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Resumen

El virus Zika (ZIKV) codifica para la protéına NS5, la cual se conoce como un antagonista
potente y espećıfico de la señalización de interferón (IFN). ZIKV NS5 se ha asociado con
la degradación proteosomal del transductor de señal y el activador de la transcripción 2
(STAT2), aunque el mecanismo completo aún se desconoce ya que los estudios experimen-
tales sugieren que dominios diferentes a Mtase contribuyen a la degradación de STAT2.
Se ha empleado estudios de modelado molecular, acoplamiento y dinámica molecular para
explorar en detalle las caracteŕısticas dinámicas y estructurales del complejo NS5, STAT2
y NS5-STAT2, aśı como los residuos clave involucrados en la interacción NS5-STAT2. En
este estudio, se ha validado un modelo tridimensional de STAT2 (C-score = -0.62) que
no se ha informado experimentalmente. Del mismo modo, un complejo NS5-STAT2 se
ha detallado entre varios modelos a través de la enerǵıa total de estabilización de -77.942
kcal·mol−1 y una enerǵıa libre de enlace de Gibbs de -4.30 kcal·mol−1. Los resultados han
revelado que la interacción se limita a tres dominios conocidos como N-terminal de STAT2
y Mtase-Thumb de NS5 que se ubican en las regiones ordenadas de ambas protéınas. Los
residuos clave que intervienen en la superficie de interacción con la frecuencia más alta se
estabilizan mediante interacciones electrostáticas, interacciones hidrófobas, puentes sali-
nos e interacciones iónicas. Por lo tanto, nuestro hallazgo respalda las observaciones
preliminares experimentales informadas en la literatura y ayudará en los esfuerzos de
diseño de medicamentos contra ZIKV NS5.

Palabras clave: Zika virus · NS5 · STAT2 · Dinámica Molecular · Docking.
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Abstract

Zika virus (ZIKV) encodes NS5 protein which is known as a potent and specific antago-
nist of Interferon (IFN) signaling. ZIKV NS5 has been associated with the proteosomal
degradation of signal transducer and activator of transcription 2 (STAT2), although the
complete mechanism is still unknown since experimental studies suggest that additional
regions to Mtase domain may contribute the STAT2 degradation. It has been employed
molecular modeling, docking and MD studies to explore into detail the structural and
dynamic features of NS5, STAT2 and NS5-STAT2 complex as well as the key residues in-
volved in NS5-STAT2 interaction. In this study, it has been validated a three-dimensional
model of STAT2 (C-score=-0.62) which has not been reported experimentally. Likewise,
a docked complex NS5-STAT2 has been detailed among several models through the to-
tal stabilizing energy of -77.942 kcal·mol−1 and a Gibbs binding free energy of -4.30
kcal·mol−1. The outcomes have revealed that interaction is limited to three domains
known as N-terminal from STAT2 and Mtase-Thumb from NS5 locating in the ordered
regions of both proteins. Key residues involved in the interaction surface with the high-
est frequency are stabilized by electrostatic interactions, hydrophobic interactions, salt
bridges and ionic interactions. Therefore, our finding supports the experimental prelim-
inaries observations reported in the literature and will help in the drug design efforts
against ZIKV NS5.

Keywords: Zika virus · NS5 · STAT2 · Molecular Dynamics · Docking.
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Chapter 1

Introduction

Since 2015, the outbreak of Zika virus (ZIKV) in Central and South America has become

a worldwide health concern. Therefore, the World Health Organization (WHO) has de-

clared ZIKV infection as a disease of international public health emergence because during

pregnancy has been associated with neurological disorders. It has been associated with

congenital diseases that may cause severe disabilities such as microcephaly, Guillain-Barré

syndrome, and destruction of neural cells [1], [2], [3], [4], [5].

Zika virus is a mosquito-borne flavivirus that has a genome of single-strand positive

RNA of 10 kb that encodes ten proteins classified into three namely the envelope (E),

membrane precursor (PrM), and capsid (C) which contribute to the viral particles, and

seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) which

contribute to viral replication [1], [2], [4], [5]. NS1, NS3, and NS5 are large and highly-

conserved proteins while NS2A, NS2B, NS4A, and NS4B are small and hydrophobic [4],

[6]. Among NS proteins, NS5 is the largest viral protein with a weight of ∼103 kDa

and consists in two principal domains known as the methytransferase (Mtase) domain

containing the first 264 amino acid at the N-terminal portion of NS5, followed by a

short linker that connects to the RNA-dependent RNA polymerase (RdRp) domain (275-

903 aa) [5], [7]. The Mtase domain is related with the decrease of host innate immune

response and promotes the translation of the polyprotein through the addition of 5’ RNA

cap structure. The RdRp domain is required for the initiation and elongation of RNA
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synthesis [2], [7]. The viral response in the human cells is set up by intracellular pattern

recognition receptors (PRRs) which are proteins that recognize viral pathogen as viral

RNA, DNA or protein in the type I interferon (IFN) signaling. This recognition induces

activation of innate immune signaling, leading to the up-regulation of IFN-stimulated

genes (ISGs). Various strategies of IFN antagonism had been described for flaviviruses

such as Dengue virus (DENV), West Nile virus (WNY), Yellow Fever virus (YFV) [8].

However, flaviviruses share replication strategies based on the formation of a polyprotein

which can inhibit transcriptional activation of IFNs and ISGs during virus infection [9],

[10], [11]. In this vein, NS5 is considered as a potent and specific antagonist of type I IFN

signaling [4], [8], [12].

Signal Transducer and Activator of Transcription 2 (STAT2) is a protein within the

pathway of type I IFN in mammalian cells that has the capability to transduce signals

from the cell membrane to the nucleus to active gene transcription as ISGs [13]. STAT2 is

stimulated by cytokines, including interferons and interleukins as IFNα and Janus Kinase

(JAK) proteins which through the phosphorylation of tyrosine (Tyr) residue allows access

to STAT2 [14]. A phosphorylated complex is formed with STAT2 which is bound to in-

terferon receptor 9 (IRF 9) and STAT1, and forms a ternary complex known as IFN-gene

factor 3 (ISGF3). ISGF3 complex translocates into the nucleus which binds a section of

DNA sequence called IFN-stimulated response element (ISRE) [14]. Finally, this latter

permits the transcription of ISGs genes which will block viral infection through antiviral

proteins known as type I IFN [15]. In contrast, STAT2 can be inactivated by negative

regulators as cytokines, phosphatases or other proteins in degradation pathway as for in-

stance through ubiquitin-proteosome [13], [16]. STAT2 consists of an N-terminal domain

(1-138 aa), Coiled-coil domain (139-315 aa), DNA binding domain (316-485 aa), Linker

domain (486-574 aa), SH2 domain (575-679 aa), Phosphotyrosyl tail segment (680-697

aa) and Transactivation domain (698-851 aa). Moreover, STAT2 conserves a Tyr residue

at the C-terminus that supplies the phosphorylation for its activation and generates in-

tramolecular interaction with its dimer partner at the SH2 domain [13], [16]. However, it

has also been reported the lacks of a second conserved phospho-amino acid residue at the
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Transactivation domain, as it has been observed in others STAT protein [13].

ZIKV NS5 has been associated with inhibition of type I IFN during the host antiviral

response, because it may promote the proteosomal degradation of STAT2. This latter

brief description has been substantiated by different experimental studies which have de-

termined that strains of ZIKV antagonize type I IFN where NS5 reduces the STAT2 level

and prevents the translocation of STAT2 from cytoplasm to nuclei in immunoprecipita-

tion essays in 293T cells [8]. Consequently, there is inhibition of the IFN induction of the

ISG [8]. In others test, STAT2 levels have been compared in cells express each of the two

functional domains of NS5. The comparison has showed that with only the Mtase domain

expressed, the levels of STAT2 degradation were higher, while with only RdRp domain

expressed, the levels of STAT2 degradation were negligible [11]. On the other hand, the

Mtase domain in full-length NS5 has showed incapability to induce the STAT2 degra-

dation, suggesting that other regions of the protein NS5 may contribute to degradation

mechanism [11]. Therefore, a deficiency of STAT2 carries that patients will have a con-

siderable susceptibility to viral infections since there is a deregulation in response genes

of IFN pathway with antiviral activity [14]. Another essays where have been reviewed the

interaction with other possible proteins in the pathway of type I IFN have shown that

reduced STAT2 levels associated to ZIKV infection, are independently of the presence of

a protein such as ubiquitin ligase UBR4 or ubiquitin-specific protease USP 18, hence the

interaction between STAT2-NS5 is directly related with degradation of STAT2, although

the complete mechanisms are still unknown [8], [9], [10], [11].

Additionally, a factor that must be taken into account in the interaction among pro-

teins is the phosphorylation. In NS5 may play an important role in the association with

cellular kinases [17]. The residues such as serine (Ser), threonine (Thr) or tyrosine (Tyr)

are phosphorylated to convert NS5 from a non-phosphorylated to phosphorylated state

[18], [19]. In fact, experimental studies performed in nuclei of infected cells suggest that

NS5 phosphorylation may regulate the viral replication, nuclear transport, the expression

of host genes in response to viral infection or may control the interaction with proteins

such as NS3 [17], [20]. Indeed, it has been demonstrated that a hyperphosphorylated
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state of NS5 at Ser affects the interaction with NS3 [19]. Otherwise, in order to form

homodimers or heterodimers, STAT2 needs to be activate by phosphorylation on Tyr [9],

[21]. Studies have shown that phosphorylated regions of amino acid 148-324 in STAT2 and

217-377 in IRF9 are employed to interact and form a complex [22]. Furthermore, the bind-

ing between DNA and STAT2 takes place after Tyr phosphorylation [23]. Therefore, the

phosphorylation processes determine the function in the proteins, however in this study

will be used non-phophorylated forms of NS5 and STAT2 because the computational cost

is low.

A complete understanding of the mechanism of interaction between NS5-STAT2 com-

plex has proved to be difficult to obtain experimentally. However, the combination of

different computational tools such as homology modeling to predict validate structures,

molecular docking which is used to predict the binding interactions between ligand and

receptor, and molecular dynamic (MD) simulation that has been used to describe the sta-

bility, strength and flexibility of binding between complex permit to develop a complex

structure with a clear binding mechanism that could lead to significant advance in the

understanding of NS5-STAT2 complex and would open a gate to future studies in the

potential therapeutic intervention to treat ZIKV infections [24], [25]. Besides, the key

binding site locations between NS5 and STAT2, and whether they participate or not in

the formation of the complex may be elucidated by using a computational approach. The

aim of the present study is to elucidate the potential role and mechanism of the NS5-

STAT2 interaction involved in the process of infection by ZIKV pathway of type I IFN.

For this purpose, several computational methods such as homology modeling, docking

studies and Molecular Dynamics (MD) simulation were used.
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Chapter 2

Literature review

2.1 Protein structure modeling

Three-dimensional structure of proteins describes countless features over their biological

and physical-chemistry functions. Great efforts have been made to determine the pro-

tein structure using experimental methods. However, these approaches are not always

applicable or the cost and time consuming are still elevated. Therefore, computational

methods has been developed to predict three-dimensional structures from its amino acid

sequence therewith has someway allowed to overcome the divergence between the number

of sequences and three-dimensional models [26], [27].

2.1.1 Modeling method

Four different strategies have been used to produce a three-dimensional model. The first

is homology modeling which uses experimental structures of related protein as template in

order to model the target protein. It is usually most accurate approach. Second is the fold

recognition and threading methods which are employed when a target sequence is totally

new with respect to proteins with known structure. Third is based on ab initio methods.

The models are generated using physics properties or through only information of known

structures. Fourth is a group of methods that combine a set of computational and ex-

perimental information and use the principles of the three approaches before mentioned
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[27]. Several programs and web servers have implemented this latter method through five

sequential steps using as base the comparative modeling method.

2.1.2 Step 1: Searching structures

Searching of structures that are related with a target sequence are performed in differ-

ent ways. Pairwise sequence-sequence comparison and fold assignment is implemented

in programs as BLAST that compares the target sequence with each sequence in the

databases, but it is not efficiency. In order to improve the sensitivity of searching, it is

used the multiple alignment between the target sequence and multiple sequences. The

program PSI-BLAST is usually employed to perform multiple alignment with a target

sequences, for this purpose, it has implemented a heuristic search algorithm that looks for

short motifs [26]. Likewise, the location of universal conserved motif among sequences has

also been implemented with the profile-based Hidden Markov Models (HMM) algorithm.

Other programs as COACH and FFAS03 increase the sensitivity of these approaches [26].

On the other hand, a second class of methods known as threading or fold assignment have

been promoted to compare a sequence with a protein structure by a pairwise compari-

son. Here, it is used a library of 3D folds against the target sequences allowing to locate

sequences that are barely related with known sequences [26], [27].

