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Abstract  

An increase in the occurrence of diabetes mellitus, cardiovascular disease and obesity in recent years 

led to the project “Starch retrogradation in tuber: mechanisms and its implications on microstructure 

and glycaemic features of potatoes”. Potato products can play a role in mitigating these hyperglycaemic 

events, if starch in these processed products is slowly digested and/or starch-derived glucose is released 

into the circulation in a slower and more attenuated manner. Three stages were envisaged for the project 

with an aim to create slowly digestible starch in whole potato tuber (in tuber) through starch 

retrogradation.  

Plant-based whole food systems, such as potato tubers encompass different cell compartments, (e.g. 

cell wall, vacuole, cytoplasm and intracellular spaces) within which starch gelatinisation and 

retrogradation occur, subject to local interactions of other cell components and water availability. 

Structural changes of potato starch during retrogradation in tuber and its resulting digestibility were 

studied. Different water pools in a cooked whole tuber were discerned by the low-field NMR (LF-

NMR), having relaxation times T20 at <1 ms, T21 at 10-15 ms, T22 at 70–200ms, and T23 at > 400 ms. A 

significant reduction in eGI was observed after cooling and storage compared to freshly cooked tubers. 

Reheating of retrograded tuber restored some of the susceptibility to enzymatic hydrolysis and internal 

water mobility. Longer chilled storage (7 days) yet improved the stability of retrograded tuber against 

reheating effects (at 90 °C). Realignment of the gelatinised amylose and amylopectin changed the 

distribution of crystalline and amorphous regions during refrigerated storage and subsequent reheating, 

resulting in starch digestibility varying with treatment combination. Several, but not all, of time-

temperature cycle processes were observed to induce stepwise nucleation and propagation, facilitating 

starch retrogradation in tuber more than did storage fixed at 4 °C. Sous vide processing (at 55 and 65°C), 

akin to annealing, combined with starch retrogradation in tuber, resulted in potatoes with intermediate 

eGI (40-72). After reheating at 60°C, the eGI of sous vide cooked-chill potatoes increased moderately, 

displaying a mixture of partially gelatinised starch and swollen granules. Food processing, i.e. optimum 

TTC process or sous vide process might facilitate the formation of retrograded starch in tuber, resulting 

in a reduced eGI (than freshly cooked tubers). To retain the resistance to digestive enzymes in 

retrograded starch in tuber, reheating at low temperatures (50-60°C) were needed. 
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 Table of glossary 

Terms Definition 

Crystalline 

perfection 

It describes the optimisation of crystalline order in excess (60% w/w) or 

intermediate (40–55% w/w) water contents below gelatinisation temperature, 

profoundly used in starch annealing. Hydration of the starch granule increases the 

α-glucan mobility of both amorphous and crystalline domains. This dynamic nature 

allows limited side by side movement of the double helices. With the progress of 

annealing, starch molecules are aligned in a distinct series of layers, with their axes 

lying perpendicular to the plane of the layers, thereby 'perfecting' starch crystallites. 

The initially weaker or imperfect crystallites become organised gradually due to 

fusion or re-crystallisation.  

Gelatinisation 

in tuber 

Gelatinisation is the transition of starch molecules from order to disorder. 

Gelatinisation in tuber depicts the structural changes of starch in potato tuber cells 

during processing. Swelling of starch granules in a potato cell initiates under 

heating. Simultaneously, water molecules in the cells penetrate amorphous growth 

rings of the starch granule, leading to the leaching of amylose. As a significant 

amount of water enters the amorphous regions, providing sufficient stress on the 

connectivity between the amorphous growth rings and the semi-crystalline 

lamellae, crystalline regions are irreversibly disrupted; double helices unwind and 

the loss of birefringence. Starch gelatinisation and the rounding-off of cells by 

internal turgor pressure soften the texture of potatoes. Thermal β-eliminative 

degradation of pectin in the middle lamella causes cell separation and permits cells 

to distend spontaneously. Cells retain the cell wall outline and are filled with 

gelatinised starchy matrix. 

In tuber It is referred to a whole potato tuber as a unit.  

In vitro It means "in the glass" in which studies of biology and its subdisciplines are 

conducted.  

Retrogradation 

in tuber 

Retrogradation is the re-association of disrupted amylose and amylopectin during 

cooling/storage conditions. Retrogradation in tuber subjects to the water 

availability in potato tuber cells and the interaction of starch with other cellular 

materials. 

Starch 

nutritional 

fractions 

The starch in food can be classified as RDS, SDS, and RS, suggested by Englyst, 

Kingman, & Cummings (1992), using controlled enzymic hydrolysis with 

pancreatin and amyloglucosidase and measuring the glucose release at 20min and 

20 to 120min and the remaining after 120min. 



XVI 

 

Acronyms and abbreviations  

AM Amylose 

AP Amylopectin 

AUC Area under the curve 

CLSM Confocal laser scanning microscope 

CPMG Carr-Furcell-Meiboom-Gill 

DSC Differential scanning calorimetry 

DP Degree of polymerisation 

eGI Expected glyceamic index 

FC Freshly cooked 

FCR Freshly cooked retrograded 

FCRR Freshly cooked retrograded+reheated 

FID Free induction decay 

ATR-FTIR Attenuated total reflectance-Fourier transform infrared spectroscopy 

FSANZ Food Standards Australia New Zealand 

Fv Final viscosity 

GI Glycaemic index 

GL Glycaemic load 

HI Hydrolysis index 

HPAEC Performance anion-exchange chromatography 

HPv Hot-paste viscosity 

LF NMR Low field nuclear magnetic resonance 

LM Light microscope 

LOS Logarithm of slope 

PHI Peak height index 

PT Pasting temperature 

Pv Peak viscosity 

RC Relative crystallinity 

RDS Rapidly digestible starch 

RS Resistant starch 

SAXS Small-angle X-ray scattering 

SDS Slowly digestible starch 

SEC Size exclusion chromatography 

SEM Scanning electron microscope 

SSF Simulated saliva fluid 

SGF Simulated gastric fluid 



XVII 

 

SH Starch hydrolysis 

SIF Simulated intestinal fluid 

TS Total starch 

WAXD Wide-angle X-ray scattering 

XDR X-ray diffraction 

 



1 

 

 

Chapter I Introduction and thesis outline 

I.1 Preface 

Due to an increase in the occurrence of diabetes mellitus, cardiovascular disease and obesity in recent 

years, there has been significantly more research and development on plant-based whole foods such as 

rice (Tian et al., 2018), wheat (Wu, Qiu, Wang, & Li, 2019) and potatoes (Singh & Kaur, 2016a). The 

functionality and the overall quality of potatoes have been related to the physicochemical attributes of 

their carbohydrates (starch), which mostly depend on the botanical origin (Singh & Singh, 2001). The 

physicochemical characteristics of starches, microstructure of cell and cell wall, complexation of starch 

with lipids and proteins (Do, Singh, Oey, & Singh, 2018), processing and post-processing storage alter 

starch digestibility pattern along with sensory attributes (Singh, Dartois, & Kaur, 2010). Cooked or 

gelatinised starch is hydrolysed to glucose, maltose and malto-oligosaccharides by amylase and other 

related digestive enzymes (Englyst, Kingman, & Cummings, 1992). These enzymes are active in the 

gastro-intestinal tract of humans and are responsible for the converting starch completely to glucose, 

which is later absorbed in the blood (Foster-Powell, Holt, & Brand-Miller, 2002). After gelatinisation 

or thermal processing and upon cooling of starch and starchy foods, the starch re-associates into an 

ordered structure. These structural transformations are termed as retrogradation, during which, the 

starch fractions becomes more resistant to amylolytic enzymes (resistant starch) (Lynch et al., 2007). 

Starch retrogradation initiate the aggregation of amylose fraction and then later to the linear fraction of 

amylopectin. Depending on the resistance of starch towards enzymatic digestibility, starches can be 

classified as rapidly digestible starch (RDS), slowly digestible starch (SDS), or resistant starch (RS) 

(Goñi, Garcia-Alonso, & Saura-Calixto, 1997). Resistant or slowly digestible starches have 

physiological functions similar to those of dietary fibres along with some additional benefits 

(Haugabrooks, 2013). Several studies have indicated that starch retrogradation and type of processing 

change the amount of the slowly digestible and resistant starches of foods (Goñi et al., 1997; Singh et 

al., 2010). 

 The project will be helpful in gaining insight into how potato starch structural changes in tuber, 

during processing and post-processing, affect digestibility.  In addition, how it can be tailored to gain 

desirable functionalities. Starch digestion in vitro techniques involve imitation of the physiological 

conditions within the human body and generally show a very good agreement with starch digestibility 

calculated in vivo (using both animal and human subjects).  Knowledge about digestion kinetics is a 

powerful tool to design processed potato products with low and slow digestibility. Therefore, we studied 

the digestibility of retrograded potato starch in tuber by oral-gastric-small intestinal digestion in vitro.  
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I.2 Potato tubers 

 The annual world production of potato 

(Solanum tuberosum L.) exceeded 388 million 

metric tonnes in 2017, of which China is the top 

producer (FAOSTAT, 2019). The high yield per 

unit area and the abundant nutrients (Table I.1) 

have led to an increase in potato production over 

past years compared with other tuber crops. The 

potato plant, a perennial herb belonging to the 

family Solanaceae, bears white to purple flowers 

with yellow stamens, and some cultivars bear 

small green fruits, each containing up to 300 seeds. 

Potato tuber is an underground stem bearing 

auxiliary buds and scars of scale leaves and is rich 

in starch and storage proteins. Potatoes can be 

grown from the botanical seeds or tuber propagation i.e. seed potatoes with optimum sprouting. A 

sprouted potato, however, is not acceptable for consumption and processing due to the formation of 

glycoalkaloids (Furrer, Chegeni, & Ferruzzi, 2018; Laus, Klip, & Giuseppin, 2017).  

Potato possesses a high economic yield and nearly 80% of the harvested tuber is processed to a wide 

range of applications (Singh & Kaur, 2016b). Based on the composition of different potato cultivars 

(Table I.2), they are suited to various culinary uses. Potato tubers can be consumed either freshly cooked 

or as processed potato products. The compositional attributes such as specific gravity, total solids, and 

starch content are found to be correlated with some sensory perception, and thus, leading to different 

culinary uses (Bordoloi, Kaur, & Singh, 2012; Kirkpatrick, Heinze, Craft, Mountjoy, & Falatko., 1956; 

Sterling & Bettelheim, 1955). Most commonly processed potatoes are French fries ("chips" in British 

and Commonwealth English) that the production processes simply include peeling/cutting, blanching, 

frying, freezing and packaging. Another similar processed product is potato crisp ("chips" in the US) 

which is made from thin slices of deep-fried or baked potato or made from a dough of dehydrated potato 

flakes. Dehydrated potato flakes and granules are made by drying cooked potatoes to a moisture level 

of 5 to 8 percent. Potato flakes can be used to make mashed potato products, or as ingredients in snacks, 

or even as food aid. Other dehydrated product, such as potato flour, is ground from whole and cooked 

potatoes, which retain a distinct potato taste. Potato flour, a good source of starch and is gluten-free. It 

is often used by the food industry to make and bind meat mixtures or to thicken gravy and soup. Further 

purified potato starch features a fine, tasteless and excellent mouthfeel, along with providing higher 

viscosity than wheat and corn starches. So potato starch is commonly used as a thickener for sauces and 

stews, or as a binding agent in cake mixes, dough, biscuits and ice cream (Luallen, 2017; Wurzburg, 

Table I.1 Nutrition Facts of potatoes. 

Nutrients Amount (/100g) 

Calories 77 kcal 

Protein 2 g 

Total lipid (fat) 0.0 g 

Cholesterol 0.0 mg 

Total carbohydrate 17 g 

Fibre, total dietary  2.2 g 

Sugars, total 0.8 g 

Minerals  

Calcium, Ca 14 mg 

Iron, Fe 0.73 mg 

Potassium, K 419 mg 

Sodium, Na 0 mg 

Vitamins  

Vit C, total ascorbic acid 18.2 mg 

USDA Food Composition Databases. 

https://ndb.nal.usda.gov/ndb/ 

https://ndb.nal.usda.gov/ndb/
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1972). Beside general food application, potatoes are processed and fermented in eastern Europe and 

Scandinavia to make Vodka and Akvavit. Crushed potatoes are heated to convert their starch to 

fermentable sugars that are used in the distillation of alcoholic beverages (Survase, Singh, & Singhal, 

2016). Potato starch is widely used by the pharmaceutical, textile, wood and paper industries as an 

adhesive, texture agent and filler, etc. It is a 100% biodegradable plant-based material and a good 

substitute for polystyrene and other plastics uses such as disposable plates, dishes and knives (Kaur & 

Singh, 2016). Potato peel and other wastes from potato processing often still contain a high amount of 

starch, for example potato pulp contain 30% of starch, that can be liquefied and fermented to produce 

fuel-grade ethanol (Arapoglou, Varzakas, Vlyssides, & Israilides, 2010; Srichuwong et al., 2009). 

Table I.2 Some of the common potato cultivars in Australia and New Zealand. 

Cultivars Flesh colour Dry matter Starch content Culinary uses 

Russet 

Burbank 

White High Medium to high Fairly firm (multi-purpose) to Mealy 

(floury type) 

Desiree Light yellow Medium to high Medium to high Fairly firm (multi-purpose) to Mealy 

(floury type) 

Bintje Light yellow Medium to high Medium to high Fairly firm (multi-purpose) to Mealy 

(floury type) 

Agria Yellow Low to high Low to medium Fairly firm (multi-purpose) to Mealy 

(floury type) 

Moonlight White Low to medium Medium  Fairly firm (multi-purpose type) 

Nadine Cream Very low to low Low Fairly firm (multi-purpose type) 

I.3 Potato starch in tuber 

“Tuber” originates from Latin, meaning lump and swelling. Potato tuber is a swollen stem, a stolon 

that thickens to develop into a storage organ. In the crosscut section, there are four distinguishable areas 

including skin or a periderm, parenchyma tissue, the ring of vascular bundles, and the pith (Figure I.1). 

Skin or periderm is a ring of six to ten suberized cell layers (Reeve, Hautala, & Weaver, 1969). The 

skin thickness depends on the variety and growing conditions. The skin of immature tubers can be 

removed easily but not for fully mature tubers. Potato eyes, bud and stem ends are present on the 

skin/periderm surface. Parenchyma tissue is composed of cells of the cortex and the perimedullary 

zone. It represents the major part of the tuber and contains starch granules as reserve material (Figure 

I.1). A ring of vascular bundles is observed when the tuber is cut lengthwise, also known as the xylem. 

The medullar rays and medulla are known as the pith.  
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Figure I.1 Potato tuber crosscut section (left) and the micrographs of pith (up right) and cortex (bottom right). 

Different crosscut sections contain various amount of starch granules and protein.  

 The conditions of pre-harvest and post-harvest affect the chemical composition of potato tubers 

(Figure I.2). For example, when potato tubers are exposed to light (> 3–11 W/m2) during storage, the 

green colour will develop in the periderm or the outer parenchyma cells of the cortex, i.e. greening 

effect (Salunkhe, Desai, & Chavan, 1989). Greening effect is due to the formation of solanidine by the 

synthesis of chlorophyll. Solanidine can cause off-flavours upon cooking at concentrations of 15–

20mg/100g (McKenzie & Corrigan, 2016; Morris, Shepherd, Verrall, McNicol, & Taylor, 2010). 

Glycoalkaloids impart a bitter taste and can be toxic above threshold levels (200 mg/kg) (Friedman, 

McDonald, & Filadelfi-Keszi, 1997). Tuber handling and storage is another important stage for different 

proposed uses. Low-temperature storage (<4 °C) is an effective method of hindering sprouting and 

control fungal and bacterial growth for table stock and seed potatoes (Burton, van Es, & Hartmans, 

1992). Conditioning below 9 or 10°C for tubers destined for processing can, however, result in 

accumulation of reducing sugars, e.g. glucose and fructose called LTS (low-temperature sweetening). 

Reducing sugars cause Maillard browning reaction with free amino acids during frying, resulting in 

dark brown fries and chips (Burton, 1978).  

  
Figure I.2 Preharvest and postharvest conditions affect qualities of potato tubers. 
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Starch, the main nutrient of the potatoes, is synthesised and stored in plant organs by amyloplasts. 

Large numbers of amyloplasts can be found in fruit and in underground storage tissues of some plants, 

such as in potato tubers. Starch synthesis and storage also take place in chloroplasts, a type of pigmented 

plastid involved in photosynthesis. Amyloplasts and chloroplasts are closely related, and amyloplasts 

can turn into chloroplasts; this is, for instance, observed when potato tubers are exposed to light and 

turn green. The composition of the dry matter in potatoes can vary substantially according to variety, 

conditions during growth i.e. type of soil, fertilizer application, temperature, moisture supply and light 

and degree of maturity (Pinhero & Yada, 2016). Moreover, the dry matter within the tuber varies 

between each cross-cut section (Mohr, 1972) where the amount of starch in pith tissue is found to be 

lower and cortex possess the higher content of starch and proteins (Figure I.1) (Karlsson & Eliasson, 

2003b; Matsuura-Endo, Ohara-Takada, Yamauchi, Mori, & Fujikawa, 2002; Reeve, Weaver, & Timm, 

1971).  

I.3.1 Starch granule architecture 

Starch granules, in the form of spherical granules with a range of 10 to 110 μm are the product of 

starch biosynthesis (Guilbot & Mercier, 1985). Unlike the natural morphology of starch granules, starch 

composition such as the amylose to amylopectin ratio can be modulated genetically by crossbreeding. 

Starches from different botanical resources show varied polymorphic types and degrees of crystallinity 

(Buléon, Gérard, Riekel, Vuong, & Chanzy, 1998; Frost, Kaminski, Kirwan, Lascaris, & Shanks, 2009; 

Pérez & Bertoft, 2010; Van Soest, Tournois, de Wit, & Vliegenthart, 1995). Structure of starch in the 

whole tuber is laid down in different length scale from micrometres of granules to few nanometres 

composed of glucose molecule (Figure I.3). Distinct refractive indices i.e. maltase-cross birefringence 

with a unique pattern of potato starch granules are observed by a polarized light microscope (Figure 

I.3a). The alternating amorphous and semi-crystalline growth rings are widely recognised in native 

starch granule (Figure I.3b). The semi-crystalline growth ring consists of the repeats of alternating 

amorphous and crystalline lamellae (Figure I.3c). The amorphous lamellae are related to branch points 

of the less ordered amylopectin side chains and linear amylose molecules. Whilst the crystalline 

lamellae are formed by the short-chain fractions of amylopectin arranged as double helices and packed 

in small crystallites (Figure I.3d) (Pérez & Bertoft, 2010; Witt, Doutch, Gilbert, & Gilbert, 2012). 

Amylopectin is widely accepted to support the framework of the semi-crystalline regions of the starch 

granule and forms double helices (Figure I.3e) (Buléon & Tran, 1990; Imberty & Pérez, 1988). The 

double helical structure of A-type crystallites are in a monoclinic unit cell with 8 water molecules per 

unit cell (Figure I.3A), whilst the double-helical structure of the B-type crystallites are in a hexagonal 

unit cell with 36 water molecules per unit cell (Figure I.3B). All starches contain two anhydroglucose 

polymers, which are amylose and amylopectin (Figure I.3f). 
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Figure I.3 The hierarchical structure of starch granule (Bertoft, 2017). (a) Under polarised light microscope, 

starch granules showed “Maltese cross”, a radial organisation of starch granules. (b) A hypothetical granule (in 

this case polyhedral) with growth rings extending from the hilum. (c) Blocklets in semi-crystalline (black) and 

amorphous (grey) rings. (d) Crystalline and amorphous lamella formed by double helices (cylinders) and 

branched segments of amylopectin (black lines), respectively. Amylose molecules (red lines) are interspersed 

among the amylopectin molecules. (e) Three double-helices of amylopectin. Each double-helix consists of two 

polyglucosyl chains, in which the glucosyl residues are symbolised by white and black circles, respectively. The 

double helices form either A- or B-polymorphic crystals (A and B, respectively, in which the circles symbolises 

the double helices seen from the edge). (f) Glucosyl units showing α-(1,4)- and α-(1,6)-linkages at the base of 

the double-helix. The bar scale (in nm) is only approximate to give an impression of the size dimensions.  

Modified and reproduced from an open access journal- Agronomy “Understanding Starch Structure: Recent 

Progress”, Vol 7, P56,  Bertoft, 2017. 

I.3.2 Starch molecular structure  

Amylose, primarily a linear macromolecule, is linked by α-1,4 bonds.  Amylose predominately 

forms the single-chain helix with less than 1% long-chain branches in a disordered amorphous 

conformation. Amylose can bind with itself in a 6-fold left-handed double helix as a A or B amylose 

structures with a pitch height of 2.08–2.38 nm (Imberty, Buléon, Tran, & Péerez, 1991; Imberty, 

Chanzy, & Perez, 1988). The interior of the helix is hydrophobic/lipophilic due to a predominance of 

hydrogen atoms, while the hydroxyl groups are positioned on the exterior of the coil.  Amylose helix 

is, therefore, known to form V-type crystalline inclusion complexes with small molecules such as lipids, 

alcohols, or flavours during thermal treatments (Buléon, Colonna, Planchot, & Ball, 1998; Buléon, 

Véronèse, & Putaux, 2007) (Table I.3).   

Amylopectin is linked by α-1,4 bonds in linear segments and by α-1,6 bonds at branching points 

that contains many short branches of 4-5% of branching points. Amylopectin is present in all common 

starches and consists of 70–80% (weight basis) of those starch varieties. Some starches containing 

predominately amylopectin are called waxy or amylopectin starches. The relative molecular weight of 

highly branched amylopectin is 107-109 Da (Imberty et al., 1991, 1988). The size-distribution of 

amylopectin chains was analysed after debranching by either SEC (Hizukuri, 1985, 1986), high-

performance anion-exchange chromatography (HPAEC) or fluorophore-assisted carbohydrate 

electrophoresis (Jane et al., 1999). The chains of amylopectin are divided into two major groups, short 

(S) and long (L) chains based on the degree of polymerisation. The complexity of amylopectin in the 

form of unit chains, internal chains, and diverse branched units with their composition of chains was 
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assembled in two main models, the “cluster model” and the “building block backbone model” (Figure 

I.3d). A cluster-type of molecule model of amylopectin is widely accepted nowadays (Haworth, Hirst, 

& Isherwood, 1937; Meyer, Gurtler, & Bernfeld, 1947; Staudinger & Husemann, 1937). In this model, 

the short chains in amylopectin form clusters and the long chains interconnect the clusters (Table I.3). 

But some researchers found a periodicity among the amylopectin short chains, not among the 

amylopectin long chains. This appears that the periodicity of amylopectin short chains may interconnect 

building blocks in the isolated α-dextrins (Hanashiro, Abe, & Hizukuri, 1996). In addition, a molecular 

model showed that the amorphous chain segments involved in interconnecting double-helices in the 

crystalline lamellae came into parallel alignment and almost perpendicular to the directions of the 

helices (O’Sullivan & Perez, 1999) (Table I.3). Another model suggests that the double-helices are 

linked to the amorphous “backbone” of clusters through flexible spacer arms instead of compact groups 

branches in “cluster model” (Perry & Donald, 2000c; Waigh, Gidley, Komanshek, & Donald, 2000a; 

Waigh, Kato, et al., 2000). The backbone model can better explain the granule structural changes during 

the process of annealing and gelatinisation. Initially swollen granules remain intact because the 

backbones of the amylopectin molecules stretch in all directions. The backbones of the amylopectin 

molecules only breakdown once the temperature exceeds transition peak temperature. The building 

block backbone model is compatible with the former data in favour of the cluster model indicating it 

also explains satisfactorily many of the properties of starch granules. Building block backbone model 

perhaps implies new ways to interpret the biosynthesis of starch and the structure-function relation after 

processing (Bertoft, 2017). 

Table I.3 Physicochemical properties of amylose and amylopectin. 

Physico-

chemical 

properties 

Amylose Amylopectin 

Molecular 

structure/ 

branches 

Mainly 

linear/ 

primarily 

α-1,4 

Highly branched/ α-1,4 and α-1,6 

Molecular 

weight 

105-106 Da 107-109 Da 

Iodine bonds/ 

colour 

20%/  

blue-black 

<1%/ red-purple 

Molecular 

diagram* 

Amylose 

helix 

 

Cluster model Building block backbone model 
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* Molecular diagrams were modified and reproduced from an open access journal- Agronomy “Understanding 

Starch Structure: Recent Progress”, Vol 7, P56,  Bertoft, 2017. 

I.4 Potato microstructure and starch digestion 

The granular architecture of the native starch provides a physical barrier to the diffusion of digestive 

enzymes resulting in a lower digestion rate. Enzyme-catalysed digestion of starches exhibits differently 

depending on the type of starches (Gallant, Bouchet, Buléon, & Pérez, 1992). The A-type starches have 

surface pores connected to interior cavities through channels (Fannon, Hauber, & Bemiller, 1992), 

whereas the surface of B type starch granules is rather smooth. The digestive enzymes enter the A-type 

starches from pores and channels and eventually digest the granules from inside out. While the 

enzymatic digestion of the B-type starch granules occurs on the pit on the granular surface due to no 

surface pores or interior cavities (Hamaker, Zhang, & Venkatachalam, 2007; Jiang et al., 2015; Zhang, 

Ao, & Hamaker, 2006). Native A-type starches have therefore been shown to have a higher amount of 

slowly digestible starch (SDS), whereas native B-type starches have been observed to contain more 

resistant starch (RS) (Ferguson, Tasman-Jones, Englyst, & Harris, 2000). 

The majority of starches in cooked/processed foods are rapidly digested producing high postprandial 

glycaemia (Fernandes, Velangi, & Wolever, 2005; Foster-Powell et al., 2002; Goñi et al., 1997; 

Tahvonen, Hietanen, Sihvonen, & Salminen, 2006). Cooked/processed starches undergo gelatinisation 

that starch granules swell and rupture losing the ordered structure. Swelling of starch granules initiates 

during heating in excess water. Simultaneously, water molecules penetrate amorphous growth rings of 

the starch granule leading to the leaching of amylose (Donovan, 1979). As a significant amount of water 

enters the amorphous regions, providing sufficient stress on the connectivity between the amorphous 

growth rings and the semi-crystalline lamellae, crystalline regions are irreversibly disrupted; double 

helices unwind and the loss of birefringence (Jenkins & Donald, 1997; Waigh, Gidley, Komanshek, & 

Donald, 2000). This molecular order-to-disorder transition is known as gelatinisation.  

Raw parenchyma cells generally contain starch granules with a wide range of shapes and sizes. After 

cooking, cells retain the cell wall outline and are filled with gelatinised starch matrix as shown by the 

micrographs (Bordoloi, Singh, & Kaur, 2012). Cooking is known to soften the texture of potatoes 

because of starch gelatinisation and the rounding-off of cells by internal turgor pressure (Shomer, 1995).  

Thermal β-eliminative degradation of pectin in the middle lamella causes cell separation and permits 

cells to distend spontaneously (Matsuura-Endo, Ohara-Takada, Yamauchi, Mukasa, et al., 2002). Starch 

9-10 nm 

Crystalline 

Amorphous 

9-10 nm 

Crystalline 

Amorphous 
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hydrolysis by simulated small intestinal fluid (SIF)-containing pancreatic amylases led to the digestion 

of gelatinised starch and its remnants progressively, as evidenced by the homogeneous background of 

empty cells and empty cavities of SEM micrographs. Cell walls stayed intact during and after the 

digestion indicating SIF had no effect on the cooked potato tuber cell walls, which are generally made 

up of cellulose and hemicellulose materials (Bordoloi, Singh, et al., 2012). 

Disrupted amylose and amylopectin retrograde differently owing to the distinct molecular structure. 

Amylose aggregation and crystallisation take place within the first few hours while amylopectin 

retrogradation occurs at a later stage of cooling and storage. Amylose linear chains facilitate cross-

linkages by hydrogen bonding, and hence amylose is proposed to act as a nucleus for amylopectin 

crystallisation or amylose-amylopectin co-crystallisation (Lian, Cheng, Wang, Zhu, & Wang, 2018; 

Smits, 2001). Amylopectin retrogradation is generally linked to the ability of the external glucan chains 

to form double helices (Gudmundsson & Eliasson, 1990; Singh, Lin, Huang, & Chang, 2012). The 

manner in which the re-association of amylose and amylopectin during cooling/storage conditions to 

form a relatively ordered network largely determines the subsequent resistance of the starch to 

enzymatic digestion (which was comprehensively surveyed in Chapter II). Additionally, based on the 

food processing conditions such as temperature, water content, shear strength, and pressure, changes in 

starch physicochemical properties lead to various glycaemic responses.   

I.5 Potato tuber consumption and human health 

Potatoes (Solanum tuberosum) are an important food crop worldwide and contribute key nutrients 

to the diet, including vitamin C, potassium, and dietary fibre (Camire, Kubow, & Donnelly, 2009). 

Potatoes have been shown to have favourable impacts on several measures of cardiometabolic health in 

animals and humans, including lowering blood pressure, improving lipid profiles, and decreasing 

markers of inflammation (McGill, Kurilich, & Davignon, 2013). But potatoes are generally considered 

as a high GI food due to the blood glucose spike after consumption. The glycaemic index (GI) is defined 

by the increase in postprandial blood glucose during the first 2 hours after the consumption of 

carbohydrate foods. Foods with a high GI produce a higher peak in postprandial blood glucose and a 

greater overall blood glucose response than foods with a low GI. In the context of the pandemic of 

obesity and glucose intolerance in the modern world, ways to manipulate the rate and extent of starch 

digestibility are vital, as for the purpose of this project especially. Rate of starch digestion is important 

because the degree to which blood glucose loading exceeds blood glucose clearance determines the 

acuteness of the net increase in blood glucose concentrations, and consequently, the intensity of the 

insulin response required to remove the glucose overload and restore normal blood glucose 

concentrations. Rate of digestion determines the sustainability of glucose supply during the continued 

digestion in the gut, and therefore, delay the urge to eat again contributing to satiation during a meal 
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(Diaz-Toledo, Kurilich, Re, Wickham, & Chambers, 2016; Erdmann, Hebeisen, Lippl, Wagenpfeil, & 

Schusdziarra, 2007).  

