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RESUMEN

El tibur6on martillo festoneado (Sphyrna lewini) fue clasificado recientemente como una
especie en peligro critico en la lista roja de la UICN. A pesar de las disminuciones mundiales,
hay una falta de informacion sobre la situacién de esta especie en el Pacifico oriental tropical,
en parte debido a la falta de una vigilancia independiente de las pesquerias. El uso de material
de video puede ser una herramienta valiosa para desarrollar indicadores estandarizados, pero
el analisis de las imagenes puede ser muy laborioso. En este estudio, proponemos un nuevo
método automatizado basado en redes neuronales convolucionales profundas para detectar y
rastrear en secuencias de video a los amenazados tiburones martillo. El método propuesto
mejoré la arquitectura estandar de YOLOv3 deep, afiadiendo 18 capas mas (16 capas
convolucionales y 2 capas de Yolo), lo que aument6 el rendimiento del modelo en la
deteccion de las especies bajo andlisis a diferentes escalas. Segtin la validacion basada en el
andlisis de los fotogramas, el método propuesto supero la arquitectura estandar de YOLOv3
en cuanto a las puntuaciones de precision para la mayoria de los fotogramas inspeccionados.
Ademas, la media de precision y recordamiento en un conjunto de fotogramas experimentales
formado mediante el método de validacién cruzada de 10 veces manifestd que el método
propuesto era mejor que la arquitectura estandar de YOLOV3, alcanzando puntuaciones de
0.99 y 0.93 frente a 0.95 y 0.89 para la media de precisién y recordamiento, respectivamente.
Ademaés, ambos métodos pudieron evitar la introduccién de detecciones positivas falsas, pero
no pudieron resolver el problema de la oclusién de especies. Nuestros resultados indican que
el método propuesto es una herramienta alternativa viable que podria ayudar a vigilar la
abundancia relativa de los tiburones martillo en la naturaleza.

Palabras clave: Seguimiento y deteccion de tiburon martillo, detector en tiempo real, red
neuronal profunda, arquitectura YOLOvV3



ABSTRACT

Scalloped hammerhead sharks (Sphyrna lewini) were recently classed as Critically
Endangered on the IUCN Red List. Despite global declines, there is a lack of information on
the status of this species in the Eastern Tropical Pacific, partly due to inconsistent
fisheries-independent monitoring. The use of video footage can be a valuable tool to develop
standardized indicators, yet analysis of footage can be highly laborious. In this study, we
propose a new automated method based on deep convolutional neural networks to detect
and track endangered hammerhead sharks in video sequences. The proposed method
improved the standard YOLOv3deep architecture by adding 18 more layers (16
convolutional and 2 Yolo layers), which increased the model performance in detecting
the species under analysis at different scales. According to the frame analysis based
validation, the proposed method outperformed the standard YOLOv3 architecture in terms
of accuracy scores for the majority of inspected frames. Also, the mean of precision and
recall on an experimental frames dataset formed using the 10-fold cross-validation method
highlighted that the proposed method was better than the standard YOLOV3 architecture,
reaching scores of 0.99 and 0.93 versus 0.95 and 0.89 for the mean of precision and recall,
respectively. Furthermore, both methods were able to avoid introducing false positive
detections.However, they were unable to handle the problem of species occlusion. Our results
indicate that the proposed method is a feasible alternative tool that could help to monitor
relative abundance of hammerhead sharks in the wild.

Keywords: Hammerhead shark detection and tracking, real-time detector, deep convolutional
neural network, YOLOv3 architecture.
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INTRODUCTION

Object detection and tracking play an important role in real world applications
such as: surveillance (Raghunandan et al., 2018), aiding people with physical disabilities
(Dionisi, Sardini, & Serpelloni, 2012), microscopic examination (Wang et al., 2019) and
marine species analysis (Xu, Bennamoun, An, Sohel & Boussaid, 2019). Monitoring of
marine species has been carried out widely during the past decade, but the associated
analytical tasks rely heavily on the biologists, which could introduce errors by the manual
process. Implementing automated detection and tracking systems can mitigate these errors by
reducing human interaction with the environment and providing a second opinion tool for

biologists on a range of applications.

Advances in machine learning topics and especially deep learning using convolutional
neural networks (CNN) are significant in object detection (Liu et al., 2016), (Redmon,
Divvala, Girshick & Farhadi, 2016), (Redmon & Farhadi, 2017), (Redmon & Farhadi, 2018),
(Voulodimos, Doulamis, Doulamis & Protopapadakis, 2018) and (O’Mahony et al., 2019),
where they have proven to outperform traditional machine learning methods in accuracy and
speed metrics. These improvements make such algorithms favorable for using them in

real-world applications.