2.1.3 Step 2: Selecting templates

The step 1 generates a list of templates, but they need to be classified for the target

sequence. One straightforward rule is the selection of structures with the highest sequence

similarity. Multiple alignment or phylogenetic tree aids in the selection of templates since

they increase the model accuracy. Likewise, complex methods of selection have been

detailed using energy or scoring function which are much more accuracy. However, factors

in the selection of templates such as quaternary interactions, ligands, pH or solvent should

be considered when it is chosen a template [26].
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2.1.4 Step 3: Building model

With the selection of a template, an initial model must be built, at this stage it is necessary

to classify into templates-dependent and template-independent modeling [26].

Templates-dependent modeling

Different methods are proposed for modeling structures for instance assembly of rigid

bodies, coordinate reconstruction, spatial restraints or combining structures. However,

all of them are based on a template those features in the structure is employed as a

framework to new model. For instance, an assembly of rigid bodies uses small number

of rigid bodies from template to build a comparative model. The use of more template

structures increases the accuracy of model. Another example is through spatial restraints

in that the new model is built according to experimental-derived restrains. Alongside

stereo-chemical restrains which are derived on bond lengths, bond and dihedral angles,

and nonbonded contacts from molecular mechanics force field [26].

Templates-independent modeling

Target sequences that structurally have different regions or there is not information about

a segment as surface loops with respect to template structures. These loops are considered

functional sites as regions of binding for proteins and provided information about their

local fold [26]. Besides, they usually represent gaps in the template when it is aligned

with target sequence. Hence, it is appropriate to build the model without the aid of any

template [26]. The modeling of loops are led in two approaches, which are fragment-based

and ab initio modeling. The first uses a database of loops conformations where fragments

are selected from a library. Fragments selected should satisfied geometrical restrains to fit

inside of the target structure. However, this approach is limited, consequently searching

methods are used to loop prediction such as molecular dynamics simulation, Monte Carlo

simulation or self-consistent field optimization among others [26].
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Step 4: Refinement

An initial model must be refined in order to improve the bond geometry or remove steric

clashes. For that, it is used an energy minimization step by way of several approaches

such as molecular mechanics force fields, molecular dynamics, Monte Carlo or genetic

algorithms [27]. An example of refinement is using Monte Carlo sampling that is focused

on regions with errors while remain structure (backbone and side chains) has been relaxed

in an all-atom force field [27].

Step 5: Evaluation

This last step checks the possible errors that may have a new model. Hence, the quality

of model can be examined from the sequence similarity with the template or with inter-

nal and external evaluations [26], [27]. Internal evaluation examines the model according

to restrains used to build it as well as restrains from template and statistical observa-

tions. While external evaluation is only related with the use of scoring functions wherein

parameters as energy is employed to classify models [26], [27].

2.2 Molecular dynamics simulation on biomolecules

Macromolecular structures have a key role in the biological functions which are based

on the interactions and dynamic [28]. Hence, the functions of proteins are linked with

conformational changes that take place on short time lapses [29]. The MD simulation

of biomolecules (proteins or peptides) can be used to response a specific concern about

individual particle motion or properties of a system as function of time. In this way,

information about the system that is unavailable from experiments, through MD simu-

lation can be obtained it giving a perception of processes that take place at atomic and

molecular level [30], [31]. In addition, in the same way to experiments, MD simulation is

possible to set up and control the behavior of environment such as pressure, temperature,

and atomic configuration [30]. There are three types of applications where are involved

the MD simulation on macro-systems. The first to determine or refine structures through
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data from experiments. Second to give a description of the system at equilibrium in which

is involved the structural, motional properties, and values of thermodynamic parameters.

Third to check the real dynamic, that is, developing a system correctly over time [31].

Classically, MD simulation is explained as numerical solving of classical equations of

motion for a group of atoms, that is, interaction potential and motion among atoms or

molecules are governed by classical Newtonian equation of motion [30], [32]. Here, two

assumptions are involved in the integration of the equation of motion that are fundamental

in MD simulation. The first assumption is that atoms’ behavior is equal to classical

entities, that is, they obey Newton’s equation of motion, likewise the accuracy of this

approach depends of conditions of simulation. Second assumption is related the modeling

of how atoms interact among them, for that, it is necessary to have a representative

description of those interactions [30].

Atom-atom interactions generate forces which are involved in term of an empirical

potential. The forces are related to the first derivatives of the potential with respect

to the atom position [32], [33]. A straightforward example of the dynamic motion of

a molecular system evaluates from its total energy can be observed in the equation 2.1

according to Hook’s law of a small diatomic molecule.

Er =
1

2
k (ri − r0)2 and F (r) = −dE

dr
= −k

(
(r − r0

)
(2.1)

where E is the energy, F is the force, k is the Hook’s constant, ri and r0 are the final

and initial distances, respectively. The forces are then calculated by the derivative of

the energy with respect to the position. Consequently, the Newton law of motion can be

employed to determine the motion of molecules or atoms and update the atom positions

when it is obtained the forces F(i) on the atom by equation 2.2

F (i) = mi × ai (2.2)

where m is the atomic mass of each atom and a is the acceleration. Through the calculation
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of acceleration can be introduce into the equation for the position ri at time t+∆t, given

ri at time t:

ri (t+ ∆t) = ri (t) + vi∆t+
1

2
ai (∆t)

2 + ... (2.3)

Therefore, these last equations lead to generate a trajectory which is an ordered list of

3N atom coordinates for each snapshot at time step in MD simulation. Likewise, the

resolution of each equation above mentioned configures a MD basic algorithm as shown

Fig. 2.1 [28].

Figure 2.1.Basic algorithm of MD simulation. The global steps such as energy calculation,
estimation of forces, numerical integration and trajectory. Epot is potential energy, t is simulation
time, dt is iteration time, F is force component, a is acceleration, m is atom mass, and v is
velocity.

2.2.1 Potential energy function

An example of potential energy is the equation 2.1 based on the Hook’s law for a diatomic

molecule. However, in the biological research the characterization of potential energy is

more complex since it determines the stabilities of stable or metastable structures [30],

[33]. Moreover, it permits to describe processes such as protein interaction, binding

between ligands and proteins, interaction between molecules or behavior of proteins in

solvents [30]. Therefore, potential energy is especially deduced from features of the molec-

ular structure and parameters which are obtained by ab initio, semi-empirical quantum

mechanical calculations and experimental data [30], [33]. This latter concept establishes a

force field in which are described general properties of molecules such as torsional barriers,
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torsional deformation, conformational stereo-isometric energy or to evaluate geometry be-

tween interaction molecules or to estimate the vibrational frequency and heat of formation

[30]. Although force field equations result complexes by their description, they are easy

to solve, but they especially assure to solve energy and forces fast in large systems [28].

Commonly, the potential energy for N atoms at position r1,...,rN is described by an

empirical force field used for proteins which is composed in two groups of molecular

properties. The first group is bonded interaction such as bond lengths, bond angles,

torsional angles, and second group is non-bonded interaction that is related with van der

Waals interactions and electrostatic contribution, as shown in the equation 2.4 [32], [33].

Then, first derivate with respect to the position of force field equation is related with the

force that acting on the atom or molecule of the system [28], [30], [33].

E =
∑
bonds

ai
2

(li − li0)2 +
∑
angles

bi
2

(θi − θi0)2 +
∑

torsions

Vn
2

(1 + cos (nω − γ))2

+
1

2

N∑
i=1

N∑
i 6=1

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
1

2

N∑
i=1

N∑
i 6=1

4εij
qiqj
rij

where rij = |ri − rj| (2.4)

Equation 2.4 shows that the first three terms are related with the internal degrees of

freedom in molecules where the term of bond lengths is a harmonic potential between

bonded atoms that estimates the energy by the displacement of bond length and term

of angles is also a harmonic potential that calculates the energy of adjustment of bond

angles in atoms. And the last term of torsions which describes the periodic variation in

energy because of bond rotations, here ω is the dihedral angle, γ is the phase shift of the

n-fold term and Vn is the barrier height. The last two terms are the nonbonded interac-

tions in which van der Waals interactions are estimated for a Lennard-Jones potential in

which there is a repulsive term at very short distances and attractive term accounting for

the London dispersion forces between atoms. Second term is electrostatic contribution

which is described by the Coulomb electrostatic potential that is attractive or repulsive

depending of the effective charge of q1 and q2 [30], [32], [33]. Besides, the first four terms

are described as short-ranged interactions while the last term is known as long-range in-
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teraction [32]. Thus, the total energy is detailed as the sum of bonded and nonbonded

interactions as shown in the equation 2.5.

Etotal = Ebonded + Enonbonded + Eother (2.5)

where Eother includes the repulsive, van der Waals and Coulombic interaction [30].

2.2.2 AMBER force field

The Assisted Model Building with Energy Refinement (AMBER) is classical molecular

mechanics force field. It characterizes the structural and dynamics properties of proteins

in water, biomolecules, nucleic acids as well as the study of polymers and small molecules

[30]. In contrast with other force field such as CHARMM22, GROMOS or OPLS-AA,

AMBER employs torsion parameters that depend of type atoms in the central bond.

Therefore, they are improper to keep the stereo-chemistry at chiral centers. Moreover,

hydrogen atoms are in a united atom representation, that is, atoms are combined as a

heavy atom. Likewise, AMBER includes higher values of hydrogen bond energy than

others force field [30]. In the same way to equation 2.4, AMBER force field shares similar

properties, as shown in the equation 2.6

E =
∑
bonds

K2 (b− b0)2 +
∑
angles

κθ (θ − θeq)2 +
∑

torsions

Vn
2

(1 + cos [nφ− γ])2

+
∑

nonbonded

Aij

Rij
12 −

Bij

Rij
6 +

∑
nonbonded

qiqj
εRij

(2.6)

AMBER has some versions, among them, AMBER-03 [34] which has been employed

in this research for all MD simulations. It provides an excellent balance between the

extended and helical region distributions and a quantum mechanical calculations for the

solvent model [30], [34].
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2.2.3 Algorithms for MD simulations

MD simulation employs numerical methods to estimate Newton’s equations of motion

since an analytical solution is impossible for a huge number of atoms. Verlet integrator

is most common algorithm to calculate the trajectories of interacting atoms. It is usually

used because it shows minimal local errors and higher stability than others integrators

during an MD run, and besides the constrains between atoms are uncomplicated to im-

plement [35]. The Verlet algorithm is derivative by a Taylor expansion about time t of

the coordinate of a particle as the next equations

ri (t+ ∆t) = ri(t) + vi(t)∆t+
Fi(t)

2m
∆t2 +

...
ri
3!

∆t3 +O
(
∆t4
)

(2.7)

and

ri (t−∆t) = ri(t)− vi(t)∆t+
Fi(t)

2m
∆t2 −

...
ri
3!

∆t3 +O
(
∆t4
)

(2.8)

These equations are added to obtain

ri (t+ ∆t) ≈ 2ri(t)− ri (t−∆t) +
Fi(t)

m
∆t2 (2.9)

The equation 2.9 has an error of order ∆t4 but it is used to advance the positions of the

particle without to use the velocity. However, the estimation of the velocity are based on

the equation 2.10 which is derive from of the equation 2.7. For new positions and new

forces are calculated.

vi (t+ ∆t) = vi(t) +
Fi(t+ ∆t) + Fi(t)

2m
∆t (2.10)

Therefore, the new positions are estimated in an iterative cycle where the current positions

become the old position [35]. A factor further main is the time-step ∆t in any MD

simulation. An advantage of Verlet algorithm is that both the positions and velocities can

be defined at the same time [36]. The selection of time-step must be a value that algorithm

conserves the total energy of the system [35], [36]. In our case, all MD simulations were
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implemented with this algorithm.

On the other hand, in MD simulation the interactions are divided in short range and

long range according to the term in the force field equation, which involves different

algorithms to be used in each case. In short range interactions the algorithm employed

is Verlet lists which divide the simulation space in small cells with a cut-off distance.

Here, each particle is within one cell and the particles that are in the same cell or in

an adjacent cell, they should interact in short range. This type of short range contacts

belongs van der Waals forces and electrostatic interactions [30]. In the case of long range

interactions, the algorithm employed is Particle Mesh Ewald (PME) which uses a fast

Fourier transformation in order to calculate the long range contribution [30]. PME has

an infinitive range and considers a system as periodic, thus it has a rapid convergence in

Fourier space [30].

2.2.4 Periodic boundary conditions

In MD simulation, the system is put into a space-filling box which must have boundary

conditions desirable like a crystalline system, that is, for instance a box with particles

can be replicated in the space to form an infinite lattice, if one particle leaves from the

main box and this one is not replace by another particle of neighbor box leads to errors

or problems in the properties of the system commonly called artifacts. For that, it is

appropriated to apply periodic boundary conditions that permit minimize edge effects by

the translated copies of itself [36], [37]. The space-filling unit cells have several shapes

that are used according to the system that will be study or user’s needs. The shapes of

the box can be cubic, rhombic dodecahedron and truncated octahedron.