A committee of experts brought together by the Food and Agriculture Organization (FAO) of the 

United Nations and the World Health Organization (WHO) reviewed the available research evidence 

and endorsed the use of the GI method for classifying carbohydrate-rich foods (Foster-Powell et al., 

2002). It is, thus, recommended that the GI values of foods be used in conjunction with information 

about food composition to guide food choices. To promote good health, the committee also advocated 

the consumption of a high-carbohydrate diet (≥55 % of energy from carbohydrate), with the foods rich 

in non-starch polysaccharides. For instances, when consuming baked potato topped with cheese (Henry, 

Lightowler, Kendall, & Storey, 2006), or mashed potato with meat, oil, and salad (Hätönen et al., 2011), 

or broccoli with mashed potatoes (Ballance et al., 2018), the glycaemic responses were reduced 

compared to eating potatoes alone. In Australia, official dietary guidelines for healthy elderly people 

recommend the consumption of low-GI cereal foods for good health (Jenkins et al., 1981), and a GI 

trademark certification program is in place to put GI values on food labels as a means of helping 

consumers to select low-GI foods (Krezowski, Nuttall, Gannon, Billington, & Parker, 1987).  

I.5.1 Resistant starch content in potato tubers 

Starch is the main form of carbohydrate in the diet. It is conveniently divided into three categories, 

depending on its propensity to be hydrolysed by digestive enzymes during intestinal transit. The three 

categories of starch are rapidly digestible starch (RDS- hydrolysed within 20 min), slowly digestible 

starch (SDS- hydrolysed between 20 and 120 min), and resistant starch (RS- not hydrolysed within 120 

min) (Englyst et al., 1992). Resistant starch is the fraction of starch that is not digested when it passes 

through the small intestine (Fuentes-Zaragoza, Riquelme-Navarrete, Sánchez-Zapata, & Pérez-Álvarez, 

2010; Nugent, 2005; Sajilata, Singhal, & Kulkarni, 2006). It is at least partially fermented in the large 

intestine. Five resistant starch (RS) subtypes have been defined and were shown in Table I.4  (Englyst 

et al., 1992; Gelders, Duyck, Goesaert, & Delcour, 2005). RS1 is physically inaccessible to digestion 

and is found in whole or partially milled grains. RS2 is granular native starch that is protected from 

digestion due to the conformational structure of the granule. RS3 refers to non-granular starch that is 

formed during retrogradation in food processing. Retrogradation occurs when starch granules are 

disrupted by cooking above their gelatinisation temperature. Upon cooling, the starch granules re-

associate into crystalline structures that resist hydrolysis by amylase. RS4 is chemically modified starch 

(i.e. semi-synthetic) that resists digestion. RS5 refers to amylose-lipid complex. Amylose can form 

helical complexes with lipids in native and processed starches, thereby enhancing resistance to 

digestion.  

Table I.4 Subtypes of resistant starch. 

RS subtype Description 

1 Physically inaccessible to digestion. 
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2 Native starch granules protected from digestion due to the conformational structure 

of the granule. 

3 Non-granular starch formed during retrogradation of starch granules in food 

processing. 

4 Chemically modified starch to decrease digestibility. 

5 Amylose-lipid complex found in native starch granules and processed starch. 

I.5.2 Cooking methods and the effects on starch digestion 

Uncooked potatoes have 75% of resistant starch; however, potatoes are rarely consumed in the raw 

form. Once cooked, amount of resistant starch has been observed to decrease to 1.5% (Englyst et al., 

1992; García-Alonso & Goñi, 2000). Besides the intrinsic factors of starch such as botanical source, 

amylose content and other cell components, the extrinsic factors such as different cooking methods 

have also been shown to affect the starch digestibility (Dupuis, Lu, Yada, & Liu, 2016; Mishra, Monro, 

& Hedderley, 2008). Some resistant starch or slowly digestible starch may be restored during cooling 

periods (i.e. boiling potatoes followed by refrigeration) attributed to retrogradation (Colussi, Singh, et 

al., 2017), resulting in a reduced glycaemic index (Fernandes et al., 2005). Details of food processing 

and starch retrogradation and its effect on starch digestion are surveyed in Chapter II. 

I.6 Research aim and thesis outline 

The object of this project is to tailor the digestion characteristics of potato starch in tuber through 

retrogradation in order to achieve functional processed potato product with low glycaemic features. 

Three stages are envisaged for the project with an aim to design slowly digestible whole processed 

potato tubers. The first stage is to understand the mechanism and kinetics of starch retrogradation, 

followed by the second stage of the development of processing technologies or treatments. Then in the 

third stage, the stability of slowly digestible/ resistant starch during processing and post-processing, i.e. 

storage and reheating will be discussed. The knowledge gained through these three stages will be used 

to formulate slowly digestible/ resistant starch-based low GI processed potato products, and the 

feasibility of scale-up will be discussed. The thesis outline is described per chapter below. 

Chapter II  Review of literature This chapter provides the current understanding of starch 

retrogradation including the structure of retrograded starch and its mechanisms as published in the 

scientific literature. How food processing influences the formation of retrograded starch and interaction 

with other food components thus leading to a lower or slower rate of starch digestion, is surveyed. This 

is a basis for investigating how potato starch retrogradation in tuber, i.e. in a natural whole food, can be 

tailored to develop nutritionally processed potato products. 

Chapter III  Methodology and methods development. This chapter details the developed 

analytical techniques including experimental setups and method validations for studying potato starch 

retrogradation in tuber and its digestion using an oral-gastric-small intestinal in vitro model. Other 

general methods to study potato starch retrogradation are provided in individual chapters accordingly. 
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Based on the review of literature in chapter II, research gaps and research questions were identified 

and thus three main studies were carried out and described in the following chapters. Cooking disrupts 

starch granular structure from ordered to disordered state, and with subsequent cooling the disordered 

structure tangles up. This on-going process of starch structural changes i.e. gelatinisation and 

retrogradation was studied in whole tuber in chapters IV, V and VI.   

Chapter IV  Potato starch retrogradation in tuber: structural changes and gastro-small 

intestinal digestion in vitro. This chapter reported study of the mechanisms of potato starch 

retrogradation in tuber by LF-NMR. A gastro small-intestinal in vitro model was used to study the 

starch hydrolysis in the cooked and retrograded tubers. After various storage periods (1, 3, and 7 days) 

at 4°C in the refrigerator, the estimated glycaemic index (eGI) of retrograded tubers decreased, 

especially the 7-day retrograded tuber which exhibited the lowest eGI.  

Chapter V  Influence of time-temperature cycles on potato starch retrogradation in tuber and 

starch digestion in vitro. Time-temperature cycles (TTC) were designed to induce stepwise nucleation 

and propagation to promote the growth of crystalline regions and the perfection of starch crystallites, 

and thus presents a piece of new information on the acceleration of starch retrogradation in tuber. TTC 

processed potatoes were studied by in vitro oral-gastro-small intestinal digestion.  

Chapter VI  Starch retrogradation of sous vide cooked potato and starch digestion in vitro. This 

study investigated potato starch retrogradation in tuber when potatoes were cooked at low temperatures 

for a long time by following French-style sous vide cooking. Sous vide cook-chill potato tubers storing 

at 4°C in a refrigerator were to simulate the catering processing.  Structural characteristics of all length 

scales such as microstructure, pasting properties, relative crystallinity, thermal characteristics, and 

water mobility were analysed.  The effect on digestibility was studied by in vitro oral-gastric-small 

intestinal digestion.    

Chapter VII Stability of retrograded potato starch in tuber during reheating. This chapter 

discusses reversible structural changes of the retrograded starch in tuber during reheating. The 

retrograded starches in tuber were taken from the three main studies: the constant 4°C retrograded, the 

TTC retrograded, and the sous vide cooked-chill starches in tuber. 

Chapter VIII Industrial relevance. It is a projection from the main three studies and industrial 

implications have been presented and discussed. 

Chapter IX  General discussion and conclusion.  
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Chapter II  Review of literature 

This review presents current knowledge on the mechanism of starch retrogradation and explores its 

health implications, with a focus on the utilization of existing and new technologies to create tailor-

made structures with low glycaemic features.  

II.1 Introduction 

Plants produce starch to store energy for cell metabolism. Humans eat starchy plants for growth and 

energy and pleasure. Cooking enhances the palatability and digestibility of the starch-based foods, yet 

incurs loss of nutrients, such as vitamins and minerals at elevated cooking temperatures (Camire et al., 

2009). The increase in metabolic response e.g. the glycaemic index after consuming cooked starchy 

foods is attributed to the disruption of starch (Singh, Dartois, & Kaur, 2010). Increasing occurrence of 

diabetes mellitus, cardiovascular disease and obesity in recent years has prompted this survey of how 

starch-based products can play a role in mitigating these hyperglycaemic events.  

Raw starch granules range from 1 to 100 μm in size. They are insoluble but disperse in cold water 

due to starch’s well-organized and compact structure (Guilbot & Mercier, 1985). Starch granules show 

layers of growth-ring structure when observed under microscopy (Jane, Kasemsuwan, Leas, Zobel, & 

Robyt, 1994). The growth-ring structure is composed of alternating semi-crystalline and amorphous 

shells developed concentrically from the hilum (Pérez & Bertoft, 2010). The semi-crystalline rings are 

mainly clusters of highly branched-chain amylopectin, while the amorphous rings consist of long linear-

chain amylose (AM) and low-molecular-mass amylopectin (AP) (Witt et al., 2012). Each semi-

crystalline ring consists of alternating crystalline and amorphous lamellae, with a lamellar spacing (d) 

of 9.8 nm. The crystallinity of native starches range from 15 to 45%. Based on the packing of double-

helical crystallites, crystal structure is monoclinic (known as A-type starch), or hexagonal (B-type 

starch), or a mix of both  polymorphs (C-type starch) (Zobel, 1992). Amylopectin is widely accepted to 

support the framework of the semi-crystalline regions of the starch granule and forms double helices. 

Amylose predominately forms a single chain helix with less than 1% long-chain branches in a 

disordered amorphous conformation (Buléon & Tran, 1990; Imberty & Pérez, 1988). 

The granular architecture of native starch acts as a physical barrier delaying diffusion of digestive 

enzymes, thus resulting in a low digestion rate. Digestive enzymes act on A-type starches (e.g. cereals) 

and B-type starches (e.g. tubers) differently due to their different granular architecture (Gallant et al., 

1992). Granular dimensions and internal channels and pores more than starch fine structure (e.g. 

amylopectin branch length profiles, crystallinity, and lamellar periodicity) have been found to be the 

predominant factors during α-amylase hydrolysis (Shrestha et al., 2015; Warren, Royall, Gaisford, 

Butterworth, & Ellis, 2011). The A-type starches have surface pores connected to interior cavities 

through channels (Fannon et al., 1992) whereas the  surface of B-type starch granules is rather smooth. 
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Digestive enzymes enter the A-type starches through the pores and channels, digesting a granule from 

its core to surface. In contrast, as the B-type starch granules have no surface pores or interior cavities, 

the enzymatic digestion occurs on the pit of the granular surface (Hamaker et al., 2007; Jiang et al., 

2015). Native A-type starches have a higher amount of slowly digestible starch (SDS), whereas the 

native B-type starches contain more resistant starch (Ferguson et al., 2000).  

The blood glucose response after consuming carbohydrate food is measured as glycaemic index 

(Jenkins, Wolever, & Taylor, 1981; Ludwig, 2002). It is tested by comparing the incremental area under 

the glucose response curve (AUC) of a test food (with a standard amount of carbohydrate) in relative 

to a control food (either white bread or glucose) (Jenkins et al., 2002). According to the postprandial 

glucose responses, starchy food and starch-based products are classified into high (GI>70), medium 

(56<GI<69), and low (GI<55) foods (Foster-Powell et al., 2002). Some starches that escape the 

digestion in oral-gastric-small intestinal process and pass into the large intestine are known as “resistant 

starch”. Starchy foods with a low level of resistant starch such as white bread increase blood glucose 

levels rapidly and may increase the risk of type 2 diabetes over time (Collier, Wolever, Wong, & Josse, 

1986; Granfeldt, Bjorck, & Hagander, 1991). Other starchy foods with high levels of resistant starch 

are considered to be beneficial for health because of the stable effect on blood glucose levels (Bird, 

Lopez-Rubio, Shrestha, & Gidley, 2009). Additionally, the resistant starch can promote a healthy 

bacterial flora in the large intestine (McCleary & Monaghan, 2002; McCleary & Rossiter, 2004).  

Digestibility of starches in formulated starch-water systems have been found to be different than in 

whole foods (Alsaffar, 2010; Dhital, Bhattarai, Gorham, & Gidley, 2016; Singh, Berg, Hardacre, & 

Boland, 2014). The other cell components in whole foods may act as extra physical barriers. Surface 

proteins and lipids may hinder the enzymatic diffusion during digestion (BeMiller & Whistler, 2009). 

During heating, tissue of starchy whole food (i.e. potato tuber) becomes soft and more susceptible to 

fracture. This is mainly due to pectin degradation through β-elimination, leading to loss of turgor 

pressure. Simultaneously, water molecules penetrate amorphous growth rings leading to leaching of 

amylose and semi-crystalline rings undergo swelling (Donovan, 1979). Gradually, crystalline regions 

are irreversibly disrupted and the birefringence is lost as double helices unwind, in a process known as 

gelatinisation (Jenkins & Donald, 1997; Waigh, Gidley, Komanshek, & Donald, 2000). With 

subsequent cooling, disrupted amylose and amylopectin can re-associate and form a relatively ordered 

structure; the process is termed as starch retrogradation (Siljestrom et al., 1988). The structure of 

retrograded starch may create steric hindrance and subsequent mass transfer resistance, limiting enzyme 

binding during hydrolysis, therefore lower glycaemic index (Fernandes, Velangi, & Wolever, 2005; 

Kinnear & Wolever, 2010; Singh, Dartois, et al., 2010). Sufficient recrystallisation or dense amorphous 

packing have been found to either prevent/limit binding and/or slow down catalysis (Zhang, Dhital, & 

Gidley, 2015).  

Our review highlights current knowledge of starch retrogradation tailoring the relationship of starch 

structure-digestion to explore potential health benefits. It covers and compares most recent information 
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on mechanisms of starch retrogradation in pure starch-water and in whole food systems. A particular 

focus of this review is the influence of food processing and post-processing in relation to structures of 

retrograded starch-digestion. 

II.2 Mechanism of starch retrogradation  

Starches from different botanical sources show different retrogradation tendencies (Jacobson, 

Obanni, & BeMiller, 1997) because of the intrinsic characteristics such as the amylose content (Yao, 

Zhang, & Ding, 2002), the ratio of amylose and amylopectin (Fredriksson, Silverio, Andersson, 

Eliasson, & Åman, 1998), and the distribution of branch chain length of amylopectin (Jane et al., 1999). 

During starch retrogradation, amylose crystallises rapidly and creates initial firmness whereas 

amylopectin crystallises slowly and changes the texture gradually (Ring et al., 1987). Retrogradation 

consists of two separable processes: (1) a short term gelation and re-crystallisation of amylose (Miles, 

Morris, & Ring, 1984) and (2) a long term re-crystallisation of amylopectin (Miles, Morris, Orford, & 

Ring, 1985). The quicker association of amylose is attributed to its degree of polymerization (DP), 

generally 40–70 glucose units (Jane & Robyt, 1984). Retrogradation of amylose can be observed as 

soon as the gelatinisation is completed and cooling commenced (Silverio, Svensson, Eliasson, & 

Olofsson, 1996). Amylose gelation has been described as arising from the cooling of entangled 

molecules in solutions during storage causing phase-separation, i.e. formation of a polymer-rich phase 

and a polymer-poor phase. Amylose gelation has been observed to be irreversible when amylose 

crystallites were heated above the melting temperature (150°C) (Miles et al., 1985). Amylopectin 

retrogrades at a slower rate because of its higher water holding capacity, more highly branched structure, 

and shorter branch chains (Srichuwong & Jane, 2007). Gidley (1989) found that the minimum chain 

length required for starch retrogradation was 8 or 9 glucose units, however an optimum chain length is 

essential for the stability of retrograded starch. For both amylose and amylopectin, long chains between 

DP 13–24 can form long double helices, strengthening hydrogen bonds between chains. These can span 

the entire length of crystalline regions during retrogradation in cereal, potato, pea and rice starches 

(Silverio, Fredriksson, Andersson, Eliasson, & Åman, 2000; Vandeputte, Vermeylen, Geeroms, & 

Delcour, 2003). Short chains around DP 6–12 interfere with the formation of crystalline structures 

(Zhang & Jackson, 1992). The amylopectin chain length distribution of canna, potato, arrow root and 

cassava starches was observed to affect the rate and extent of amylopectin retrogradation (Gidley, 1989; 

Hizukuri, 1986; Jane et al., 1999). Research on waxy and non-waxy rice starches also prompted a 

similar conclusion, the authors stating that the ratio of short-to-long amylopectin chains affect starch 

retrogradation (Singh, Lin, Huang, & Chang, 2012). Shin, Kim, Ha, Lee, & Moon (2005) reported the 

C-type structure of sweet potato starch resolved to A-type during retrogradation. Similarly, retrograded 

corn starch has been reported to be independent of its native counterpart (A-type) in which the B-type 

pattern was observed (Eerlingen, Jacobs, & Delcour, 1994).  
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II.2.1 Kinetics of starch retrogradation 

The re-association of gelatinised amylose and amylopectin is a non-equilibrium, thermally reversible 

crystallisation process governed by a consecutive three-step mechanism of nucleation, propagation, and 

maturation (Slade & Levine, 1987). Nucleation is the formation of critical nuclei, while propagation is 

the growth of crystals from the nuclei formed, and maturation is the crystal perfection or continuing 

slow growth (Silverio et al., 2000). Overall crystallisation rate (i.e. maturation) depends mainly on 

nucleation and propagation rate (Eerlingen, Crombez, & Delcour, 1993).  Nucleation has been observed 

to be faster at 4°C than at room temperature for potato starch (Nakazawa, Noguchi, Takahashi, & 

Takada, 1985) and wheat grains (Jankowski & Rha, 1986).  Propagation, the development from nuclei 

to crystallite, has been found to be faster at higher temperatures (25-60°C) (Eerlingen et al., 1994; Shi 

& Gao, 2016; Silverio et al., 2000; Xie, Hu, Jin, Xu, & Chen, 2014; Zhou, Baik, Wang, & Lim, 2010). 

Structure of retrograded starches collapsed into disordered form at/above the melting temperature 

(>120°C  for amylose (Botham et al., 1994) and >55-70°C for amylopectin (Eerlingen & Delcour, 

1995)). A stepwise nucleation and propagation of retrograded starch has been observed under 

temperature cycles between glass transition temperature and melting temperature, forming more 

homogenous and temperature stable crystallites (Hu, Xie, Jin, Xu, & Chen, 2014; Park, Baik, & Lim, 

2009; Tian et al., 2012; Xie, Hu, Jin, Xu, & Chen, 2014; Zhou et al., 2010; Zhou & Lim, 2012).  

The kinetics of starch retrogradation can be modelled by the Avrami equation, 

 𝑁(𝑡) = 𝑁̅𝑒−𝑛𝑡[1 − 𝑉(𝑡)] 

where N(t) reflects the amount of crystallised starch, 𝑁̅ represents the value of N after a certain storage 

time, V(t) is the rate of retrogradation, and n is an Avrami exponent (Avrami, 1940; McIver, Axford, 

Colwell, & Elton, 1968; Roos & Drusch, 2016). The amount of crystallised material present at a given 

time is a combined function of crystal growth rate and the density of nucleation. Physical characteristics 

of cooked/gelatinised starches during cooling and storage are measured to estimate the rate of 

retrogradation. Physical characteristics that can reflect the amount of the crystallite in retrograded starch 

are starch retrogradation enthalpy (Arık Kibar, Gönenç, & Us, 2011; Doona, Feeherry, & Baik, 2006; 

Hsu & Heldman, 2005; Lin, Yeh, & Lii, 2001; Shi & Gao, 2016; Siswoyo & Morita, 2010; Zhang et 

al., 2014), relative crystallinity (Fu, Wang, Li, Zhou, & Adhikari, 2013; Jouppila, Kansikas, & Roos, 

1998), firmness/hardness (of bread) (Ronda, Caballero, Quilez, & Roos, 2011), relaxation time of starch 

molecules determined by NMR (Farhat, 2000; Teo & Seow, 1992), and ratio of the absorbance at certain 

wavenumbers (1047/1022 represents crystalline to amorphous and 1053/1035 depicts retrograded 

amylose or amylopectin) from infrared spectroscopy (Van Soest, de Wit, Tournois, & Vliegenthart, 

1994; Wilson et al., 1991). The Avrami equation has been used to estimate the rate constant and the 

type of nucleation and growth under the assumption of a thermodynamic equilibrium reaction (Arık 

Kibar et al., 2011; Hsu & Heldman, 2005; McIver et al., 1968; Miles, Morris, Orford, & Ring, 1985; 

Vandeputte, Vermeylen, Geeroms, & Delcour, 2003). Parameters obtained from the Avrami model 
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exhibit only a relative theoretical utilization since starch during retrogradation is in a non-equilibrium 

state (Levine & Slade, 1988), involving time-dependent changes at above and below the glass transition 

temperature. Various conditions may be used for obtaining retrogradation rate constants and the type of 

the nucleation. Extensions have been added to the model to take account of the effects of storage 

temperature, water content, and possible interactions with other molecules in attempt to model the 

kinetics of starch retrogradation (Blanshard & Farhat, 2000). 

II.2.2 Fine structure of amylopectin during retrogradation 

Intrinsic characteristics, i.e. molecular structure of starches affect retrogradation during cooling. For 

instance, nonwaxy wheat starch, containing higher amylose content or amylopectin with less branched 

and longer glucan chains, have been found to be more prone to retrogradation than for waxy wheat 

starch (Sasaki, Yasui, & Matsuki, 2000). Linear chains of amylose facilitate the cross-linkages by 

hydrogen bonding, and hence amylose is proposed to act as a nucleus for amylopectin crystallisation or 

amylose-amylopectin co-crystallisation (Lian et al., 2018; Smits, 2001). During retrogradation, the AM-

AM interaction of long chain segments resulted in high retrogradation enthalpy (∆HR) in high-amylose 

corn starch (Boltz & Thompson, 1999). But neither the amount of long chain nor short chain amylose 

have been observed to be correlated with the retrogradation thermal characteristics (i.e. To, Tp, Tc, and 

∆HR) of amylopectin in cereal, legume root, and tuber starches (Vamadevan & Bertoft, 2018). This 

could be that AM-AP interaction were too weak to be observed, compared to AM-AM interaction 

during retrogradation (Vamadevan & Bertoft, 2018). The external glucan chains of branched 

amylopectin may form double-helices potentially during retrogradation (Klucinec & Thompson, 1999; 

Vamadevan & Bertoft, 2015; Würsch & Gumy, 1994). Some literature discussion has focused on the 

fine structure of amylopectin. A structural model of retrograded starch (Figure II.1) has been proposed 

based on Pearson’s correlation analysis between different branched-chain-length categories (i.e. 

external-chain segments and inter-block segments (IB-CL)) and the thermal characteristics of re-

crystallised amylopectin (Vamadevan & Bertoft, 2018). According to the concept of the backbone 

model (Bertoft, 2013), amylopectin long chains were suggested to connect all the short-branched chains 

of amylopectin in retrograded starch (Figure II.1). The model described the existence of both long- and 

short-chain segments of amylopectin in retrograded starch as evidenced by a broad retrogradation 

temperature range. The long inter-block segments (IB-CL) are more flexible than short segments to 

bring individual long chains to form loops or helical structures (Figure II.1) (Vamadevan & Bertoft, 

2018). The formation of longer (inter-block) segments and intra-molecular double helices have been 

shown by the increase in ΔHR (Figure II.1) (Vamadevan & Bertoft, 2018). Short external chain length 

and short IB-CL leads to short helices and poor alignment resulting in low ΔHR (Figure II.1) 

(Vamadevan & Bertoft, 2018). 
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Figure II.1 Model of retrograded gel network based on the amylopectin “building block backbone model” 

(Vamadevan & Bertoft, 2018).  Short chains (thin lines) show weaker gels with short double-helices, poor intra-

molecular alignment, and short inter-molecular double-helical junctions (left), whereas long chains (bold lines) 

form intra-molecular, inter-molecular, and junction zone (right).  Reprinted from “Impact of different structural 

types of amylopectin on retrogradation”, Vol 80, P88-96, Vamadevan & Bertoft, 2018, with permission from 

Elsevier. 

II.2.3 Methods to depict starch retrogradation  

Owing to the broad range of physico-chemical change during starch retrogradation, comprehensive 

and informative studies in different techniques have been presented by various authors (Karim, 2000; 

Wang, Li, Copeland, Niu, & Wang, 2015). The process of retrogradation is influenced by many factors. 

A full picture requires starch retrogradation to be studied from the macroscopic scale down to molecular 

level. Techniques used include rheological analysis, thermal analysis (e.g. DSC), x-ray diffraction, 

spectroscopic analysis (e.g. NMR, FTIR, and Raman), and microscopy. Each of these methods and 

techniques have different sample preparations, advantages, and limitations (Table II.1). 

Techniques such as blue value and syneresis can be used to quantify the physical properties of 

retrograded starches by the formation of amylose-iodine complex and the amount of water release from 

the matrix, respectively (Table II.1). The recrystallisation process during starch retrogradation can be 

monitored by the rheometry in the starch-water system (Shogren, 1992) or by the mechanical testing 

(e.g. texture analyser) for the solid food e.g. firmness of bread crumb (Xu, Chung, & Ponte, 1992) 

(Table II.1). Simple rheological properties such as setback viscosity measured by Barbender or a Rapid 

Visco Analyser can be used to reflect degree of retrogradation (Singh, Kaur, McCarthy, Moughan, & 

Singh, 2008) (Table II.1).  

The mechanical techniques such as dynamic mechanical analysis (DMA)/ or dynamic mechanical 

thermal analyser (DMTA) measure the stress–relaxation response (Kalichevsky, Jaroszkiewicz, Ablett, 

Blanshard, & Lillford, 1992). Degree of crystallisation reflected by the final value of the modulus of 

DMA has been found to be a strong function of the storage temperature in retrograded wheat starch gel 

(Roulet, MacInnes, Würsch, Sanchez, & Raemy, 1988). Thermal changes such as the enthalpy 
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differences and the shifting of transition temperature after various hydrothermal treatments can be 

observed by differential scanning calorimetry (DSC) (Table II.1). The extent or tendency of 

retrogradation is indicated by the enthalpy required to disrupt ordered structures formed during storage 

(Hsu & Heldman, 2005).   

Vibrational spectroscopy studies the effect of hydrothermal treatment on internal chemical bonds, 

skeleton types, connecting forms, and bonding energy. FTIR, Raman and NMR have been used to 

characterize the crystallinity by the vibration of different chemical groups as well as the skeletal 

vibration of the glycosidic linkage in gelatinised and retrograded starch (Table II.1). Wilson et al. (1991) 

used molecular spectroscopy techniques to study starch retrogradation in bread and related starch-based 

foods. FTIR spectroscopy reveals the skeletal vibration of α-1,4 glycosidic linkages while Raman 

spectroscopy measures the light scattering of different chemical groups (Table II.1). Infrared (IR) 

spectroscopy detects chemical groups containing highly polar bonds or bonds whose dipole moment 

changes during vibration. A stronger vibration of chemical groups results in sharper changes in dipole 

moment, which in turn leads to stronger IR absorption and a higher peak height in spectra. Raman 

spectroscopy is suitable for detecting vibrations of less polar molecular bonds such as C–C bonds and 

pyranoid rings. The chemical shift of the same chemical group observed by Raman and FTIR are 

similar, but the intensity and peak numbers of the same chemical group are different between spectra. 

Due to the different signal receiving modes, IR and Raman spectroscopic techniques are regarded as 

complementary. Distribution of chemical shifts in terms of the effect of the degree of molecular order 

can be measured by nuclear magnetic resonance (NMR). From the NMR spectrum, a clear decrease in 

molecular mobility is recorded as molecules undergo ordering transitions during cooling and storage. 

X-ray diffraction detects and monitors the helices and semi-crystalline arrays in retrograded starch 

(Table II.1). The technique reveals the diffraction pattern of different types of crystalline packing such 

as A, B and C type starch. Cooke & Gidley (1992b) emphasised the difference between degree of 

molecular order (amount of polysaccharide in the helical conformation) and the degree of crystallinity 

by wide-angle X-ray diffraction (WAXD) (Table II.1). The nanostructure of amylose gels and 

gelatinised starches have been studied by scattering techniques owing to the electron density contrast 

between the crystalline lamellae and the amorphous lamellae (I’Anson, Miles, Morris, Ring, & Nave, 

1988; Müller et al., 1995). During starch gelatinisation, alternated layers of crystalline and amorphous 

lamellae are lost as evidenced by the loss of the lamellar scattering peak of small-angle X-ray scattering 

(SAXS) (Kuang et al., 2017) (Table II.1). Consistently, the wide-angle X-ray scattering (WAXS) 

profiles of gelatinised tapioca starch revealed no obvious crystalline structure. More recently, 

synchrotron X-ray micro beams have been used to study molecular orientation and crystallinity maps 

by analysing local diffraction patterns of starch granules (Buléon, Gérard, Riekel, Vuong, & Chanzy, 

1998; Cai, Bai, & Shi, 2012) (Table II.1).   

Scanning electron microscope (SEM)  provides the 3D image of surface morphology of retrograded 

starch in potato tubers (Table II.1). Other techniques such as light microscope or confocal laser scanning 
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microscopy (CLSM) can visualise retrograded starch in potato tubers cell structure by suitable dye, such 

as Acridine orange for cell wall and starch or Acid Fuchsin for protein (Table II.1). Combined 

techniques such as Raman microscopy with high resolution may be used to visualise the state of starch 

re-ordering process in formulated starch-water systems or whole foods.
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Method types Techniques Principles and properties 

Measured 

Sample preparation Advantages/ Disadvantages References 

Physical 

properties 

Blue value The formation of the 

iodine-starch complex in 

the retrograded starch. 