Automated marine species detection and tracking constitute a vital area of application
due to the need to track the population status of threatened and endangered species in the
aquatic ecosystem. In (Maire, Alvarez & Hodgson, 2015), a method based on region
segmentation was proposed, which included deep convolutional neural networks (CNN) to
improve the recall and precision metrics in detecting marine mammals. The method was

tested using a dataset of aerial images retrieved from wildlife surveys. In (Xu et al.,
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2019), a study using more complex computer vision techniques in conjunction with
deep CNN models was proposed to detect and classify different species of fish. In
(Uemura, Lu & Kim, 2020), the YOLO method was implemented to detect and track marine
organisms, including sharks.The method obtained satisfactory results when it was tested in
deep-sea videos. Furthermore, in (Raza, & Hong, 2020), an improved version of the YOLOv3
method was proposed for detecting fish and sharks, which overcame the standard method in

the mean of precision score performance.

One shark in particular, lends itself to the development of species recognition
techniques due to its unique body shape. The scalloped hammerhead shark (Sphyrna lewini)
is a medium sized coastal-pelagic shark that can attain a size of over 4 m (but usually not
more than 2-3 m) (Rigby et al., 2019). It has a circumglobal distribution and is thought to be
divided into several genetically discrete populations, among which the Eastern Pacific
population (from Baja California (USA) to northern Peru) is under considerable threat from
fishing activity, and is the main source of hammerhead shark fins in Hong Kong markets
(Fields, Fischer, Shea, Zhang, Feldheim, & Chapman, 2020). Hammerhead sharks, along with
all other shark species, are not officially targeted in countries such as Costa Rica and
Ecuador, yet a legal loophole allowing for the sale of sharks caught as ”by-catch” has resulted
in at least 200,000 sharks landed each year in Ecuador alone (Hearn & Bucaram, 2017),
(Martinez-Ortiz, Aires-da Silva, Lennert-Cody & Maunder, 2015). Both Ecuador and Costa
Rica have made efforts to protect their marine biodiversity, notably the creation of marine
protected areas (MPAs) around their oceanic islands of Galapagos and Cocos respectively.

However, scientists have found that hammerheads migrate between the reserves,
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becoming wvulnerable to fishing pressure once they leave protected waters (Hearn et al.,

2014).

In late 2019, the red listing status for the species as a whole was amended
from “Endangered” to ”Critically Endangered” (Rigby et al., 2019). As yet, neither reserve
has a formal process for evaluating the population trends for sharks, but diver observations
over a > 20 year period at Cocos Island suggested severe declines in numbers
(Pefiaherrera-Palma et al.,, 2018), while a study of dive guide perceptions in the
Galapagos Islands obtained similar results (Pefiaherrera-Palma et al., 2018). There is a need
to develop low cost, standardized tools to evaluate their trends in reserves where fishing
is not permitted, and thus landings data not an option. In recent years, several tools
have been developed which involve the use of video footage, either operated by
SCUBA divers or remotely (White, Myers, Flemming & Baum, 2015), (Acufia-Marrero,
Smith, Salinas-de-Ledén, Harvey, Pawley & Anderson, 2018), (Bouchet & Meeuwig, 2015).
However, the analysis of the resulting footage can be labor-intensive and would benefit

greatly from automation.

The study of marine species has many problems such as object occlusion, blurring,
poor lighting conditions, focus variations to the object, and projection against the
sunlight. Despite the recent advances in machine learning applied to the marine
environment, detecting, classifying and tracking marine species remain challenging to

tackle because of the uncontrolled environment associated with these tasks.

In this study, we propose a new automated method based on a deep CNN
architecture to detect and track hammerhead sharks in video sequences recorded at the

Galapagos and Coco Islands. The proposed method improved the standard YOLOv3 deep
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architecture (Redmon & Farhadi, 2018) by including 18 more layers, which increased
the model performance in detection and tracking of the species under analysis. With this
approach, the biology research community could have a viable tool to help them analyze this

shark species.

The remainder of this paper is organized as follows: the Materials and Methods
section, presents the hammerhead shark video database used for our experimentation, a brief
description of the standard YOLOv3 deep architecture, the proposed method and the
experimental setup designed to evaluate it. The Results and Discussion section presents a
head-to-head comparison based on the accuracy (ACC), precision, recall, and mean of loss
function scores, between the standard YOLOvV3 deep architecture and our proposed method.