Each box has its own properties, for instance in order to study a spherical macro-

molecule in solution is suggested to use rhombic dodecahedron or truncated octahedron

by their shape almost spherical. However, the most common shape is the cubic since it

supports any system. The cubic box is given by three vectors (k,l and m) that satisfy

conditions such as; (a) ky = kz = lz = 0, (b) kx > 0, ly > 0, mz > 0, and (c) |l|x≤1
2
kx,



30

|m|x≤1
2
kx, |m|y≤1

2y
. In this way, the inequalities are satisfied by adding and subtract-

ing box vectors and the equality is satisfied by rotating the box [37]. In our systems,

it has been employed the cubic box with periodic boundary conditions to perform MD

simulations.

2.2.5 Ensembles in MD

MD simulations need to be compatibility with experiments, in order to have a direct com-

parison between the simulated system and experiment requires that boundary condition

will be similar. The thermodynamical boundary conditions are conditioned by a constant

temperature and pressure during the MD simulation [38]. For an isolated system with

periodic boundary conditions is described by a time-independent Hamiltonian which is

invariant in the translational and rotational motions of the system [38]. This system keeps

constant the energy E, the total number of atoms N and the volume V leads to gener-

ate a trajectory of a microcanonical (NVE) ensemble by solving the Newton’s equation.

A microcanonical ensemble should be strictly conserved during the simulation, however

isolate conditions are not correspond with real experiments since variables such chemi-

cal potential µ pressure P or temperature T are not conserved [38]. In an equilibrium

simulation, these variables are instantaneous observables which can fluctuate during the

MD simulation. Therefore, the ensembles more employed to compare real situations are

canonical ensemble (NVT) and isothermal-isobaric ensemble (NPT).

2.2.6 MD at constant temperature

The study of the system at a specific temperature entails to employ a canonical ensem-

ble (NVT). This ensemble requires a thermostat which avoids steady energy drifts by

the collection of numerical errors during MD simulation and allows the fluctuation of

the temperature over the system. Some strategies have then been designed to build a

thermostat.
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Berendsen thermostat

This thermostat permits to maintain the temperature of the system through an external

heat bath with a fixed temperature T0 [38]. Here, the rate of change in the temperature

is equivalent to the deviation in temperature, as shown in the equation 2.11

dT (t)

dt
=

1

τ
(T0 − T (t)) (2.11)

where τ is a coupling parameter between the bath and system which is used as an empirical

parameter to adjust the strength of the coupling [38]. Moreover, τ conditions the behavior

of thermostat since if τ−→∞ is inoperative, then the run is a microcanonical ensemble.

In opposite, a small value of τ will produce low temperature fluctuations. Hence, τ should

rigorously be chosen as the time step δt. Otherwise, the desire temperature is established

through an exponential decay of temperature in the system [38]. From equation 2.11 the

change in temperature by each time step is defined as the equation 2.12

∆T =
δt

τ
(T0 − T (t)) (2.12)

Likewise, the velocities are scaled at each time step through a scaling factor 2.13

λ2 = 1 +
δt

τ

[
T0

T
(
t− δt

2

) − 1

]
(2.13)

Nosé-Hoover thermostat

Nosé-Hoover thermostat considers the heat bath as an integral part of the system, for

that, an artificial coordinates and velocities are added whose physical description is a

friction parameter ζ, which increases or decreases the acceleration of particles until that

the temperature should be equal to the desired value [39]. Hence, the equation of motion

is described as the equation 2.14

dζ(t)

dt
=

1

Q

[
N∑
i=1

mi
V 2
i

2
− 3N + 1

2
kBT

]
(2.14)
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where Q determines the relaxation of the dynamics friction ζ(t), T is the desire tem-

perature. This equation of motion is implemented by a small modification in the Verlet

algorithm to update the position and velocities of the simulation according to the equation

2.15 and 2.16 [39].

ζ (t+ δt) = ζ

(
t+

δt

2

)
+

δt

2Q

[
N∑
i=1

mi

vi
(
t+ δt

2

)2
2

− 3N + 1

2
kBT

]
(2.15)

vi (t+ δt) =

[
vi
(
t+ δt

2

)2
+ δtfi(t+δt)

2mi

]
1 + δt

2
ζ (t+ δt)

(2.16)

2.2.7 MD at constant pressure

Experiments are normally performed at constant pressure in order to simulate a system

with the same condition, it is employed the canonical ensemble (NPT) or also called

isothermal-isobaric ensemble. Thus, MD simulation is performed at constant pressure.

However, a constant pressure requires a change in the volume of the system [35]. Likewise,

as the ensemble NVT, here is necessary to build barostats [40].

Berendsen barostat

The implementation of this barostat allows to rescale the coordinates and box vectors in

every step with a matrix µ,hence it is possible to estimate the instantaneous pressure,

P which is given by the equation 2.17 [37], [40]. Berendsen barostat generates usually

a correct average pressure during the simulation, however there are errors that can be

neglected in NVT ensemble [37].

P = pT +
β

V
where β =

1

3

∑
i>j

f(rij) · rij (2.17)

where β is the virial, V is the system volume, f(rij) is the force on particle i by particle

j. In order to scale the length in the system, it is used a scale factor µ which is given by

equation 2.18, where ∆t it the integrator time-step, τ p is the rise time of the barostat,
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and P0 is the set point pressure [40].

µ =

[
1 +

∆t

τp
(P − P0)

]1/3
(2.18)

Parrinello-Rahman barostat

Parrinello-Rahman barostat obtains a exact description of NPT ensemble in the same way

to Nosé-Hoover thermostat. This barostat correctly describes small systems which have

a high fluctuations in pressure or volume [37]. The box vectors are displayed as matrix b

defined in the equation 2.19

db2

dt2
= VW−1b−1p (P − Pref ) where

(
W−1)

ij
=

4π2βij
3τ 2pL

(2.19)

where V is the box, P and Pref are the current and reference pressures, respectively W−1

is an inverse matrix parameter that is associated with the strength of the coupling where

β is isothermal compressibilities, τ p is the pressure time constant and L is the largest box

matrix element [37]. The motion of particles with this barostat is defined by the equation

2.20

M = b−1
[
b
dbp
dt

+
db

dt
bp

]
b−1p (2.20)

An advantage of this barostat is related with the use in large boxes of simulation since

big systems may results in high oscillations, hence it is convenience to employ it. Even

though the constant of time will increase [37]. On the other hand, Parrinello-Rahman

barostat is not recommendable to high precision thermodynamic calculations [37].

2.2.8 Simulation methods

MD simulation can be developed both homogeneous systems as for instance a box with

water molecules with periodic boundary conditions where the simulation is only a few

picoseconds and heterogeneous systems where requires longer time of simulations for sys-

tems for example as proteins in water [33]. Simulations of nanoseconds (heterogeneous
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system) are used to characterize ruptures of small groups and determines the dominant

contributions to atomic fluctuations [33]. In this vein, MD simulations are fairly simi-

lar to real experiments since it is desirable an initial set of atomic coordinates (model

system or sample). The coordinates can be obtained from X-ray or by model-building.

The set of coordinates of structure is refined using an iterative minimization algorithm

to relieve local stresses due to overlap of non-bonded atoms, bond length distortions and

others. In this point, the positions and velocities are linked to the system where it must

be equilibrated from its initial state [33], [36]. The initial state is usually closed to have

a system in the equilibrium. This equilibration state is followed by new velocities which

are randomly designated according to Maxwell-Bolrzmann distribution with intervals of

dynamical relaxation. A parameter as temperature T of system is estimated by the kinetic

energy

1

2

N∑
i=1

mi〈v2i 〉 =
3

2
NkbT (2.21)

where 〈υi2〉 is the average of velocity squared of the ith atom in any Cartesian component,

kB is the Boltzmann constant, and N is the number of atoms in the system. Hence, the

equilibrium is gathered through the evolution of trajectories in the time using the Verlet

algorithm. However, it must be taken in account the relief of system in the equilibrium

because the potential energy will decrease while the kinetic energy will increase, thus the

T will also change which will be higher than desired temperature. For avoid that, it is

useful to utilize a method known as velocity scaling which warrants to keep a stable T

until the final equilibration system (see equation 2.21) [36]. For all MD simulations in this

study has been performed through this method. Consequently, finished the equilibrium

stage, the main part of MD simulation will start. At this point forces, positions and

velocities are estimated for each particle at each time-step again, besides these positions

and velocities are recorded until the simulation ends, although the velocity scaling is not

applied [36]. The outcomes of MD simulation are positions and velocities of each particles

of the system at equilibrium which permit to quantify properties of physical interest such

as average of kinetic or potential energy in the full simulation run [36].
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2.3 Docking

Molecular docking permits to predict of the structure of ligand-receptor complexes with

the best matching from computational approach [41], [42]. Three elements are key in

the molecular docking which are (a) systems (ligand-receptor) (b) conformational space

and (c) ranking of potential solutions [41]. Both a receptor or a ligand can be a protein,

ligand or small molecule [42]. The exploration of molecular docking in protein-ligand

complexes have specially been successful permitting to create database of screening in

drug discovery [42]. The develop of complexes have permitted to determine roles and

functions in interaction’s ligand-receptor. In the case of protein-protein complexes is still

more complex because their structures have a biological function. Therefore, the accuracy

in the prediction of docked complexes are substantial to obtain functional information

about this system [43]. However, any docking programs have two main limitations which

are the conformational degrees of freedom or a correct docked orientation with a great

likelihood and the scoring function in order to discriminate between a correct or incorrect

docked orientation [41], [43]. Methods usually used to generate a docked complex by

protein-protein are based on the shape and chemical complementarity [41], [42], [43].

The shape complementarity is most robust score function based on the surface shape of

each protein to form the complex. For this purpose, surfacing algorithms are used which

estimate the solvent-accessible or the occupation of spaces in cells generated by a grid

in the protein space [43]. Likewise, the algorithms explore the global energy minimum

by means of potential energy surface using two approximations such as rigid docking or

flexible ligand [41], [42]. In a rigid docking, the ligand examines different position using

translational and rotational degrees of freedom, however there is a limitation based on the

influence of the ligand over receptor since by induced-fit. In the case of flexible ligand, it

is added a torsional degrees of freedom of the ligand [41], [42].
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2.3.1 Docking procedures

Fig 2.2 [43] shows the procedure of molecular docking where the coordinates of two

molecules must be entered in order to predict a docked complex.

Figure 2.2.Procedure of docking.

Searching of first docked complexes

In this procedure, proteins are treated as rigid bodies in order to identify a set of can-

didates structures using a scoring function [43]. The implicit method employed in this

step is the Fast Fourier Transform (FFT) which divides the surface of proteins into a

voxel grid. Using this approach has been provided a scoring function which can estimate

all relative translations and rotational motions searching the favorable orientation of the

molecules, According to this approach allows to give an approximation of electrostatic

energies and penalize the overlap between the cores of molecules. Besides, it has been

developed other scoring functions in which are used physicochemical features of the pro-

teins such as surface area, complementarity of curvature, and penalize the overlap of core

protein or the use of Fourier correlations to simplify the problem of estimation of the

complementarity between surfaces in distinct orientations [41], [43].
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Rescoring

The new structures generated by a global searching are re-ranked in order to obtain near-

native orientations through an complex scoring function [43]. One method is usually using

the statistic of residues contacts in the docked complexes. Likewise, other methods add

terms such as electrostatics interactions, hydrogen bonding interactions, or charges in the

buried residues [43].

Flexibility on the structure

In this stage one model is usually characterized through the movement of side chains

or backbone since rearrangements of side chains for their combination of rotamers may

dictate the docking configuration. It is minimized by an energy function which is applied

by a molecular mechanics force field for proteins [43]. Although, an energy function may

be irregular for each model, it is usually employed as an efficient optimization algorithm.

Additionally, extra biological information can be employed to constrict docked complexes.

For instance interface residues of proteins or mutagenic information reducing the time and

simplify the search of docked complex [43].

2.3.2 Algorithms use in docking

The algorithms are related with the flexibility during docking process since there are dif-

ferent conformations when ligand-receptor interacts between them. These algorithms are

divided in three types such as systematic, stochastic and deterministic searches. Although

some algorithms can combine more than one of these approaches [41], [43].

Systematic search algorithms

These types of algorithms are focused on each formal degree of freedom of ligand which

is divide rigid and flexible regions by a grid. Each degrees of freedom of ligand is directly

related with the number of evaluations. The coupling between ligand and receptor is

in the active site through a systematic scanning of torsion angles [41]. This procedure
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has a limitation corresponding to small ligands since numerous positions on the surface

of receptor can interact with the ligand generating an increase the number of docked

structures without a correct position [41], [42].

Stochastic search algorithms

These algorithms allow to chance one degree of freedom of the system in a time step.

However, a limitation is an uncertain convergence, hence it is performed multiple runs

in order to overcome this limitation. The highlight examples of these algorithm are

Monte Carlo (MC) methods and evolutionary algorithms. Regarding to MC, the ligands

make random changes in the translation and rotation motions as well as in the torsion

angles. For each move, the energy of the new arrangement is minimized according to the

Metropolis criterion. Likewise, the number of cycles to gather a global energy minimum

can be large which is related to a change of the temperature. Otherwise, evolutionary

algorithm employs several parameters such as mutations rate, crossover rates, number of

evolutionary rounds and size of population that calculate conformational changes in the

structure of docked complexes. Likewise, this algorithm classifies the structures as fittest

individuals according to global energy minimum that are used several times to improve

the final docked complex, this process is known as crossover of generations. Besides, it

is possible to make mutations, that is, changes in the structure getting genetic diversity

(more structures) and avoid a rapid convergence [41], [42].