Sample pre-treatments 

are needed to extract 

starch for whole foods. 

√ Colorimetric assay is straightforward and 

quick. 

✗ Retrograded amylose contributed to the 

most of the iodine-starch binding and thus it 

is a qualitative method. 

(McIver et al., 1968). 

Syneresis Water released from the 

sample after cooling and 

storage. 

Suitable for both 

formulated systems 

and whole foods. 

√  Simple. 

✗ Experimental conditions, such as 

centrifugal forces, freezing temperature and 

rate, freezing duration and numbers of freeze-

thaw cycles can vary in different researches. 

(Zheng & Sosulski, 

1998), (Singh, 

McCarthy, & Singh, 

2006). 

Rheology Viscoelastic behaviour. Starch gel. √ Alterations in viscoelastic behaviour as 

manifestations of retrogradation is monitored 

in situ. 

✗ Heterogeneous samples could affect the 

validity of the results within and between 

samples obtained. 

(Singh et al., 2008). 

Texture Texture profile analysis 

e.g. the fracturability and 

the hardness. 

Solid, semi-solid, and 

gel-like samples. 

√ Automatic calculations of texture profile 

analysis save time and reduce errors. 

✗ Destructive measurement. 

(Kaur, Singh, Singh, 

& Ezekiel, 2007). 

Thermal 

characteristics 

DSC Retrogradation 

temperature (To, Tp, and 

Tc) and enthalpy (∆HR). 

Sample can be in 

starch-water systems or 

whole foods. 

√ DSC can simulate cooking and cooling 

process precisely. It is a quantitative method 

to determine the amount of retrograded starch 

and the kinetic of starch retrogradation. 

✗ Sampling size is normally less than 20mg. 

(Karlsson & 

Eliasson, 2003b), 

(Carlstedt, Wojtasz, 

Fyhr, & Kocherbitov, 

2015). 

Spectroscopic 

analysis 

FTIR Order of crystalline region 

in relation to amorphous 

region of the 

surface/localized 

retrograded starch. 

Solid, semi-solid, and 

gel-like samples. 

√ Quick and sensitive method to study the 

molecular alignment of starch retrogradation 

by absorbance of 1047 cm-1 and 1022 cm-1 and 

their ratio (1047/1022). 

(Van Soest et al., 

1995), (H. Jiang et 

al., 2015). 

Table II.1 Techniques to study starch retrogradation. 
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✗ Results are limited to the penetration depth, 

representing only the surface structure of the 

sample. 

Raman Internal and external 

vibration of molecules. 

Suitable for both 

formulated systems 

and whole foods. 

√ Raman measures molecular covalent 

character by change in polarisability. 

✗ Only detects less/nonpolar molecular 

bonds, such as C–C bonds and pyranoid rings. 

(Huen et al., 2014), 

(Galvis, Bertinetto, 

Putaux, Montesanti, 

& Vuorinen, 2016). 

NMR 1H NMR analyses the 

relaxation time of the 

starch indicating mobility 

of starch polymer chains. 

Suitable for both 

formulated systems 

and whole foods. 

√ Relatively large sampling size (10g). 

✗LF-NMR is limited to study sample 

components in high concentration. 

(Straadt, Thybo, & 

Bertram, 2008), 

(Zhu, 2017). 

X-ray 

diffraction 

WAXD Long-range ordered 

structure. 

Starch powders, gels or 

solutions. 

√ Relatively large sampling size (2g). 

✗ Hydration is known to influence X-ray 

patterns, yet a certain amount of water is 

necessary to reveal structural ordering. 

(Chen et al., 2016) 

SAXS Molecular spacing 

between repetitive 

crystalline and amorphous 

lamellae. 

Hydrated samples. √ Indication of the re-alignment of gelatinised 

amylose and amylopectin into lamellar layers 

during starch retrogradation. 

✗ Complementary methods (e.g. DSC, 

WAXD, or SEM) are needed to interpret the 

high-angle tail patterns of retrograded starch. 

(Perry & Donald, 

2000b) 

Synchrotron Crystalline orientation and 

distribution within fine 

grid. 

Hydrated states or 

starch suspensions. 

√ Similar to DSC, in situ (real time) melting 

and crystallisation can be monitored. 

Synchrotron radiation provides higher 

spectral brilliance with continuous energy 

tunability, small source size, small beam 

divergence and high beam flux. 

✗ Potential radiation damage on the starch 

structure, though its non-destructive nature 

during measurement. 

(Buléon, Gérard, et 

al., 1998), (Cai et al., 

2012), (Blazek & 

Gilbert, 2011). 
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Microscopic SEM 3D image of surface 

morphology. 

Dried formulated 

systems and whole 

foods. 

√ Good correlation with other method: 

lacunarity (gaps or holes of starch SEM 

image) ↑, ∆HR ↑. 

✗Sample preparation, such as freeze-drying 

and cutting may cause the loss of starch 

materials on sample’s surface. 

(Utrilla-Coello, 

Bello-Pérez, Vernon-

Carter, Rodriguez, & 

Alvarez-Ramirez, 

2013), (Tamura, 

Singh, Kaur, & 

Ogawa, 2016). 

CLSM Structural changes in 

whole plant tissue, such as 

starchy matrix fills up cell 

interspace, the outline of 

cell walls and protein 

distribution can be 

observed during cooking 

and cooling.  

Formulated systems or 

thin slices of whole 

foods. 

√ Structural artefacts are minimum during 

sample preparation in a whole food system. 

✗ Observation of cell wall separation and 

degradation are not as pronounced as SEM in 

whole food.  

(Bordoloi, Kaur, et 

al., 2012). 

DSC, differential scanning calorimetry; To, retrogradation onset temperature; Tp, retrogradation peak temperature; Tc, retrogradation conclusion temperature; 

∆HR, retrogradation enthalpy. FTIR, fourier-transform infrared spectroscopy. (LF-)NMR, (Low field-) nuclear magnetic resonance. SAXS, small angle x-ray 

scattering. WAXD, wide-angle x-ray diffraction. SEM, scanning electron microscopy. CLSM, confocal laser scanning microscopy.
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II.2.4 Starch retrogradation in food matrix 

Interactions of starches with other components naturally existing in plant tissues such as the 

phosphorus content in potato starch (Zaidul, Yamauchi, Kim, Hashimoto, & Noda, 2007), the protein 

content in wheat (Riva, Fessas, & Schiraldi, 2000; Zaidul et al., 2007), and the lipid as 

lysophospholipids or free fatty acids in cereals (Boltz & Thompson, 1999; Eliasson & Wahlgren, 2004) 

can influence starch retrogradation. Extrinsic factors such as the presence of non-starch food 

compounds (Table II.2) and the cooking and cooling regimes (discussed in Section II.3) all play an 

important role in starch retrogradation. Other food components influence starch retrogradation by 

competing for available water, owing to the differences in the electrostatic, van der Waals forces, 

hydrophobic/hydrophilic interactions, or hydrogen bonds between the chemical functional groups 

(Elaisson, 2006). Interactions may alter swelling behaviour and amylose leaching during gelatinisation 

and hence the realignment of starch during retrogradation.  

 Starch and salts 

Starch gelatinisation in neutral salt solutions has been shown to be controlled by either the hydrogen 

bonds between water molecules and ions or by electrostatic interactions between starch-water and 

starch-ions (Frank & Wen, 1957; Luck, 1980). Depending on the salt concentration and charge density 

of the ions, the cations or anions of a salt can either stabilize or destabilize the starch granular structure, 

thus affecting starch gelatinisation and subsequent retrogradation (Jane, 1993). Ions with low charge 

density (e.g. SCN-& I-), highly hydrated in water tend to form helical complexes with starch molecules 

and thus destabilize granular structure during heating. With subsequent cooling, the ion-starch 

interactions inhibit any rearrangement during retrogradation, leading to a slower rate of retrogradation 

and higher transparency of potato starch paste (Zhou et al., 2014). When the high charge density ions 

(e.g. Li+, Na+, & SO4
2-) are in high concentrations, the ions will form hydrogen bonds with the -OH 

groups on starch, destabilizing starch granules and consequently, will result in lower gelatinisation 

temperature. Upon cooling, rearrangement of gelatinised wheat starch molecules has been reported to 

be inhibited in concentrated NaCl solution during retrogradation as evidenced by a decrease in 

retrogradation enthalpy compared to retrograded wheat gel without salt (Russell & Oliver, 1989). 

Overall, influence of salts on retrogradation has been generally observed to follow the order of the 

Hofmeister series in which the anions increase the retrogradation rate in the order of I– < Br– < Cl– < F–

and the cations decrease rate in the order of K+ < Li+ < Na+ (Ciacco & Fernandes, 1979) in the corn and 

waxy corn starch (Wang et al., 2017).   
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 Starch and carbohydrates 

The term carbohydrate refer to monosaccharides (e.g. glucose, ribose, fructose), oligosaccharides 

with 2-20 units (e.g., maltose, lactose, sucrose), and polysaccharides (e.g., guar gum, locust bean gum, 

xanthan gum, carrageenan, alginate, pectin, arabic gum, carboxyl-methyl-cellulose, and methyl-

cellulose, hydroxyl-propyl-methylcellulose).  

Sugars (monosaccharides and short oligosaccharides) and cold water-soluble maltodextrins have 

been shown to affect starch retrogradation in different trends. Simple sugars, such as glucose have been 

reported to increase retrogradation rate by the cross-linking of outer branches of adjacent amylopectin 

chains (Hoover & Senanayake, 1996). Larger malto-oligosaccharides, i.e. DP>6 may form small helices 

that co-crystallise with starch enhancing the formation of retrogradation (Gidley & Bulpin, 1987). Other  

sugars with DP 2-5, however, may form complexes with starch hydroxyl groups hindering the formation 

of amylose helices and reducing starch retrogradation (Lee, Kim, & Nishinari, 1998; Rojas, Rosell, & 

de Barber, 2001; Smits, Kruiskamp, Van Soest, & Vliegenthart, 2003).  

Non-starch polysaccharides are complex polysaccharides other than the starches that contain several 

hundreds of thousands of monosaccharides units, joining by glycosidic linkages (Kumar, Sinha, 

Makkar, de Boeck, & Becker, 2012). Due to the structural complexity of starch and non-starch 

polysaccharides, the interactions between two compounds depends on several factors including the 

molecular structure, ionic nature, concentration, and ratio of starch to non-starch polysaccharides 

(Tester & Sommerville, 2003). Various extrinsic factors such as pH, ionic strength, temperature, and 

presence of other components also affect the interactions between starch and non-starch 

polysaccharides. Different mechanisms have been proposed to illustrate interactions between starch and 

hydrocolloids and the effect on starch retrogradation.  

Hydrocolloids generally promote short-term starch retrogradation by immobilizing water molecules 

in the starch-hydrocolloid solution and therefore increasing the aggregation of starch (primarily amylose 

molecules) (Sikora, Kowalski, & Tomasik, 2008; Yoshimura, Takaya, & Nishinari, 1998). 

Galactomannans, such as guar gum, tara gum, and locust bean gum, and konjac glucomannan yet have 

been shown to retard the long-term retrogradation. Interactions among gums and starch during 

retrogradation depends on the molecular flexibility (i.e. the degree of conformational expansion) of the 

gums and thus vary with different glycan chains. For instance, the more galactose side chain present 

the greater delaying effect has been observed on long-term retrogradation, possibly due to inhibition of 

amylose crystallisation and/or the co-crystallisation between amylose and amylopectin (Funami et al., 

2005a, 2005b). 

Freeze-thaw stability, an indicator of starch retrogradation has been shown to be improved in the 

presence of non-starch polysaccharides. Improved freeze-thaw stability has been observed with sweet 

potato, yam, corn starches and wheat flour in the presence of xanthan gum (Sae-kang & Suphantharika, 

2006); or with rice starch in the presence of konjac glucomannan (Charoenrein, Tatirat, Rengsutthi, & 
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Thongngam, 2011) and β-glucan (Satrapai & Suphantharika, 2007); or with sago or waxy corn starches 

in the presence of galactomannan, guar gum, and alginate (Ahmad & Williams, 2001). 

 Starch and proteins 

Endogenous proteins (such as the spherical membrane-bound protein bodies or proteins in the 

cytosol of starchy endosperm cell, i.e. cereal grains) may influence starch retrogradation (Sjoo, Karin, 

& Eliasson, 2009). Gluten, a wheat protein present naturally in wheat grains, interacts with wheat starch 

through hydrogen bonds, providing anti-firmness characteristics (Erlander & Erlander, 1969). During 

kneading and baking, gluten molecules have been reported to form complexes with the C-2 and C-3 

hydroxyls of a glucose unit and stabilize the starch helices. This complex may then exhibit steric 

hindrance for the α-1,4-linked chain, inhibiting the aggregation of amylose and amylopectin, and 

consequently, reduce starch retrogradation in pasta compared to rice (Riva et al., 2000). 

Additional proteins can influence physicochemical properties of starch-based food products by 

starch-protein interaction, leading to structural changes such as aggregation and gel formation (Samant, 

Singhal, Kulkarni, & Rege, 2007). When additional gluten was added, the increase in bread firmness 

could be attributed to hydrogen bonding between the glucan chains and gluten fibrils apart from starch 

retrogradation (Every, Gerrard, Gilpin, Ross, & Newberry, 1998). The kinetics and the extent or 

polymorphism of amylopectin retrogradation were however not significantly affected in the presence 

of gluten (Ottenhof & Farhat, 2004).  

Starch-protein interaction has been found to form bonding by electrostatic and van der Waals forces, 

with less contribution from hydrophobic effects and hydrogen bonds (Marshall & Chrastil, 1992). In 

the softer gel of soybean protein-wheat starch system, soy protein-amylose complex could be formed 

by non-covalent bonding, exposing the branches of amylopectin and thus weakening the gel matrix. 

Consequently, the water-retention capacity of soybean protein-wheat starch gel has been found to be 

lower than starch only gel during starch retrogradation, leading to higher syneresis (Ribotta, Colombo, 

León, & Añón, 2007). Glutenins have been shown to delay wheat starch retrogradation (Guo, Lian, 

Kang, Gao, & Li, 2016), while albumins, globulins, and gliadins promote it (Lian, Guo, Wang, Li, & 

Zhu, 2014). Soybean protein isolate has little effect on the thermal behaviour and retrogradation of corn 

starch. However, soybean 7S globulin has been found to delay corn starch retrogradation, while soybean 

11S globulin promoted it (Lian, Zhu, Wen, Li, & Zhao, 2013; Yu, Jiang, & Kopparapu, 2015). 

 Starch and lipids 

Lipids are abundant in some natural starchy foods such as cereals but various lipids are often added 

in food applications (Eliasson & Wahlgren, 2004).  Amylose may complex with either endogenous or 

exogenous lipids (such as glycerol monostearate). Exogenous lipid has been shown to reduce stickiness, 

improve freeze-thaw stability, and retard staling as dough conditioners and crumb softeners in baking 

goods. This was attributed to the formation of amylose-lipid complexes (Kaur & Singh, 2000; Singh, 
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Singh, Kaur, Sodhi, & Gill, 2003) and amylopectin-lipid complexes (Eliasson & Ljunger, 1988). The 

amylose-lipid complex (e.g. cetyltrimethylammonium bromide (CTAB)-amylose) was shown to 

interfere with the crystallisation of gelatinised amylose/amylopectin retarding potato starch 

retrogradation (Gudmundsson, 1992). Similarly, starch-lipid complex may have restrained helical 

conformations in crystalline networks between starch molecules and thus delayed starch retrogradation 

in cooked rice (Hibi, Kitamura, & Kuge, 1990) and baking goods (Hesso et al., 2015; Matignon & 

Tecante, 2017) during cooling and storage. Or the amylose–lipid complex possibly changed water 

distribution in bread, and therefore affected the retrogradation (D’Appolonia & Morad, 1981).  

Different hypotheses have been proposed to interpret mechanisms of amylose/amylopectin-lipid 

complexes in delaying starch retrogradation. For wheat flour with lipid contents of 6.6% (dwb), the 

amylose-lipid complex was reported to hinder retrogradation more than with potato or cassava flour 

with lipid contents lower than 0.1% (dwb) (Becker, Hill, & Mitchell, 2001). Outer short branches of the 

amylopectin have been reported to form amylopectin–lipid complex thus retarding retrogradation 

(Eliasson & Ljunger, 1988; Huang & White, 1993; Nakazawa & Wang, 2004; Putseys, Lamberts, & 

Delcour, 2010). Co-crystallisation of amylose and amylopectin in amylomaize starch has, however, 

been suggested to occur to the extent that eliminates the delaying effect of starch retrogradation by 

amylose-lipid complex (Russell, 1987).
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Table II.2 Interactions of starches and the other food components during starch retrogradation. 

Food 

components 

Starch botanical 

sources 

Mechanisms Influences References 

Anions: F-, Br-, 

I-, SO4
2-, Cl-, 

NO3
-, SCN- 

Cations: Na+, 

Li+, K+ 

Potato starch Ion-starch interaction inhibited the rearrangement 

during retrogradation, leading to a slower rate of 

retrogradation and higher transparency in potato paste 

with ions than potato starch only paste. 

Transparency of the potato starch paste 

mixed with ions decreased in the order of 

SCN− > I− > NO3
- > Br− > Cl− ≈ Control > 

SO4
2- > F− (for anions); and Li+ > Na+ > 

Control > K+ (for cations). 

(Zhou et al., 2014) 

Salts Corn and waxy 

corn starch 

Salting-out ions (F−, SO4
2-, K+) increased the syneresis 

indicating higher level of retrogradation. Salting-in ions 

(Br−, NO3
−, I−, SCN−, Na+, Li+) decreased the syneresis 

delaying retrogradation. 

Syneresis (%) of anions: SCN− < I− < NO3
- < 

Br− < Cl−< SO4
2- < F− and for cations Li+ < 

Na+ < K+. 

(Wang et al., 2017) 

Glucose, 

fructose, and 

sucrose 

Oat starch Cross-linking between sugars and the hydroxyl groups 

on the outer branches of adjacent amylopectin chains 

led to an increase in chain aggregation and thus 

increased retrogradation enthalpy (∆HR). 

∆HR increased in the presence of sugar in the 

order of glucose > fructose > sucrose. 

(Ratnajothi Hoover 

& Senanayake, 

1996) 

Sucrose Acorn starch 

(AS) 

Sucrose might prevent the rearrangement of 

amylopectin during cooling/storage and hence retard the 

retrogradation. 

Retrogradation ratio (∆HR/∆HG): AS only> 

5% sucrose+ AS > 10% sucrose+ AS > 15% 

sucrose+ AS. 

(H. A. Lee et al., 

1998) 

Maltose Potato and 

wheat starch  

Sugars with DP2-5 might intrude between the starch 

chains hindering the helices formation, and thus reduce 

retrogradation. Shorter branch-chain length of 

amylopectin in wheat starch might form complex with 

the additional maltose recrystallizing to a lesser extent 

than potato starch.  

Crystallinity index: maltose-wheat starch< 

maltose-potato starch. 

 

(Smits et al., 2003) 

Locust, tara, 

and guar gum 

Wheat starch Molecular flexibility of the gums created various 

accessibilities to react with the crystallites of the 

retrograded starch; the more the galactose side chain, 

the greater the effect on delaying long-term 

retrogradation. 

Decrease in rate constant of dynamic 

rheological test: guar >tara >locust gum. 

(Funami et al., 

2005a, 2005b) 

Konjac 

glucomannan 

(KGM)  

Rice starch KGM inhibited the re-association of disrupted starch 

and thus retarded retrogradation in rice starch gel 

preserving quality in freeze–thaw rice starch gels. 

Syneresis (%): Rice starch> Rice starch + 

0.3% KGM> Rice starch + 0.5% KGM. 

(Charoenrein et al., 

2011) 
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Protein Durum wheat 

spaghetti and 

rice 

Competition between protein and starch over water 

availability via hydrogen bonding. 

Retrogradation ratio (∆HR/∆HG): Rice > 

Spaghetti. 

(Riva et al., 2000) 

Soy protein 

isolate 

Wheat starch Soy proteins and amylose may form complex exposing 

the branches of amylopectin and weakening gel matrix. 

Consequently, water-retention capacity of soy protein-

wheat starch gel has been shown to be lower than for 

starch only gel.  

Syneresis: Starch-soy protein gel> Starch 

gel. 

(Ribotta et al., 2007) 

Glutenins, 

albumins, 

globulins, and 

gliadins 

Wheat starch Glutenins-amylose formed double helices by hydrogen 

bonding between the hydroxyl group of C-6 and the 

carbonyl group of Tyr, and thus hindered amylose-

amylose short-term retrogradation. 

Glutenins-wheat starch complex retarded 

starch retrogradation, while albumins, 

globulins, and gliadins-wheat starch 

complex promoted starch retrogradation. 

(Guo et al., 2016), 

(Lian et al., 2014). 

Soybean 7S 

globulin and 

soybean 11S 

globulin 

Corn starch (CS) One end of soy protein polypeptide, abundant with 

glutamic acid (Glu-Na+) interacts with the C6 of corn 

starch, while the other end of soy protein polypeptide 

(Lys) reacted with aldehyde group of corn starch. The 

polypeptide and glycosidic bonds formed hydrogen 

bonds in alkaline condition during retrogradation.  

∆HR : Soybean 11S globulin-CS > Soybean 

7S globulin-CS. 

(Yu et al., 2015), 

(Lian et al., 2013). 

Palmitic, oleic, 

and linoleic  

acids 

Cooked rice 

grains and rice 

starch 

Starch-lipid complex restrained helical conformation 

and thus retarded starch retrogradation. 

Intensity of X-ray diffraction pattern: Non-

defatted (native) rice paste> Refatted rice 

paste> Defatted rice paste. 

(Hibi et al., 1990), 

(Chang & Liu, 

1991). 

Rapeseed oil 

(70%) + 

anhydrous 

milk fat (30%) 

Wheat flour in 

cake crumb 

The B-type crystalline pattern formed in cake crumb 

after 17 days of storage. Polymorphic types of 

retrograded crumb displayed the intense peaks at 19° (β 

form) and at 23° (β′ form) under different storage 

conditions. The crystallisation of starch and lipid 

components with β form was more pronounced at the 

ambient temperature than at low temperature during 

retrogradation.  

Intensity of X-ray diffraction pattern: Cake 

in 20 °C storage for 25dy > in 4 °C storage 

for 25dy > freshly baked cake. 

(Hesso et al., 2015) 

Cetyltrimethyl

ammonium 

bromide 

(CTAB)  

Amylopectin 

(AP) and 

amylose (AM)  

from potato 

starch 

Adding surfactant to the mixture of AM/AP in either 

high or low percentage of AP, the formation of the 

surfactant-AM complex inhibited the co-crystalline 

between amylose and amylopectin reducing 

retrogradation enthalpy. 

∆HR: AM/AP mixture> AM/AP mixture-

CTAB 

(Gudmundsson, 

1992) 
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II.2.5 Starch retrogradation: formulated vs natural systems  

Models used to illustrate the structure of gelatinised and retrograded starch in formulated and natural 

systems are discussed below.  

At 95 °C, the power-law scattering behaviour of SAXS extended to lower scattering angles 

especially for the amylose-containing starches, indicating that amylose is essential in the development 

of large, temperature-stable self-similar structures (Vermeylen, Derycke, et al., 2006). Amylose 

gelation has been observed to create phase separation into a polymer-rich network phase interpenetrated 

by a polymer-deficient phase (Huang et al., 2014; I’Anson et al., 1988). Disrupted amylose and 

amylopectin entangle and form the fractal-like aggregate in retrograded starches. The SAXS profile of 

tapioca starch exhibited successive changes in the low-q regime (0.0025-0.02 A˚ -1), revealing formation 

of aggregates during cooling. The fitted parameters of fractal-like aggregates model (for ellipsoidal 

primary particles, i.e., amylopectin nanoclusters) revealed an increase in the fractal dimension and in 

the population of the fractal aggregates and a decrease in the free nanoclusters (Chen & Teixeira, 1986; 

Lin, Lin, Jeng, Huang, & Huang, 2009). This growth behaviour of fractal aggregates represented by the 

corresponding scattering invariant Qagg and fractal dimension Df have been found to be highly correlated 

to the solution viscosity (Huang et al., 2014). The Bragg’s peak, an indication of ordered structure has 

been observed as the realignment of disrupted amylose and amylopectin reached a sufficient level of 

ordering during cooling and storage (Carlstedt et al., 2015; Suzuki, Chiba, & Yarno, 2002).  

 Retrogradation of starch in food matrix 

A food matrix, as eaten, is typically a multi-component formulated system differing from the natural 

self-assembled whole foods. Dough is a viscoelastic network formed by gluten (Demirkesen, 

Campanella, Sumnu, Sahin, & Hamaker, 2014). Gluten, the continuous or the discontinuous protein 

network can keep the fermentation gas in bread dough and restrict water migration during staling 

(Wilderjans, Luyts, Brijs, & Delcour, 2013). Staling, commonly perceived as a phenomenon of starch 

retrogradation, occurs as water migrates between components in bread. Staling thus changes the protein-

starch networks and influences moisture loss (Matignon & Tecante, 2017). Different models, based on 

the main components in cereal products, have been developed to study starch retrogradation. Two 

models and a mix of both are detailed below. One model describes a matrix such as bread or steam bun 

(Mantou) (Huang & Moss, 1991; Huang & Miskelly, 2019) in which starch matrix embedded in a 

continuous gluten network (Jekle, Mühlberger, & Becker, 2016), or a bi-continuous structure of 

accumulated swollen starch granules and a protein network (Hug-Iten, Escher, & Conde-Petit, 2003). 

As cooking temperature increased above 65 °C, gluten network has been observed to convert from thick 

aligned and highly branched protein strands to a homogeneous network of small thin protein threads 

(Verbauwhede et al., 2019). With subsequent cooling, the gelatinised starch spreads in between the 
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gluten structure, and reorganises as an amylose and amylopectin entangle, forming retrograded 

crystallites.  

The other model depicts the network such as cake that contains sugar, egg proteins, and fat in either 

high amounts (12-33%) as an emulsion-based batter (batter-type) (Wilderjans, Luyts, Goesaert, Brijs, 

& Delcour, 2010) or in low or nil quantities as a foam-based batter (foam-type) (Godefroidt, Ooms, 

Pareyt, Brijs, & Delcour, 2019). Leached amylose may embed in the mixture of protein-lipid (Hesso et 

al., 2015) and may further form amylose-lipid complex during baking (Goesaert et al., 2005a). In this 

system, sugar increases the temperatures (80 to 95 °C) at which starch gelatinises (Kim & Walker, 

1992a, 1992b) and protein denatures (Deleu et al., 2019) and thus affects caking setting. During cooling 

and storage, cakes firm over time. Water migration from different fractions (e.g. gluten or amorphous 

starch) into retrograded crystals possibly lead to cake firmness, like in bread systems (Willhoft, 1973). 

The loss of softness in cake has also been attributed to the protein network where protein network 

present was no longer fully plasticised once moisture loss and starch retrogradation occur during storage 

(Godefroidt et al., 2019). 

 Retrograded starch in whole foods 

Starch gelatinisation and retrogradation take place under a wide range of water contents, a 

prerequisite in starch-water systems (Donovan, 1979). Whole plant food systems, such as rice grains, 

legumes, and potato tubers (Berg, Singh, Hardacre, & Boland, 2012) encompass different cell 

compartments, (e.g. cell wall, vacuole, cytoplasm and intracellular spaces) within which starch 

gelatinisation and starch retrogradation occur, subject to local influences of other cell components and 

water availability.  

Cooked rice grains (in boiling water, rice to water of 1:1.5 for 30min) exhibit a gelatinised starch 

and protein mass surrounded by plant cell walls. During cooling, the firmness of cooked rice grains has 

been found to be linearly related to starch retrogradation and affected by the AM and AP structure 

(Perdon, Siebenmorgen, Buescher, & Gbur, 1999). Milled, raw rice grains have been observed under 

SEM microscopy to contain fine cracks throughout the endosperm (Ogawa, Glenn, Orts, & Wood, 

2003). The fine cracks in raw grains have been found to serve as channels for water migration into the 

grain as evidenced by the wider and more defined cracks in cooked rice grains (Horigane et al., 1999; 

Ogawa et al., 2003). Variable water penetration in cooked rice grains has been attributed to 

microstructural heterogeneity (e.g. cracks/pores and dense regions) based on observations from 

magnetic resonance imaging (MRI) and micro-computed tomography (μ-CT) (Mohorič et al., 2009). 

With subsequent cooling, the cooked rice grain has been observed to develop crevices in the core, 

becoming prominent over two days of storage (Hsu, Chen, Lu, & Chiang, 2015; Jung, Lee, Lee, & Kim, 

2016).  

In legumes, starch granules are encapsulated by cellular protein matrices in the cotyledon cells 

(Daussant, Mosse, & Vaughan, 1983), restricting starch swelling during gelatinisation owing to steric 



32 

 

hindrance and other limiting effects (e.g. water availability) (Do, Singh, Oey, & Singh, 2019; Singh et 

al., 2014). During cooking, legumes become soft due to gelatinised starch and denatured proteins in 

cells accompanied by partial solubilisation of the middle lamella leading to separation of individual 

cotyledon cells (Hultin & Milner, 1978). After cooling, SEM images revealed finely reticulated legumes  

attributed to shrunk cells and crimples on cell walls during starch retrogradation (Tan, Tan, Tian, Liu, 

& Shen, 2011).  

