it to learn from different input space 

representations. Testing on these different sets promotes trustworthy resulting variability in 

the classification of individual samples. 

 Deep architecture configurations 

 For all models, three main hyperparameters were configured to explore the proposed 

method limits. Thus, the number of iterations (epochs) was set from 50 to 150 with increment 

step of 50 units; the batch size was tuned to 16,32 and 64 units, and the learning rate used the 

adam optimizer, which is based on an adaptive estimation of lower-order moments (Kingma 

and Ba, 2014). This optimizer was designed to combine the advantages of the well-known 

optimizers AdaGrad and RMSProp (Kingma and Ba, 2014).  

 Validation metrics. 

 The classification performance of the proposed method was based on the AUC of 

ROC curve and Acuracy (ACC) metrics. The statistical comparison among all the 

classification schemes was conducted using the Wilcoxon statistical test, which ranks the 

differences in performances of two MLCs (Demšar, 2006). This test provides a fair 

comparison among them, and therefore a reasonable selection of the best classification 

model. We used a significance decision value of 5% (alpha =0.05) for a two-tailed test 

(Chicken et al , 2013) on all comparisons. 
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 Selection criteria. 

 Since the proposed method explored six deep learning architectures with different 

hyperparameter configurations,  the best model (output) was selected based on the following 

criteria: (1) the model with the highest AUC score statistically per architecture, (2) if there 

was a tie rating performance in AUC scores, the one with lower algorithm complexity is 

preferred, and (3) the highest AUC score statistically among all the selected models by the 

two previous rules. More than one model per architecture can be selected, if there is not a 

significant AUC based difference among the classification models. This exception is only 

valid for the intra architecture analysis. Thus, the proposed method provides only one 

classification model as output. 

 The implementation of the proposed method was done with Python programming 

language version 3.7.4 (Python Core Team, 2019) using scikit-learn (SKlearn) (Pedregosa et 

al, 2011),  Keras (Chollet et al, 2015) with ImageDataGenerator and  TensorFlow backend as 

well as sciPy for statistical analysis (Jones et al, 2001). 
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RESULTS AND DISCUSSION 

 According to the experimental setup section, a total of 54 deep learning models were 

evaluated using the experimental dataset. The obtained results are summarized next. 

Performance evaluation of the proposed model 

 The DCNN1 architecture provided seven out of nine classification models using the 

first selection criterion. This set of classifiers did not presented statistical differences in terms 

of AUC performance when comparing each other. The AUC range of variation was above the 

0.95, which is an outstanding classification threshold for any classification problem. 

Although the higher AUC score of 0.99 was reached by the model using a batch size of 32 

units and 150 epochs (iterations), the remaining models performed similarly statistically. 

According to the second selection criterion, the selected classification model in this 

architecture is the one implementing a batch size of 32 units, 50 epochs, and AUC score of 

0.98 (see Appendix A, bold line). 

 Likewise, DCNN2 architecture was able to produce six out of nine classification 

models that were similar statistically in AUC performances. The range of AUC variation in 

this set was between 0.71 and 0.79, which are not good enough scores to tackle the problem 
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at hand. The highest AUC score of 0.79 was reached by the model with 16 units of batch size 

and 100 epochs. But, the model composed of the same batch size and 50 epochs, which 

touched an AUC value of 0.71 was selected as the best model of this architecture, taking into 

consideration the second selection criterion (see Appendix A, bold line).  

 Similarly, in the DCNN3 architecture, a total of five out of nine classifiers were 

highlighted as classification models without statistical difference among them. The AUC 

scores varied from 0.90 to 0.94, which are considered reasonable scores in the context of 

spectrogram images classifications. The higher AUC value of 0.94 was obtained by the model 

composed of a batch size of 64 units and 50 epochs. However, there was another model using 

the same number of epochs respect to the highest model, batch size of 16, and AUC score of 

0.91, which was selected as the best model inside this architecture according to the second 

selection criterion (see Appendix A, bold line). 

 The combined classification models based on deep CNN and RNN architectures were 

the worst in terms of AUC performances. The three explored architectures provided AUC 

scores of 0.50 on all classification models, which means very poor schemes generalization. 

This effect is extremely linked to the number of samples employed during the models 

training. Despite using the data augmentation technique and 10-fold cross-validation method 

on the experimental dataset before feeding the classifiers, they incur in overfitting as it can be 

seen in Fig. 2. From this figure, it is possible to notice that the mean of the loss function 

never meets the established learning rate on these models, suggesting the inclusion of more 

samples in the training process. 