Deterministic search algorithms

These algorithms are associated with an initial state in which is introduced a move to

produce a next state, that is, a new docked complex which must be similar or lower

in energy than an initial state. The limitation with these types of algorithms are often

confined in local minimum since the energy barriers are high to cross. Energy minimization

and MD simulation are examples of deterministic search algorithms. MD simulation

approach has been used to examine the binding free energy landscape or the potential

energy surface of all degrees of freedom of the ligand-receptor, however the main limitation
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is about the time of simulation in each complex [41], [42].

2.3.3 Protein-protein docking

Docking between proteins have been considered as essential element in the understanding

of cellular pathway, macromolecular interactions and the inhibitor design [41]. Never-

theless, protein-protein docking is a great challenge in comparison with other types of

docking where are related with small molecules. The coupling between two proteins is

difficult task because the number of degrees of freedom is huge as well as the sizes of

molecules [41]. Therefore, it has been designed specifically algorithms and scoring func-

tions for these types of docked complexes, although they share the same principles as it

was described above [42]. Within the framework proposed in the Fig. 2.2, the standard

procedure in protein-protein docking algorithms is supported by the use of rigid body ap-

proximation since there is a large number of degrees of freedom and the interactions sites

are arduous to predict in protein-protein docking [42]. Likewise, the scoring functions are

less strict because hiding atom clashes even at near-native configurations. The variability

is given by the protein surfaces and when these are sampled, it is created a huge number

of complexes which are ranked by scoring functions depended on geometric filter which

eliminates configurations that are unacceptable the complex structure [42]. Generally, the

outcomes obtained by protein-protein docking algorithm are satisfactory to build known

complexes, however in complex structures without known bound structure previously, the

rearrangement will depend of input data coordinates and the native complex structures

[41], [42]. Although, the quality of prediction will diminish. The prediction of docked

complex depends of the extension in the rearrangement because the surface of molecules

is in constant motion which are associated with the side chains in protein structure.

Hence, several approaches have been involved in the docking algorithms to attend extend

systems. The first is based on the Cα backbone atoms instead of complete description of

side chains, thus the motion at the surface atoms are only taken into account. However, it

is necessary to apply improved scoring schemes [41]. Second approach is based on the side
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chain motions, however the large backbone motions are not involved limiting the solu-

tions to obtain complexes [41]. Third approach is known as hinge-bending motions where

ligands undergo translations and rotations in order to dock to the surface of the receptor

[41]. An advantage of this approach is nonessential to know the binding sites or the hinge

locations with respect to the receptor. Therefore, in order to bind ligand-receptor is used

descriptor points in the surface of both proteins, where if each protein has similar point,

that is, a configuration equal it is considered as a hinge location which is ranked. The

hinge location with a high score performs a coupling with the receptor [41].

2.4 Gibbs binding free energy

When a docked complex is formed there is a complementarity of the shape between

receptor and ligand as a lock-and-key which is known as molecular recognition model

[42]. This molecular recognition model shows physical-chemistry properties such as van

der Waals interactions, electrostatic interaction, hydrogen bond interaction together with

hydrophobic effect, and entropy attractions which influence the stability of a complex.

According to the equation 2.22 can be measured the stability of complex by estimating of

equilibrium binding constant Keq that allows to related Keq with the Gibbs binding free

energy ∆GBind. Likewise, the stability can be estimated by on-rate kon and off-rate koff

constants of the reaction.

∆Gbind = −RTlnKeq = −RTln
(
kon
koff

)
(2.22)

The constant Keq depends directly of variables such as temperature, pH, pressure, ionic

strength and concentration of solutes [42]. Although this constant involves variables

that influence in the experiments, the comparison between theoretical and experimental

values of Gibbs binding free energy should be taken with attention [42]. However, in

the estimation of stability in complex, the Gibbs binding free energy can be separated in

two contributions as enthalpic and entropic in order to calculate the free energy of the
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complex, ligand and receptor as shown in the equation 2.23

∆Gbind = ∆H − T∆S = Gcomplex − (Greceptor +Gligand) (2.23)

2.4.1 Methods of estimation for Gibbs binding free energy

There are three ways to estimate the Gibbs binding free energy ∆GBind which are usually

more precise, that are Thermodynamic Integration (TI), Free Energy Perturbation (FEP)

and molecular mechanics force field [42].

Thermodynamic Integration (TI)

TI is the most common approach in the estimation of ∆GBind in the equilibrium. This

method has a scaling parameter λ since it generates equilibrium ensembles of configuration

with multiple values of λ. TI can calculate an accuracy value of ∆GBind, however it is

usually computationally expensive because each λ values should be equilibrated. ∆GBind

is found according to the equation 2.24 [44].

∆GBind =

∫ 1

λ=0

dλ

〈
∂Uλ(x)

∂λ

〉
λ

(2.24)

where the intergral shows an ensemble average in each values of λ, while Uλ(x) is the

functional form that depends on the scaling methodology. In addition, λ values can be

simulated a finite number which involves errors in the equilibrium sampling in each λ,

hence the integral must be approximated by a sum [44].

Free Energy Perturbation (FEP)

FEP approach employs the λ as TI in each equilibrium simulation, however it uses a

exponential average between neighbor λ values to estimate the difference in ∆GBind.

These differences are summed to get the total free energy difference of ∆GBind. Likewise

as TI, there is a limitation based on spacing of λ values which must be small to reach

an overlap between the configurations spaces corresponding to λi or λi+1 [44]. ∆GBind is
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calculated according to the equations 2.25 and 2.26 which are approximated for λ values

between 0 and 1 using a forward and reverse estimation [44].

∆GBind = −kBT
n−1∑
i=0

ln
〈
e−β(Uλi+1

(Xi)−Uλi (Xi))
〉
λi

(2.25)

∆GBind = +kBT
n−1∑
i=0

ln
〈
e−β(Uλi (Xi)−Uλi (Xi+1))

〉
λi+1

(2.26)

Molecular mechanics force field

This method is used to calculate the ∆GBind through a force field that only estimates

the enthapic contribution, although the entropic contribution is estimated both solute

and solvent by different methods [42]. In this method is normally calculated the initial

and final states to obtain ∆GBind which is the main difference with respect TI and FEP

methods since they consider intermediate states. This method employs a force field as

the equation 2.4. The first three terms are used to estimate the internal energy through

corrections from ideal values of bond lengths, bond and dihedral angles [42]. The four

term involves the enthalpic contribution according to the Lennard-Jones potential [42].

The entropic effect for solutes is estimated through statistical mechanics approach, quasi-

harmonic analysis or statistical thermodynamics, but for the solvent effects is estimated

in two terms nonpolar and polar. The nonpolar term is calculated using the surface area

of the solute [42]. The polar term is estimated by the differences in electrostatic energy

between solute embedded in a low and high dielectric medium. Besides, this term can

be calculated with Poisson-Boltzmann equation with a continuum solvent approximation

[42]. Therefore, these terms together allow to determine the strength of the interaction

between proteins and ligands [42]. The force field equation 2.4 can be inserted in a general

equation in order to obtain the Gibbs binding free energy as shown in the equation 2.27

∆Gbind = E − T∆Ssolute + ∆Gsolvent (2.27)
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Therefore, the solute entropy in the second term involves the translational, rotational,

conformational and vibrational entropy and third term consists in nonpolar and polar

terms, where is also taken into account the enthalpic and entropic effects in the solvent

[42]. Besides, this equation has been employed in different systems where the Gibbs

binding free energy is calculated to different structures through MD simulations with

approaches such as molecular mechanics energies combined with the Poisson–Boltzmann

(MM/PBSA) or generalized Born and surface area continuum solvation (MM/GBSA)

methods [42].

2.4.2 Time-consuming process of ∆GBind

In order to calculate the Gibbs binding free energies require a time-consuming process.

The different methods such as FEP or TI require a high computational cost and large

time of simulation. On the other hand, MM/PBSA method has been used by its small

computational cost, but it is limited to screening of a short number of ligands and small

systems. It has been established methods that are fast and accurate to obtain the ∆G.

These methods are namely first-principles methods, semiempirical method, and empirical

methods [42].

First-principles methods

This method is applied in several programs where it is estimated a force field function

that is implemented the van der Waals and Coulomb terms as well as the electrostatic

interaction of the solvent. However, entropic terms and ligand energies are ignored to

facility the estimation of ∆G, hence it may be overestimated the complex stability [42].

Semiempirical methods

These methods are less computational cost since they take the initial an final states to be

sampled in order to estimate the ∆G. However, these types of methods perform several

approximations that reduce the time to estimate the ∆G. Several programs employ this

approach, thus the methodologies will be different [42].
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Empirical methods

In contrast with other methods, the empirical approach has some limitation in their

functions such as the accurate of each term and how these terms were evaluated. Besides,

the prediction of ∆G is successful whether the systems are similar to the set of structures

which are before evaluated, that is, it can exist troubles with the transferability of methods

with other systems. Variables such as pH, salt concentration and temperature which are

involved in the constant that are used in the functions to estimate ∆G. However, the time

of process is short in comparison with other methods [42].
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Chapter 3

Methods

3.1 Sequence analysis of NS5 and STAT2

The amino acid sequence of the target proteins, NS5 (UnitProt code: B1P6I2) and STAT2

(UnitProt code: P52630) were extracted from the UniProt protein sequence database

(http : //www.uniprot.org) each sequence contained 902 and 851 residues, respectively.

Each sequence target protein was analyzed to determine the amino acid composition,

disordered regions, binding residues, contact sites and secondary structure through the

programs MEGA6 [45], DISOPRED [46], RaptorX binding [47], RaptorX contact pre-

diction [48], RaptorX property prediction [49], and GOR4 [50]. MEGA is implemented

to develop comparative analysis of DNA and protein sequences [45]. DISOPRED identi-

fies residues which are likely to be natively unfolded [46]. RaptorX binding predicts the

binding sites based on a sequence of a protein [47]. RaptorX contact predicts the con-

tact map of a protein sequence without using any templates. RaptorX property is used

to predict the secondary structure, solvent accessibility, and disordered regions without

using templates [49]. GOR4 infers the secondary structures in proteins sequence [50].
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3.2 Molecular modeling of NS5 and STAT2

The NS5 three-dimensional model (PDB code: 5TMH) was obtained from protein data

bank (https : //www.rcsb.org). However, only two fragments (PDB codes: 5OEN and

2KA4) has been reported for STAT2. Three-dimension models were generated through

algorithms of protein threading and homology alignment programs known as I-TASSER

[51] and Phyre2 [52]. I-TASSER identifies template proteins from structure databases

that have similar structure to the query protein sequence by position-specific iterated

BLAST (PSI-BLAST). In this way, it creates a sequence profile which is used to predict

the secondary structure using PSIPRED [53]. Templates with similar folds are retrieved

to build an assembly, whereas for the structures not found is employed ab initio modeling

to complete a three-dimensional structure. Then, the models are reassembled into full-

length models. Moreover, they are optimized in their H-bonding to avoid steric clashes

in full atomic models. The best model was selected through the confidence score (C-

score) which has a range from -5 to +2 where a score close to -5 indicates correct model

topology [51]. Phyre2 follows a procedure similar to I-TASSER, however it uses a hidden

Markov model (HMM) which predicts a secondary structure [54]. This profile is scanned

in a precompiled database of HMMs Fold library generating a crude backbone model.

Subsequently, the crude model is fitted with fragments through a loop modeling. Fitted

fragments are scored by empirical energy parameters. Side chains are then fitting to the

backbone by R3 protocol which uses a fast graph technique and side chain rotamer library

[52]. The best model was selected in terms of the highest level of confidence and identity

percentage.

3.3 Structures quality check and structural alignment

In order to evaluate the NS5 and STAT2 models quality were used the programs Verify-3D

[55], ERRAT [56], PROCHECK [56], and VADAR 1.8 [57]. As NS5 is provided from a

crystallographic structure, the parameters obtained were employed as reference to STAT2.
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Verify-3D is used to resolve the relationship of an atomic model with its own amino

acid sequence and comparing the outcomes with highly refined structures [55]. ERRAT

was used to determine the overall quality between model-building and refined structures

[56]. PROCHECK was used to check the stereo-chemical quality of the protein structure

by overall geometry features [56]. VADAR 1.8 was used to analyze protein structures

through extensive comparison to published data and careful visual inspection [57]. STAT2

experimental fragments reported in the database were employed to perform a structural

alignment with the STAT2’s model obtained by protein threading alignment through TM-

align [58]. TM-align uses an algorithm that compares two independent proteins structures

of unknown equivalence. The superposition measure between two structures employ the

TM-score which has a value between 0 to 1, where 1 suggests a perfect splice between two

structures [58].