Starch retrogradation in whole tuber (in tuber) has recently been investigated through low field-

nuclear magnetic resonance (LF-NMR), a non-invasive technique. Interactions of starch and water, the 

most abundant component in tuber during starch retrogradation were discerned by four relaxation times 

(Chen, Singh, & Archer, 2018). Effects of cooking, cooling and reheating on the structures formed by 

gelatinised amylose and amylopectin and the effects on water migration were inferred from the degree 

of the vibration of hydrogen bonds as indicated by relaxation time. Each relaxation time may indicate 

the mobility of water within the starch double helices of crystalline regions (T20), in the amorphous 

region of amylose and amylopectin (T21), loosely associated with the gelatinised starchy matrix (T22), 

and within potato tuber cell cytoplasm (T23) (Figure II.2b) (Chen et al., 2018; Thybo, Andersen, 

Karlsson, Dønstrup, & Stødkilde-Jørgensen, 2003). The water population with relaxation time T23 was 

predicted to diffuse into starch granules and interact with the exposed hydroxyl groups of amylose and 

amylopectin by exchanging hydrogen bonds during heating. As the temperature dropped after heat 

treatment, progressive aggregation of gelatinised amylose and amylopectin reportedly weakened the 

interactions between the starchy matrix and water leading to more free water in the T23 population; 

simultaneously the water with T21 in the gelatinised amylose and amylopectin network became less 

mobile (Figure II.2c) (Chen et al., 2018). A cyclic pattern of the relaxation time T22 of freshly cooked, 

retrograded (for 1,3, and 7 days), and retrograded then reheated potato (at 50,70, and 90 °C) was 

observed (Chen et al., 2018), indicating that longer storage time allowed gelatinised amylose and 

amylopectin to associate, forming a sufficiently strong structure to maintain integrity despite reheating 

to 90 °C.  

(a) Raw potato parenchyma cells (b) Freshly cooked potato cells-

starchy matrix containing 

leached AM and unwound AP 

(c) 3-day retrograded potato 

cells-retrograded AM and AP 

embedded in starchy matrix 
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The integrated observations based on interactions of different components in formulated and natural 

systems in response to a thermal process can provide an overall picture of starch retrogradation leading 

to better understanding of the mechanisms and exploring the potentials for structural manipulation. 

II.3 Starch retrogradation as influenced by type of food processing  

Food processing can modify starches physically by inducing changes in the packing of AM and AP 

and their interactions with other food components which might further affect the formation of 

retrograded starch. Starch structural changes, particularly the formation of retrograded starch 

manipulated by existing and new technologies during processing and post-processing are discussed 

below (Table II.3).  

Heat moisture treatment (HMT) is a hydrothermal process applied to starch under low moisture 

conditions (<35% moisture, w/w) for a length of time (1-24 h). HMT modifies the physico-chemical 

properties of starches without destroying their granular form. Starch granular form is retained under 

limited water content, though the mobility of the glycosidic bonds is increased and the helical structure 

of semi-crystalline lamellae is changed under high temperature (80-130°C) (Zavareze & Dias, 2011). 

The physico-chemical characteristics such as granule morphology, pasting properties, and gelatinisation 

temperature and enthalpy of HMT-treated starches has variously been reported to increase, decrease, or 

not change, depending  on the type of starch (Hoover, 2010), moisture content (Lim, Chang, & Chung, 

2001), and heating temperature-time (Varatharajan et al., 2011) during HMT.  

HMT might disrupt the least stable structures such as the outer branches of amylopectin, resulting 

in stronger and more rapid lateral association of double helices in retrograded starch during subsequent 

cooling (Hoover & Vasanthan, 1994a). The relative crystallinity of HMT-treated and retrograded corn 

and potato starches have been shown to be higher than their native counterparts (Miyoshi, 2002). HMT 

might also enhance the AM-AP interactions in cereals and legumes starches. For instance, enhanced 

interactions of AM-AP chains in HMT-treated lentil than wheat starches, owing to the longer AM and 

AP chains in lentil starch, have less disrupted AM-AP interaction during gelatinisation (Hoover & 

Vasanthan, 1994b). With subsequent cooling, the increase in retrogradation enthalpy of HMT-treated 

 
 

  

Figure II.2 Model of starch retrogradation in tuber and its relaxation time distribution curve (Chen et al., 2018). 

*AM represents amylose and AP is amylopectin. Model, not represented to the relative length scale, is only for 

illustration. 
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starches may be attributed to the enhanced interaction of AM-AP during heat moisture treatment 

(Hoover & Vasanthan, 1994a). Other results of the ∆HR of finger millet and mucuna bean starches were, 

however, shown to be lower than their native counterparts (Adebowale, Afolabi, & Olu-Owolabi, 2005; 

Adebowale & Lawal, 2003b). This could possibly due to the inherent characteristics of these two 

starches or to higher storage temperature (at 30 or 40°C) during starch retrogradation- no detailed 

explanation was provided by the authors. 

Extruded starches experience high shear under limited water conditions (< 30%) resulting in the 

melting of the amylopectin crystallites within swollen granules (Nayak, Berrios, & Tang, 2014). In 

general, extrusion modifies the pasting behaviour of flour, producing more stable pastes with low 

retrogradation tendency. Both extruded rice flour (Hagenimana, Ding, & Fang, 2006) and extruded 

potato and corn flour mixture (Singh, Kaur, McCarthy, Moughan, & Singh, 2009) exhibited lower 

setback values than their native counterparts during pasting analysis, indicating a decrease of 

retrogradation tendency. Extrusion under high moisture content (>40%) and low screw speed 

(<150rpm) has commonly been found to increase retrogradation tendency and thus formation of 

resistant starch leading to lower starch hydrolysis in extruded sweet potato (Waramboi, Gidley, & 

Sopade, 2014) and pastry wheat flour (Kim, Tanhehco, & Ng, 2006). An “Improved Extrusion Cooking 

Technology (IECT)” cooks starches under feed moisture contents of 30 to 70% and has, however, been 

shown to improve flour solubility and give lower short-term starch retrogradation (Liu et al., 2017). 

Rice extruded by IECT has been shown to have a lower extent of retrogradation than its native 

counterpart as evidenced by lower retrogradation enthalpy, lower relative crystallinity and lower ratio 

of 1047 cm-1 to 1022 cm-1 (i.e. less ordered structure) in the FTIR spectra, and lower retrogradation rate 

modelled by Avrami (Zhang et al., 2014). 

The low temperature long time process with physical barrier such as sous vide processing was 

invented to avoid overheating surface of foods with low heat transfer coefficient and to minimise surface 

contamination. Sous vide processing usually cooks food at low temperature (50-70°C), akin to 

annealing, which is known in starch science for treating starches in excess water (≥40%, w/w) at 

temperatures under gelatinisation temperature for specific periods (Tester & Debon, 2000). Annealing 

enhances chain mobility (owing to plasticization by water), improving the alignment of double helices 

within the crystalline lattice (Gomand et al., 2012; Kiseleva et al., 2005; Tester & Debon, 2000; 

Vermeylen, Goderis, & Delcour, 2006) without cleavage of native starch chains (Chung, Liu, & Hoover, 

2009; Jayakody & Hoover, 2008; Rocha, Cunha, Jane, & Franco, 2011). The increased molecular 

rearrangement might prevent the reorganization of amylopectin molecules during storage as evidenced 

by the lower transition temperature (Tc-To), which ranged from 50 to 75°C (Siswoyo & Morita, 2010). 

The retrogradation rate of annealed starch has been found to be less than for the control suggesting that 

the annealed starch might retard retrogradation (Siswoyo & Morita, 2010).  
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Ultrasonic processing is another technique to overcome the low thermal diffusivity of foods. 

Depending on the processing temperature influenced by ultrasound power, time, and intensity, 

ultrasonication can be either a thermal process or a non-thermal process. Studies have documented 

morphological (Moza, Mironescu, & Florea, 2012; Sujka & Jamroz, 2013) and physico-chemical 

(Czechowska-Biskup, Rokita, Lotfy, Ulanski, & Rosiak, 2005; Iida, Tuziuti, Yasui, Towata, & Kozuka, 

2008) changes in starches induced by ultrasonic cavitation. Ultrasonication power has been reported to 

possibly interrupt the branch chains of amylopectin in rice starch resulting in depolymerisation (Sujka 

& Jamroz, 2013). The decrease in retrogradation enthalpy with increasing ultrasonication power has 

been thought to be due to the less recrystallized amylopectin molecules (Yu et al., 2013). Syneresis (%) 

of the sonicated starch gels has been found to be lower than for the untreated starch gel after three 

freeze-thaw cycles (Sit, Misra, & Deka, 2014). According to Sit et al. (2014), ultrasonic treatment might 

have broken molecular chains in the amorphous regions leading to extensive reordering of the chain 

segments. This breakage and reordering of amorphous region may have then allowed a greater number 

of hydrophilic bonds to be exposed and to hold more water during thawing.  

Non-thermal methods are ideal processes without heat deteriorative reactions. Pulsed electric field 

(PEF) is commonly used in potato industry as a pre-treatment step prior to cutting as the PEF-softened 

potato tubers have been shown to cut more cleanly (Botero-Uribe, Fitzgerald, Gilbert, & Midgley, 2017; 

Fauster et al., 2018). PEF treatment has also been reported to disrupt the structure of starch granules as 

evidenced by the lower gelatinisation enthalpy indicating the potential loss of double helices. In 

addition, the lamellar spacing (d) in PEF-treated rice starch has been shown to decrease with increasing 

pulsed electric field strength (Zeng, Gao, Han, Zeng, & Yu, 2016). The morphology, relative 

crystallinity, and pasting properties of corn (Han, Zeng, Zhang, & Yu, 2009) and potato (Han, Zeng, 

Yu, Zhang, & Chen, 2009; Li et al., 2019) starches have been observed to be influenced by increasing 

pulsed electric fields strength. The PEF-treated corn and potato starches might have undergone starch 

gelatinisation in high pulsed electric fields strength (at 50 kV/cm) as shown by their granular destruction 

and the molecular rearrangement. Consequently, no significant difference in the final viscosity (the 

viscosity at the end of cooling) of PEF treated corn and potato starches was observed from their native 

counterparts. An increase in pasting stability and lower retrogradation tendency (i.e. syneresis) has been 

observed in PEF-assisted+acetylated potato starch (Hong, Chen, Zeng, & Han, 2016). This might be 

attributed to the suppression of intermolecular interaction between water and starch molecules due to 

the presence of phosphate ester at C6/C3 of amylopectin in potato starch (Walter, 1998).  

High pressure processing (including ultrahigh (UHP) or high-hydrostatic (HHP) pressure >400MPa 

and homogenisation by valve homogeniser) is an effective way to keep food product microbiologically 

safe while maintaining their sensory quality. All UHP-treated starches have been shown to have either 

a mixture of intact granules and partially gelatinised starch or completely gelatinised starch (Douzals, 

Perrier Cornet, Gervais, & Coquille, 1998; Kim, Kim, & Baik, 2012). Under UHP, the crystallite 

dissociation and the unwinding of amylopectin double helices have been reported to be restricted 
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possibly due to the stabilisation of van der Waals and hydrogen bonds among double helices of 

amylopectin (Knorr, Heinz, & Buckow, 2006). Consequently, UHP-gelatinised starch has been found 

to have limited amylose leaching (Stolt, Oinonen, & Autio, 2000), lower swelling power (Douzals et 

al., 1998), and more resistance to enzymatic digestion (Colussi, Kaur, et al., 2017; Selmi, Marion, 

Perrier Cornet, Douzals, & Gervais, 2000).  

With subsequent cooling, the amount of the retrograded starch has been shown to be proportional to 

the amount of the gelatinised starch in UHP-treated starch (Kawai, Fukami, & Yamamoto, 2007). 

Results of Young modulus measurements, calorimetry, and X-ray diffraction have shown a limited level 

of retrogradation in UHP-treated wheat starch gels. More restricted translational proton mobility in 

UHP-gelatinised, than for heat-gelatinised wheat starch gels, might have led to less recrystallisation 

during retrogradation (Douzals et al., 1998). Lower levels of retrogradation, i.e. lower ∆HR have also 

been observed in UHP-gelatinised and retrograded wheat starch (Doona et al., 2006). The relative 

crystallinity of HHP-gelatinised and retrograded sample has been found to be higher for normal corn 

starch compared to waxy corn starch where higher amylose in corn starch may act as nuclei and co-

crystallize with amylopectin chains leading to additional crystallites (Li et al., 2016). 
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Food 

techniques 

Botanical sources Processing conditions Storage 

conditions 

Influences References 

HMT Lentil starch, wheat 

starch, and oat 

starch 

100°C, 16h, 30% moisture. 25°C, 20day ∆HR: Lentil> wheat> oat starches> their native 

counterparts  

(Hoover & 

Vasanthan, 

1994a) 

HMT Corn starch 125°C, 20mins, saturated humidity. 1°C, 7day  Relative crystallinity increased. (Miyoshi, 2002) 

Extrusion Pastry wheat flour Co-rotating twin-screw, screw speed 

150-250 rpm, constant barrel 

temperature from feed port to exit die at 

40-120°C, feed moisture content 20-

60%. 

4°C, 0, 7, or 

14day 

Feed moisture content ↑, setback value by RVA 

↑. 

(Kim et al., 2006) 

Improved 

Extrusion 

Cooking 

Technology 

Rice starch Single screw, screw speed 20-32rpm, 

barrel temperature 69-120°C mass ratio 

of sample: water 1:1.5. 

 

4°C, 7day Lower ∆HR, lower relative crystallinity, and 

lower ratio of 1045cm-1 to 1151cm-1 in the FTIR 

spectra. 

(Liu et al., 2017; 

Zhang et al., 

2014) 

Annealing Breadfruit starch 10% starch slurry cooked at 45, 50, 55, 

and 60°C for 24h 

22°C, 12day Lower ∆HR. (Siswoyo & 

Morita, 2010) 

Ultrasound Non waxy rice 

starch 

5% starch slurry, 100, 500, 1000W, 

operating temperature <60°C. 

4°C, 7day ∆HR decreased with increasing ultrasonic power. (Yu et al., 2013) 

Ultrasound Taro starch 50% starch slurry, 30 kHz, 100W, 125 

µm amplitude, for 10min keeping slurry 

temperature at 20±0.5°C. 

Repetitive cycle 

between -20°C 22h 

and 30°C 2h, for 3day 

Improved freeze-thawing stability. (Sit et al., 2014) 

PEF  Corn starch 8% corn starch-water suspension, 

continuous PEF system operating at  

electric field strength of 30, 40, and 50 

kV/cm. 

- Subtle changes in setback viscosity of PEF 

treated starch compared with native starch. 

(Han, Zeng, 

Zhang, et al., 

2009) 

PEF Acetylated potato 

starch (DS=0.13) 

E = 2 kV/cm, Q = 1.7 × 108 J/m3, tp = 40 

μs, texp = 74.5 s, f = 1000 Hz. 

25°C, 24h Lower retrogradation (39.1%), breakdown (155 

BU) and setback value (149 BU). 

(Hong et al., 

2016) 

UHP Wheat starch 30% starch slurry, 600 MPa, 25°C, 

15mins. 

4°C, 2day Young compression modulus of heat-gelatinised 

+retrograded starch> UHP-gelatinised 

+retrograded starch.  

(Douzals et al., 

1998) 

UHP Wheat starch 40% starch slurry, 620MPa, 25°C, 

30mins. 

4°C, 14day ∆HR of heat-gelatinised starch> UHP-gelatinised 

starch. 

(Doona et al., 

2006) 

UHP Normal/ Waxy corn 

starch 

30% starch slurry, 600 MPa, 15 mins. Room 

temperature, 

192h 

Relative crystallinity of retrograded HHP-

gelatinised normal corn starch> retrograded 

HHP-gelatinised waxy corn starch. 

(Li et al., 2016) 

HMT, heat moisture treatment; ∆HR, retrogradation enthalpy; RVA, rapid visco analyser; PEF, pulsed electric field; UHP, ultra-high pressure process.

Table II.3 Effects of food processing technologies or treatments on starch retrogradation 
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II.4 Starch nutritional fractions as delivered by various food processing 

Healthy people can maintain their plasma glucose concentration within a relatively narrow range, 

between approximately 3.3 and 8.3 mmol/L. Even within the first hour after the start of the meal, the 

peak postprandial plasma glucose occurring seldom exceeds 8.3 mmol/L and the increase rarely lasts 

beyond 120 min (Foster-Powell et al., 2002). Due to the complexity of the human digestion process and 

the laborious procedure of measuring glycaemic index experiment, starch digestion in vitro has been 

developed as a cost-effective method for screening glycaemic characteristics of foods. Researchers have 

shown a strong and positive correlation between starch digestion in vitro and in vivo (Goñi et al., 1997). 

It is, however, important to consider both physiological and physicochemical events of each step of 

digestion with realistic transit time, pH, and enzymatic conditions in vitro as postprandial glucose 

response is a reflection of intestinal glucose absorption as well as combined responses of several 

physiological processes during in vivo starch digestion (Guerra et al., 2012).  

The in vitro starch digestion measures the glucose released at selected time points over 120 min to 

reflect human starch digestion. Starch nutritional fractions are divided into rapidly digestible starch 

(RDS), slowly digestible starch (SDS) and resistant starch (RS) fractions (Englyst et al., 1992). The 

RDS is the fraction that is digested within 20 minutes, SDS is the starch digested between 20 and 120 

minutes, and the remaining undigested starch is considered as resistant starch (RS). The relation 

between the three starch fractions can be illustrated by following equation: RS=TS-(RDS+SDS), where 

TS is total starch. SDS prolongs the glucose release and places less stress on the blood glucose 

regulatory system (Lehmann & Robin, 2007b). SDS may prolong satiety which could be incorporated 

into foodstuffs for weight-loss programs. SDS may also be utilized by athletes as it provides a longer, 

more consistent source of systemic glucose (Wolf, Bauer, & Fahey, 1999). Retrograded starch is 

classified as resistant starch type 3 (Haralampu, 2000). RS is the portion of starch that escapes from 

small intestine and passes to the large intestine. It is digested by colonic microflora enzymes then 

fermented to produce short-chain fatty acids (acetic, propionic, and butyric) that have been shown to be 

beneficial to colonic health (Bird et al., 2009).  

A low GI starchy food should contain lower amounts of RDS, and a higher proportion of SDS and 

RS (Gourineni, Stewart, Skorge, & Sekula, 2017; Hamaker et al., 2007; Zhang & Hamaker, 2009). 

Knowing the influence of food structure and processing on starch nutritional fractions enables the 

development of starchy products of which the starch-derived glucose evolution is delayed. 

II.4.1 Kinetics of glucose release and starch digestibility  

Several mathematical models have been proposed to predict and estimate the kinetics of glucose 

release during starch digestion in vitro (Table II.4). The well-known Michaelis–Menten equation 

depicts the starch digestion in vitro by analysing enzyme activity and the relation between substrate and 
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production. In this reaction of enzyme-substrate binding and production, the enzyme concentration is 

assumed to be relatively low. The competitive or non-competitive enzyme binding during digestion can 

lead to either product inhibition or substrate inhibition, and hence, a modified Michaelis–Menten 

equation has been proposed to consider the impacts (Singh, Dartois, et al., 2010). The modified model 

successfully describes time courses from various starch samples prepared under different conditions, 

such as different digestive enzymes (Dona, Pages, Gilbert, Gaborieau, & Kuchel, 2009) (Table II.4). 

The first order rate equation 𝐶 = 𝐶∞(1 − 𝑒−𝑘𝑡), where C is the concentration of starch hydrolysed 

at chosen time t, 𝐶∞ is the equilibrium concentration, k is the kinetic constant (Table II.4). It is proposed 

by Goñi et al.,(1997) based on assuming the substrates are sufficient throughout digestion process. The 

area under the hydrolysis curve (AUC) of a specified product divided by the AUC of white bread was 

defined as hydrolysis index (HI). The estimated glycaemic index (eGI) of a wide range of foods, such 

as spaghetti, rice, biscuit, chickpea etc., were calculated to correlate starch digestion in vitro to in vivo. 

It has been shown a positive and significant correlation with the glycaemic index (GI) in vivo, where 

GI=39.21+0.803 (HI90) (r=0.91, p<0.05) (Goñi et al., 1997). The eGI obtained in vitro from the same 

model also has been shown to have a strong and positive correlation to the GI in vivo across a variety 

of cooked potato cultivars (Ek, Wang, Copeland, & Brand-Miller, 2014). Boiled-chill potatoes (8°C, 

24h) and the addition of vinegar have been found to reduced glycaemic (GI) and insulinemic (GII) 

indices in healthy subjects after a potato meal. Cold storage has been found to lower GII with 28%, 

comparing to the GII of freshly boiled potatoes (Leeman, Östman, & Björck, 2005). 

An empirical first order rate equation has been used to model the starch hydrolysis curve by the Log 

of Slope (LOS) analysis. Instead of defining the starch nutritional fractions by the fixed period, the 

empirical first order equation reflects the decreasing starch hydrolysis rate as the substrate concentration 

decreased naturally as the reaction proceeds. The slope of the LOS plot is sensitive to the changes in k 

during a reaction revealing by discontinuities in the linear plot. A significant correlation between the 

predictive digestibility curves and experimental data validates the estimation of 𝐶∞ and 𝑘 obtained by 

LOS plots (Butterworth, Warren, Grassby, Patel, & Ellis, 2012; Chen et al., 2016; Edwards, Warren, 

Milligan, Butterworth, & Ellis, 2014; Kim, Choi, Park, & Moon, 2017; Pinhero et al., 2016). Based on 

the changes of the slope of the LOS plot, the starch nutritional fractions can be discerned over the 

digestion time course (Dhital et al., 2016).  

Table II.4 The comparison of kinetics constant 𝜿 estimation by different model. 

Model Michaelis-Menten Goñi et al. model Logarithm of slope (LOS) 

model 

Equation 𝜐
= 𝜐𝑚𝑎𝑥𝑆 (𝜅𝑚 + 𝑆)⁄  

𝐶 = 𝐶∞(1 − 𝑒−𝑘𝑡) 

Parameter 𝜐 = 𝜅𝑠 
ln [

(𝐶∞ − 𝐶𝑡)

𝐶∞
] = −𝜅𝑡 ln

𝑑𝐶

𝑑𝑡
= ln(𝐶∞𝜅) − 𝜅𝑡 

𝜅 =
𝜅𝑐𝑎𝑡𝐸0

𝜅𝑚+𝑆
  −𝜅 =

𝑡ℎ𝑒 𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑙𝑜𝑡,  
−𝜅
= 𝑡ℎ𝑒 𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑙𝑜𝑡, 
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( ln [
(𝐶∞ − 𝐶𝑡)

𝐶∞
]  𝑎𝑔𝑎𝑖𝑠𝑛𝑡 𝑡) 

 

( ln [
𝑑𝐶

𝑑𝑡
]  𝑎𝑔𝑎𝑖𝑠𝑛𝑡 𝑡) 

ln(𝐶∞𝜅) = 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 
𝑡ℎ𝑒𝑛 𝜅 𝑐𝑎𝑛 𝑏𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 

Limits One-stage reaction 

exhibit possible 

substrate inhibition 

and product 

inhibition.  

All starch fraction inherent 

same reactivity. 

A long time digestion is 

needed to assure an accurate 

estimation of 𝐶∞. 

Sufficiently spacing between 

each time interval. 

II.4.2 Formation of slowly digestible/resistant starches in processed foods  

Knowledge of food processing methods and conditions as well as of the underlying mechanisms that 

lead to the formation of SDS/RS in foods is of great importance for nutritionists and food companies, 

since it offers the possibility of increasing the SDS/RS content in processed foods (Table II.5).  

Extrusion cooking influences starch digestibility variously depending on the extent of 

depolymerisation and interactions with other food components such as protein and lipid (Alonso, 

Aguirre, & Marzo, 2000; Björck, Asp, Birkhed, & Lundquist, 1984; Mahasukhonthachat, Sopade, & 

Gidley, 2010). The degree of extrusion cooking affects accessibility of starch to digestive enzymes; 

gelatinised starch in rice flour extrudates has been found to facilitate the amylolytic hydrolysis in vitro 

(Hagenimana et al., 2006). Under high shear conditions, mango starch has been found to be 

depolymerized, producing unbranched chains that are more likely to retrograde during cooling and 

storage (Agustiniano-Osornio et al., 2005). This could have contributed to the higher RS in extruded 

high-amylose barley (Huth, Dongowski, Gebhardt, & Flamme, 2000) and extruded high-amylose corn 

flour (Zhang et al., 2016). Formation of amylose-lipid complex in corn starches (Asp & Björck, 1989; 

Bhatnagar & Hanna, 1994) or starch-protein interaction in extruded rice flour (Guha, Ali, & 

Bhattacharya, 1997) have been linked to a decrease in starch digestibility in vitro. Different results of 

starch digestibility in vitro may be due to variable interaction between starch molecules and other 

components during and after extrusion. 

When starch is cooked at high temperature (>140°C) such as in a jet cooker in the presence of a 

complexing agent, e.g. fatty acids, it may experience a different crystallisation during cooling at 75–

95°C. The term “high temperature retrogradation” has been coined to describe re-crystallisation of the 

amylose with the native lipid material present in corn starch (Davies, Miller, & Procter, 1980). The 

crystallisation can either form a complex with radial symmetry and birefringence (called starch 

spherulites) (Singh, Lelane, Stewart, & Singh, 2010) or self-assemble into a starch complex with non-

spherical morphology (Conde-Petit, Handschin, Heinemann, & Escher, 2007; Foucault, Singh, Stewart, 

& Singh, 2016). The starch-lipid complex formed by corn or potato starches with palmitic acid at 140°C, 

then followed by retrogradation at 70°C, showed a low digestibility. The high retrogradation 

temperature may have contributed to higher resistance towards enzyme action in the simulated gastro-

small intestinal environment (Foucault et al., 2016).  
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Heat moisture treatment (HMT) processed starches have been observed to exhibit increased  

(Ambigaipalan, Hoover, Donner, & Liu, 2014; Varatharajan et al., 2011), decreased (Ambigaipalan et 

al., 2014; Chung, Liu, et al., 2009), or unchanged susceptibility to enzymatic degradation, depending 

on the starch botanical source and treatment conditions. Different HMT conditions determine the extent 

of disruption of granular structure, the formation of resulting ordered structures leading to varied 

amounts of the resistant starch (Hoover, 2010). In some instances, HMT treatment might have disrupted 

native granular structure at the expense of RS, with the result that either slowly digestible starch or 

rapidly digestible starch, or both, increased (Jiranuntakul, Puttanlek, Rungsardthong, Puncha-arnon, & 

Uttapap, 2011; Kim & Huber, 2013). Waxy potato starch has been observed to display visible cracks 

on the granular surface with a hollow centre owing to the molecular rearrangement during HMT (Lee 

& Moon, 2015). HMT processed rice and corn starches have been shown to induce moderate increases 

in thermostable RS and SDS contents that can withstand subsequent thermal processing/cooking 

conditions, illustrating its practical significance of HMT (da Rosa Zavareze et al., 2012; Kim & Huber, 

2013). After cooling and storage, the increase in RS of HMT-treated starch (Pratiwi, Faridah, & Lioe, 

2018) has been found to be related to starch retrogradation contributing to an increase in relative 

crystallinity of HMT-treated potato, corn (Miyoshi, 2002), and lentil starches (Hoover & Vasanthan, 

1994b) (section II.3). 

Granule porosity of annealed starches has been related to an increase in enzyme susceptibility, 

negating the effect of crystalline perfection and leading to the conversion of RS to SDS or RDS (O’Brien 

& Wang, 2008). Annealed pea, lentil and navy bean starches have been shown slight increases (1.6–

5%) in SDS and RS levels compared with untreated native counterparts during subsequent heating 

(Chung, Liu, & Hoover, 2010; Chung, Liu, et al., 2009). Swollen granules in annealed starch have been 

found to rupture more easily than for native starch once heated (Alvani, Tester, Lin, & Qi, 2014). The 

∆HR of annealed wheat starch has been reported to be lower than for native counterparts during storage 

(Yu, Wang, Xu, Guo, & Du, 2016). The ∆HR of annealed starch in sous vide cooked potatoes (at 55°C 

and 4°C 3-day refrigeration) were similar to the ∆HG of raw potatoes (Chen, Singh, Midgley, & Archer, 

2019). Lower eGI of sous vide cooked-chill potatoes than for boiled-chill potatoes may have attributed 

to better crystalline/amorphous alignment and less heat disruption of cell microstructure during sous 

vide cooking (Chen, Singh, Midgley, & Archer, 2019). 

Microwave heating with no shear involved is an alternative to conventional heating for the 

preparation of starch slurries. Microwave heating induces starch gelatinisation leading to increased 

starch digestibility, similar to conduction heating (Emami, Perera, Meda, & Tyler, 2012; Hagiwara, 

EsakiI, Nishiyama, Kitamura, & Kuge, 1986; Kingman & Englyst, 1994). Different heating modes of 

microwave than conduction heating have been found to result in cooked starch gel with different 

physicochemical characteristics. Microwave-heated wheat starch gel has been found to result in less 

amylose leaching into the inter-granular matrix due to the rapid heating rate, forming a weaker amylose 
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network upon subsequent cooling and storage (at 25°C) (Palav & Seetharaman, 2007). Consequently, 

re-association of microwave-heated starch has been found to be reduced compared to autoclaved starch 

in lotus seed during cooling, leading to less RS in the former (Zeng et al., 2015). Other factors such as 

the microwave irradiation and furnace dimensions and dielectric properties of the starch slurries have 

also been extensively studied (Braşoveanu & Nemţanu, 2014). Microwave irradiation could lead to the 

generation of free radicals (Yang et al., 2017), affecting glycosidic bonds of starch molecules at 

crystalline/amorphous lamella level (Fan et al., 2014) and thus promote the fragmentation of large starch 

molecules into smaller ones (Kim, Park, & Lim, 2015). In this case, it could possibly result in 

microwave-heated starch being more ready to aggregate during cooling, leading to a higher RS. Since 

microwave irradiation is able to remove water efficiently to produce a starch paste with low moisture 

content, microwave-assisted HMT was developed to shorten processing times (Zhang, Wang, & Shi, 

2009). The microwave-assisted HMT induced subtle granular structure changes to minimise the RDS 

in waxy and non-waxy rice starches (Anderson & Guraya, 2006a; Anderson, Guraya, James, & 

Salvaggio, 2002) and in Canna edulis ker starch (Zhang, Chen, Liu, & Wang, 2010).  