Finally, conclusions and future work are discussed in the last section.
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MATERIALS AND METHODS

Yolov3 framework

This method is a recent deep neural network used for object detection and
real-time tracking (Redmon & Farhadi, 2018). Its core consists of abackbone network
named Darknet-53 for feature extraction, and YOLO layers for predicting the
bounding box of desired objects at three different scales. That means, it is possible to
detect little and large objects at the same time, becoming a powerful architecture in the

context of object detection.

The Darknet-53 network is composed of residual blocks, containing convolutional
layers inside. These blocks serve mainly as feature extractors and since this network needs to
explore the whole feature space from block to block, it does not involve any max-pooling
layer in its configuration. On the other hand, the YOLO layers are composed of 7
convolutional layers, and 3 upsampling layers between the convolutional ones, to scale up the
input RGB (red, green, blue) images with dimensions of (416 x 416 x 3) at each time. A brief

description of the YOLOV3 architecture is shown in Fig. 1.

This architecture has demonstrated to be competitive in object recognition
against other developed methods. Even though it is considered a heavy architecture that
consumes significant resources, it is more efficient than ResNet-101 or ResNet-152; it is
three times faster than the SSD (Single Shot Detector neural network) and its variants.

Additionally, it is similar in performance to the RetinaNet on the COCO dataset.
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Proposed method

Detecting and tracking marine species, such as hammerhead sharks, is
considered to be a challenge. Although the shark silhouette is easy to recognize, there are
uncontrolled environmental conditions such as poor lighting, occlusions by non-desired fish
species, projection against the sunlight, among others, which make the task difficult. To
overcome this, we proposed a new method, which improved the YOLOvV3 standard
architecture by including 18 more layers. This improvement aims to detect and track

the hammerhead sharks species accurately.

An overall perspective of the developed method is shown in Fig. 2. From this,
it is possible to notice that our method combined the standard YOLOv3 architecture
(see Fig. 1) plus some specific layers designed to tackle the problem under analysis.
The major improvement over the standard YOLOv3 architecture was resizing the input
images, which passed from (800 x 422 x 3) to (608 x 608 x 3) dimensions. The remainder of
the method consists of attaching some layers at the end of the standard YOLOvV3 architecture
distributed in the following order: 7 convolutional layers as feature extractors, and 1
upsampling layer to scale up the input image size, both inclusions with similar
configurations to the standard YOLOv3 architecture, 1 YOLO layer for predicting a set of
bounding boxes at the new scale. This structure was repeated one more time to complete the

designed architecture, which accomplished a total of 18 added layers.

It should be noted that the YOLO layers in the proposed method were set to perform
at the 4th and 5th scales, respectively. Also, the anchor box size on both layers was tuned to
be smaller than the one employed by the standard YOLOv3 architecture (see Fig. 2). This

property represents the ideal size and location of predicted objects in the image, in this case,
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hammerhead sharks. Thus, the better the property adjustment, the better bounding box
prediction, independently of the object size. In contrast, this property in the standard

YOLOV3 architecture is pre-determined for the COCO dataset (Lin et al., 2014).

Since the standard YOLOV3 architecture is configured to detect medium-large
objects, adding these improvements enabled the proposed method to detect smaller objects as

well, which increases the model’s learning rate and thus improves the real-time detection.
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Shark database

We used three footage sources as our main shark database. These sources were filmed
at the Galapagos [0” 39’ 59.99” N 90" 32’ 59.99” W] and Coco [5” 31’ 4.79” N "87" 04’
10.80” W] Islands, both located in the Eastern Tropical Pacific Ocean and administered by
Ecuador and Costa Rica, respectively. Both sets of islands are surrounded by marine reserves
and are UNESCO World Heritage Sites due to their outstanding biodiversity, including large

aggregations of several shark species.

The video footage used in this study is mostly of scalloped hammerhead sharks, but
other marine species, including other sharks, also feature in the same video samples. The
duration of each sample varied between 30 to 50 seconds, the recording format was file.mp4
at 24 fps (frames per second) and they were taken by biologists in uncontrolled environments.
That means, the sharks are far from the camera lens, the illumination is poor and the
projection view is against the sunlight most of the time, thus we used footage that might be

considered typical quality from non-professional film crew with underwater cameras.

Experimental setup

This section describes the experimental setup created to validate the proposed deep
learning architecture. The video preprocessing and dataset creation, training and test

partitions, anchor box values and validation metrics are aspects to be presented next.

Video pre-processing and dataset creation

This step aims to provide the needed samples of hammerhead shark species to form an

experimental dataset that will serve to train and test the proposed method. Thus, for all videos
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in the database, we applied a decoding operation to extract all the frames contained by the
video source by using the ffmpeg framework (FFmpeg developers, 2016). Eachvideo
sequence of 50s of duration at 24fps provided 1200 frames. However, we discarded around
50% of frames by removing those who are too blurry or contain species occlusions. After

processing the videos, we gathered a total number of 1012 valid frames.