3.4 Molecular dynamics simulation of NS5 and STAT2

GROMACS 5.1.2 [37] was used to perform the MD simulation of NS5 and STAT2 as well

as NS5-STAT2 complex. MD simulations were conducted by using AMBER-03 force field

[34]. The systems were established using the following features; cubic boxes filled with

SPC216 water molecules, TIP3P water [59], Na+ and Cl− counter ions were added to neu-

tralize the system with a concentration of 0.1 M in order to mimic physiological conditions

of the cells and periodic boundary conditions. PME was used for non-bonded interactions

such as electrostatic interaction and van der Waals with a cut-off of 12Å and a 2fs time

step during the simulation. The energy minimization was obtained through steepest-

descent algorithm and the maximum force of the system was set to 100 kJ·(mol·nm)−1 on

any atom.

NVT and NPT ensembles were equilibrated using Berendsen thermostat [37],[40]

and Nose-Hoover thermostat [37], [60] for 500 ps. Parrinello-Rahman barostat [37],

[61] was employed to maintain the pressure isotropically with a value of 1.0 bars and

a compressibility of 4.5x10−5bar−1. The systems were subjected to 50 ns of produc-
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tion which was initialized using output data retrieved from previously run equilibra-

tion simulation at 310 K and 1 atm. Besides, all bonds length containing hydrogen

were constrained using the Linear Constraint Solver (LINCS) algorithm [62]. Gromacs

utilities was used to analyze MD trajectory and the charts were plotted using Grace

(http : //plasma− gate.weizmann.ac.il/Grace/).

3.5 NS5 and STAT2 ensembles for protein-protein

docking

In order to explore the structural conformations generated from MD trajectories of 50

ns both NS5 and STAT2, a clustering was made. The clustering is based on Root Mean

Square Distance (RMSD) of Cα atoms with a cut-off of 2.2Å for each trajectory through

the GROMOS clustering algorithm [63] which is executed in the gmx cluster tool of

GROMACS 5.1.2. A representative structure of each protein’s trajectory was extracted

in order to be used in an ensemble docking. This representative structure for each cluster

(NS5 and STAT2) was also selected in terms of the lowest energy and stereo-chemical

quality for the docking ensemble. Protein-protein docking was performed using ClusPro

2.0 [64] and Pydock [65]. ClusPro docking server uses docking approach known PIPER’S

efficient FFT which generates complexes considering scoring functions namely as balance,

electrostatic, hydrophobic, and van der Waals interactions. In order to obtain the binary

complex, the first ten structures were selected according to higher populated cluster in

the scoring function of balanced interaction [64]. Pydock docking server employs a Fast

Fourier Dock (FTDock) which use a FFTW 2.1.5 library to generate docking poses by a

global scanning of translational and rotational space, followed by optimization. Then, the

models are scored by Pydock scoring algorithm which has an efficient empirical potential,

composed of electrostatic and desolvation terms and limited contribution of van der Waals

energy [65]. In the same way to ClusPro, the first ten models with the high stabilization

energy were then chosen.
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3.6 Protein-protein interaction and Binding energy

of binary complex NS5-STAT2

Each binary complex selected from ClusPro and Pydock was quantified by the strength

of the protein-protein interface and interaction energy through the programs PPCheck

[66] (http : //caps.ncbs.res.in/ppcheck/), and FoldX [67]. Moreover, with the software

PISA [68] (http : //www.ebi.ac.uk/msd − srv/protint/pistart.html) was calculated the

interface area and the solvation free energy gain upon formation of the interface.

PPCheck employs pseudo-energies as van der Waals, electrostatic and hydrogen bond

interactions to calculate the strength of these non-bonded interactions for a protein-

protein complex. Hydrogen bond energy is computed using the equation 3.1

EH−bond = q1q2 ·
[

1

r(ON)
+

1

r(CH)
− 1

r(OH)
− 1

r(CN)

]
· 332 ∗ 4.184kJ ·mol−1 (3.1)

where q1 and q2 are partial atomic charges, r is the inter-atomic distance between neighbor

atoms. The van der Waals interactions are obtained using the equation 3.2

EvdW = 4.184(EiEj)×

[(
Ri +Rj

r

)12

− 2

(
Ri +Rj

r

)6
]
kJ ·mol−1 (3.2)

where R is the van der Waals radius for an atom, r is the distance between atoms, and E

is the van der Waals well depth. The electrostatic interaction are estimated based on the

Coulomb’s law using the equation 3.3

Eel =
4.184 ∗ 332− q1q2

D · r
kJ ·mol−1 (3.3)

where q1 and q2 are also partial atomic charges, r is the distance between atoms and

D is the diaelectric constant of surrounding. All these interaction energies are summed

in order to obtain the total stabilizing energy which is divided by the total number of

interface residues to gather the energy per residue in the complex. The latter one has a

range between -2kJ·mol−1 to -6kJ·mol−1 with a number of residues between 51 to 150 at
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the interface. Therefore, a binary complex with a value close to -6kJ·mol−1 is considered

as a stable interface and correct docking pose [66].

FoldX uses a empirical force field that it has been used to calculate the Gibbs binding

free energy (∆Gbind) which is related with the thermodynamic dissociation constant (Kd)

according to the equation 3.4 in order to determine the interaction between two molecules.

∆GBind = −RTln(Kd) (3.4)

where R is the gas constant and T is the temperature in K. The ∆Gbind of a complex

(AB) is given by equation 3.5;

∆GBind = ∆GAB − (∆GA + ∆GB) (3.5)

Therefore, FoldX estimates the change in Gibbs energies of the complex (∆GAB) and

of two molecules A and B alone [67]. For that, FoldX utilizes a force field known as

FoldX force field (FOLDEF) to describe the energetic contributions in empirical terms to

calculate the free energy (kcal·mol−1) of stabilization. Each term of equation 3.6 has a

constants (a..l) related to the weights of the different energy terms [67].

∆G = a ·∆Gvdw + b ·∆GsolvH + c ·∆GsolvP + d ·∆Gwb

+ e ·∆Ghbond + f ·∆Gel + g ·∆Gkon + h · T ·∆Smc

+ k ·∆Ssc + l ·∆Gclash (3.6)

In order to calculate the Gibbs free energy, the hydrophobic ∆GsolvH and polar ∆GsolvH

terms are contributions in the interaction with the bulk solvent where b and c have been

obtained by the transfer of amino acid from water to an inorganic solvent which mimics

the transition from folded to unfolded state in hydrophobic environment in a native state.

∆Gwb term is related with the water molecules that are persistent in the interaction with

protein groups that making more than two hydrogen bonds. ∆Gvdw term is calculated
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in the same way to the hydrophobic and polar terms but experimental energies from

water to vapor are considered. ∆Ghbond term is calculated based on simple geometric

considerations and their energy. ∆Gel term is estimated by a simple implementation of

Coulomb’s law, here, hypothetical atoms are included to Coulombic interaction in order

to computed specific aspects such as; helix dipole interaction. The dialectric constant

used is scaled with the burial of the bond. ∆Gkon term is electrostatic contribution for

protein complex which is estimated between atoms of different polypeptide chains. ∆Smc

entropy term computes the fixing of backbone derived by statistical analysis of the phi-psi

distribution of a amino acid. This term is estimated by the accessibility of the main chain

atoms and hydrogen bond interactions in relation to residue or its direct neighbors. ∆Ssc

term is related to fix a side chain which is computed by a set of entropy terms to the

burial of the side chain. Finally, ∆Gclash term is calculated by the steric overlaps between

atoms in the structure [67].

According to the results obtained through PPCheck analyses, the binary complexes

with higher total stabilizing energy were selected to perform MD simulations of 50 ns

with the same operational parameters discussed for the case of NS5 and STAT2. Besides,

analysis of protein-protein interactions in the binary complexes using Protein Interaction

Calculator (PIC) web server (http : //pic.mbu.iisc.ernet.in/) [69] and the contact map

using COCOMAPS (https : //www.molnac.unisa.it/BioTools/cocomaps) [70] which rec-

ognizes the interaction surface were added in order to reconfirm the binding sites interface

in binary complex of NS5 and STAT2 [25].

3.7 Electrostatic Calculations

The lowest energy structure of NS5, STAT2 and NS5-STAT2 complexes were used to

perform the electrostatic calculations. The Poisson-Boltzmann (PB) equation imple-

mented in the APBS Program [71] as plug-in added in the program PyMOL 2.2.2 (https :

//pymol.org/2/) was used. Each atomic coordinates were prepared using the method

pdb2pqr [72] which adds hydrogens, missing sidechain atoms and assigns the proper
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atomic radii and charged using AMBER force field. The parameters implemented in

the analysis by default in the software were; ionic radius of 1.5Å, dielectric constants in-

side protein 2 and for water 78 and ionic strength 50mM. Single Debye-Hückel was applied

for the dialectric boundary calculations [73].
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Chapter 4

Results and discussion

4.1 Analysis of amino acid sequences

In this first section was performed analyses based on the amino acid sequences in order

to achieve a general view of the structural features of NS5 and STAT2 which were besides

compared with its three-dimensional structures and behavior by MD simulations.

NS5 and STAT2 sequences were analyzed in their amino acid composition in order

to determine the presence of residues such as Ser, Thr, and Tyr that are relevant in the

process of phosphorylation. These residues were presented in both sequences with 6.61%,

4.96% and 2.13% for STAT2 and 5.65%, 5.99% and 3.22% for NS5, respectively (see Fig.

4.1). The process of phosphorylation has been associated with conformational changes

in the protein affecting its function [18]. Particularly, STAT2 is known that needs to be

in the phosphorylated form to regulate the viral response pathway [16]. On the other

hand, the interaction of NS5 with other proteins has been observed that diminish in its

hyperphosphorylated form [19]. The presence of these types of residues are relevant in

both sequences, however during the process of MD simulation the non-phosphorylated

forms were used.

Disordered regions in the proteins play a role in their functions such as protein-protein

interaction networks, cellular differentiation, human diseases or others [46]. For instance,

an intrinsic disorder of a protein allows the binding with multiple targets as well as
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increasing the efficiency of binding since a disordered region provides flexibility to the

domains improving the movement and enrollment with binding partners [74], [75]. Hence,

a strict inspection of disordered residues in the targets sequences was performed where it

was found that STAT2 has 196 disordered residues which are distributed in the regions

of 130-141, 185, 326, 371-373, 375-394, 410-423, and 706-851. While, NS5 has barely 23

disordered residues which are found in the regions 1-6, 269-278, 460-466 of sequence.

Figure 4.1.NS5 and STAT2 amino acid composition based on their sequence.

The difference in the amount of disordered regions between NS5 and STAT2 show

that STAT2 has a higher level of disordered in its structure than NS5 (see Fig. 4.2).

These results have been consisted with other studies where at least 30 residues in length

form a disordered region in mammalian signaling proteins, and more amount of them is

classified as a long region of disordered [74]. On the other hand, within the disordered

residues, there are 21 and 43 residues which have been considered as binding residues

both to NS5 and STAT2, respectively (see Fig. 4.2). These binding residues in the

disordered regions have shown to keep different properties in protein-protein interactions

in comparison with residues of ordered regions [76]. The hydrophobic interactions are more

favored with disordered residues than their remaining amino acids. Indeed, hydrophobic

interactions are stronger than the polar ones which produces more intermolecular contacts,

and suggests a better fit with their counterparts through disordered residues [76]. Another
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property associated with disordered proteins is the binding free energy which is used to

assist the protein folding in those zones, that is, with more disordered segments the folding

could be energetically demanding [76].

Figure 4.2.Analysis of disordered regions and binding residues in target sequence proteins
through DISOPRED. (a) NS5 shows disordered regions in 1-6, 269-278, 460-466 and (b) STAT2
in 130-141, 185, 326, 371-373, 375-394, 410-423, and 706-851 of the sequence. Peaks (blue)
over 0.5 confident score are considered regions with high level of disordered. Peaks (orange) are
regions with binding residues.

The role of each amino acid is to stabilize the final folding of a protein, for which

they generate a local conformation called motives that describe the secondary structure

[77]. The presence of motives for NS5 and STAT2 amino acid sequences have been pre-

dicted through RaptorX and GOR4, as shown in the table 4.1. These values show that

both sequences share common structural motives corresponding to α-helix, coiled-coils

and β-sheet conformation. The trend shows that α-Helix and coiled-coil conformations

have a high prevalence, in contrast to β-sheet which presents the lowest percentage. The

determination of the secondary structure is a way to predict the three-dimensional struc-

ture [77], [78]. Likewise, the compactness of the chains in the proteins is associated to

an elevated percentage of secondary structure [77]. A maximum compact chains has also

been related to a ratio of α-helices and β-sheets roughly equal, that is, similar amount of

secondary structures as a real protein [77].