HHP process has been found to alter the water distribution within the cellular components in waxy 

rice (Tian, Li, Zhao, Xu, & Jin, 2014) and waxy wheat (Hu, Zhang, Jin, Xu, & Chen, 2017) starches, 

leading to the formation of imperfect crystallites (Li, Bai, Mousaa, Zhang, & Shen, 2012). The HHP-

treated starch granules were thus more susceptible to amylase hydrolysis (Liu, Hu, & Qun, 2010) 

resulting in lower RS (Mu, Zhang, Raad, Sun, & Wang, 2015) but higher SDS (Tian et al., 2014). The 

HHP-gelatinised rice starch had higher amounts of SDS (17.1 %) than heat-gelatinised rice did (4 %), 

though the gelatinisation enthalpy and the relative crystallinity of both samples were the same. With 

subsequent cooling, an increase in the amount of SDS in HHP-gelatinised and retrograded rice starch 

has been reported (Tian et al., 2014). This may have contributed to the greater extent of retrogradation 

in HHP treated rice starch (as discussed in section II.3). Similar phenomena have also been observed in 

HHP-gelatinised and retrograded potato starch where the increase in relative crystallinity during 

retrogradation led to lower starch digestibility (Colussi, Kaur, et al., 2017). HHP may yet promote the 

formation of amylose-lipid complex resulting in the increase in SDS in HHP-modified buckwheat starch 

(Liu, Wang, Cao, Fan, & Wang, 2016).  

PEF disrupts starch granules in waxy rice as evidenced by lower relative crystallinity and lower 

gelatinisation temperature (Zeng et al., 2016), resulting in increased accessibility of digestive enzymes 

to starch granules by exposing α-1-4 and α-1-6 linkages (Han, Zeng, Yu, et al., 2009; Han, Zeng, Zhang, 

et al., 2009). Consistently, PEF has been reported to increase RDS and decrease SDS in rice starch with 

increasing electric field intensity (EFI). This may have attributed to the reorganization of starch 

structures (at short-range order, i.e. disordered amorphous and crystalline lamella alignment) and dents 

on the surface of PEF-treated rice starch, facilitating hydrolysis by digestive enzymes (Wu et al., 2019). 

For wheat (an A-type starch) and potato (a B-type starch) starches, the RDS has been found to increase 

with EFI, while a decrease in SDS and increase in RS have only be observed at some EFI. As for pea 
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starch (a C-type starch), the increase in RDS and the decrease in SDS with increasing EFI have been 

reported, but not for RS. This may imply a pronounced effect of PEF on the scatter structure and fractal 

dimension of self-similar structures in wheat and potato starches than for pea starch (Li et al., 2019). 

As discussed previously, PEF only displays subtle effects on starch retrogradation as evidenced by the 

pasting profile, therefore more research on the effects of post-processing of PEF-treated starch is 

necessary to determine the influence in SDS and RS content. 

The effects of ultrasound treatment on the structural and physico-chemical characteristics of starch 

have been extensively studied (Zhu, 2015) but few reports illustrated an effect on digestibility. 

Ultrasound treatment has been observed to enhance the crystalline regions in corn starch (Luo et al., 

2008). This more compact arrangement of the double-helical structures in starch granules might limit 

the amylase hydrolysis rate. The RS of ultrasound treated corn starch slurry (6.2%) has been found to 

be higher than in native corn starch (4.7%). Ultrasonic cavitation may have prompted the formation of 

short-chain amylose causing granules to rupture easily during gelatinisation. Consequently, gelatinised 

corn starch pre-treated with ultrasound has been observe to have higher RDS and yet higher RS (4.0%) 

than for heat-gelatinised corn starch (RS, 2.1%) (Flores-Silva et al., 2017). The short-chain molecules 

prompted by ultrasound cavitation might have facilitated recrystallisation during retrogradation. The 

resistant starch level in ultrasound treated and retrograded pea starch has also been shown increase (You 

et al., 2019).  
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Food techniques Botanical sources Processing conditions Starch Nutritional fractions References 

Extrusion Rice starch Double screw, screw speed 200–300 rpm, 

barrel temperature 100–160°C, and feed 

moisture content 16–22%. 

RDS↑, SDS↑, RS↓. (Hagenimana et al., 2006) 

ANN Pea starch, lentil starch, and 

navy bean 

70% moisture at 50°C for 24 h.  RDS↑, SDS↑, RS↓. (Chung, Liu, et al., 2009) 

HMT Pulse starches: faba bean, 

black bean and pinto bean  

23% moisture at 80, 100, 120°C for 12 h.  SDS↓ at all temperatures of HMT; 

RS↑ at HMT80 and HMT100, but RS↓ 

at HMT120.  

(Ambigaipalan et al., 

2014) 

HMT Corn starch 30% moisture at 120°C for 24 h. RDS↑, SDS↓, RS↓. (Chung, Hoover, & Liu, 

2009) 

HMT Rice starch 15, 20 and 25% moisture at 110°C for 1 h. RS↑. (da Rosa Zavareze et al., 

2012) 

Microwave  Potato starch 8-25% moisture at 150°C, 2450 MHz, 10min. Moisture↑, RDS↑. (Hagiwara et al., 1986) 

Microwave-assisted 

HMT 

Waxy and non-waxy rice 

starch 

20% moisture at 140°C for 1 h. SDS↑, RS↑. (Anderson & Guraya, 

2006b) 

HHP Waxy and non-waxy rice 

starch 

25% starch slurry, 600 MPa, 30°C, 30 min. SDS↑. (Tian et al., 2014)  

HHP Buckwheat starch 20% starch slurry, 120, 240, 360, 480, and 600 

MPa, 20 min. 

RDS↓, SDS↑, RS↑. (Liu et al., 2016) 

HHP Waxy wheat starch 10% starch slurry, 600 MPa, 20°C, 30 min. RDS↑, SDS↑, RS↓. (Hu et al., 2017) 

PEF Waxy rice starch Continuous system E = 50 kV/cm, texp = 40 s, 

40-45 °C. 

RDS↑, SDS↓. (Zeng et al., 2016) 

PEF Japonica rice starch 60% starch slurry, E= 2.86, 5.71, and 

8.57 kV/cm. 

RDS↑, SDS↓. (Wu et al., 2019) 

PEF Wheat, potato, and pea 

starches 

60% starch slurry, E= 2.86, 4.29, 5.71, 7.14, 

and 8.57 kV/ cm. 

Wheat: RDS↑, RS↑ at 2.86 and 

4.29 kV/cm. 

Potato: RDS↑, RS↑ at 2.86 and 

5.71 kV/cm. 

Pea: RDS↑, SDS↓. 

(Li et al., 2019) 

Ultrasound Corn starch 30% starch slurry, 24 kHz, 20°C, 1-16 min. Ultrasound treated starch: RS↑. 

Ultrasound +gelatinised starch: RDS↑, 

SDS↓, RS↑. 

(Flores-Silva et al., 2017) 

RDS, rapidly digestible starch; SDS, slowly digestible starch; RS, resistant starch; ANN, annealing; HMT, heat moisture treatment; HHP, hydrostatic high pressure 

process; PEF, pulsed electric field.

Table II.5 Food processing and starch nutritional fractions 
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II.5 Designing foods with low GI via enhancing starch retrogradation  

Lowering postprandial glucose and insulin responses to starch-based foods may have significant 

beneficial implications for prevention and treatment of metabolic disorders. It has long been established 

that post-prandial glucose response to carbohydrate meals is not only determined by the amount of 

available carbohydrate but also the proportions of different nutrients, particularly protein and fat, as 

well as food microstructure (Birt et al., 2013). Processing and post-processing (cooling and storage) 

affect the starch nutritional fractions in food products, regardless of naturally existing RS or RS-

enriched products. Starch retrogradation can be facilitated either by incorporating commercial resistant 

starch type 3 in starch-based products or via various processing and post-processing in formulated or 

natural systems, lowering GI potentially, as detailed below.  

Incorporating resistant starch type 3 (such as commercial ingredient NOVELOSE 330 (Ingredion 

Incorporated, Westchester, IL) derived from high amylose corn) in starch-based products is limited 

because of adverse effects on bread quality, such as texture (Korus, Witczak, Ziobro, & Juszczak, 2009), 

gas cell size (Sanz, Salvador, Baixauli, & Fiszman, 2009), and gluten network formation (Wang, Rosell, 

& Benedito de Barber, 2002). However, this retrograded amylose exhibits high melting temperatures, 

up to 170°C, and thus cannot be dissociated by cooking (Jacobasch, Dongowski, Schmiedl, & Müller-

Schmehl, 2006; Jane & Robyt, 1984). Additionally, amylose molecules and long-branch chains of 

amylopectin form double helices during retrogradation creating steric hindrance of enzymatic binding 

and lowering starch hydrolysis (Sievert & Pomeranz, 1990). Considerable research is still needed to 

identify the effectiveness of these type of resistant starches and to investigate mechanisms underpinning 

their actions. 

Effects of different bread making processes, such as different leavening techniques, cooking 

methods (Jenkins et al., 1986; Lau, Soong, Zhou, & Henry, 2015), proofing period (Pat Burton & 

Lightowler, 2006), and partial baking freezing technology (Borczak, Sikora, Sikora, Rosell, & Collar, 

2012) on postprandial glucose and insulin response to bread has been reviewed comprehensively 

(Stamataki, Yanni, & Karathanos, 2017). Sourdough bread has been found to be a low GI food possibly 

due to the slower gastric empty rate (Darwiche et al., 2001; Najjar et al., 2008), or the formation of RS 

content via starch retrogradation (Novotni et al., 2011), or the interaction between starch and gluten 

proteins creating physical barrier to enzymatic digestion (Östman, Nilsson, Liljeberg Elmståhl, Molin, 

& Björck, 2002). The mechanism behind these pronounced effects are still to be fully elucidated. Bread 

staling, as a result of starch retrogradation after storage, may limit the application to reduce GI due to 

the increase in hardness. Partial-baking freezing technology has also been reported to facilitate the 

formation of retrograded starch due to the heating-cooling cycles involved from manufacture to 

consumer (Ronda et al., 2011). For both homemade and commercial white breads, the glucose response 

of frozen-defrosted then toasted breads have been found to be significantly lower than for freshly toasted 

bread in a randomised cross-over design trial of 10 healthy volunteers (Burton & Lightowler, 2008).  
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Extruded noodles made from high amylose rice starch has been shown to reduce the GI in seven 

healthy Canadians by 36%, and in diabetics from Canada and Philippines by 24%, suggesting that 

extruded rice may provide health benefits to both normal and diabetic individuals (Panlasigui et al., 

1992). Starch retrogradation and starch packing in extruded rice during cooling and drying steps have 

been found to be crucial in decreasing the glycaemic response of rice noodles substantially (Lok et al., 

2010; Srikaeo & Sangkhiaw, 2014). Unlike extruded noodles, extruded breakfast cereals experience 

severe processing that involves in high heat, high pressure, and severe shear forces, leading to a porous 

structure and thus higher GI (Faraj, Vasanthan, & Hoover, 2004; Guha et al., 1997; Zhang et al., 2015). 

Similarly, adding extruded chickpea flour rather than native chickpea flour to white bread has been 

shown no significant effect on the reduction of postprandial glucose and insulin response in twelve 

healthy subjects (Johnson, Thomas, & Hall, 2005).  

Cooling appears to be a simple and effective intervention to reduce the GI of cooked rice (Sonia, 

Witjaksono, & Ridwan, 2015) and cooked potatoes (Beals, 2019). Three main factors have been 

summarized to explain the variation in glycaemic and insulinaemic responses to rice: (1) inherent starch 

characteristics (such as ratio of AM: AP in different rice cultivars), (2) processing (particularly 

parboiling), and (3) at-home preparation (e.g. cooking, storage and reheating) (Boers, Seijen Ten Hoorn, 

& Mela, 2015). GI of processed rice depends on varieties and the severity of processing, associated 

with changes of physico-chemical properties. Parboiling consists of soaking in water, heating, drying 

and milling of paddy rice. Crystalline structure of rice has been found to be transformed to amorphous 

in parboiled rice (Manful, Grimm, Gayin, & Coker, 2008). However, the glycaemic response of 

pressure-parboiled rice, in which amylopectin retrogradation was observed, has been reported to be 

significantly lower than for non-parboiled rice (Larsen et al., 2000). Parboiled rice is generally reheated 

before consumption leading to disintegration of retrograded amylopectin due to the low melting point 

(46-65°C) of these retrograded crystallites (Asp, van Amelsvoort, & Hautvast, 1996). As a consequence, 

little significant difference in postprandial glycaemic response has been observed between freshly 

cooked parboiled and reheated parboiled rice (at 65°C) (Lu, Venn, Lu, Monro, & Rush, 2017).  

Boiled potato cv. Sava showed an significant increase in resistant starch (RS) content from 3.3 to 

5.2% (starch basis) after refrigeration at 8°C for 24 h, owing to starch retrogradation (Leeman et al., 

2005). Addition of vinegar to cold potatoes have been reported to reduce acute glycaemia (from 168, 

the GI of freshly boiled potatoes to 96, the GI of cold vinegar potatoes) in 13 healthy subjects (Leeman 

et al., 2005). Similarly, cooling and cold storage (at 5 °C, 3 days) of potato products made from cv. 

Nicola has been reported to, despite reheating at 70–80 °C, lower GIs of potato products by about 25% 

in 22 healthy volunteers. Regardless of cooking methods, once starch is fully gelatinised (at >100°C, 

>30min) in steam boiled potatoes (GI, 104), oven-baked casserole (GI, 95) and mashed potatoes (GI, 

106), no significant differences in GIs were observed (Tahvonen et al., 2006). Beyond the composition 

differences in potato varieties, no significant differences have been found in the RS content of potato 

cv. Dark Red Norland, cv. Russet Burbank, and cv. Yukon Gold. Post-processing experience plays an 
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influential role on the RS content in all these cultivars; the RS content has been found to be the highest 

in cold tubers followed by reheated tubers with the lowest for hot potatoes (Raatz, Idso, Johnson, 

Jackson, & Combs, 2016). Cooked-cold potato cv. Russet (at 4°C for 5days) had a higher concentration 

of RS, and thus, less available carbohydrate, reducing postprandial glucose and insulin effectively when 

compared to boiled potatoes, consumed hot, in females with elevated fasting glucose and insulin 

(Patterson et al., 2019).  

With growing consumer preference for convenient but healthy, natural, and high-quality food 

products, achieving starchy food with low glycaemic features through retrogradation offers great 

opportunity. Food Standards Australia New Zealand (FSANZ) approved the amendment to the 

measurement of resistant starch separated from dietary fibre (Food Standards Australia New Zealand, 

2018), ahead of the U.S. Food and Drug Administration (FDA) and the European Food Safety Authority 

(EFSA). The previous method of ‘total dietary fibre’ measured some, but not all, resistant starch in a 

food. It did not distinguish the resistant starch from other forms of dietary fibre present in the food. The 

amendment, however, is able to determine the quantity of the resistant starch apart from dietary fibre in 

the food. Additionally, the amendment adds the declaration of the quantity of resistant starch as a sub-

group nutrient of dietary fibre in the nutrition information panel. The addition of resistant starch on the 

nutrition information panel shines a light on a broader application of resistant starch in the food industry. 

The change also introduces the possible benefit of resistant starch RS3, the retrograded starch more 

directly to the public.  

II.6 Conclusion  

Processing, and then retrogradation post-processing, both influence starch structure greatly. 

Cooked/processed starch can be partially gelatinised, or de-branched, or fully gelatinised during various 

food processing/treatments. Consequently, the resulting packing of helices upon cooling and storage 

leads to different extents and tendency of retrogradation. Enhanced interaction of AM-AP during HMT 

contributes to an increase in retrogradation enthalpy with subsequent cooling. HHP may induce amylose 

to act as nuclei and facilitate AM-AP co-crystallisation leading to higher SDS. Short-chain starch 

molecules prompted by ultrasound cavitation may facilitate re-crystallisation during retrogradation and 

thus higher RS. Many factors, such as high temperature retrogradation in presence of lipids, lead to the 

creation of the slowly digestible starch, in which the cooperative interactions give rise to an ordered 

chain structure, and increase density of these processed then retrograded starches. Reheating tends to 

negate the effect of starch retrogradation resulting in the increase in GI, though cooling and cold storage 

seems promising to limit this effect. This could perhaps be improved by enhanced starch retrogradation 

under optimum time-temperature cycles or combined with existing or new technologies.  
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II.7 Research gaps 

Reseach Gap I. Starch retrogradation in tuber and its influence during gastro small-intestinal digestion 

Retrogradation leads to structural and physical changes in starch, which affects its functional 

properties. Starch retrogradation in cooked/ gelatinised starch has been reported to depend on the 

botanical source, morphology and granule size distribution (Singh & Kaur, 2004). Inherent 

characteristics of starch granules such as amylose/amylopectin ratio (Miles et al., 1985), amylopectin 

branched-chain-length distribution (Srichuwong, Sunarti, Mishima, Isono, & Hisamatsu, 2005) and 

crystalline/amorphous alignment (Frost et al., 2009) have been considered as important factors. 

Processing or cooking disrupts the ordered structure of granular starch, resulting in the increased 

susceptibility of starch to enzymatic digestion. Subsequent cooling and storage lead to retrogradation, 

in which starch forms compact and dense starchy matrix leading to resistance to digestive enzymes. 

Starch retrogradation and starch digestion in whole potato tuber (Bordoloi, Kaur, et al., 2012; Tian et 

al., 2016) may, however occur in a different manner compared to pure potato starch (Ek, Wang, Brand-

Miller, & Copeland, 2014; Noda et al., 2008) or pastes/gels (Suzuki & Hizukuri, 1979).  

Potato tubers encompass different cell compartments (e.g. cell wall, vacuole, cytoplasm and 

intercellular spaces) within which starch gelatinisation and starch retrogradation occur, subject to local 

influences of other cell components and water availability. We hypothesise that starch retrogradation 

in tuber may be different from a retrogradation in a starch-water system. We consider that during 

cooking, starch in tuber is different from in a starch-water system where excess free water is available, 

therefore mechanisms and resulting functionalities including retrogradation and starch digestion will 

be different.  

Reseach Gap II. Accelerated starch retrogradation in tuber and formation of slowly digestible starch  

Chill and freeze temperatures facilitate disrupted amylose and amylopectin to aggregate and re-

crystallise during retrogradation. A stable microstructure withstanding freeze-thawing cycles is crucial 

to maintain the textural quality of frozen products. At storage temperature below ice melting 

temperature, ice crystals embed in the gelatinised starch network, giving a sponge-like structure. Ice 

crystals coexist in the gelatinised starch network under a metastable status. Freeze-thawing cycles thus 

generate alternating the starch-rich and the starch-deplete (once ice) regions  (Capron, Robert, Colonna, 

Brogly, & Planchot, 2007; Levine & Slade, 1988). Retrogradation rate has been found to be faster at 

temperatures close to 0°C than at room temperature, suggesting the occurrence of the nucleation of 

retrograded starch (White, Abbas, & Johnson, 1989). Retrograded waxy potato starch, formed under 

temperature cycle between 4°C and 25°C has been found to have higher onset temperature, relative 

crystallinity, and 1047/1022 ratio compared to samples stored at constant 4°C (Xie et al., 2014). 

Retrogradation is a non-equilibrium polymer crystallisation process and proceeding rate is determined 

by temperature. Crystallisation of amylose and amylopectin is thermally reversible above the melting 
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temperature. While the temperature is above glass transition temperature, amylopectin crystallisation is 

referred as a nucleation-limited growth process in a mobile, viscoelastic, fringed-micelle network. 

Simultaneously, amorphous materials display a thermodynamically metastable equilibrium, driving 

toward the crystalline state. Low temperature (4°C) thus prompts the nucleation of crystalline and 

increases the formation of SDS. While high temperatures (25-40°C) induce the propagation and 

maturation, resulting in less digestible materials (Hu, Huang, et al., 2014; Shi & Gao, 2016). The study 

suggested that temperature-cycled retrogradation in waxy potato starch is a favourable for preparing the 

slowly digestible starch (Xie et al., 2014).  

We hypothesise the thermodynamics of crystal formation in gelatinised starch in tuber govern the 

tendency of starch towards retrogradation. The rate of starch retrogradation and recrystallisation of 

the gelatinised starch in tuber can, therefore, be enhanced by time-temperature cycle treatments which 

may lead to the formation of a compact and dense microstructure, resulting in the lower and the slower 

digestibility. 

Reseach Gap III. Stability of retrograded starch in tuber during reheating  

After food processing, structures of starch in tuber influence the kinetics of glucose release markedly 

during gastro small-intestinal digestion in vitro. For instance, the percentage of starch hydrolysis in 

freshly cooked tubers has been found to be higher than cooled potato tubers (Tahvonen et al., 2006). 

An optimum heating process is necessary to create the unique organoleptic properties of potato product. 

During cooling and storage, disrupted starch molecules regain relatively ordered structure that is 

generally more resistant to enzymatic digestion (Zhou & Lim, 2012). Retrograded starch gels generally 

show an extensive aggregation of the gelatinised starch fragments, leading to a more compact structure 

with less porosity. This aggregation is the effect of retrogradation, during which disrupted amylose and 

amylopectin chains gradually try to re-associate into a different ordered structure. Reheating renders 

retrograded starch more susceptible to enzymatic hydrolysis, resulting in higher hydrolysis values 

almost close to the ones obtained for freshly cooked starch. Results of X-ray diffraction spectra and 

DSC analysis indicate that the crystalline component in fresh, retrograded and reheated pastes differed 

considerably between each other and the microstructure of retrograded starch pastes have a more 

compact network than freshly cooked and reheated pastes (Zhou & Lim, 2012). 

We hypothesise that a controlled heating process can retain the microstructure and crystallites of 

retrograded starch in tuber. We expect that more rigid and compact microstructures in tuber created 

through accelerated retrogradation by various processing and post-processing will have a higher 

crystalline perfection and stability during reheating and oral-gastro-small intestinal digestion.  
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II.8 Objective 

The main objective of my PhD project is to understand mechanisms and kinetics of starch 

retrogradation in tuber and its influences on the starch digestion in vitro. This knowledge is further used 

to manipulate the storage conditions to enhance the process of retrogradation, and finally studying the 

stability of retrograded starch in tuber during reheating.  

Research Objective I. Starch retrogradation in tuber and its influence during gastro small-intestinal 

digestion in vitro 

Physicochemical properties (such as moisture content, amylose content and total starch content) of 

a common New Zealand potato cultivar Agria were measured. Different cooking temperatures and 

refrigerated storage durations were selected to study the mechanism and kinetics of starch 

retrogradation in tuber. Freshly cooked (90°C for 25 minutes) cv. Agria potato tubers were refrigerated 

stored for 1, 3 and 7 days.  After storage, samples were reheated at 50, 70 and 90°C, respectively. The 

thermal characteristics (DSC) of all samples were measured by DSC while the relative crystallinity was 

determined by X-ray GBC® eMMA X-ray Diffractometer (GBC, VIC, Australia) (Foucault et al., 

2016). Starch hydrolysis by digestive enzymes was investigated by an in vitro starch digestion model 

(Bordoloi, Singh, et al., 2012). 

Relation between the microstructure of retrograded starch in tuber and starch digestibility were 

investigated.  Relaxation time distribution curves (mobility of different water pools) of raw, freshly 

cooked, retrograded and retrograded+reheated tubers were studied by LF-NMR. Other structural 

characterisations of samples such as relative crystallinity by X-ray were investigated.  

Research Objective II. Accelerated starch retrogradation in tuber and formation of slowly digestible 

starch  

Experiments were carried out in an attempt to accelerate retrogradation in tuber by using time-

temperature-cycle treatments during post-processing, i.e. storage of cooked tubers. Different 

combinations of cooking and storage temperatures, processing methods (annealing, par-cooking) were 

investigated. Physicochemical characteristics of processed starch in tuber were studied by blue value, 

TPA, RVA, DSC, FTIR, and LF-NMR. Samples were then tested for kinetics of glucose release during 

starch digestion in vitro.  

Research Objective III. Stability of retrograded starch in tuber during reheating  

Stability of retrograded starch in tuber after thermal processing was determined by applying different 

reheating temperatures and heating methods such as microwaving, low-temperature long time cooking. 

Physicochemical characteristics of retrograded+reheated samples were compared with fresh and 
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retrograded only samples. Starch digestibility by a simulated oral-gastric-small intestinal model of these 

samples was analysed.  

Following these three stages, we hope the knowledge created can assist in formulating potato 

products with a high quantity of slowly digestible starch and a lower GI. 
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Chapter III Methodology and methods 

development 

III.1 Methods development 

Methods were developed to satisfy the various objectives of this research, to help investigate starch 

retrogradation in the whole tuber (in tuber), with the view to identify factors of the relationship of starch 

structure-digestibility. Interactions between starch molecules and other cellular components in tuber 

were studied by relaxation times measured by LF-NMR. Starch digestibility by enzymatic hydrolysis 

was developed and assessed by in vitro oral-gastric-small intestinal digestion models.  

III.1.1 Molecular chains mobility measured by relaxation times via LF-NMR  

Low field nuclear magnetic resonance, LF-NMR is a non-destructive measurement that can monitor 

changes in molecular chains mobility of the exact same sample over storage time. Relatively larger 

sampling size (1 to 10g) is the other advantage of LF-NMR over other methods such as DSC (which 

the sampling size is 5 to 20mg) to study starch retrogradation in tuber. This aspect is particularly 

beneficial when the heterogeneity of a sample is inherent to its nature, such as starch contents vary in 

different sections of a potato tuber. LF-NMR measures the molecular order by the chemical bonds 

shifting and records as the distribution spectrum. Relationship between the degree of (both rotational or 

translational) molecular mobility and physical or mechanical properties in food systems is well 

established (Micklander, Peshlov, Purslow, & Engelsen, 2002).  

  Theoretical background 

Relaxation describes the status of nuclei from excited to neutral state in an applied magnetic field 

(B0) (Marcone et al., 2013). It is analysed in terms of two separate processes, each with its own time 

constant. One process, associated with T1, is responsible for the loss of signal intensity where the nuclear 

spin magnetization vector Mz is parallel to the external magnetic field, B0 (Figure III.1). The other 

process, associated with T2, affects the components of Mxy, which is perpendicular to B0 (Figure III.1). 

The longitudinal (T1) and transverse (T2) components occur simultaneously in a relaxation process. The 

time of the excited nuclei needed to return to equilibrium is called “relaxation time T2” (Figure III.1). 

Relaxation time can be used to describe the mobility of molecules in a complex system. The mobility 

of chemical bonds changes due to the interaction between one molecule and another, altering the time 

for excited nuclei to return to the neutral state. Interactions between starch, water, and other compounds 

in food products affect the proton longitudinal (spin−lattice) relaxation time (T1) and transverse 

(spin−spin) relaxation time (T2).  
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  Starch gelatinisation/retrogradation and relaxation time 

Starch gelatinisation is a transition process involving water diffusion into starch granules, granules 

hydration and swelling in excess water under heat. Gelatinised starch loses its structural organisation 

and crystallinity (Biliaderis & Galloway, 1989; Wesaigh, Gidley, Komanshek, & Donald, 2000). 

Simultaneously, water molecules interact with the exposed hydroxyl groups on amylose and 

amylopectin by hydrogen bonds. This interaction is not uniform within a starch granule due to the 

heterogeneous water diffusion contributed to the semi-crystalline nature of starch. Gelatinisation 

process occurs initially in amorphous regions weakening hydrogen bonding in these areas. When the 

temperature reaches above gelatinisation peak temperature (TG), starch granules become increasingly 

susceptible to shear disintegration as they swell and release materials, such as amylose and unwound 

amylopectin. Water molecules in both amorphous and crystalline regions become more mobile. During 

cooling and storage, disrupted amylose and amylopectin molecules re-associate by hydrogen bonding. 

This re-association forms hydrogen bonding within OH groups of intra- and inter- starch molecules, 

making the proton exchange between starch molecules and water molecules less likely. Gelatinisation 

and retrogradation alter water mobility in starch-based systems.  

  Water pools with different relaxation times in starch-water systems and starch-based foods 

A number of LF-NMR studies have dealt with changes of relaxation times in starch model systems 

such as starch pastes/gels, dough, and bread during thermal treatments (Assifaoui, Champion, Chiotelli, 

& Verel, 2006; Bosmans et al., 2012; Farhat, Belton, & Webb, 2007). Different water pools can be 

discerned because the water in different cellular compartments is associated differently leading to 

different relaxation times T2 (Povlsen, Rinnan, van den Berg, Andersen, & Thybo, 2003; Thybo et al., 

 
 

Figure III.1 (a) The spin of a proton (brown curve) under a constant magnetic field (B0), and (b) the 

corresponding changes of magnetisation (Mxy and My). The recovery at 63% of magnetisation (dark blue line) 

represents the proton longitudinal (spin−lattice) relaxation time (T1), while the decay at 37% of magnetisation 

(light blue line)  indicates transverse (spin−spin) relaxation time (T2). 

 

 

(a) 

(b) 
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2003; Thybo, Bechmann, Martens, & Engelsen, 2000). Tang, Godward, & Hills (2000) studied the 

water distribution in potato starch gels (water content 55%) by using the CPMG pulse sequences. They 

identified four water pools with different relaxation times T2 and assigned these water pools to cell 

locations such as extra-granular spaces, amorphous growth rings, semi-crystalline lamellae and 

hexagonal channels, which exist in B-type amylopectin crystals. Hills & Le Floc’h (1994) also reported 

the presence of four water pools in raw potato tissue and tentatively assigned to the corresponding cell 

compartments. A water pool with the relaxation time T20 ranged from 2 to 4ms and T21 at about 10ms 

indicated the water inside starch granules (Figure III.2). The relaxation time T22 and T23 ranged from 

100 to 500ms were possibly the water in the cytoplasm and intercellular regions (Figure III.2). Water 

pools with longer relaxation time are more mobile owing to less restriction on proton vibration. This 

allows excited molecules to recover slowly to their neutral state. 

When the temperature increased, relaxation times changed due to granules swelling, amylose 

leaching, and water diffusion. Similar results have been reported for cassava (Chatakanonda et al., 

2003), corn (Tananuwong & Reid, 2004), and rice starches (Ritota, Gianferri, Bucci, & Brosio, 2008). 