Since the number of collected frames does not fulfill the need to have enough
samples for training deep learning models without incurring on overfitting, a data
augmentation technique (Curilem, Canario, Franco & Rios, 2018) was applied to increase the
number of frames containing hammerhead sharks. Thus, each frame was rotated by 30,
45 and 210 degrees to form an experimental dataset containing a total number of 2000
frames with dimensions of [800 x 422]. Besides, a labeling operation was carried out on the
frames tomark the regions that belong or not to the hammerhead shark class. This operation
provided an annotation file, in which each row contains information about the bounding
box and output class label of each marked region within the frame. Both the
experimental dataset of frames and its corresponding annotation file are mandatory to train

the standard YOLOv3 model and thus, the proposed method.

Training and test partitions

We applied the stratified 10-fold cross-validation method (Purushotham & Tripathy,
2011) to build disjoint training and test partitions. In this way, the proposed method is trained
using different training sets, which enable it to learn from different input space
representations. Testing on these different sets encourages the resulting variability in the

classification of individual samples. The use of this method helps to avoid overfitting.
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Anchor box values

These values were determined experimentally by observing the smallest hammerhead
sharks of interest across all images (frames) of the experimental dataset. This process allowed
us to estimate the dimensions (in pixels) of observed samples. With this information, the
objectness score parameter was computed, which was set to the YOLO layers in the
proposed architecture. The objectness score manages whether or not found

hammerhead shark objects are presented in the frame under analysis (Christiansen, 2018).
Validation metrics

A video source that was not considered during the model’s training step was used to
test the proposed method in real-time. The performance of the method was based on the
accuracy (ACC) of hammerhead sharks detection and tracking across a set of retrieved
frames of the test video. A variation of this validation protocol was previously used in (Sung,
Yu & Girdhar, 2017) to assess fish detection in real-time. Thus, we established a three-step

procedure for conducting the evaluation:

Selecting nine frames (empirical selection) in the test video starting at time 0 to the

video duration (vd) with an increment factor determined by the following splitting time (sp)

formula: sp = truncate(‘gd ). Counting the number of correct hammerhead shark detections
out of the total presented in the current frame under analysis. Tracking the hammerhead
sharks by counting how many of them were correctly detected across all the inspected

frames.
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Additionally, for the head-to-head comparison between the proposed method
and the standard YOLOV3 architecture, we computed the mean value of the precision,

recall, and loss function, using the 10-fold cross-validation method in the training-test steps.

All implementations were done in Python language version 3.5 (Van Rossum &
Drake, 2009) with the scikit-learn (SKlearn) (Pedregosa et al., 2011), Pytorch version 0.4
(Paszke, 2019), OpenCVversion 4.0.2.32 (Bradski, 2000), Numpy (Oliphant, 2006) and
scikit-image (SKimage ) (Walt et al., 2014) libraries, and using Darknet (Redmond, 2013)

as backend.
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RESULTS AND DISCUSSIONS

According to the experimental setup section, we validated the detection
performance of the proposed method in a real-time scenario by analyzing nine frames
recovered from the employed test video. Also, the head to head comparison against
the standard YOLOV3 architecture was made using the 10-fold cross-validation method
applied to the experimental dataset of frames. The obtained ACC, mean of precision,
recall, and loss function scores revealed interesting results in detecting hammerhead
sharks.

Performance of the proposed method

Regarding the detection performance of hammerhead sharks using the frames
analysis, the proposed method was able to detect the target species with ACC scores
above 50% for the majority of inspected frames as it is shown in Table I. Onlythe frames
with ID 4, 5, and 7 provided a lower ACC score of detection. These results could
be explained by the filming conditions associated with the marine environment, where
camera movements and projections against the sunlight are common issues. In all videos of
the database, the hammerhead sharks performed random trajectories by approaching and
moving away from the camera lens. This behavior provoked either the distortion or blurring

of the targets and, consequently, the failure of detection.