56

The prediction of residue solvent accessibility aids to elucidate the relationship between

sequence and structure because it plays a role in the spatial arrangement and packing of

the protein, for instance the protein folding which directly has correlation between the

hydrophobic forces and exposure of buried residues [79], [80]. Likewise, it was found

that solvent accessibility has a role in the protein’s function by sites of protein hydration

[81]. Regarding to sites of protein-protein interaction, as well as, active sites are directly

influenced by residues with a strong solvent accessibility [80]. The table 4.1 shows solvent

access prediction for NS5 and STAT2. In contrast to NS5, STAT2 displays a higher

solvent access in the medium residues. However, the number of buried residues in NS5 is

higher than STAT2, thus there is a low accessibility to the solvent. This high percentage

of buried residues in NS5 suggesting that its stability as protein could be altered easier

than STAT2 since many studies have demonstrated that the stability may be affected by

change of hydrophobic residues in the buried zones [82]. In the case of exposed residues

for NS5 and STAT2 have a similar behavior because the number of residues is almost

equal. Hence, as above was mentioned an idea of shape could be provided, consequently

NS5 could be consider as globular protein since those types of proteins generally tend to

acquire hydrophobic residues instead hydrophilic residues in the interior of the protein

while that the hydrophilic residues are exposed to the solvent [79]. In this sense, STAT2

according to the values observed invites to think in a combination between globular and

a fibrous protein.

Table 4.1.Prediction of secondary structure and solvent access to the amino acid sequence of
NS5 and STAT2 through RaptorX property prediction and GOR4.

Software Property STAT2 NS5

RaptorX
α-Helix (%) 38.00 36.00
β-sheet (%) 11.00 12.00

Coiled-coils (%) 50.00 50.00

GOR4
α-Helix (%) 36.95 34.81
β-sheet (%) 15.47 22.51

Coiled-coils (%) 47.58 42.68

RaptorX
Exposed (%) 23.00 28.00
Medium (%) 52.00 32.00
Buried (%) 23.00 39.00
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4.2 Molecular modeling and validation of STAT2

The three-dimensional model of STAT2 was generated using the amino acid sequence

by two different approaches namely protein threading of I-TASSER and homology of

Phyre2 [51], [52]. Through I-TASSER was obtained five models. The best model has

been chosen according to the highest C-score whose value of -0.62 suggests a correct

topology. Likewise, the best model of Phyre2 has been obtained according to the identity

percentage and confidence values which were 41% and 100%, respectively. This model

was built with a template of non-phosphorylated STAT1 (PDB code: C1YVIB). Both the

best model of I-TASSER and Phyre2 were compared by structural quality to distinguish

the model to be used in next analyses. The results in the table 4.2 have shown that

STAT2’s model of I-TASSER obtains a quality factor of 70.74% better than Phyre2’s

model with a value of 56.65% according to Verify-3D. With ERRAT the trend is similar,

because I-TASSER’s model represents a better value than Phyre2’s model, however this

latter one has obtained an unacceptable value of 21.69% unlike to the value of 77.80%

achieve by I-TASSER’s model. For analysis with VADAR since that is a web server with

different algorithms that performs a massive test of the three-dimensional model. It has

been chosen values corresponding to α-helix, coils and β-sheet conformations that based

on the three-dimensional model for both I-TASSER’s and Phyre2’s models have almost

remained in the range of secondary structure gathered with the amino acid sequence (see

table 4.2). Moreover, VADAR has permitted to calculate the free energy of folding which

is the energy to keep folded or unfolded a protein, thus it has been observed that for

energy of Phyre2’s model is of -693.89kcal·mol−1 which is lower than I-TASSER’s model

which is -671.47kcal·.mol−1. Both have been closed to the expected values of the software

(-822.51kcal·.mol−1 and -826.47kcal·.mol−1, respectively) (see table 4.2). On the other

hand, Ramachandran plots were obtained by PROCHECK. Phyre2’s model has reached

more appropriated values for favored and allowed regions than I-TASSER’s model since

gathers values of 75% and 17.2% which are higher than the I-TASSER’s model with values

of 72.6% and 21.6%. However, Phyre2’s model has gathered a higher percentage in the



58

disallowed regions indicating that the stereo-chemical quality is inferior to I-TASSER’S

model (see Fig. 4.3). Based on these outcomes were selected I-TASSER’s model because

their residues are located in the most favorable three-dimensional structure environment

in agreement with the experimental functional domains [13], [25] as shown in the Fig. 4.5.

In addition, there take into account the limitation and advantages of both approaches.

Modeling by homology is usually more accuracy wherein stereo-chemical restrains and

segments matching are then considered. However, it is limited to a template which must

have a high identity with target sequence since with a percentage below 30% the accuracy

of homology models decreases because of alignment error and incapability to generate

structures that fit with the target sequences [26], [27]. Otherwise, modeling by threading

is capable to build a model without a template which represents an improvement when

the target sequence is unknown or has segments (surface loops) that are misaligned with

a template sequences. Therefore, this latter is considered more successful in contrast to

an approach by homology [26], [27].

The structures of each model improved through 10 ns of MD simulations (see table

4.2). However, Phyre2’s model do not display a superior recovery since the trend is similar

to the initial coordinates. All analyses above mentioned were also performed for NS5,

although the three-dimensional model was obtained from protein data bank (Fig 4.5).

According to Verify-3D and ERRAT, the quality factors of NS5 are higher than STAT2

model (see table 4.2). The analysis of secondary structure in NS5 by atomic coordinates

have conformations more balanced in their composition, in contrast to the values obtained

by amino acid sequence. The free energy of folding of their structure is -782.28kcal·mol−1

which is still more stable than STAT2’s models (see table 4.2). Ramachandran plot of

NS5 displays that both the favored and allowed regions have fairly reached higher values

getting a great quality model (see Fig 4.4). Likewise, NS5’s model was subjected to a

refinement with MD simulations which has considerably improved their structural quality

in all parameters checked above.

Additionally, STAT2’s model has been compared with experimental fragments of

STAT2 in order to observe the structural similarity, as shown in the Fig 4.6. Each frag-
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ment (2KA4 and 5OEN) was aligned with STAT2’s model where the fragment 2KA4

has been matched by 39 residues with a TM-score of 0.34 in the Transactivation domain

while the fragment 5OEN has been paired by 168 residues with a TM-score of 0.86 in the

Coiled-coil domain. Therefore, STAT2’s model has hardly coincided with the fragment

2KA4 suggesting that this model is rather suitable to be used as a reference protein model

of STAT2.

Table 4.2.Analysis of global quality of structure, secondary structure and free energy of folding
to the initial and final coordinates with 10 ns of simulation of NS5 and STAT2 through Verify-3D,
ERRAT, and VADAR.

Models Verify-3D (%) ERRAT (%)
VADAR

Free energy of folding (kcal·mol−1) α-Helix (%) β-Sheet (%) Coil (%)
STAT2/I-TASSER’s model 70.74 77.80 -671.47 41.00 15.00 42.00

STAT2/Phyre2’s model 56.65 21.69 -693.89 38.00 13.00 48.00
NS5/ PDB code: 5TMH 82.61 93.61 -782.28 39.00 20.00 39.00

STAT2 with 10 ns 86.23 85.07 - - - -
NS5 with 10 ns 92.75 84.68 - - - -

Figure 4.3.Ramachandran plot of STAT2 model by ITASSER and Phyre2. (a) Phyre2’s model
(b) I-TASSER’s model (c) STAT2’s model with 10 ns MD simulation. The most favored regions
are red. Allowed, generously allowed, and disallowed regions are yellow, pale yellow, and white,
respectively. High stereo-chemical quality is considered when any residue lies in the disallowed
region.
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Figure 4.4.Ramachandran plot of NS5 model (PDB code: 5TMH). (a) NS5 without MD simu-
lation (b) NS5 with 10 ns MD simulation. The most favored regions are red. Allowed, generously
allowed, and disallowed regions are yellow, pale yellow, and white, respectively. High stereo-
chemical quality is considered when any residue lies in the disallowed region.

Figure 4.5.Three-dimensional structures of (a) NS5 and (b) STAT2 model. The functional
domains of each model are shown in different color. NS5: Mtase = Methyltransferase domain
(1-264 aa), Linker domain (265-275 aa), Extension (275-304 aa), Fingers domain (305-477 aa),
Palm domain (478-714 aa) and Thumb domain (715-903 aa) STAT2: N-terminal domain (1-
138 aa) involved in dimerization/-tetramerization, Coiled-coil domain (139-315 aa) involved in
interaction with other proteins, DNA binding domain (316-485 aa), Linker domain (486-574
aa), SH2 domain (575-679 aa), Phosphotyrosyl tail segment (680-697 aa), and Transactivation
domain (698-851 aa).
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Figure 4.6.Structural comparison among the experimental fragments of STAT2 (PDB codes:
5OEN and 2KA4) with STAT2’s model. (a) Fragment 2KA4 and STAT2’s model (b) Fragment
5OEN and STAT2’s model.

4.3 MD simulation of NS5 and STAT2

In order to understand the biological functions as well as interactions of these proteins,

it is essential to explore the conformational changes on short time lapse at atomic level.

MD simulation is a tool that achieves this aim since it provides a description of motion,

structural properties and thermodynamic behavior of the systems (NS5 and STAT2) at

equilibrium [29], [30], [33]. Therefore, NS5’s x-ray structure and STAT2’s model were

subjected to 50 ns MD simulation protocol defined in the method section to minimize

and equilibrate at physiological conditions. Several system attributes were calculated of

the NS5 and STAT2 trajectories. RMSD has been monitored to observe the equilibrium

of systems where NS5 (x=0.25 nm ± 0.023) has rapidly achieved a stable steady state,

however STAT2 (x=0.83 nm ± 0.089) has reached it after 5 ns, as shown in the Fig. 4.7.

Moreover, NS5 has a low displacement of its atoms during the simulation which have kept

in a range of 0.2 to 0.3 nm. In contrast, the displacement of STAT2 has been closed to

1 nm with a range of 0.8 to 1 nm during the period of stabilization. Disordered regions

can be involved in the inability of STAT2 to reach a rapid stable state since the number

of them is higher than NS5. Moreover, the internal motions in the protein may gather

many conformations on these regions by their known flexibility. Likewise large atomic

displacements are achieved by surfaces residues which correspond with structural details

of STAT2 obtained previously in the sequence analysis [33].
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Root Mean Square Fluctuation (RMSF) of Cα atoms for both NS5 and STAT2 have

been analyzed in the Fig. 4.8. NS5 (x=0.16 nm ± 0.063) is more stable since that has

a low fluctuation of residues in a range of 0.1 to 0.5 nm, although the region between

1-250 residues may be considered as a zone with high fluctuation in contrast to the

rest of residues. It has been shown a correlation with the disordered residues predicted

by sequence analysis. Otherwise, STAT2 (x=0.30 nm ± 0.123) has shown an elevated

atomic fluctuation in the initial and terminal region of the protein which has displayed

certain correspondence with the sequence-based prediction analysis where the terminal

region specially had the highest fluctuation and disorder. Therefore, these regions are

conformationally more flexible compared to remaining residues and also may be involved

in complex formation with other proteins, substrate/inhibitor binding which are relevant

in the viral response [76]. Furthermore, the high fluctuation in these regions are associated

with side chains which have anharmonic motions at 300 K and spend much of their time in

the minimum energy position before to hop a barrier of transition to another minimum. In

contrast to residues of NS5 which executes small fluctuations because they hop a barrier

of transition quite rapid [33]. With respect to the structural behavior both NS5 and

STAT2, the α-helix and loop displacements lead to structural differences of the backbone.

At the same time, the motion of side chains produce reorientations that together to coiled

coils (loops) rearrangements generate α-helix displacements as it is observed in the initial

region of STAT2 included to the N-terminal and part of Coiled coil domains. Likewise,

the side chain transitions and dihedral angle transitions in the loop regions produce loop

motions that correspond to the high fluctuation of Phosphotyrosyl tail and Transactivation

domians in the last region of STAT2 [33].

Radius of gyration (Rg) has been used to measure the compactness of the protein

structures of NS5 and STAT2 (see Fig. 4.9). During the simulation, NS5 and STAT2

have displayed a steady state, but has been noticed that STAT2 (x=3.61 nm ± 0.023)

is more extended protein, contrary to NS5 (x=3.24 nm ± 0.025) which is slightly more

compressed. This behavior is related with backbone and side chains in the protein since

the motion of side chains plus the rearrangements of loops produce α-helix fluctuations,



63

hence the compactness of STAT2 is reduced by the high presence of α-helix. In NS5, the

compactness is high because there is great range of α-helix packing by changes in the side

chain volumes suggested in globular structures [33].

Solvent Accessible Surface (SAS) has been measured for each protein. SAS of NS5

(x=400 nm2 ± 3.90) is stable during the simulation in a range of 390 nm2 to 410 nm2.

While SAS of STAT2 (x=465.45 nm2 ± 15.67) is initially higher but during the simulation

has changed since that it has descended from roughly 480 nm2 until 440 nm2 (see Fig.

4.9). These latter results agree with the pioneer shape idea of proteins since STAT2 had

a fibrous form with more access to solvent unlikely to NS5 which is a globular protein and

the access to the solvent is much more restricted.