 The first two selection criteria clearly provided evidence of using classification 

models only produced by the deep CNN architectures. In opposite to the classification 

models formed by the combination of the deep CNN and RNN architectures, these three 
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models overcame the overfitting problem as it is shown in Fig. 2, where they performed over 

the 90% of the mean of ACC in the validation and the loss values were converging to the 

learning rate across the defined epochs. 

 Despite the good performance of these classification models, the best selection model 

in the DCNN2 based architecture reached an AUC and ACC scores of 0.71 and 90%, 

respectively. These values are statistically lower (p < 0.05) when comparing to the best model 

selection inside the DCNN3 architecture, which touched AUC and ACC scores of 0.91 and 

94%, respectively. The difference in performance is linked to the model complexity inherited 

from its architecture and the number of samples to train it. The DCNN2 architecture is the 

most complex among all the developed deep CNN architectures. Thus, it is very reasonable to 

interpret that this model needs more samples and epochs to learn the feature space properly 

(see Fig. 2, right plot). 

 Moreover, the selected classification model using the DCNN1 architecture provided 

the best performances on both validation metrics. It obtained scores of 0.98 and 95% for the 

AUC and ACC metrics, respectively. It statistically (p < 0.05) overcomes the performance of 

the remaining models (see Appendix A). This success is related to the DCNN1 architecture, 

which employed two convolutional layers with only 16 neurons (filters) per layer (lower than 

the DCNN3 architecture). Thus, it was able to learn from the provided features space 

satisfactorily (see Fig. 2, right plot). Regarding the third selection criterion, the selected 

classification model of the DCNN1 architecture constituted the proposed method output and 

the most appropriate classifier to face the problem of volcano spectrogram image 

classification. 
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State of the art based comparison 

 Although it is not possible to make a direct statistical comparison against the 

previously developed state of the art methods because they are based on traditional machine 

learning models versus deep learning models, and the experimental conditions are different as 

well. However, we aimed to carry out the comparison based on the ACC scores reported by 

them, as it is shown in Table II. 

The majority of presented machine learning models reached ACC scores ranging from 90 to 

97%, being the linear SVM and ANN the models which provided the higher classification 

performance. From Table II, it is possible to read the proposed method was similar and 

superior then several state of the art methods in terms of ACC scores. That was possible 

because deep learning-based approaches are able to learn data abstraction from layer to layer, 

using different mathematical functions. Meanwhile, machine learning methods, except for 
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nonlinear models like ANN, attempt to fit the data with a single mathematical function, 

which limited the learning ability. 

 On the other hand, the developed method in (Curilem et al, 2018), used a deep CNN 

model that achieved an ACC score of 97%. This result was superior when compared to the 

95% obtained by the proposed method. However, they classified four types of seismic events 

instead of two, like in this work. Also, they made the training-test validation using an 

extensive dataset, which provided a decent number of samples during the model learning.  
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CONCLUSIONS AND FUTURE WORK 

 In this work, we explored the use of six different deep learning architectures: three 

deep CNN (DCNN1, DCNN2, and DCNN3) and three deep CNN combined with deep RNN 

(DCNN-RNN1, DCNN-RNN2, and DCNN-RNN3) models, for the classification of LP and 

VT events on a dataset of volcano seismic spectrogram images from the Cotopaxi volcano, 

and used the AUC classification performance as the primary selection criterion. The deep 

CNN plus RNN based models reached the worst results due to the overfitting. This effect is 

due to the small number of samples per class employed to train these complex models. The 

DCNN1 was the best model when compared with the other deep CNN based models, 

obtaining AUC and ACC scores of 0.98 and 95%, respectively. Although these values were 

not the highest values per metric, they did not present statistical difference when compared to 

other models that were more complex algorithmically. Furthermore, the proposed DCNN1 

model showed similar or superior performance when compared to the majority of the state of 

the art methods in terms of the ACC metric. Therefore it can be considered as an excellent 

model to classify LP and VT seismic events based on their spectrogram images. 

 As future work, we plan to increase the number of samples per class to experiment 

with more complex architectures like the deep CNN+RNN models, which incurred in training 

over-fitting. We also plan to include other types of seismic events such as tremors and very-

long period. Finally, the hyperparameter configurations should also be increased to explore 

the limits of the implemented models. 
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