Two additional factors contributed to non-detection of sharks: the partial shape
of the shark in the frame, and the target occlusion by other marine species (see Fig. 4).
For example, at the top of the frames with ID 1 and 3 (Fig. 4 top row), there was one

hammerhead shark showing half of its silhouette. Although it was close to the camera lens
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like other sharks, which were captured in the frame, this one was not considered by the
proposed method. In terms of occlusions, the proposed method failed to detect several
hammerhead sharks in the range of frames with ID from 4 to 8 because fishes occluded them.
However, in the frame with ID 3, one hammerhead shark was identified without taking into
consideration the other closest fish (see Fig.4), (frame ID 3, middle-right target). This
situation occurs when sharks look bigger than fishes. In contrast, when fishes look similar in
size than the sharks, the detector was not activated like in the frame with ID 6 (see Fig. 4, at
the center), which is a good sign of performance. Similarly, the fishes in the frames with
ID 7 and 8 are in between the camera lens and the hammerhead sharks, but the
detector focused only on the sharks while ignoring the fishes (see Fig. 4). Finally, in
the last frame with ID 9, there was only the presence of a fish. As it was expected, the
proposed method did not record any detections. Thus, it did not introduce false-positive

detection on any of the inspected frames, which is an excellent detection performance.
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Frame Time Number of sharks per frame Correct detection ACC based detection (%)
(ID) (s) () YOLOv3 Proposed method YOLOv3 Proposed method
1 2 11 0 7 0 64
2 4 9 0 6 0 67
3 6 10 0 6 0 60
4 8 10 2 2 20 20
5 10 7 2 3 29 43
6 12 6 3 4 50 66
7 14 4 1 1 25 25
8 16 4 2 2 50 50
9 18 0 0 0 100 100

Table I Comparison based on the acc per frame between the proposed method and implemented Yolov3
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0.70
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Figure 3 Performance of the proposed method and the standard YOLOV3 architecture in terms of the mean of
precision and recall (left) and mean of the lossfunction (right) over ten folds
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Head-to-head comparison against the YOLOv3 framework

Concerning the detection of hammerhead sharks using the frames validation, the
performance results on both implemented methods can be seen in Table I. From this
table, it is possible to see that the proposed method outperformed the standard
YOLOv3 architecture. These results could be related to the internal configuration of
each method. The proposed method added 18 more layers, including convolutional units
(convolutional and upsampling layers), and two Yolo layers for predicting bounding boxes
at scales fourth and fifth, which are missing in the standard YOLOv3 architecture.
The inclusion of these layers enabled the proposed method to detect hammerhead sharks of
different sizes. For example, by analyzing the first three frames, the proposed method was
able to detect 19 versus 0 (by the YOLOvV3 architecture) out of 30 hammerhead
sharks presented on those frames. However, both methods were unable to overcome
the problem of occlusions by other sub aquatic species. A visual comparison between

both methods on the nine recovered frames of the test video is shown in Fig. 4 and 5.

We also compared both methods by analyzing the mean of precision and recall
metrics using the 10-fold cross-validation method on the experimental frames dataset.
The precision measured the model’s ability to predict the shark bounding boxes
correctly. Meanwhile, the recall provided the model’s importance to detect the sharks
in the frames appropriately. Thus, the higher the precision and recall scores, the better
performance of the model. The obtained results, according to both metrics, are shown in Fig.
3, left plot. From this figure, we can state that the precision and recall values of 0.99 and 0.93
reached by the proposed method were superior to the precision and recall scores of 0.95 and

0.89 attained by standard YOLOV3 architecture.Further, neither model incurred in
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overfitting during the training processes. The mean of the loss function of both
methods decreased across the epochs to meet the learning rate value, as can be seen in Fig. 3,

right plot.
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Figure 4 Performance of the proposed method across the frames under analysis: successfully (green box)
hammer shark detection in a test video

Figure 5 Performance of the YOLOv3 method [8] across the frames under analysis: successfully (green box)
hammer shark detection in a test video.
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CONCLUSIONS AND FUTURE WORK

In this study, we developed a new automated method based on deep CNN architecture
to detect and track hammerhead sharks in video sequences recorded at the Galapagos and
Cocos Islands marine protected areas. The proposed method improved the standard YOLOv3
deep architecture [8] by including 18 more layers (convolutional and Yolo layers),
which increased the model performance in detecting the species under analysis at different
scales. According to the frame based validation analysis,the proposed method outperformed
the standard YOLOv3 architecture in terms of ACC scores for the majority of
inspected frames. Concerning the mean of precision and recall on an experimental
dataset of frames constructed using the 10-foldcross-validation method, the proposed
method was better than the standard YOLOV3 architecture, reaching scores of 0.99 and0.93
versus 0.95 and 0.89 for the mean of precision and recall, respectively. It should be stated that
both methods were able to avoid introducing false positive detections. However, they
were unable to handle the problem of species occlusion. These results provided clear
evidence that the proposed method improved the hammerhead sharks detection while
outperforming the standard YOLOv3 architecture, enabling it as a feasible alternative tool to

help the analysis of this shark species in the wild
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