From the trajectories of NS5 and STAT2, it was performed a clustering analysis to ex-

plore the conformation of proteins generated by MD simulation. The GROMOS clustering

algorithm with a RMSD of Cα cut-off was employed in order to determine the structurally

similar cluster and obtain a representative structure of both proteins. According to the

RMSD cut-off detailed in the methods section, the dominant clusters for NS5 and STAT2

constitute ∼75% of total protein structures. Therefore, it was extracted representative

structures from these cluster that will be employed in the following analyses since they

have the lowest stabilizing energy which is considered that these structures are closed to

a native structure [25], [83], [84], [85].

Figure 4.7.RMSD for NS5 and STAT2 as a function of time. (a) RMSD evolution of NS5 (b)
RMSD evolution of STAT2.
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Figure 4.8.RMSF of the backbone Cα atoms versus the number of residues present in each
sequence both (a) NS5 as (b) STAT2.

Figure 4.9.Radius of gyration (Rg) and solvent Accessible Surface (SAS) for NS5 and STAT2
as function of time. (a) Rg evolution of NS5 (b) Rg evolution of STAT2 (c) SAS evolution of
NS5 (d) SAS evolution of STAT2 during 50 ns.
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4.4 Analysis of docking complex NS5-STAT2

The previous MD simulation of NS5 and STAT2 is employed to improve the virtual

screening in the docking processes since it can be considered as step of refining such

models. This refining provides flexibility and a structural rearrangements to proteins since

the methods of protein-protein docking are usually based on the shape complementarity.

Therefore, MD simulation allows to obtain a more realistic structure of each model [28],

[41], [42], [43]. From trajectories of MD simulations has been extracted a representative

structure of NS5 and STAT2 through clustering. These structures are used as target to

build a ensemble docking [28].

Experimental studies have suggested that the interaction NS5-STAT2 leads the degra-

dation of STAT2 by NS5, but the specific sites of interaction are still undefined [8], [10],

[11]. Therefore, molecular docking permits to study the roles and functions in interac-

tion’s ligand-receptor [41]. In order to explore the interaction between these proteins,

docking analyses have been performed through ClusPro and Pydock. ClusPro provides

a list of clusters with their lowest energy and representative members. In order to se-

lect the ClusPro’s model, ClusPro provides four scoring functions, one of them is called

Balance which is suggested by the program itself when there is not information about of

interaction in the interface of proteins. From the 29 clusters, the first ten were selected

based on the largest number of members because of the lowest energy parameter is not

an indicator to select the best model of docking [64]. The models obtained by ClusPro

are shown in the Fig 4.10. Regarding to Pydock, the ten first models have been selected

according to the total stabilizing energy proposed by the web server itself, as shown in the

Fig. 4.10. At this stage, two troubles arises, the first is scoring function of ClusPro and

Pydock and second is the binding site which is unknown to predict the correct solution

[41]. Although some algorithms are able to score a list of possible structures, however

they are not reliable to discriminate false positives, that is, complexes with a high score

but with a low rank [41].

Therefore, in order to classify of docked complexes were employed the software PPCheck
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with a process of discrimination by functional domains, and ∆GBind. PPCheck quanti-

fies the strength of protein-protein interaction using pseudo-energies. As a result, the

models of ClusPro and Pydock have been classified. The outcomes have shown that the

total stabilizing energy for Pydock’s models are positive (∆E>0) while that for ClusPro’s

models are negative (∆E<0). The total stabilizing energy values that have negative en-

ergy tendency are related with the increase of number of interface residues [66]. Hence, a

negative energy suggests that there is contact interface between proteins. In contrast, the

interaction is deficient due to the contact areas are almost null in systems with positive

energy (see table 4.3). Among of them, the ClusPro’s models 4, 7 and 9 have obtained the

largest total stabilizing energy (see Fig. 4.11). One way to be precise in the prediction

of docking pose and to know whether docked complex has a stable interface is through

the interface residues which should be within of the range of 51-150 and a normalized

energy per residue from -2kJ·mol−1 to -6kJ·mol−1 [66]. In our models selected with the

largest total stabilizing energy, the normalized energy per residue has also been closed

to -6kJ·mol−1, therefore they have fallen in a correct docking pose (see table 4.3). Clus-

Pro’s models have shown to interact via known domains in both proteins. A test of total

stabilizing energy and normalized energy per residue among the N-terminal domain from

STAT2 and Mtase and Thumb domains from NS5 have been performed. The models 1,

4, and 7 have demonstrated that the interaction among these domains have gathered the

largest total stabilizing energy, however the interaction in the model 9 is only between

the N-terminal and Mtase domains (see table 4.4). Likewise, the models 1, 4 and 7 have

reached the largest normalized energy per residue close to -6kJ·mol−1 showing that these

models involve a correct docked position. In contrast to the other models that do not

show interaction among these domains. In the interest of contrasting the total stabilizing

energies obtained by each model and their domains, the Protein-Protein Interactions in

Macromolecular Assemblies (PIMA) tool was used [86]. This one has a database called

PIMADb [87] of 60.555 entries of protein-protein interactions of protein assemblies with

which our results have been compared. The values corresponding to the total stabilizing

energy of the interaction of N-terminal/Mtase and N-terminal/Thumb are along of the
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known interactions from other complexes (see Fig. 4.12).

In order to understand the difference between the model of ClusPro and Pydock,

variables as the surface area provide features in the protein-protein interaction which

displays a high degree of structural complementarity and chemical complementarities [88].

The PISA web server was then employed in which is possible to calculate the interface area

(Å2) and the solvation free energy (∆GSolv), displayed in the Fig. 4.13. As a result, the

interface areas of ClusPro’s models (x = 1973.59Å2) are larger than any Pydock’s model

(x = 1068.03Å2). Similar results to ClusPro’s models have been found in a set of 75 crystal

structures with an interface area average of 2000Å2 in each member which is considered a

specific protein-protein interaction with high complementarity [88], [89]. It has also been

observed that protein-protein interaction has large contact surfaces (1500-3000 Å2) while

that the contact area between small molecules and proteins targets has been estimated

between 300 to 1000 Å2 [90]. These outcomes are connected with solvation free energy

(∆GSolv<0) which are higher in most of ClusPro’s models with models 8 and 9 being

an exception (see Fig. 4.13). Therefore, the interaction between protein-protein lead an

increment of interacting area and solvatation free energy (∆GSolv), because of these values

are associated to a better affinity between proteins. However, this is done without taking

into account the effect of hydrogen bonds and salt bridges across the interface area which

has consequently been considered as partial outcomes to discriminate between ClusPro

and Pydock models.

The Gibbs binding free energy (∆GBind) has been calculated using empirical force field

of FoldX for atomic coordinate of ClusPro’s models. In this initial analysis each model has

achieved a value of positive of interaction energy ∆GBind>0, as shown in the Fig. 4.14.

It means that the docked complexes may be considered as unstable structures since it

denotes energy-unfavorable coupling between both proteins. This unstable state between

proteins NS5-STAT2 can also be considered as an non-covalent interaction with nega-

tive cooperativity since the affinities between ligand-receptor are decreased, that is, the

docked complex is less well bonded and exhibits their atoms major internal motion [91].

A negative cooperativity suggests that the docked complexes will need a great amount
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of energy to coupling because the binding between NS5 and STAT2 is not spontaneous,

that is, a process highly endothermic. Moreover, ∆GBind has two contributions enthalpic

and entropic wherein a ∆GBind>0 is related with a favorable change entropy [91]. Addi-

tionally, the non-covalent interaction with negative cooperativity in the interface between

NS5-STAT2 may be influenced by coupling sites geometry since the contact distance be-

tween ligand-receptor is greater than a coupling of non-covalent interaction with positive

cooperative causing a structural loosening in the docked complex [91]. The models 1,

7, 4, and 9 show the largest binding energy (∆GBind) in comparison with the remaining

models. However, it has only been decided to take into consideration models 1, 4, and 7

to be subjected to MD simulation because they showed interaction in the domains such

as Mtase and Thumb with N-terminal in the NS5-STAT2 complex.

Table 4.3.Results of total stabilizing energy and normalized energy per residue for the ten
models of ClusPro and Pydock computed by FoldX.

Total stabilizing energy (kcal·mol−1) Normalized energy per residue (kJ·mol−1)
Models ClusPro Pydock ClusPro Pydock
model 1 -77.942 16.066 -2.22 0.35
model 2 -99.993 153.437 -2.25 4.59
model 3 -80.707 167.854 -2.24 4.65
model 4 -139.469 109.496 -3.15 4.16
model 5 -79.381 134.481 -2.27 5.52
model 6 -89.536 135.026 -2.18 5.88
model 7 -121.016 -9.668 -2.84 -0.4
model 8 -60.770 126.955 -1.72 4.05
model 9 -125.660 43.442 -3.23 1
model 10 -88.556 25.808 -1.87 0.92
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Figure 4.10.The first ten models of NS5-STAT2 complex obtained by (a) ClusPro and (b)
Pydock.

Figure 4.11.Results of PPCheck web server for total stabilizing energy in ClusPro’s models.
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Table 4.4.Results of total stabilizing energy and normalized energy per residue for ten ClusPro’s
models based on the functional domains of NS5 and STAT2. The functional domains involved in
the interaction of complex were the N-terminal from STAT2 and Mtase and Thumb from NS5.

Total stabilizing energy (kcal·mol−1) Normalized energy per residue (kJ·mol−1)
Models N-Ter/Mtase N-Ter/Thumb N-Ter/Mtase N-Ter/Thumb
model 1 -23.2 -27.192 -2.7 -1.9
model 2 - - - -
model 3 - - - -
model 4 -19.116 -48.282 -3.33 -3.61
model 5 - - - -
model 6 -9.037 - -1.18 -
model 7 -59.388 -39.959 -3.5 -3.89
model 8 -3.774 - -0.88 -
model 9 -1.114 - -4.66 -
model 10 - - - -

Figure 4.12.Plot of total stabilizing energy from the query domains (marked with red) with
the known interactions (marked with blue) from other complex obtained from PIMA.

Figure 4.13.Results obtained through PISA web server. (a) Interface area (Å2) and (b) solva-
tion free energy achieved by the formation of the interface for ClusPro and Pydock.
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Figure 4.14.Results of Gibbs free energies of binding for ten ClusPro’s models calculated by
FoldX software.

4.5 Contact map and electrostatic analysis

In order to confirm the interaction among Mtase and Thumb with N-terminal domains, a

contact map of intramolecular interactions of the NS5-STAT2 complex is illustrated in the

Fig. 4.15. The distance range between two proteins have been marked with red, yellow,

green and blue for 7Å, 10Å, 13Å, and 16Å, respectively. Largest regions of two partners

that are in contact have been located in the map [70]. The regions associated corresponds

to first residues of Mtase domain (1-200) and the last residues of Thumb domain (650-750)

in the NS5 while that for region of STAT2 is in the residues of N-terminal domain (1-150)

and a smaller interaction region in the residues from 300 to 400 that correspond to DNA

binding domain. The contact map confirms our previous results since the protein-protein

interaction is mainly focused on in the domains described.

Additionally, an electrostatic potential analysis has been performed because electro-

static interactions are favored for the protein-protein interaction as well as the stabilization

in complex. The electrostatic role depends on the type of hetero- or homo- complexes,

that is, a complex is formed by different or identical proteins which have net charge (pos-

itive or negative). In our case, the complex NS5-STAT2 is a heterocomplex which carries
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an opposite net charge that lead to attraction between proteins. However, the arrange-

ment of heterocomplex will be limited by residues distribution with their charges that

will change global net charge of each protein when the residues will be at short distances

in the interface [92]. Fig. 4.16 shows the NS5-STAT2 complex protein. In the region

of N-terminal domain of STAT2, their buried residues are highly polar. In contrast, the

residues located in the cavity of NS5 have a hydrophobic character with few polar groups

around. Studies suggest that polar residues in the interface favorably contributes in two

ways the first through an specific association between proteins and second improvement

the stabilization of complexes since the interacting forces do not need to be strong for

the formation of complexes [93]. Moreover, regions in the protein with polar groups are

usually sites known as hot spots which are crucial for a better affinity between proteins

[92], [93], [94].

Figure 4.15.Contact map of NS5 and STAT2 shows the intermolecular contacts at reducing
distances which are red=7Å, yellow=10Å, green=13Åand blue=16Å. The circles identify the
domains related such as N-terminal/Mtase, N-terminal/Thumb and Thumb/DNA binding.
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Figure 4.16.A view of electrostatic surface potential for (a) NS5-STAT2 complex, (b) STAT2
and (c) NS5. Red is negative charge, blue is positive charge, and white is neutral.