Mortensen et al. (2005) found two major water pools with different relaxation times T21 at 50ms and 

T22 at 500ms in freshly cooked potato tissues (Figure III.3b). The water pool with relaxation time T22 

has been assigned to relatively free bulk water in the intercellular cavities and cytoplasm.  Relaxation 

time T21 has been shown to represent the water directly associated with starch molecules. During 

heating, water pool with relaxation time T20 which is less than microseconds has been found to be 

vanished owing to disrupted cells and gelatinised amylose and unwound amylopectin. Structural 

changes of potato starch in tuber has been observed in two stages by the development of relaxation 

times T21 and T22 with increasing temperature. When the temperature increased from 25 to 55°C, 

relaxation times T22 and T21 have been shown to decrease because chemical exchanges were dominant 

before starch granules rupture (Figure III.3b). Relaxation time T22 has been reported to increase with 

increasing temperature (above gelatinisation temperature TG > 60 °C) due to cell disruption leading to 

larger diffusion volumes (Figure III.3c). Relaxation time T21 has been observed to be nearly steady 

  
Figure III.2 Four water pools with relaxation times (T20, T21, T22, and T23) in raw potato cells.  
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because the increase in the proton exchange rate and the increase in mobility were even out (Figure 

III.3c). Microstructures of cooked starch re-arranged during cooling and, thus retrograded starch and 

water interact differently. Free water has been observed during cooling and storage, possibly owing to 

starch syneresis (Micklander, Thybo, & van den Berg, 2008).  

  Experimental set-up and parameters optimisation 

Parenchyma tissue of potato cv. Agria was sampled longitudinally (weight 0.5 g) by cork borer (with 

an internal diameter of ⌀3.4 mm and 80 mm long) and these samples were inserted into glass tubes of 

5 mm outside diameter (Wilmad-LabGlass) and sealed to prevent moisture loss (Figure III.4). The LF-

NMR proton relaxation time measurements were performed by a Spinsolve 1.5 LF-NMR spectrometer 

(Magritek Ltd.) with operating resonance frequency at 42.5 MHz. The apparatus is located in Science 

tower A and the operational procedures are attached in Appendix A. Transverse relaxation time T2 was 

acquired by the Spinsolve®Carbon apparatus’ built-in “T2 bulk” function using the Carr-Purcell-

Meiboom-Gill sequence (CPMG) (Carr & Purcell, 1954; Meiboom & Gill, 1958). The CPMG sequence 

had a one-millisecond pulse separation and was fitted logarithmically in the relaxation time distribution 

from 0.1 to 5000 milliseconds with 5000 data points collected (Assifaoui et al., 2006; Rondeau-Mouro 

et al., 2015). The recycle delay time was 7 seconds. The exponential decay curve of each relaxation 

time measurement was the result of the accumulation of 4 scans to increase the signal-to-noise ratio 

(Ward, 2011).  

 
 

Figure III.3 Changes in relaxation times T21 and T22 during starch gelatinisation in tuber.  

*Gelatinisation temperature, TG is normally around 60°C in tuber, AM represents amylose, and AP is 

amylopectin. 
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  Data processing and transformation  

 Relaxation time can be estimated by the average lifetime of an exponential decay curve of the raw 

data (Figure III.5). If the decaying quantity, N (t) is the number of different protons with different 

vibrations in a potato tuber, the average length of time (τ) that an element remains in the set can be 

estimated by following equation, 𝑁(𝑡) = 𝑁0𝑒−
𝑡

𝜏 , with the decay rate (λ) and average length (𝜏 =
1

𝜆
). 

The average lifetime can be viewed as a "scaling time" because we can write the exponential decay 

equation in terms of the average lifetime, τ, instead of the decay constant, λ. The τ is the time that the 

population assembly reduced to 1/𝑒 = 0.368 times of its initial value. The relaxation time is then 

retrieved from the exponential decay curve after 37% decay.  

The initial amplitude of the raw data is generally proportional to the water content of the samples, 

i.e. the higher amount of the water content, the higher initial amplitude. The initial amplitude of distilled 

water, the sample of “10% water +90% D2O”, and potato flour (8% moisture content) were 4.4*105 a.u., 

1.6*104 a.u., and 7.5*103 a.u., respectively (Figure III.5), in which the initial amplitude decreased in 

the order of high to low water content. Proton relaxation time measurement by LF-NMR is, however, 

limited to detect sample with a relatively high water content to overcome the signal-to-noise. In this 

case, the two samples with low water content (e.g. the sample of “10% H2O+ 90% D2O” and potato 

flour) were not able to transform the raw data to continuous relaxation time distribution curve due to 

high signal-to-noise.  

(a) 

 
 

(b) 

 
 

Figure III.4 (a) Sampling of a raw potato cylinder and (b) the raw potato cylinder in a LF-NMR glass tube. 
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  Characterisation of water pools in tuber 

To identify different water pools in tuber, sample sets A and B were carried out: 

sample A. a single component sample of 100% distilled water (W), a raw tuber (T), and the flour-

water suspension in the ratio of flour to water at 1:3 and 

sample B. two different potato cultivars with low and high dry matter contents. 

Sample A. Whole potato tuber vs potato flour-water system 

Exponential decay curves of the raw data (Figure III.6) of the sample set A were transformed to 

continuous relaxation time distribution curves (Figure III.7) by inverse Laplace transformation. The 

Lawson and Hanson NNLS analysis method in Prospa©v3.1 (Magritek, 2016) was then used to 

calculate relaxation time T2. Sample set A included distilled water (W), raw potato tuber (dry matter 

content 23.5%) (T), and potato flour dispersed in water (25%, w/w) (F). The initial amplitude of distilled 

water, raw potato tuber, and the sample of potato flour dispersed in water were 4.4*105 a.u., 3.8*104 

a.u., and 3.6*104 a.u., respectively (Figure III.6). Among these three samples, the initial amplitude of 

raw data of raw tuber, 3.8*104 a.u. and the sample of potato flour dispersed in water, 3.6*104 a.u. were 

very close due to the similar water content. 

 
 

Figure III.5 Raw data of relaxation time of distilled water, the sample of 10% H2O +90% D2O, and potato flour. 
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After data transformation, different water pools can be discerned. In distilled water, one sharp peak 

at relaxation time 2.5s was observed representing the water that can move freely in the glass test tube 

without any restrictions (Figure III.7). There were four different water pools in raw potato cv. Agria 

(Figure III.7) reflecting different water pools exist various cell compartments. Water pool with 

relaxation time T20 represented the water within starch double helices, while water in amorphous region 

of amylose and amylopectin were indicated by relaxation time T21. Other water pools at relaxation times 

T22 and T23 were the water loosely associated with the starch granule, and the water freely flows within 

potato tuber cell cytoplasm, respectively (Figure III.7). Different from raw cv. Agria, the relaxation time 

distribution curve of the sample of “raw potato flour dispersed in water” showed only three water pools. 

This suggested that the water distribution in potato cellular compartments cannot be replicated simply 

by dispersing raw flour in water with similar water content. Relaxation times T20 and T21 in potato flour-

water system were close to the T20 and T21 in raw potato tuber (Figure III.7). These tightly bound waters 

in double helices and amorphous/crystalline regions may not be affected by drying and rehydrating 

process. The relaxation time T22 in the flour-water system was, however, higher than the T22 of a raw 

tuber, exhibiting free movement of water beyond the boundary of the cell wall (Figure III.7).  There 

was thus no relaxation time T23 observed in potato flour-water system.  

  
 

Figure III.6 Raw data of relaxation time of distilled water, raw potato tuber, and raw flour-water suspension 

(potato flour: water=1:3). 
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Sample B. Potato cv. Agria (high dry matter) vs potato cv. Nadine (low dry matter) 

Dry matter of potato cultivars was negatively correlated to the initial amplitude of relaxation time 

of the raw data (Hansen et al., 2010). Consistently, the average initial amplitude (M0) of cv. Agria 

(3.7*105 a.u., n=3) was lower than cv. Nadine (3.9*105 a.u., n=3) attributed to the higher dry matter of 

cv. Agria (22.1 ±1.4 %) than for cv. Nadine (15.7 ±0.7 %) (Figure III.8). This could be that the higher 

dry matter of potato cv. Agria restrains water mobility resulting in a lower initial amplitude of the raw 

data (Hansen et al., 2010). 

 

Figure III.8 Raw data of relaxation time of raw potato cv. Agria (A) and cv. Nadine (N). 
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Figure III.7 Relaxation time distribution curves of raw potato flour-water suspension (potato flour: water=1:3),  

raw potato tuber, and pure water. 
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ms) was significantly higher than for potato cv. Agria (6.1 ±0 ms) (n=3, p<0.05). The higher water 

mobility in crystalline/ amorphous lamella of raw cv. Nadine might be due to its higher ratio of amylose 

to amylopectin (r= 0.785, p=0.064) (Figure III.9). The higher amount of amylose in amorphous regions 

can potentially keep more water in crystalline/amorphous lamella resulting in higher water mobility. 

While the relaxation time T22 of the raw cv. Agria (127.1 ±4.6 ms) was significantly higher than for cv. 

Nadine (92.3 ±5.0 ms) (n=3, p<0.05). Larger starch granules in raw cv. Nadine parenchyma cell (d0,5 

162.6 ±1.8 μm compared to the d0,5, 58.9 ±0.3 μm of potato cv. Agria) may restrict water movement 

more than for cv. Agria. A negative correlation between T22 (by LF NMR) and median diameter of 

starch granules d0,5 (r=-0.984, p=0.016) and average diameter of starch granule sizes d3,2 (r=-0.981, 

p=0.019) (by Mastersizer) was measured.  

III.1.2 Starch digestibility in tuber by oral-gastro-small intestinal digestion in vitro 

Human digestion is a complex process that ingested food is broken into nutrients and used by our 

body for growth, cell maintenance, and energy source. During human digestion, two main processes 

occur simultaneously: (i) mechanical size reduction of the food particles; and (ii) enzymatic breakdown 

of macronutrient into smaller constituents. Food breakdown occurs mostly in the mouth and stomach, 

whereas enzymatic digestion and absorption of nutrients and water take place mainly in the small and 

large intestine. Simulated digestion method used in this research consists of oral, gastric and small 

intestinal phases (Figure III.10) adapted from the previous researches (Bordoloi, Singh, et al., 2012; 

Tamura et al., 2016) and international consensus (Brodkorb et al., 2019; Minekus et al., 2014).  

The purpose is to study the glycaemia responses after consuming starch-based food by mimicking 

the physiological digestion conditions in vivo, taking into account the presence of digestive enzymes 

and their concentrations, pH, digestion time, and salt concentrations, among other factors. Simulated 

 
 

Figure III.9 Relaxation time distribution curves of raw potato cv. Agria (A,―) and cv. Nadine (N, ---). 
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digestion methods in vitro are less time-consuming, less labour intensive, and no ethical restrictions. 

This allows a relatively large number of samples to be measured for screening purposes. 

 

  Sample preparation  

Whole fresh tubers (150-200g) were placed individually in a plastic zip bag and cooked at 90°C for 

25 minutes. The optimum cooking time was confirmed by a penetration test as described by Bordoloi, 

Singh, et al. (2012)- an empirical test using skewer to poke through the potatoes. The whole freshly 

cooked tubers placed singly inside plastic zip were stored in 4°C refrigerator for a certain period of time 

(depending on the experimental designs of each chapter) to induce starch retrogradation. Following 

refrigerated storage, the whole tuber was cut into chips of a thickness of 2cm (Figure III.11a). To study 

the effect of reheating, the samples were reheated at 90°C water bath for 5 minutes (Figure III.11b) 

based on the time that the core temperature of the potato chip needed to reach 90°C (Figure III.11c).  
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Figure III.10 Diagram of oral-gastric-small intestinal digestion in vitro. 

1. Starch hydrolysis (%): %𝑆𝐻 =
𝑆ℎ

𝑆𝑖
= 0.9 ×

𝐶𝑝

𝑆𝑖
. 

2. HI =
Area under glucose release curve of the sample

Area under glucose release curve of the white bread
. 

3. 𝑒GI = 39.71 + 0.549 × HI, the white bread was taken as reference. 
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(a)  (b)  (c) 

 

Figure III.11 (a) The 3-day retrograded potato chips before reheating; (b) the 3-day retrograded+reheated (at 90°C) 

potato chips; (c) the increase in core temperature of a retrograded potato cube (2*2*2cm3) by time during 

reheating. 

  Simulated oral mastication 

Digestion begins with chewing food in the mouth. Mastication reduces particle size and hydrates 

and lubricates foods by mixing it with saliva. Mouth secretes saliva containing mucus and amylase. 

Food bolus is formed and travels from the mouth to the oesophagus and to the stomach by peristalsis 

(Hoebler et al., 2002). Peristalsis describes the contraction of the walls of a flexible conduit, forcing the 

contents forward (Siddiqui, Provost, & Schwarz, 1991).  

Consistency of a food bolus, in terms of both particle size and hydration–lubrication with saliva 

varies widely depending on the type of food and individuals. Particle size distributions of the ready-to-

swallow boluses have been found to be similar within foods of alike physical properties. For instance, 

particle size distribution curves of boluses of peanuts, almonds, pistachio nuts were similar but differed 

distinctly from those of foods such as cauliflower, radish, and carrots (Chen, Khandelwal, Liu, & 

Funami, 2013; Mishellany, Woda, Labas, & Peyron, 2006; Peyron, Mishellany, & Woda, 2004). 

Interestingly, variations in the particle size distribution of ready-to-swallow boluses between subjects 

have been regularly reported to be smaller than between foods (Jalabert-Malbos, Mishellany-Dutour, 

Woda, & Peyron, 2007; Peyron et al., 2004). Within boluses of similar resulting size distribution, they 

have been discovered to be largely dependent on the different subject with varied chewing time, 

chewing frequency, vertical and lateral amplitude, jaw velocity and electromyographic activity (Woda, 

Mishellany, & Peyron, 2006).  

To establish a standard procedure of oral digestion for potato tubers, a comparison of chewing by 

myself and blending by the Minifood processor (Breville, Inc. New Zealand) were conducted (Figure 

III.12). The 40 grams of potato tuber were chewed by myself till the urge of swallowing and the number 

of chews were recorded. The ready-to-swallow bolus formed after an average of 20 chews was spat out 

and was spread on the petri dish for image analysis (Figure III.12a). Similarly, the simulated mastication 

was carried out by blending the 40g of potato tuber chips with 40g simulated saliva fluid (Minekus et 

al., 2014), containing α-amylase (Aspergillus oryzae, 1.5 U/mg) in the Minifood processor.  Different 

blending times (30s, 1min, and 2min) were tested to test the optimum simulated mastication time 

(Figure III.12b&c). The boluses from Minifood processor gave a relatively consistent and homogenous 
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particle size (Figure III.12b&c). Owing to the visual similarity (such as particle size and the form of the 

boluses) to the human chewing ones, the 2min of blending by Minifood processor with simulated saliva 

fluid containing α-amylase (Figure III.12c) was, therefore chosen for the oral process. 

(a) 

 

(b) 

 

(c) 

 
Figure III.12   Cooked potato boluses formed by (a) myself chewing 20 times and by (b) Minifood processor 

blended for 1min, or (c) for 2min. 

 

Image analysis is a technique where an image of the food bolus is analysed by computer software to 

evaluate its particle size distribution (Hoebler, Devaux, Karinthi, Belleville, & Barry, 2000; Jalabert-

Malbos et al., 2007; Shi, Guan, & Guo, 1990). Food bolus was spread out on a glass petri dish, 

photographed, digitised and analysed using software ImageJ (Rueden et al., 2017; Schindelin et al., 

2012). Irregular shapes can be evaluated by using image analysis, but illuminating particles, such as air 

bubbles, or the image quality can be troublesome. For instance, the threshold of the background colour 

can affect how ImageJ defines particles’ size, neglecting the overlapped particles or smaller particles 

(Figure III.13).  

 

 
A Mastersizer uses a laser light diffraction technique to evaluate particle size in a bolus by the 

diffraction angle as the laser beam interacts with a particle. Particle size distribution curves of boluses 

formed by chewing and by Minifood processor were shown in Figure III.14. The median diameter (d0,5) 

and the average diameter (d4,3 and d3,2) of the bolus formed by chewing were 230.7 μm and 243.9 and 

Figure III.13 Bolus particle size analysis by ImageJ. 
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55.8 μm, respectively (Figure III.14). While the bolus formed by the Minifood processor had the d0,5 at 

203.5 μm, the d4,3   at 238.8 μm, and the d3,2 at 115.2 μm (Figure III.14). The volume of large particles 

was lower and the volume of small particles was higher in the bolus formed by chewing compared to 

blending (Figure III.14).  Particle size distribution curves of boluses from both chewing and blending 

showed the bimodal peak (Figure III.14) and were comparable to other mastication results (Hoebler et 

al., 2000). The Minifood processor has a more consistent mechanical breakdown and, therefore, was 

chosen to simulate the mastication during the oral process in this research.  

  Gastric-small intestinal starch digestion in vitro  

A two-stage in vitro model was used to represent gastric and small-intestinal digestion. The 

simulated gastric (SGF) and intestinal (SIF) fluids were prepared in accordance with the US 

Pharmacopeia (Pharmacopeia U.S, 1995, 2000). After 2min of simulated oral digestion, the bolus 

mixture was filled up to 170g with distilled water. The 170g of potato digesta samples containing 4% 

of total starch content was placed in a polyethylene mesh by spatulas to avoid physical damage caused 

by direct contact with the stirring magnetic bar in the reactor (Figure III.15) (Dhital et al., 2016; Tamura 

et al., 2016). The jacketed glass reactor was connected to a circulatory water bath to maintain its 

temperature at 37±1°C. The pH was adjusted to 2 and SGF (25 mL) containing pepsin (enzyme/starch 

(dry weight basis) ratio, 1.765:100, w/w) was added to start the enzymatic hydrolysis. The pH was 

maintained at 2±0.1. After 30 min, pepsin was inactivated by increasing pH to 6.8 using 1M NaOH. 

Small intestine digestion was performed by adding 23ml of SIF containing pancreatin (enzyme/starch 

(dry weight basis) ratio, 1.3:100, w/w), amyloglucosidase (enzyme/starch (dry weight basis) ratio, 

  
Figure III.14 Particle size distribution of boluses formed by Minifood processor blending and by 20 times of 

chewing measured by Mastersizer. 
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0.26:1, v/w), and invertase (enzyme/ starch (dry weight basis) ratio, 1:1,000, w/w) (Dartois, Singh, 

Kaur, & Singh, 2010). The pH of mixtures was maintained at 6.8±0.1.  

 

 

  Kinetics of starch hydrolysis, hydrolysis index, and estimated glycaemic index 

The 0.5 mL of aliquots were taken at 0 (control) and after 2 minutes of oral step, and then before 

and after 30 minutes of gastric digestion. During small-intestinal digestion, the 0.5 mL of aliquots were 

taken at 0 (control) and after 5, 10, 15, 30, 90, and 120 minutes of digestion. All aliquots taken at 

different digestion stages and times were mixed with 2 mL of 96% ethanol to inactivate enzymatic 

hydrolysis. All aliquot samples were centrifuge at 1800g for 10 minutes. Afterwards, 0.1 mL of the 

ethanolic supernatant was transferred to 0.5 mL of amyloglucosidase/invertase in acetate buffer 

(3.75mg invertase, 0.1 mL amyloglucosidase per 10 mL acetate buffer, pH 5.2) and incubated for 10 

min at 37 °C.  

The glucose content was analysed by GOPOD (Format K-GLUK 07/11, Megazyme International 

Ireland Ltd, Ireland). The results were expressed as starch hydrolysis (%) using the following equation: 

% 𝑆𝐻 =
𝑆ℎ

𝑆𝑖
= 0.9 ×

𝐺𝑝

𝑆𝑖
 

where %SH is starch hydrolysis, Sh is the amount of hydrolysed starch, Si is the initial amount of starch, 

and Gp is the amount of glucose produced. A conversion factor of 0.9, calculated from the molecular 

weight of starch monomer divided by the molecular weight of glucose (162/180 = 0.9), was used (Goñi 

et al., 1997).  

A first-order equation model was applied to describe the kinetics of starch hydrolysis: 

𝐶 = 𝐶∞(1 − 𝑒−𝑘𝑡) 

Figure III.15 Starch digestion in vitro with digesta placed inside polyethylene mesh. 
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where C corresponds to the percentage of hydrolysed starch at time t,  𝐶∞ is the starch hydrolysis (%) 

after 2.5 hours of the simulated oral-gastro-small intestinal digestion process, k is the kinetic constant 

(Goñi et al., 1997). Due to the poor fitting, the kinetics of starch hydrolysis were only assessed in 

Chapter IV. 

The hydrolysis index (HI) of all the samples was calculated as the area under the curves during 

simulated small-intestinal digestion, using white bread as a reference. And the estimated glycaemic 

index (eGI) was calculated by the equation 𝑒𝐺𝐼 = 39.71 + 0.549𝐻𝐼 after 120 min of starch hydrolysis 

(Goñi et al., 1997). The starch hydrolysis (%) was still increasing at 90 min during experimentation so 

the time point of 120 min was chosen to calculate eGI. 

  Gastric-small intestinal digestion in Human Digestion Simulator 

During gastric-small-intestinal digestion in jacketed glass reactor, the digesta placed inside 

polyethylene mesh is well mixed by a magnetic stirrer. This simplified mechanical force does not reflect 

the mixing of digesta in vivo, so the Human Gastric Simulator (HGS) was trialled to mimic the 

peristalsis during digestion. In the preliminary experiment, the digesta was exposed to (i) the set pH 

point of the stomach and small intestine, (ii) the related enzyme activities and concentration, and (iii) 

the peristaltic forces.  Some physiological factors, such as (i) the continuous changes in pH of gastric 

and small intestinal digestion, (ii) sequential addition of digestive secretions, (iii) gastric and ileal 

deliveries and transit time, (iv) small-intestinal peristaltic mixing and transport, and (v) passive 

absorption of water and small molecules were not considered. The complexity of feedback mechanisms, 

resident microbiota, immune system, or specific hormonal controls involving in human digestion was 

also simplified in the preliminary experiments.  

The Human Gastric Simulator (HGS) (Ferrua & Singh, 2015; Kong & Singh, 2010) used in the 

preliminary experiment consists of a latex chamber surrounded by a mechanical driving system of four 

roller sets, effectively emulating the peristaltic movements of human stomach in amplitude, intensity, 

and frequency. The chamber has a gastric fluid inlet from the top of the latex rubber and a valve at the 

bottom of the latex rubber to simulate the gastric juice secretion and control gastric empty rate. The 

temperature of the chamber is controlled at 37°C by a fan (Figure III.16).  
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In the preliminary experiment of HGS digestion, potato tuber chips (50g) were chewed 20 times by 

myself. The bolus was spat out and placed inside a net in the latex rubber.  The digesta containing 4% 

of total starch content was then top up to 200ml with distilled water. Due to the capacity of the latex 

rubber, the total volume of the digesta was increased to 200ml and the ratio of the total starch content 

to digestive enzymes was kept the same as for jacketed glass reactor. Simulated gastric fluid and 

simulated small intestinal fluid were adjust proportionally to maintain the same ratio as for the jacketed 

glass reactor. The temperature of the HGS was maintained at 37±1°C. The pH was adjusted and 

maintained at 2±0.1. The SGF of 29 mL containing pepsin was added to start the enzymatic hydrolysis. 

After 60 min of gastric digestion, pepsin was inactivated by increasing pH to 6.8 using 1M NaOH. 

Small-intestinal digestion was initiated by adding 27ml of SIF and continued for another 180 minutes 

until the starch hydrolysis (%) reached a plateau (Goebel, Kaur, Colussi, Elias, & Singh, 2019). The pH 

of mixtures was maintained at 6.8±0.1. Starch hydrolysis curves of freshly cooked potato tuber 

conducted in jacketed glass reactor and HGS are shown in Figure III.17. For starch digestion performed 

in HGS, starch hydrolysis (%) increased gradually and reached 93.8% after 244 minutes of oral-gastric-

small intestinal digestion (Figure III.17). The longer period for starch hydrolysis value to reach plateau 

may be due to the less vigorous mixing in HGS, which provides better mimics of the diffusion of 

digestive enzymes and hydrolysis of the digesta. 

Conveying belt  

(1 cycle /2.33min) 

Roller 

sets 

Latex rubber 

Mini-

fan 

Figure III.16 Elements of human gastric simulator. 

37°C 



68 

 

Three-stage oral-gastric-small intestinal digestion in vitro was used to analyse starch hydrolysis (%) 

of retrograded starch in tuber in this thesis. The digestion was started with mechanical blending with a 

food processor to mimic mastication after which further digestion was continued in a “temperature 

controlled” jacketed glass reactor. Human digestion is rather complex involving peristaltic movement, 

the physiological factors, and the feedback mechanisms than any in vitro static digestion models. This 

in vitro digestion model provides consistent mechanical breakdown force and well-controlled pH during 

transit, giving repetitive results in triplicate.  

III.2 General methods 

General methods covered in this section detailed the backgrounds of some analytical methods and 

preliminary results from microscopy and ATR-FTIR, which were not described elsewhere in the 

following chapters.    

Other methods used commonly to study starch retrogradation in the literature were adapted and are 

described in the following chapters. Some of these methods, such as Rapid Visco-Analyzer (RVA), X-

ray diffraction pattern (X-ray), Fourier transform infrared (FTIR) spectroscopy, and scanning electron 

microscope (SEM), were limited to the form of samples i.e. dried potato tubers. Freeze-dried and 

powdered samples were prepared with caution to prevent any possible artefacts. The moisture content 

of these samples was analysed before every measurement.  

   
 

Figure III.17 Starch hydrolysis curves of freshly cooked potato tuber carried out in a jacketed glass reactor (●) 

in gradient blue areas or in the human gastric simulator (⬛) in grey areas. 
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III.2.1 Microscopy 

Starch microstructure and potato cellular structure in a freshly cooked potato tuber have been 

evaluated using a number of microscopy techniques (Bordoloi, Kaur, et al., 2012). Microscopic methods 

involve different sample preparations, which bear advantages and disadvantages. Preliminary 

experiments were conducted to observe starch granules in a raw tuber under different microscopic 

methods (Table III.1). The objective of preliminary experiments was to understand and to compare 

starch granules in the raw potato tissue viewed under different microscopic methods. Sample 

preparations have mainly been selected to preserve starch granules and cell structure with minimum 

artefacts. A thin slice, a thickness of 1μm, of potato parenchyma cell, was taken from the cortex, where 

starch content has been observed to be more abundant than other crosscut sections (Reeve et al., 1969; 

Reeve, Hautala, & Weaver, 1970; Reeve et al., 1971).  

  Sample preparation of different microscopic methods 

• Light microscope 

Thin slices of 1 μm of perimedullary parenchyma of raw potato tuber were mounted onto glass 

microscope slides, sealed with coverslips, and viewed under an Axiophot light microscope (LM) (Carl 

Zeiss, Germany). The LM micrographs operating in Differential Interference Contrast (DIC) mode were 

obtained using the objective of 40x magnification. Representative light micrographs of cell samples 

were captured using a Leica DFC320 camera equipped with the Leica software application suite LAS 

V3.8 (Leica Microsystems).  

• Confocal laser scanning microscopy 

Following the same sampling method as light microscope, thin potato slices were stained with 0.01% 

acridine orange in 0.1 M phosphate buffer (pH 7) overnight (Adler, Baldwin, & Melia, 1995). The 

micrographs were collected by confocal laser scanning microscopy (TCS SP5 DM6000B, Leica 

Microsystems, Wetzlar, Germany). Samples were excited by an Argon laser beam at 488 nm. The 

emitted lights were then selected by filters to detect starch and cell wall at 530-565 nm. Some other 

stains that have been used in various studies to observe starch granules and its tissue structures are 

Safranin O for visualising cell walls and starch (Gray, Kolesik, Hoj, And, & Coombe, 1999; van de 

Velde, van Riel, & Tromp, 2002) and Acid Fuchsin for protein (Dürrenberger, Handschin, Conde-Petit, 

& Escher, 2001; Lamberti, 2003).  

• Scanning electron microscopy 

Scanning electron microscopy (SEM) requires dry samples, and hence samples were frozen by liquid 

nitrogen then freeze-dried. Freeze-dried samples were coated with a thin layer of conductive silver paint 

then were deposited with a thin layer of gold by the sputter coating after the silver paint was dried. A 

thin layer of gold or gold-palladium alloy can prevent charging of the surface promoting the emission 
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of secondary electrons. It allows the specimen to conduct evenly, providing a homogeneous surface for 

analysis and imaging. 

  Observation of starch granules in raw potato tubers under different microscopic methods 

Three-dimensional structures of potato cells were revealed in CLSM and SEM micrographs, while 

LM offered two-dimensional images. Informative micrographs displaying different structural aspects 

of potato tissue were studied by LM, CLSM, and SEM and principles of these microscopic methods are 

provided in Table III.1. LM provides the image of starch granules in the confined boundary of cell walls 

in Table III.1a. In CLSM and SEM micrographs, starch granules and cell walls are observed in Table 

III.1b and c.  

Starch granules were unevenly distributed both within and between cells (Table III.1), and not all 

cells contained starch granules, a result found regardless of the microscopic method used. The presence 

of starch deficient cells could be artefacts from sample preparations, but was observed almost by all 

methods, including CLSM where water was not removed and samples were sectioned optically on the 

on-focus focal plane (Table III.1b). It could be that there are cells in all crosscut sections of the tuber 

that do not contain any starch granules, although most starch deficient cells have been found in pith 

tissue (Reeve et al., 1969). Nevertheless, some of these empty cells may be the results of preparation. 

For instance, sample preparation of LM and CLSM can preserve most of the starch granules within the 

cell structure, whereas sample preparation of SEM, such as freeze-drying and cutting, may cause the 

loss of starch granules. Some clusters of starch granules covered by cell walls in raw potato tuber can 

be observed under CLSM and SEM in Table III.1b and Table III.1c. Starch granules as studied by SEM 

generally display a smooth surface with some cell components/fragments attached to the cell and 

surface of starch granules (Table III.1c). These cell components/fragments could be artefacts either 

from the amyloplast membrane or from ruptured cell walls. 

Following chapters focused on structural changes of potato tubers (such as cell separation and starch 

matrix within cells) during cooking, cooling and storage. In combination with other measurements in 

each chapter, a better understanding of microstructural changes was obtained. For example, the starchy 

matrix that filled up the cell space with thinner cell walls shown by CLSM concurred with the decrease 

in hardness in cooked potato tubers (owing to starch gelatinisation and loss of turgor pressure) (Chapter 

V). 
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Table III.1 Microstructure of raw potato tuber observed by (a) light microscope (LM), (b) confocal laser scanning microscope (CLSM) and (c) scanning electron microscopy (SEM) with a 

comparison of selected features of each microscope technique.   

 (a) LM (b) CLSM (c) SEM 

Principles 

   
Raw potato cells 

   
Smallest resolvable size, nm 100 100 10 

Overall structure + +++ ++ 

Starch distribution + +++ ++ 

Starch granules +++ +++ +++ 

Cell shape + +++ ++ 

Cell walls + + ++ 

*Observation of microstructure analysis of potato tissue samples in relative to each other on a scale from + + + (excellent) to + (normal).

Granules enclosed by cell wall 

Cell without granules 

Granules enclosed by cell wall 

Cell without granules 
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III.2.2 ATR-FTIR 

 Theoretical background 

The FTIR equipment located in Science Tower A is equipped with attenuated total reflectance 

(ATR). For transmission FTIR, the sample embedded in KBr pellet is placed in the path of the IR beam 

and the resulting transmitted IR signal is recorded by the detector (Figure III.18a). The KBr is used as 

the background matrix because it is IR transparent. To obtain the resulting peak absorbance between 

0.2 to 0.7 units, estimating the optimum sample size in KBr pellet is particularly a challenge. 

Additionally, the sample must be translucent because the thickness of KBr pellet is limited to 0.5-1 mm 

to allow sufficient light to pass through and to reach the detector. In ATR-FTIR, unlike transmission 

FTIR, IR radiation is not transmitted through the sample, and thus the sample does not need to be 

prepared as a thin pellet (Figure III.18b). The incorporation of the ATR prism improves the signal-to-

noise ratios of FTIR spectra (Li, Fredericks, Rintoul, & Ward, 2007).  

In ATR mode, an IR beam traverses a prism wherein contact with the sample as it reflects internally 

in the prism (Figure III.18b). The condition for total internal reflection to occur is when sin 𝜃𝑖 > 𝑛2/𝑛1, 

where 𝜃𝑖 is the angle of incidence on the prism, n1 is the index of refraction of the prism material, and 

n2 is the index of refraction of the sample. Due to its wave, the light is not reflected directly on the 

boundary surface but by a virtual layer within the optically less dense sample (Goos-Hänchen effect). 

The fraction of the light wave that reaches into the sample is called the evanescent wave (Figure III.18b). 

In those spectral regions where the sample absorbs energy, the evanescent wave will be attenuated. 

After one or several internal reflections, the IR beam exits the ATR prism and is directed to the detector.  

The intensity of the absorption depends on the good contact between the sample and the prism, as 

well as the penetration depth of the evanescent wave. The penetration depth depends on the wavelength, 

the refractive indices of prism n1 and sample n2, and the angle of the entering light beam 𝜃𝑖. The depth 

of penetration (dp) is, therefore defined as the distance at which the field is reduced by a factor of 1/е, 

and is expressed as: 

𝑑𝑝 =
𝜆

2𝜋𝑛1√sin2 𝜃𝑖 − (
𝑛2
𝑛1

)2

 

where λ is the wavelength of the incident wave, 𝜃𝑖 is the incident angle, n1 and n2 are the refractive 

indices of the ATR prism and the sample (Harrick & Beckmann, 1974). The infrared beam enters the 

ATR prism at a typical angle 𝜃𝑖 of 45°. Taking n1=2.4 (diamond in this case) for ATR crystal and n2~1.5 

(organic substances generally range from ca. 1.2 to 1.5), the relation can be simplified to: 𝑑𝑝~0.2 λ. 

Penetration depth is directly related to the wavelength; the higher the wavelength, the greater the 

penetration depth. Polysaccharides, like starches, absorb infrared in the region of 1200~800cm-1 (i.e. at 

wavelength between~8 and 12 μm). In this region, the average penetration depth is ~2 μm (Sevenou, 

Hill, Farhat, & Mitchell, 2002a). This penetration depth is smaller than the average diameter d3,2 of 
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starch granules, such as it is 13.0 μm for corn starch and 43.0 μm for native potato starch.  The ATR-

FTIR technique, therefore, measures the overall alignment of growth rings since a unit of the alternative 

lamellae of semi-crystalline and amorphous (lamellar spacing d) is generally around 0.01 μm (Jane, 

2006).  

  
 

Figure III.18 Schematics of (a) transmission FTIR and (b) attenuated total reflectance (ATR)-FTIR.  

 

 FTIR spectra of starch in raw potato tuber 

FTIR spectra of freeze-dried and powdered raw potato cv. Agria were obtained using a Nicolet 5700 

spectrometer equipped with a Smart iTR™ Attenuated Total Reflectance (Thermo Electron Scientific 

Instruments Corp., Madison, WI USA). Samples were scanned from 4000 to 400 cm-1 with a spectral 

resolution of 4 cm−1 and 64 co-added scans were made per sample to acquire each spectrum (Figure 

III.19a). A background spectrum was used as a reference. Spectrum of raw potato tuber was baseline-

corrected over the range of 1200 and 800 cm−1  (Figure III.19b) and was self-deconvoluted by Happ-

Genzel apodization (Bretzlaff & Bahder, 1986; Cameron & Moffatt, 1984; Kauppinen, Moffatt, 

Mantsch, & Cameron, 1981) with a bandwidth of 38cm-1 and a resolution enhancement factor of 2.1 

(Figure III.19c) using Omnic software (Wang, Wang, Wang, & Wang, 2017). IR absorbance values at 

1047 and 1022 cm-1 were extracted from the spectrum after baseline correction and deconvolution 

(Figure III.19c).  

The FTIR spectra of the freeze-dried and powdered raw potato cv. Agria and cv. Nadine ranged from 

4000-800cm-1 are shown in (Figure III.20). Both samples showed adsorption bands in three main regions 

3700-3000 cm−1, 1700-1200 cm−1, and 1200-1000cm−1 indicating the composition of water, protein and 

 
 

Figure III.19 FTIR spectra of raw potato cv. Agria. 
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lipid, and starch, respectively (Figure III.20).  The major absorption bands observed in the region of 

1200-1000cm−1 was due to the stretching of C-O and C-C bonds and the stretching and bending of C-

O-H bond of starch molecules (Cael, Koenig, & Blackwell, 1973; Warren, Gidley, & Flanagan, 2016). 

The overlapped FTIR spectra of the two cultivars indicated similar chemical compositions, except the 

amount of starch content and amylose content.  

FTIR has been shown to be able to detect double-helical order or the so-called short-range order in 

starches (Goodfellow & Wilson, 1990; Wilson et al., 1991). The IR bands at 1047 and at 1022 cm-1 

were shown to be associated with the ordered and amorphous structures of starch, respectively (Capron 

et al., 2007; Sevenou, Hill, Farhat, & Mitchell, 2002b; Van Soest et al., 1995). The ratio of the 

absorbance at 1047 cm-1 to 1022 cm-1 from the deconvoluted FTIR spectrum was used to express the 

amount of ordered crystalline to amorphous domains in starches (Figure III.21). The order of double 

helices on the surface of starch granules was lower in cv. Agria than in cv. Nadine as evidenced by the 

values of 1047/1022. The significantly different in the value of 1047/1022 (n=3, p<0.05) between raw 

cv. Agria and cv. Nadine suggested the different alignments of double helices in these two cultivars. 

This could be that amylose, distributed primarily close to the surface of the starch granules (Jane & 

Shen, 1993), disrupts the ordered double-helical amylopectin on the surface of cv. Agria. A positive 

correlation was, however, obtained between the value of 1047/1022 and the ratio of amylose to 

amylopectin (r=0.909, p=0.033), this could be that the value of 1047/1022 only represents the 

local/surface alignment while the value of AM/AP indicates the overall composition. 

  
 

Figure III.20 FTIR spectra of freeze-dried and powdered raw potato cv. Agria and cv. Nadine over wavenumber 

4000-400 cm-1. 
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Figure III.21 Deconvoluted FTIR curves of freeze-dried and powdered raw potato cv. Agria, Araw and cv. Nadine, 

Nraw. The values represented the 1047/1022 of each sample and different superscripts indicated significant 

differences (n=3, p<0.05). 
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Chapter IV Potato starch retrogradation in tuber: 

structural changes and gastro-small 

intestinal digestion in vitro  

IV.1 Introduction 

Potato, Solanum tuberosum, ranks fourth among world staple crops and contains many nutrients 

such as starch, proteins, lipids, minerals and vitamins (Hiele, 1959). Most of the starch in potatoes is 

reserved as a discrete granule in parenchyma cells near the vascular ring.  These granules are oval in 

shape and range from 5 to 100µm long (Fedec, Ooraikul, & Hadziyev, 1977). Besides being processed 

into raw ingredients like flour or isolated starch, potatoes are also made into crisps, mashed potato and 

frozen potato chips.  Heating is an essential unit operation that brings desired sensory attributes to potato 

products.  Hence textural characteristics and microstructural changes after cooking have been well 

investigated (Bordoloi, Kaur, et al., 2012). Due to increasing occurrence of obesity, the glycaemic index 

(GI) of starchy foods has gained a lot of attention recently and many groups have studied how different 

preparation methods affect starch digestibility in foods (Colussi et al., 2017; Foster-Powell, Holt, & 

Brand-Miller, 2002; Raatz, Idso, Johnson, Jackson, & Combs, 2016; Tian et al., 2016). 

Cooking causes potato cell separation because pectic polysaccharides are solubilized or degraded; 

starch granules lose birefringence and crystallinity as temperature increases above the transition 

temperatures (Cooke & Gidley, 1992; Goesaert et al., 2005b). The loss of crystallinity in starch granules 

and the change of water distribution in potato tissue may cause the potato tubers to become less resistant 

to enzymatic digestion (Bordoloi, Singh, et al., 2012; Farhat et al., 2001). Simultaneously the interaction 

between the OH groups of starch and the protons in water molecules permit adjustment of the hydrogen 

bonding networks (Mortensen et al., 2005). With subsequent cooling, the disrupted amylose and 

amylopectin chains gradually re-associate and aggregate which is called retrogradation. The reorganised 

structure shows an increased transition temperature and relative crystallinity comparing to freshly 

gelatinised starch (Karlsson & Eliasson, 2003b; Tian et al., 2016). As a result, the digestibility of 

retrograded starch decreases because the aggregation of melted amylose and amylopectin upon cooling 

and storage makes them less accessible to digestive enzymes (Chung et al., 2010; Hu, Xie, et al., 2014). 

The glycaemic properties of starch depend strongly on the starch structure set by processing during 

manufacture (García-Alonso & Goñi, 2000).  Based on the kinetics of glucose release during digestion 

starches are divided into rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant 

starch (RS) fractions. Some starches can be modified to slowly digestible starch that can escape 

digestion and adsorption in the small intestine.  Retrogradation of starch paste has been shown to lower 

the digestibility of the starches within (Colussi, Singh, et al., 2017; Hu, Huang, et al., 2014; Hu, Xie, et 
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al., 2014; Tian et al., 2016; Xie, Hu, Jin, Xu, & Chen, 2014; Zhou & Lim, 2012). Several studies have 

been reported on isolated starches but not much information is available on starch retrogradation in 

tuber i.e. within cooked potatoes. Starch retrogradation in tuber is rather more complex, hence it is 

important to form a better understanding of mechanisms of structural change from the starch molecular 

level to potato tuber cells during cooking, cooling and reheating and their effect on the starch 

digestibility. We studied the influences of various storage periods and reheating temperatures to 

investigate how the structural changes associated with changes in physical properties of starch such as 

pasting profile, thermal characteristics, relative crystallinity, and water mobility within potato tubers 

and whether these result in different starch digestibility. We have used a gastro small-intestinal 

digestion model in vitro for this purpose. 

IV.2 Materials and methods 

IV.2.1 Materials and sample preparation 

In season cv. Agria tubers of uniform size (120-150g) were purchased from a local supermarket. 

Potato tubers were put in the same zip bag throughout the cooking, cooling and reheating process to 

prevent moisture loss. The tubers were then cooked in a water bath at 90°C for 25 minutes to yield the 

freshly cooked tubers, (FC), and cooled in a 4°C refrigerator for 1, 3, and 7 days (giving retrograded 

tubers, FCR1, FCR3, and FCR7). The whole  retrograded tubers, FCR1, FCR3 and FCR7 were cut into 

chips with 2cm thickness and were reheated for 5 minutes at 50°C (to give retrograded+reheated tubers 

FCR1-r50, FCR3-r50, and FCR7-r50), or 70°C (FCR1-r70, FCR3-r70, and FCR7-r70), or at 90°C 

(FCR1-r90, FCR3-r90, and FCR7-r90). The dry matter content of the tubers was determined by the 

AOAC 934.01 method (AOAC, 1990)- a 2.5g of fresh tuber was placed in 105°C overnight, then was 

left in the desiccator till constant weight is achieved. Samples were freeze-dried to measure the total 

starch content, pasting properties, thermal characteristics, and relative crystallinity. The total starch 

content was determined by a total starch assay kit (K-TSTA 07/11, Megazyme International, Ireland). 

Pepsin (porcine gastric mucosa, 800–2500 units/mg protein), pancreatin (hog pancreas, 4 × USP), and 

invertase (Invertase, grade VII from baker’s yeast, 401 U/mg solid) were purchased from Sigma–

Aldrich Ltd. (St Louis, USA). Amyloglucosidase (3260 U/ml) was purchased from Megazyme 

International Ireland Ltd. (Ireland). 

IV.2.2 Pasting properties 

The pasting profiles of ground freeze-dried tuber samples were obtained using a Rapid Visco-

Analyzer (RVA, Newport Scientific, Sydney, Australia) with the 7.7 RVATM Potato Starch Method 

(2.0 g starch and 14% moisture basis) (AACCI Method 76-21.01, 1996; Colussi, Singh, et al., 2017). 

The sample was equilibrated at 50 °C for 1 minute, heated and held at 95 °C for 3 minutes, and then 

cooled and held at 50 °C for 2 minutes, with the rotational speed maintained at 160 rpm throughout the 
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whole process. Parameters including peak viscosity (PV), viscosity at the end of hold time at 95 °C or 

hot-paste viscosity (HPV), final viscosity (FV) at the end of cooling, breakdown (BD=PV−HPV), 

setback (SB=FV−HPV) and pasting temperature were recorded. All the measurements were done in 

triplicate. 

IV.2.3 Thermal characteristics 

The freeze-dried samples were mixed with distilled water in mass ratio 1:2 and the endothermic 

curves obtained by scanning from 20°C to 100°C at a rate of 10°C per minute (Tzero Pan and Tzero 

Hermetic Lid, TA Instruments, New Castle, USA). To determine the dry matter content, the pan was 

pierced with a hole and placed in an oven at 105°C for 24 hours. The thermal transition temperature 

(Tc-To) and the enthalpy of starch retrogradation (ΔHR, expressed as J/g dry matter) were determined 

by TA Universal Analysis 2000 software supplied with the equipment. All measurements were done in 

triplicate. 

IV.2.4 Relative crystallinity 

X-ray diffractograms of the freeze-dried samples were obtained using a GBC® eMMA X-ray 

Diffractometer (GBC, VIC, Australia) (Colussi, Singh, et al., 2017). The scanning region for X-ray 

diffraction 2Ɵ ranged from 4° to 40° at a target voltage of 35 kV, a current of 28.2 mA, and a scan 

speed of 1° per minute. The relative crystallinity (RC) was calculated by the equation 𝑅𝐶 (%) =

(𝐴𝑐 (𝐴𝑐 + 𝐴𝑎)⁄ ) × 100, where Ac and Aa represents crystalline and amorphous areas, respectively. 

IV.2.5 Water mobility 

The freshly cooked (FC), retrograded (FCR), and retrograded+reheated (FCRr) tubers were cut 

longitudinally by cork borer with caution to minimize incorporating material from the core and stem 

end. The raw potato cylinder so formed had dimensions of ⌀3.4*80 mm (approximately 0.5 g) and was 

inserted into a glass tube (5 mm O.D. WG-5MM-ECONOMY-7 Wilmad-LabGlass) and sealed to 

prevent moisture loss during cooking, cooling and reheating. The relaxation times of retrograded potato 

cylinders were measured after cooling and storing at 4°C fridge for an hour (FCR0.04), a day (FCR1), 

3 days (FCR3), and 7 days (FCR7). Before every relaxation time measurement, all samples were 

equilibrated at 25°C. 

The LF-NMR proton relaxation time measurements were performed by a Spinsolve 1.5 LF-NMR 

spectrometer (Magritek Ltd.) with operating resonance frequency at 42.5 MHz. The transverse 

relaxation time T2 was acquired by the Spinsolve®Carbon apparatus’ built-in T2 bulk function using the 

Carr-Purcell-Meiboom-Gill sequence (CPMG) (Carr & Purcell, 1954; Meiboom & Gill, 1958). The 

CPMG sequence had a one-millisecond pulse separation and was fitted logarithmically in the relaxation 

time distribution from 0.1 to 5000 milliseconds with 5000 data points collected (Assifaoui et al., 2006; 

Rondeau-Mouro et al., 2015). The recycle delay time was 7 seconds. The exponential decay curve of 
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each relaxation time measurement was the result of the accumulation of 4 scans to increase the signal-

to-noise ratio (Ward, 2011). An exponential decay curve of the raw data was transformed to a 

continuous relaxation time distribution curve by inverse Laplace transformation. Then the Lawson and 

Hanson NNLS analysis method in Prospa©v3.1 (Magritek, 2016) was used to calculate relaxation time 

T2. All measurements were done in triplicate. 

IV.2.6 Starch digestion in vitro and its kinetics 

A two-stage starch gastro-small intestinal digestion in vitro model was used to investigate starch 

hydrolysis (%) (Dartois et al., 2010). The simulated gastric fluids (SGF) and simulated intestinal fluids 

(SIF) were prepared in accordance with the US Pharmacopeia (Pharmacopeia U.S, 1995, 2000). 

Samples (170g) of freshly cooked, retrograded and retrograded+ reheated tuber containing 4% of total 

starch were placed in a polyethylene mesh to avoid physical damage from the magnetic stirring bar in 

the jacketed glass reactor. The glucose content released during digestion in vitro was analysed by 

GOPOD reagent (Format K-GLUK 07/11, Megazyme International Ireland Ltd, Ireland) and the results 

were expressed as starch hydrolysis (%) (Tamura et al., 2016). 

The hydrolysis index (HI) of the samples was calculated as the area under the curves during 

simulated small intestinal digestion, using white bread as a reference taken from literature (Goñi et al., 

1997). And the estimated glycaemic index (eGI) was calculated by the following equation (Goñi et al., 

1997): 𝑒𝐺𝐼 = 39.71 + 0.549𝐻𝐼. All measurements were done in triplicate.  Parameter estimation was 

carried out using Origin® 2017. 

IV.2.7 Microstructural characteristics of digesta 

A thin potato slice (~1mm thickness) was cut from the parenchyma region of freshly cooked (FC), 

the 3-day retrograded (FCR3), and the retrograded+reheated (FCR3-r90) potato tubers for confocal 

microscopy (TCS SP5 DM6000B, Leica Microsystems, Wetzlar, Germany), under illumination with 

the Ar laser (k = 488 nm). The sample was stained with 0.01% acridine orange in 0.1M phosphate 

buffer. Then simulated intestinal fluid (SIF) was added to the curved glass slide and coverslip applied. 

The concentration of SIF was kept at the same ratio as used during gastro- small intestinal starch 

digestion in vitro experiments. The images were taken before (T0) and after adding the simulated 

intestinal fluid and incubating for 5 minutes (T5), 10 minutes (T10), and 30 minutes (T30). The 

representative digital images were analysed by Image J software (Rasband, 1997). 

IV.2.8 Statistical analysis 

The results were calculated as means ± one standard deviation from three replicates. Subsequently, 

an analysis of variance (ANOVA) with Tukey’s test was used to determine significant differences 

among the means at a significance level of p < 0.05 by Origin® 2017. The data were subjected to 
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correlation analysis and Pearson correlation coefficients were calculated by Minitab Statistical Software 

version 13 (Minitab, Inc., State College, PA). 

IV.3 Results and discussion 

IV.3.1 Pasting profile 

The pasting profile of the retrograded samples (FCR1, FCR3, and FCR7) and the 

retrograded+reheated samples (FCR1-r90, FCR3-r90, and FCR7-r90) are shown in Figure IV.1. The 

viscosity development of a starchy matrix is dependent on the thermal treatment due to the starch 

structural changes such as leaching of amylose and the formation of a tightly packed array of melted 

amylose and amylopectin (BeMiller & Whistler, 2009; Jacobs, Eerlingen, Clauwert, & Delcour, 1995). 

Prolonging retrogradation significantly increased the pasting temperature of the retrograded samples 

from 62.78°C ± 0.03°C (FCR1) to 66.13°C ± 2.18°C (FCR7) (n=3, p<0.05) (Figure IV.1a). This may 

indicate that the regional crystallinity of melted amylose and amylopectin increased and hence more 

heat was needed for structural disruption and paste formation (Perdon, Marks, Siebenmorgen, & Reid, 

1997; Zhou, Robards, Helliwell, & Blanchard, 2002). The peak viscosity and hot paste viscosity of the 

retrograded samples (Figure IV.1a), and the retrograded+reheated samples (Figure IV.1b) decreased 

with increasing retrogradation.  This indicated a denser structure of FCR7 which may not imbibe as 

much water as FCR1. The breakdown viscosity of the retrograded samples (FCR1, 937 cP; FCR3, 582 

cP; and FCR7, 709 cP) was higher than for the retrograded+reheated samples (FCR1-r90, 323 cP; 

FCR3-r90, 351 cP; and FCR7-r90, 63 cP). The viscosity of the retrograded sample decreased more after 

the maximum viscosity was reached than it did for other samples.  The retrograded sample may have 

been able to absorb more water than the retrograded+reheated samples (Adebowale & Lawal, 2003a). 

The change in viscosity during cooling of a paste due to re-association of the melted starch molecules 

is called setback viscosity. The setback viscosities of retrograded+reheated samples (FCR1-r90, 291 

cP; FCR3-r90, 223 cP; and FCR7-r90, 103 cP) (Figure IV.1a) were lower than for retrograded samples 

(FCR1, 487 cP; FCR3, 370 cP; and FCR7, 331 cP) (Figure IV.1a) which indicated less aggregation 

happened for amylose and amylopectin. This may be due to the reheating process having broken the 

melted amylose and amylopectin to even smaller fragments (DP<14) that did not favour retrogradation 

(Shi & Seib, 1992).  
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Figure IV.1 The pasting profiles of (a) the 1, 3, and 7-day retrograded samples (FCR1, FCR3, and FCR7) and (b) 

the retrograded+ reheated samples (FCR1-r90, FCR3-r90, and FCR7-r90) (n=3). 

 

IV.3.2 Thermal characteristics 

Cooking, cooling and reheating changed the structure of starch to different degrees resulting in 

different endothermic profiles (Figure IV.2) and thermal characteristics (Table IV.1). The endothermic 

peak of raw potato tuber (Raw) diminished after gelatinisation (FC) and slightly reappeared after 

retrogradation (FCR3) (Figure IV.2). The onset temperature (To) of the freshly cooked samples (FC), 

retrograded samples (FCR1, FCR3 and FCR7) and retrograded+reheated samples (FCR1-r90, FCR3-

r90, and FCR7-r90) ranged from 43.5°C to 46.2°C with only FCR1-r90 and FCR7-r90 being 

significantly different (Table IV.1). The peak temperature (TP) of the retrograded samples (FCR) 

showed a higher value than the freshly cooked samples (FC) and the retrograded+reheated samples 

(FCRr) because of the aggregation of disrupted starch in the retrograded samples (Table IV.1). The 

conclusion temperature (Tc), as well as the endothermic range (TC-TO) of retrograded samples (FCR1, 

FCR3, and FCR7), were significantly higher than for the freshly cooked samples (FC) or for the 

retrograded+reheated (FCR1-r90, FCR3-r90, and FCR7-r90) samples. But the TC and TC-TO were not 

significantly different between the freshly cooked sample (FC) and the retrograded+reheated samples 

(FCRr) (Table IV.1). Retrogradation properties were studied by analyzing the melting endotherm (ΔHR) 

of recrystallized amylose and amylopectin. The enthalpy (ΔHR) of the 3-day retrograded samples 

(FCR3) were the highest while the enthalpy (ΔHR) of the freshly cooked sample (FC) and the 

retrograded+reheated samples (FCR1-r90, FCR3-r90, and FCR7-r90) were not statistically different 

from each other (Table IV.1). The higher ΔH of retrograded samples suggested the starch molecules 

were realigned into more ordered structures (Tian et al., 2016). Therefore, the enthalpy of 

retrograded+reheated samples (FCR1-r90, FCR3-r90, and FCR7-r90) was lower because the 

retrograded structure may have melted again during reheating (Table IV.1).  
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Figure IV.2 The endothermal profile of the raw potato tuber, freshly cooked (FC), the 3-day retrograded (FCR3), 

and the retrograded+ reheated (FCR3-r90) samples. 

Table IV.1 Thermal characteristics of freshly cooked (FC), retrograded (FCR) and retrograded+reheated (FCRr) 

potato tubers. 

Samples To (°C) Tp (°C) Tc (°C) Tc- To(°C) ΔHR (J/g d.b.) 

FC 45.7 ± 1.2 ab 51.6 ± 1.9 b 62.0 ± 0.8 c 16.3 ± 0.4 c 1.1 ± 0.01 b 

FCR1 44.8 ± 1.4 ab 58.7 ± 0.2 a 74.0 ± 1.5 b 29.1 ± 2.6 ab 2.6 ± 0.2 abc 

FCR3 45.1 ± 0.1 ab 55.9 ± 3.4 ab 75.1 ± 0.1 b 30.0 ± 0.2 a 5.1 ± 1.4 a 

FCR7 44.4 ± 1.6 ab 56.4 ± 4.0 ab 70.9 ± 0.7 a 26.5 ± 1.2 b 4.0 ± 0.4 ac 

FCR1-r90 43.5 ± 0.1 a 50.5 ± 1.4 b 63.3 ± 0.3 c 19.7 ± 0.3 2.2 ± 0.3 bc 

FCR3-r90 46.2 ± 0.8 ab 53.1 ± 0.8 ab 61.8 ± 0.8 c 15.7 ± 0.1 c 2.8 ± 0.03 bc 

FCR7-r90 46.3 ± 0.3 b 53.1 ± 0.9 ab 61.3 ± 0.2 c 15.1 ± 0.3 c 2.5 ± 0.5 bc 

To, onset temperature; Tp, peak temperature; Tc, conclusion temperature; and Tc-To transition temperature. ΔHR, 

starch retrogradation enthalpy. Different superscripts in the same column indicate significant differences (p < 

0.05) (n = 3). 

 

IV.3.3 Relative crystallinity (%) 

The structural changes of the starchy matrix in potato cell caused by the realignment of disrupted 

amylose and amylopectin after cooking (FC), cooling (FCR1, FCR3, and FCR7) and reheating (FCR1-

r90, FCR3-r90, and FCR7-r90) were evaluated by the relative crystallinity (Figure IV.3) determined by 

X-ray diffraction. The relative crystallinity of the FCR3 (22.59%) was the highest, followed by the 

FCR7 (22.47%) and then by the FCR1 (20.55%) (Hu, Xie, et al., 2014), which accorded with the relative 

enthalpies of the retrograded samples. This indicated that three days’ retrogradation was enough to form 

the most aggregation. However, reheating at 90°C disrupted the aggregated structure of melted amylose 

and amylopectin as revealed by the relative crystallinities of FCR1-r90, FCR3-r90 and FCR7-r90 
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decreasing to 17.92%, 15.41% and 16.15% respectively and becoming close to the crystallinity of 

freshly cooked samples (18.13%). 

 

Figure IV.3 The X-ray diffraction patterns of the freshly cooked (FC), the retrograded (FCR) and the 

retrograded+reheated (FCRr) samples. FC, freshly cooked sample; FCR1, the 1-day retrograded sample; FCR3, 

the 3-day retrograded sample; FCR7, the 7-day retrograded sample; FCR1-r90, the 1-day retrograded+reheated 

sample; FCR3-r90, the 3-day retrograded+reheated sample; FCR7-r90, the 7-day retrograded+reheated sample. 

 

IV.3.4 Water mobility in potato tuber cells 

If the decaying quantity, N (t) is the number of the different proton with different vibrations in potato 

tuber, the average length, τ of time that an element remains in the set can be estimated by following 

equation, 𝑁(𝑡) = 𝑁0𝑒−
𝑡

𝜏 , with the decay rate, λ and  𝜏 =
1

𝜆
. The τ is the time that the population 

assembly reduced to 1/e = 0.368 times of its initial value. The relaxation time (T22) is thus retrieved 

from the exponential decay curve after 37% decay (Table IV.2). To analyse water pools with different 

relaxation times, the exponential decay curve of the raw data was transformed to a continuous relaxation 

time distribution curve (Figure IV.4) by inverse Laplace transformation. The “Lawson and Hanson 

NNLS analysis” method in Prospa©v3.1 (Magritek, 2016) was used to calculate relaxation times T2i 

(i=0,1,2,3...etc). Based on the relaxation time T2i of different water pools, the water exists in different 

cell compartments can then be discerned. 
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Table IV.2 Optimised parameters (left) and the raw data of raw, cooked and cooled (1h, 24h, and 1wk) potato 

cylinders (right). 

Scan (s) 4 Samples 
T

22 

(ms) 
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time (s) 
1.6 Raw 463 
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(s) 
10 

Cook (90°C10min) Cool 

(25°C 10min) 
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10 

Cook Cool Storage (4°C 
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227 

CPMG echo 

time (ms) 
1  

Cook Cool Storage (4°C 

24hr) 
167 

Final echo time 

(s) 
2 

Cook Cool Storage (4°C 

1wk) 
135 

LF-NMR was used to track changes in mobility of three main water populations found in potato 

tubers (with the relaxation times T23, T22 and T21) which had undergone cooking (FC), cooling (FCR3) 

or reheating (FCR3-r90) (Figure IV.4). The water population with relaxation time T20 may represent 

the water in the B-type starch structure of potatoes which consists of 36 water molecules per unit cell 

(Buléon, Colonna, et al., 1998) (Figure IV.4).  The T20 population’s relaxation time and abundance were 

consistent regardless of tuber treatment. The relaxation time T22 of raw tuber showed a bimodal 

distribution (Figure IV.4) which may have occurred due to the diffusive exchange of water populations 

between the subcellular compartments (Hills & Le Floc’h, 1994). The water pools with the relaxation 

time T22 and T21 of FC, FCR3 and FCR3-r90 (Figure IV.4) were interpreted as the water in the cytoplasm 

or intra-cellular and the water associated with the starchy matrix, respectively (Mortensen et al., 2005).   