4.6 MD simulation of NS5-STAT2 complexes

The models 1, 4, and 7 have been minimized in order to optimize the complex geometry

and check the binding energy (∆GBind) again. The complexes were analyzed for their

structural integrity by RMSD, RMSF, Rg and SAS. RMSD has been checked for each

protein forming the complex (see Fig 4.17). NS5, for all complexes, have shown that its

stability has slightly been affected during the MD simulation, although the equilibrium

has rapidly been reached within 50 ns. The models have displayed a similar range to the

NS5 unbounded, but it is noteworthy that NS5-model 4 (x=0.28 nm ± 0.038) from 35

ns has suffered a change in its equilibrium. In contrast, the stable state has been diffi-

cult to achieve for STAT2 in all complexes. STAT2 bounded has showed a RMSD lower

than STAT2 unbounded. For STAT2-model 1 (x=0.49 nm ± 0.143) just after 40 ns, an

equilibrated state has barely achieved, although it is necessary more time of simulation.

STAT2-model 4 (x=0.57 nm ± 0.119 ) has a great variation before 20 ns, however after

this time has reached an equilibrium state. STAT2-model 7 (x=0.48 nm ± 0.081) is quite

stable during the simulation. The behavior of STAT2 is also more unstable due to the

disordered regions that have an great influence in the complex formation. RMSF for the

NS5 and STAT2 bounded forms have shown that the atomic fluctuation has decreased
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during the MD simulation in comparison with NS5 and STAT2 unbounded forms. Nev-

ertheless, STAT2 has presented a large fluctuation in the initial and final residues which

are associated with the N-terminal and Transactivation domains, respectively. In the ini-

tial region corresponding to N-terminal domain has displayed a large atomic fluctuation

which is conditioned by the interaction with NS5 since in the bounded forms their atomic

fluctuation is reduced. In contrast, it is remarkable the high fluctuation in the residues

corresponding to the Transactivation domain since it has direct relation with the disorder

in this protein and its secondary structure which is integrate by coiled-coil in the all mod-

els (see Fig 4.18). Rg property was measured for the bounded forms of NS5 and STAT2

where the compactness of proteins has been affected since the interaction between them

(see Fig 4.19 ). Particularly, the NS5-model 1 (x=3.13 nm ± 0.012) shows a different

behavior with respect to others since has an remarkable inferior Rg which means that the

relaxation is conditioned by the interaction with STAT2. The same behavior of Rg shows

for STAT2-model 1 (x=3.25 nm ± 0.059) since the compactness is higher than the other

models. In the case of NS5-model 4 (x=3.21 nm ± 0.011) and NS5-model 7 (x=3.24 nm ±

0.015) their trends are similar to NS5 unbounded since their values are within the range.

For STAT-model 4 (x=3.55 nm ± 0.026) and STAT2-model 7 (x=3.53 nm ± 0.020) their

trends are similar, despite their compactness is slightly affected by the interaction with

NS5. As a consequence, the performance of STAT2 forming the complex has a higher

range of gyration suggesting a less tight packing as compared to NS5. The last property

observed has been SAS, where NS5-model 1 (x=338.08 nm2 ± 3.09) and STAT2-model 2

(x=349.95 nm2 ± 4.16) have a significant decrease in the access to solvent in comparison

to the remaining models and unbound forms (see Fig 4.20). Hence, for model 1 may be

favorable the interaction because of the distance of coupling between proteins is shorter

suggesting that there is a greater rearrangement in the contact surface reducing the access

to water molecules [95].
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Figure 4.17.RMSD of bound forms of NS5 and STAT2 compared with the unbound form of
each protein. (a) RMSD of NS5 (b) RMSD of STAT2 as unbound and bound forms

Figure 4.18.RMSF backbone Cα atoms of bound forms of NS5 and STAT2 compared with the
unbound form of each protein. (a) RMSF of NS5 (b) RMSF of STAT2 as unbound and bound
forms

In order to verify the behavior of the complex NS5-STAT2, the Gibbs binding free

energy (∆GBind) has been calculated for representative conformations (snapshots) of each

trajectory in the models 1, 4, and 7. According to the clustering, each model has obtained

6001 structures which have been clustered in 33, 22, and 21 groups for models 1, 4, and

7, respectively. Through FoldX, the Gibbs binding free energy (∆GBind) of each group

was calculated.
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Figure 4.19.RG of bound form of NS5 and STAT2 compared with the unbound form of each
protein. (a) RG of NS5 (b) RG of STAT2 as unbound and bound forms

Figure 4.20.SAS of bound form of NS5 and STAT2 compared with the unbound form of each
protein. (a) SAS of NS5 (b) SAS of STAT2 as unbound and bound forms

Hence, the results show that ∆GBind of model 1 and 7 (∆GBind<0) are -4.30 kcal·mol−1

and -1.67 kcal·mol−1, respectively while for model 4 (∆GBind>0) is 0.27 kcal·mol−1. The

coupling between the proteins is energetically favorable in models 1 and 7 in opposition

to model 4. The values of Gibbs binding free energy ∆GBind<0 are also obtained in the

range of experimental measurements of binding affinity (kcal·mol−1) of protein-protein

tested on a bechmark of 144 complexes [96]. Likewise, a study with empirical approach
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based on three variables of the interface in complexes has estimated Gibbs binding free

energy that are almost closed to the value of model 1 [97]. These latter results have

demonstrated that by applying MD simulation to the system is possible to improve the

values with respect the Gibbs binding free energy. The initial atomic coordinates of mod-

els have shown to reach a ∆GBind>0 which mean that docked complex has non-covalent

interactions with negative cooperativity, however after MD simulation, the models 1 and

7 have gathered a ∆GBind<0 which benefit the non-covalent interactions with positive

cooperativity [91]. This change in the cooperativity is acceptable in a same system since

the motion of atoms in the MD simulation produces a new stable state at protein that has

a net effect in the thermodynamic parameters [33], [91]. Hence, non-covalent interaction

with a positive cooperativity is related with an exothermic binding which allows an incre-

ment in the bonding ligand-receptor. Likewise, a positive cooperativity is associated with

a favorable enthalpy and adverse in entropy because with a strong coupling is reduced the

internal motions of the complex improvement the non-covalent bonding [91]. In pathway

of signal transduction factors exists proteins agonists that in some cases are beneficial

in the bonding with other entities, because they have an adverse contribution of entropy

(positive cooperativity), however they also may induce the dissociation with a receptor

being adverse for coupling since they have a contribution favorable in entropy (negative

cooperativity). Antagonists proteins as NS5 are species that bind to receptor as STAT2

but they do not active it. Thus, an antagonist protein is adverse to coupling since their

contribution is favorable in entropy providing a non-covalent interaction with negative

cooperativity [91]. These latter insights may explain our results since the initial atomic

coordinates of models 1 and 4 displayed unfavorable non-covalent interaction, but after

of MD simulation of these models show improvements Gibbs free binding energy that are

favorable to the coupling. However, the values of ∆GBind associated to the models are

still less in comparison with other studies [91].
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4.7 Interaction NS5-STAT2

Viral infections are mediated by several protein-protein interactions where proteins are

considered as nodes and their interactions as edges represented as networks [98]. Like-

wise, the protein-protein interaction is mediated by domain-domain interactions as has

been understood in our analyses where it has been identified the interaction is given by

N-terminal domain from STAT2 and Mtase and Thumb domains from NS5 [98]. Bind-

ing sites in the interface of NS5-STAT2 complex have a direct physical contact specially

when there is an interaction non-covalent with positive cooperativity since the distance

between ligand-receptor is shorter. Therefore, interaction between proteins have been

checked through an analysis of residues in the protein-protein interface. The interfaces

can be classified as endogenous or exogenous interface in the virus-host [98]. Particularly,

the interaction NS5-STAT2 involves an exogenous interface since it is mediated between

proteins belonging to distinct proteomes. Tools such as FoldX, PPCheck and PIC were

employed to analyze the docked complex. FoldX also describes interface residues on the

complex which are necessary to understand its protein-protein interaction since it may be

used in the development of new antiviral therapies [98]. Interface between proteins inter-

act through physical processes known as van der Waals interactions, hydrogen bonding,

electrostatic interactions, hydrophobic interaction, exclusion of solvent, salt bridges, ionic

interaction and entropic changes [96]. Residues related with interface in NS5-STAT2 have

also been characterized through PPCheck and PIC.

A consensus of residues in the interface provided of ten ClusPro’s model by FoldX has

been performed, hence an analysis of classification has been performed to determine the

frequency of residues that present any type of interaction in the protein interface of docked

complex. It has been found that interactions in the interface of NS5-STAT2 are stabilized

by electrostatic interaction, hydrophobic interaction, salt bridges and ionic interaction.

In the case of NS5, 33 residues are in the contact area with an elevated frequency in all

models. Moreover, 16 of them have presented one o more type of interaction described

above. The residues involved are Arg-163, Arg-175, Arg-37, Arg-57, Arg-681, Arg-84,
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Arg-856, Glu-149, Leu-847, Lys-105, Lys-331, Pro-108, Pro-857, Trp-848, Val-335, and

Val-336. These residues have located in the Mtase and Thumb domains (see Fig. 4.21).

Regarding to STAT2, 55 residues have a high frequency where 19 of them are involved

with any type of interaction. The residues are Arg-796, Arg-88, Asp-77, Asp-794, Asp-850,

Asp-93, Glu-40, Glu-715, Glu-722, Glu-79, Glu-801, Glu-804, Glu-814, His-85, Leu-684,

Leu-691, Leu-727, Leu-81, and Lys-89 that have been located in the N-terminal domain

(see Fig. 4.21). Studies of hot-spot in the binding sites of protein-protein interface

have located a particular enrichment of Trp, Try and Arg, as well as a high presence

of polar residues [99]. In contrast, hydrophobic residues as Val and Leu are associated

to interfaces largely hydrophobic and nonpolar surface areas [99]. In our case, Arg and

Glu are hydrophilic residues with largest presence in the interface of NS5 and STAT2,

respectively, besides hydrophilic residues as Lys, Pro, and Asp are also displayed in the

interface of both proteins. Other studies have concluded that residues as Trp, Met, Try,

Phe, Cys, and Ile are frequently in the binding interfaces. Besides, residues as Tyr, Trp,

His, and Cys have been traced in high-affinity interfaces in comparison with low-affinity

interfaces [100]. His and Trp are present in the interface of NS5-STAT2 complex, hence

the interface shows a high-affinity. However, residue as Lys are located in low-affinity

interface. In our outcomes, this latter one have been found in the interface of NS5-STAT2

complex which will counteract a possible high-affinity in the NS5-STAT2 complex [100].

As was mentioned before, NS5-STAT2 is a heterocomplex which has differences properties

associated to amino acid composition, contact sites, and interface area [101]. Hence, in

studies of homo- and hetero- complexes has revealed that amino acid interface composition

is different between them. To heterocomplex residues that interact as Leu, Val, Ile, Arg,

Tyr, Trp, Met, and Phe have a great prevalence and propensity to be in the interface.

These types of residues have also found in our outcomes excepting Ile, Met and Phe [101].

Predominant residues in our results have also been associated with interaction between

chains in the complex, hence Asp and Glu are implicated with interaction through their

main chain. However, Lys involves the contact with the backbone and Pro through the

side chain [101].
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Figure 4.21.Frequency of residues in the docked complex that have interactions in the interface.
High frequency of residues in (a) NS5 and (b) STAT2 that showed any type of interaction such
as electrostatic,hydrophobic, salt bridges or ionic interaction.
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Chapter 5

Conclusions

The computational approach has permitted to analyze the different structural and dy-

namics features of NS5, STAT2 and the interaction of NS5-STAT2 complex. Our study

has been undertaken in two directions; the first through analysis of amino acid sequence of

NS5 and STAT2, and the second corresponding to the atomic coordinates of NS5, STAT2

and NS5-STAT2 complex. The prediction of protein disorder based on sequences was

performed. STAT2 has shown regions with greater disorder than NS5, and are located in

the coiled-coil, DNA-binding and Transactivation domains. The three-dimensional model

of STAT2 generated by I-TASSER was validated through several computational tools.

This model displays a high correlation with experimental fragments of STAT2. The MD

simulations were individually performed to STAT and NS5 showing a high stability during

the period of simulation. The atomic fluctuation and solvent access of both proteins dis-

played correspondence with the disorder prediction and shape. The interaction between

NS5 and STAT2 was reached through docking approach. Several models were analyzed

determining that three docked complexes provided by ClusPro have interaction among

the domains of N-terminal domain from STAT2 and Mtase-Thumb domains from NS5.

The interaction between these domains has been confirmed through contact mapping and

electrostatic analysis. MD simulations for the three docked complexes have suggested that

their behavior is affected for each other in interactions that are favorable to binding in the

interface since it has shown a ∆GBind<0. The best docked complex have a ∆GBind of -4.30
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kcal·mol−1. Futhermore, the NS5-STAT2 docked complex has revealed the key interacting

residues are stabilized by electrostatic interaction, hydrophobic interaction, salt bridges

and ionic interaction. Therefore, it suggests that the interaction between these proteins

is focused on the three domains (N-terminal/Mtase and N-terminal/Thumb) which are

ordered regions enriched with polar residues. In addition, this study sheds light in the

interaction of NS5-STAT2 as support of the experimental studies and in the development

of drugs against ZIKV NS5.
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