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.2 0.7 1.2 1.7

A
m

p
li

tu
d

e 
(a

u
)

Acquisition time (s)

Raw potato

Fitting_raw potato

cooked cool

Fitting_cooked cool

cooked cool storage 1hr

Fitting_cooked cool storage1hr

cooked cool storage 24hr

Fitting_cooked cool storage 24hr

Cooked cool storage 1wk

Fitting_cooked cool storage 1wk



85 

 

The relaxation time T22 ranged from 75 to 210 ms (Figure IV.5) and represented the most abundant 

water population in the tubers which may be the water loosely connected with starch by hydrogen 

bonding. There was much less water with relaxation times T23 and T21 than with relaxation time T22. 

The T23 population ranged from 450 to 850 ms (Figure IV.5), and may represent water in inter- and 

intra-cellular space with no direct connection with starch, whereas the T21 population, had relaxation 

time ranging from 7 to 15 ms (Figure IV.5), and may contain water more tightly bound within the 

amylose and amylopectin.  

The effects of cooking, cooling and reheating on the structures formed by melting amylose and 

amylopectin and the effects on water migration were inferred from the degree of the vibration of 

hydrogen bonding as indicated by relaxation time. The water population with relaxation time T23 is 

thought to diffuse into starch granules and interact with the exposed hydroxyl groups of amylose and 

amylopectin by exchanging hydrogen bonds during heating. As temperature drops after heat treatment, 

the progressive aggregation of melted amylose and amylopectin should weaken the interactions between 

the starchy matrix and water leading to more free water in the T23 population; simultaneously the water 

with T21 in the melted amylose and amylopectin network would become less mobile. A cyclic pattern 

of the relaxation time T22 of freshly cooked (FC), retrograded (FCR), and retrograded+reheated (FCRr) 

 

Figure IV.4 Different water pools, T23, T22, T21, and T20, in potato tubers, including raw, freshly cooked (FC), 3-

day retrograded (FCR3), and retrograded+ reheated (FCR3-r90) tubers. 
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is shown in Figure IV.5. The relaxation time T22 of FC, FCR0.04, FCR1, FCR3, and FCR7 decreased 

with prolonged storage and then increased at varied reheating temperatures from 50°C, 70°C to 90°C. 

However, the pool with relaxation time T22 of FCR7-r90 (85.05 ms) was smaller than for FC (212.17 

ms) and similar to the level observed for FCR1-r50 (87.52 ms). This may indicate that long storage time 

allows melted amylose and amylopectin to associate, forming a sufficiently strong structure to maintain 

rigidity despite reheating to 90°C. 

IV.3.5 Starch hydrolysis (%) and its kinetics 

The starch digestibility of all the samples is shown as starch hydrolysis (%) (Figure IV.6). Starch 

hydrolysis percentage (C∞) and kinetic constant (k) were estimated by fitting a first-order equation 

model (Table IV.3). During the simulated gastric digestion phase (G0 and G30), the starch hydrolysis 

(%) of all samples were similar and ranged from 0.88% to 3.10% indicating most of the starch remained 

undigested (Figure IV.6). This observation was attributed to the absence of amylases in the gastric juice 

with the minimal hydrolysis observed being attributed to acid pH. The highest level of hydrolysis was 

exhibited by the briefly retrograded then severely reheated sample (FCR1-r90, 95.7 ± 4.9), slightly 

ahead of the freshly cooked sample (FC, 93.1 ± 3.2). Within the starch hydrolysis of all the samples, 

the least well-hydrolysed samples were those with the longest retrogradation period and lightest 

 
Figure IV.5 The development of relaxation time T23 , T22 and T21 under different cold storage times for 1, 3, and 

7 days (FCR1, FCR3, and FCR7) and reheating temperatures at 50°C, 70°C, and 90°C (FCR1-r50, FCR1-r70, 

FCR1-r90, FCR3-r50, FCR3-r70, FCR3-r90, FCR7-r50, FCR7-r70, and FCR7-r90). Error bars represent 

standard deviation (n=3). 
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reheating. The relative ease of hydrolysis of starch in freshly cooked potato tubers (FC) was probably 

because heat disrupted starch granular to the starchy matrix as well as the organized structure of amylose 

and amylopectin became disordered which facilitated enzyme access to the starchy matrix. Hydrolysis 

(%) of the 1-day (FCR1), 3-day (FCR3) and 7-day (FCR7) retrograded tubers likely decreased through 

progressive re-association of the disrupted amylose and amylopectin reducing enzyme access. 

Amylopectin is thought to be the major component in potato starch governing the retrogradation process 

in long-term refrigerated storage (Fredriksson et al., 1998; Karlsson & Eliasson, 2003b; Miles et al., 

1985; Srichuwong et al., 2005). The retrograded starch structure was differentially unstable as 

evidenced by the extent of increase in starch hydrolysis (%) after reheating depending on the duration 

of retrogradation before reheating. The starch hydrolysis (%) of the retrograded+reheated tubers, FCR7-

r90 (67.8%), was even lower than the retrograded tubers, FCR3 (75.0%). This indicated that 7-day of 

retrogradation allowed the melted amylose and amylopectin to form a structure that could partially resist 

reheating disruption and subsequent enzymatic breakdown.  

The concentration of glucose released from each sample was modelled during small intestinal 

(enzymatic) hydrolysis and expressed in Table IV.3 as starch hydrolysis (%). The kinetic constant (k 

min-1, Table IV.3) of each treatment was calculated assuming first-order kinetics for starch hydrolysis. 

Factors that influence the kinetics of starch digestion are the nature of starch, physical form, protein and 

 

Figure IV.6 Starch hydrolysis (%) of freshly cooked (FC), retrograded (FCR1, FCR3, FCR7) and 

retrograded+reheated (FCR1-r90, FCR3-r90, FCR7-r90) tuber. Error bars represent standard deviation (n=3). 
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lipids interactions, presence of antinutrients enzyme inhibitors, and food processing (Singh, Dartois, et 

al., 2010). The kinetic constants of the retrograded tubers (FCR1, FCR3, and FCR7) were significantly 

lower than the retrograded+reheated tubers (FCR1-r90, FCR3-r90, and FCR7-r90), indicating storage 

reduced the rate of enzymatic digestion. The hydrolysis index (HI) and the estimated glycaemic index 

(eGI) of all the samples decreased with increasing storage time (Table IV.3). The HI and the eGI of the 

FCR7 were the lowest significantly while the HI and the eGI of the FCR7-r90 were similar to the FCR1 

and the FCR3 but were significantly lower than FC, FCR1-r90, and FCR3-r90. The eGI of the freshly 

cooked potato (eGI, 101.2) and FCR7 (eGI, 71.1) were comparable to the GI of boiled potato (GI, 144) 

(Foster-Powell et al., 2002) and boiled then served cold potato (GI, 79.2) (Fernandes et al., 2005).  As 

the eGI were shown to significantly correlated to the glycaemic index (Goñi et al., 1997), the values 

can be very representative.  

Table IV.3 Kinetics of starch hydrolysis percentage, hydrolysis index (HI) and estimated glycaemic index (eGI) 

of freshly cooked (FC), retrograded (FCR) and retrograded+reheated (FCRr) potato tubers. 

Sample C∞ experimental (%) C∞ estimated (%) K (x10-2 min-1) HI eGI 

FC 93.1 ± 7.1 a 92.5 ± 1.1 a 4.3 ± 1.5 a 112.1 ± 0.9 a 101.2 ± 0.5 a 

FCR1 77.6 ± 4.8 abc 77.6 ± 2.2 b 1.7 ± 0.2 b 85.7 ± 5.8  bc 86.8 ± 3.2 bc 

FCR3 75.0 ± 12.0 abc 75.0 ± 2.8  b 1.7 ± 0.2 b 75.5 ± 11.2 cd 81.2 ± 6.1 cd 

FCR7 57.1 ± 1.6 c 57.1 ± 1.9 c 1.7 ± 0.2 b 57.2 ± 4.5   d 71.1 ± 2.5 d 

FCR1-r90 95.7 ± 10.2 a 95.1 ± 1.0 a 4.3 ± 1.5 a  118.3 ± 12.6 a 104.6 ± 6.2 a 

FCR3-r90 82.5 ± 7.8 ab 82.1 ± 0.2 b 4.3 ± 1.5 a  102.2 ± 6.0 ab 95.8± 3.3 ab 

FCR7-r90 67.2 ± 4.1bc 67.4 ± 0.3 c 4.3 ± 1.5 a  81.0 ± 4.7 c 84.2 ± 2.6  c 

C∞, experimental starch hydrolysis (%) after 2 hours of simulated small-intestinal digestion; k, kinetic constant; 

HI, hydrolysis index; eGI, estimated glycaemic index. Different superscripts in the same column indicate 

significant differences (p<0.05) (n=3).  

IV.3.6 Microstructure before and during small intestinal enzymatic digestion 

Confocal laser scanning microscopy (CLSM) was used to capture microstructural changes during 

small intestine digestion in vitro. CLSM allows direct visualisation of the changes in potato tissue 

microstructure during starch hydrolysis. The images of the freshly cooked tubers (FC), the 3-day 

retrograded tubers (FCR3) and the 3-day retrograded+reheated tubers (FCR3-r90) were taken before 

and after adding SIF at the initial time point (T0), and after 5 (T5), 10 (T10) and 30 (T30) minutes (Figure 

IV.7). The homogeneous background of empty cells indicated the effect of enzymatic hydrolysis during 

the course of digestion. The parenchyma cell walls stayed intact indicated that SIF had little or no effect 

on the cell wall integrity. All the samples (FC, FCR3, and FCR3-r90) showed the separated cells were 

filled up by gelled mass after the cooking process. The gelatinised gelled mass in the parenchyma cells 

of the freshly cooked tuber disappeared quickly after 5 minutes of SIF digestion (Figure IV.7a, b, c, and 

d). These phenomena could well explain the starch hydrolysis of FC increased rapidly after 5 minutes 

of SIF digestion. The 3-day retrograded tubers (FCR3) showed greater resistance to digestion as evident 

from the small amount of gelled mass digested at T30 (Figure IV.7e, f, g, and h). This might be the reason 

that the starch hydrolysis of FCR3 increased steadily throughout the 2 hours intestinal digestion whereas 
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the starch hydrolysis of the freshly cooked potato tubers and the reheated tubers showed a rapid increase. 

Although retrogradation facilitates the formation of compact matter from the melted amylose and 

amylopectin that can withstand reheating, the images of 3-day retrograded reheated tuber (FCR3-r90) 

disappeared gradually as digestion proceeded (Figure IV.7i, j, k, and l).  

 

 

 

 

Figure IV.7 The CLSM time-lapse images of FC in SIF at T0 (a), T5(b), T10(c) and T30(d); FCR3 incubating in SIF 

at T0 (e), T5(f), T10(g), and T30(h); and FCR3-r90 incubating in SIF at T0 (i), T5(j), T10(k), and T30(l). 
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IV.4 Conclusion 

A longer cooling and storage time (4°C, 7days) allowed gelatinised starch to aggregate and realign, 

as evidenced by a significant increase in the pasting temperature, retrogradation enthalpy and relative 

crystallinity of retrograded samples of potato tuber when compared to freshly cooked potato samples. 

In addition, the water mobility represented by relaxation time T22 can be an indicator of starch 

retrogradation; the T22 values measured were negatively correlated to both the pasting temperature and 

the retrogradation enthalpy (p<0.05) (Table IV.4).  A significant reduction in the ease of starch 

hydrolysis (%) by 36% was also measured with longer retrogradation times (7days). Reheating of 

retrograded tuber restored some of the susceptibility to enzymatic hydrolysis and internal water 

mobility.  The relaxation time of a water population indicates mobility - the water with slow relaxation 

time is more mobile and less restricted which could facilitate enzyme diffusion leading to greater starch 

hydrolysis (%): in this study relaxation time T22 was positively correlated to greater starch hydrolysis 

of the treated tubers (p<0.05) (Table IV.4).  But longer chilled storage (7days) improved the stability 

of retrograded tuber against reheating effects (at 90°C).  Realignment of the disrupted amylose and 

amylopectin is thought to have changed the distribution of crystalline and amorphous regions during 

refrigerated storage and subsequent reheating, resulting in starch digestibility varying with treatment 

combination.  
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Table IV.4 Pearson correlation 

RVA parameters: Pv, peak viscosity; Breakdown, breakdown viscosity; HPv, hot paste viscosity; Fv, final 

viscosity; Setback, setback viscosity; PT, pasting temperature. Thermal characteristics: To, onset temperature; 

Tp,  peak temperature; Tc,  conclusion temperature; Tc- To,  endothermic range; ΔHR, retrogradation enthalpy. 

RC, relative crystallinity. Relaxation time T23, T22, T21. C∞, experimental starch hydrolysis (%); K, kinetic 

constant; HI, hydrolysis index; eGI, estimated glycaemic index. 
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Chapter V Influence of time-temperature cycles 

on potato starch retrogradation in tuber 

and starch digestion in vitro 

V.1 Introduction 

Native starches are semi-crystalline polymers essentially composed of amylose and amylopectin and 

linked by α-D-glucan. The starch structure is influenced by thermomechanical history during cooking, 

cooling and storage. The on-going and non-equilibrium process of recrystallization of the cooked or 

gelatinised starch during cooling and storage is called retrogradation (Hoover, 1995; Jacobson et al., 

1997). This phase transition is dependent on the relativity of starch temperature to the glass transition 

temperature of the starch-water system, Tg and to its melting temperature, Tm, due to variable levels of 

segmental motion within amorphous and crystalline domains. At temperatures below Tg molecular 

motion is restricted. As the temperature exceeds Tg but stays below Tm, it is in a rubber-like mobile 

state in which the molecular motion within the amorphous domain increases but some segments are still 

locked in crystallites. This rubber-like phase is stable until the melting temperature Tm is reached 

(Jenkins, 1972) , above which the overall starch structure melts (Capron, Robert, Colonna, Brogly, & 

Planchot, 2007; Louise Slade & Levine, 1988). The rate of crystallinity development has been expressed 

as depending on the temperature difference between the storage temperature, T and specific glass 

transition temperature, Tg’, ΔT = (T – Tg’) (Jouppila & Roos, 1997; Marsh & Blanshard, 1988).  And a 

positive correlation between Tg’ and stability at a constant storage T  has been observed (Wang & Jane, 

1994). 

When storage temperature is between Tg and Tm, starch retrogradation involves three phases of 

crystallization often observed as three sequential steps (Slade & Levine, 1987; Wunderlich, 1980): (i) 

nucleation, (ii) propagation or growth of crystals, and (iii) maturation or crystal perfection. The overall 

crystallization rate depends mainly on the nucleation and propagation rate (Eerlingen et al., 1993).  

Nucleation has been observed to be faster at 4°C than at room temperature in potato starch (Nakazawa 

et al., 1985) and wheat grains (Jankowski & Rha, 1986).  Similarly, propagation of crystallite 

development from nuclei was faster at higher temperatures (Silverio et al., 2000) but collapses into 

disorder at/above the starch melting temperature. Numbers of retrograded starch nuclei and chain length 

of retrograded amylose both increased at higher retrogradation temperatures (Lu, Jane, & Keeling, 

1997) though the level of retrogradation was hindered, probably due to the increased kinetic motion of 

the molecules (Kalb & Sterling, 1961). The crystallization process occurs in the temperature range 

between the glass transition temperature and the melting temperature because nucleation and 
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propagation require orientation mobility of the amylose and amylopectin chains (Thompson & Fisher, 

1997). The net rate of crystallization (nucleation and growth) has a maximum value at a temperature 

T~1/2(Tg + Tm) (Morris, 1990). The rate of crystal growth within the retrograded starch gel or paste 

could be increased by allowing nucleation to occur at a low temperature followed by storing closer to 

melting temperature (Slade & Levine, 1987). 

A temperature cycling process is likely to induce stepwise nucleation and propagation which 

promotes the growth of crystalline regions and perfection of crystallites, resulting in a higher content 

of slowly digestible starch (SDS) in cereal starch pastes, potato starch pastes, and pea starch pastes 

(Silverio et al., 2000). Sievert & Pomeranz (1989) also showed that resistant starch (RS) of wheat and 

pea starch increased with increasing cycles of autoclaving and cooling.  We extended the idea of the 

time-temperature cycle (TTC) processes to freeze/chill (TTC1) and chill/warm (TTC2) domains to 

investigate the effect of TTC on retrogradation rate of starch in cooked potato tuber.  We expect the 

formation of ice crystals to concentrate gelatinised starch in neighbouring regions, accelerating 

reordering.  We hypothesize that TTC cycles will cause the redistribution of water in a retrograded 

starchy matrix and thus affect structural characteristics such as crystalline/amorphous alignment, 

interaction of starchy matrix and water, starch digestibility and texture. In addition, TTC cycles between 

starch glass transition temperature and starch melting temperature might also enhance formation of 

retrograded starches in tuber. We studied the retrogradation of time-temperature cycle (TTC) processed 

potato tubers by blue value, differential scanning calorimetry (DSC) and LF NMR. And we investigated 

in tuber starch digestion using in vitro oral-gastro-small intestinal models.  

V.2 Materials and methods 

V.2.1 Materials and sample preparations 

In season cv. Agria potato tubers (120g-150g) were purchased from a local supermarket. Same batch 

of tubers was used in all the experiments in this chapter. Whole uniform round or oval tubers were put 

singly into polythene bags and cooked in a water bath at 90°C for 25 minutes. Then the cooked potato 

tuber was stored in one of a number of 3-day time-temperature cycles (TTC) ranging between (i) -20°C 

and 4°C, TTC1 and (ii) 4°C and 65°C, TTC2 (Table V.1). The whole potato tubers were stored in -20°C 

freezer, or in 4°C fridge, or in 65°C water bath. The temperatures of TTC processes were chosen at the 

range that can potentially maximize the crystallization rate of starch retrogradation (Eerlingen et al., 

1993). The temperature condition of 65°C was tested at 6, 24, and 30h durations to find the optimum 

according to the relaxation time. The test methods to characterise the starch crystalline structure are 

summarised in Table V.1. 

Table V.1 Summary of all time-temperature cycle processes (left) and the test method that was performed (right). 



94 

 

Process Code Cook Storage 

(temp °C/ duration hrs) 

Blue 

value 

Thermal 

properties 

Relaxation 

time T22 

In vitro 

digestion 

Digesta 

thermal 

Digesta 

PSD  
Raw N No storage √ √ √ √ √ √  
FC Y No storage √ √ √ √ √ √ 

TTC1 FCR3-t(-20/4/4) Y -20/24 4/24 4/24 √ √ √ √ √ √ 

TTC1 FCR3-t(4/-20/4) Y 4/24 -20/24 4/24 √ √ √ √ − √ 

TTC1 FCR3-t(4/4/-20) Y 4/24 4/24 -20/24 − − √ − − −  
FCR3 Y 4/72 √ √ √ √ √ √ 

TTC2 FCR3-t(4/25/4) Y 4/24 25/24 4/24 − − √ − − − 

TTC2 FCR3-

t(4/65_6hrs/4) 

Y 4/30 65/6 4/36 − − √ − − − 

TTC2 FCR3-

t(4/65_24hrs/4) 

Y 4/24 65/24 4/24 √ √ √ √ √ √ 

TTC2 FCR3-

t(4/65_30hrs/4) 

Y 4/24 65/30 4/18 − − √ − − − 

TTC2 FCR3-t(4/4/65) Y 4/24 4/24 65/24 √ √ √ √ − √ 
*Ticks mark the tests that were carried out. 

Samples were freeze-dried (Singh et al., 2014; Tamura et al., 2016) and powdered to measure the 

blue value, the total starch content and the amylose content, and thermal characteristics. Enzymes α-

amylase (Aspergillus oryzae, 1.5 U/mg), pepsin (porcine gastric mucosa, 800–2500 units/mg protein), 

pancreatin (hog pancreas, 4 × USP), and invertase (Invertase, grade VII from baker’s yeast, 401 U/mg 

solid) were purchased from Sigma–Aldrich Ltd. (St Louis, USA). Amyloglucosidase (3260 U/ml) was 

purchased from Megazyme International Ireland Ltd. (Ireland). 

V.2.2 Total starch content, amylose content, dry matter, and the blue value 

Total starch content of the freeze-dried samples was determined by assay kit K-TSTA 07/11 

(Megazyme International, Ireland) and the amylose content was estimated by lectin concanavalin A 

(Con A) solubility using Megazyme kit (K-AMYL 12/16, Megazyme International, Ireland). Dry matter 

content of tubers was determined by the AOAC 934.01 method (AOAC, 1990). To determine Blue 

Value, a freeze-dried potato sample (20mg) was dispersed in 10mL of 500mol/m3 KOH, transferred to 

a 100mL volumetric flask, and diluted with distilled water. An aliquot (2mL) of this test solution was 

pipetted into a 5mL test tube and 1mL of 100mol/m3 HCl was added followed by 100 µL of iodine 

reagent. The volume was diluted to 5mL and absorbance measured at 625nm (Williams, Kuzina, & 

Hylnka, 1970). A standard curve was plotted by mixtures of potato amylose and potato amylopectin 

purchased from Sigma–Aldrich Ltd. (St Louis, USA). Starch retrogradation was quantified by the loss 

of ability to form the blue complex with iodine (Jankowski, 1992) and presented as the blue value (Eq.1) 

from the absorbance at 625nm (Gilbert & Spragg, 1964). 

 

Blue Value =
Absorbance 625nm×4

concentration (
mg

dl
)

  Eq. 1 
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V.2.3 Thermal characteristics 

Fresh potato tuber pieces were heated from 20°C to 95°C (10°C/min) to complete gelatinisation. 

Specific glass transition temperature Tg' of gelatinised potato tubers (Goff, 1994) was determined by 

scanning from -20°C to 20°C (5°C/min) with DSC (TA Q100, TA Instruments, Newcastle, DE).  

Freeze-dried samples including the TTC samples and the TTC +digested samples were mixed with 

distilled water at mass ratio 1 to 3 starch to water. Onset temperature To, peak temperature Tp, 

conclusion temperature Tc, and retrogradation enthalpy ΔHR of the samples were measured by thermal 

scanning of the samples from 20°C to 95°C at a heating rate of 10°C per minute with an empty pan as 

reference (Wang & Jane, 1994). The pan was pierced with a hole and placed in an oven at 105°C for 24 

hours to determine dry matter content. Thermal characteristics were determined by TA Universal 

Analysis 2000 software supplied with the TA Instruments (New Castle, USA).  

V.2.4 Water mobility 

Parenchyma tissue of cv. Agria potato tubers were sampled longitudinally by cork borer (⌀3.4*80 

mm, approximately 0.5 g), and these samples inserted into glass tubes of 5 mm outside diameter 

(Wilmad-LabGlass) and sealed to prevent moisture loss. Water mobility of TTC-processed samples was 

measured by a Spinsolve 1.5 LF-NMR spectrometer (Magritek Ltd.) with operating resonance 

frequency at 42.5 MHz. Before every measurement, samples were equilibrated at 25°C for 30 minutes. 

The transverse relaxation time T2 was acquired by the Spinsolve®Carbon apparatus built-in program T2 

bulk function using the Carr-Purcell-Meiboom-Gill sequence (CPMG). The apparatus parameter setup 

was as previously reported (Chen, Singh, & Archer, 2018). Raw data were transformed to a continuous 

relaxation time distribution curve by inverse Laplace transformation. Then the Lawson and Hanson 

NNLS analysis method in Prospa©v3.1 (Magritek Ltd., NZ) was used to calculate relaxation time T2. 

All measurements were done in triplicate. 

V.2.5 Texture analysis 

Following the sampling method of V.2.4, the hardness of TTC-processed potato cylinders (⌀8*10 

mm) were analysed by texture analyser (TAXT Plus, Stable Microsystems, Surrey, UK) (Kaur, Singh, 

Singh, et al., 2007). Each sample was compressed by a flat platen of 17 mm diameter using a 5kg load 

cell. The crosshead speed was 20 mm/min and the maximum extent of deformation 30% of the original 

height. The hardness of the samples is defined as the maximum force of the first peak (Figure V.1). 

While the cohesiveness is defined as the area of the second compression divided by the area of the first 

compression, and the springiness is defined as the distance of the detected height during the second 

compression divided by the original compression distance (Figure V.1). The chewiness is the factor of 

hardness, cohesiveness, and springiness (Figure V.1) (Friedman, Whitney, & Szczesniak, 1963). 

Texture profile analysis (TPA) was performed in triplicate. 
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Figure V.1 Definitions of the parameters of texture profile analysis.  

 

V.2.6 Starch digestion in vitro 

Simulated salivary fluid (SSF) was prepared according to Kong, Oztop, Singh, & McCarthy (2011). 

Simulated gastric buffer (SGF) and simulated small intestine buffer (SIF) were prepared according to 

the US Pharmacopeia (Pharmacopeia U.S, 1995, 2000). SSF contained α-amylase, SGF contained 

pepsin, and  SIF contained pancreatin, invertase, and amyloglucosidase (Bordoloi, Singh, et al., 2012). 

TTC processed potato chips (40g, same thickness as previous study (Chen et al., 2018)) were mixed 

with pre-warmed SSF at mass ratio 1:1 using a mini food processor (The Mini Wizz Food Chopper, 

Breville®) for two minutes (Tamura, Kumagai, & Ogawa, 2013; Tamura, Okazaki, Kumagai, & 

Ogawa, 2017). The resulting potato bolus samples (80g) were topped up to 170g with distilled water 

and placed in a polyethylene mesh (Chen et al., 2018; Tamura et al., 2016). Starch digestibility was 

measured by the glucose released after a certain time of simulated oral digestion and simulated gastric-

small intestinal digestion. Glucose released after two minutes of oral mastication (O2), thirty minutes 

of gastric digestion (G0 and G30) and two hours of small intestinal digestion (I0, I5, I10, I15, I30, I90, and 

I120) were analysed by GOPOD reagent (Format K-GLUK 07/11, Megazyme International Ireland Ltd, 

Ireland) and the results were expressed as starch hydrolysis (%) (Tamura et al., 2016). Hydrolysis index 

(HI) of the samples was calculated as the area under the curve during simulated small intestinal 

digestion, using white bread as a reference. The estimated glycaemic index (eGI) was calculated by the 

equation: 𝑒GI = 39.71 + 0.549HI, (Goñi et al., 1997). All measurements were done in triplicate.   
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V.2.6.1 The particle size distribution of the potato digesta 

Particle size distribution of digesta of TTC-processed potato tubers samples at different digestion 

stages was determined using laser diffraction particle size analysis (Mastersizer 2000, Malvern 

Instruments Ltd., UK). The relative refractive index applied was 1.70. 

V.2.6.2 Microstructure TTC-processed tubers 

Freeze-dried TTC-processed tubers taken from different digestion times and stages were 

photographed using a scanning electron microscope (FEI Quanta 200 FEI Electron Optics, Eindhoven, 

The Netherlands) at different magnifications and representative images were chosen. An accelerating 

potential of 20 kV was used during micrography. 

V.2.7 Statistical analysis 

Results are expressed as means ± one standard deviation. Subsequently, an analysis of variance 

(ANOVA) with Tukey's test was used to determine significant differences among the means at a 

significance level of p < 0.05. The data were subjected to correlation analysis and Pearson correlation 

coefficients were calculated by Minitab Statistical Software version 13 (Minitab Inc., State College, 

PA). 

V.3 Results and discussion  

V.3.1 Total starch content, dry matter and blue value (BV) 

Dry matter content of the potato tubers used was 23.5 ±3.1%, total starch content 70.8 ±1.2% (d.b), 

and the amylose content 23.6 ±0.7%. BV was used qualitatively to reveal structural differences between 

samples. A deep-blue colour with maximum wavelengths (λ max) at 610 nm, and at 530–575 nm, indicate 

amylose-iodine complex (Rundle & French, 1943) and short amylopectin chain-iodine complexes 

(McGrance, Cornell, & Rix, 1998) respectively. The BV of raw potato sample was 1.3 (Table V.2) 

falling within the range reported for other native starches (Takeda, Hizukuri, Takeda, & Suzuki, 1987). 

Retrograded starch loses its ability to accommodate iodine to form blue complexes due to the formation 

of double-helical associations of 40-70 glucose units in retrograded amylose (Jane & Robyt, 1984). 

Moreover, the BV, reflecting the amount of soluble amylose in cooked potato, was found to decrease 

rapidly upon storage (Jankowski, 1992) as the aggregation of linear amylose became insoluble. 

Consistent with this, the BV of the 3-day retrograded sample (FCR3) was significantly lower than for 

freshly cooked samples (FC) (p<0.05) (Table V.2). The BV of FCR3-t(4/-20/4) and FCR3-t(-20/4/4) 

were even lower than for FC (Table V.2). Freeze-chill cycles likely created starch-rich and starch-

deplete regions, and hence impeded bonding of the starch-iodine complex. But there were no significant 

differences between the BV of FCR3, FCR3-t(4/-20/4), FCR3-t(-20/4/4), and FCR3-t(4/4/65). The 

lowest BV observed, for FCR3-t(4/65/4) (Table V.2) indicates the least formation of starch-iodine 
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complex. The TTC process of 4°C for a day may have allowed retrograding starch to form multiple 

nuclei; subsequent warming to 65°C then a further day at 4°C allowed these nuclei to grow further into 

larger aggregates. Therefore, the sporadic formation of nuclei in the retrograded starchy matrix led to 

its losing most of its ability to form starch-iodine complex (McIver et al., 1968).   

Table V.2 Blue values of different time-temperature cycle processed potato samples. 

    TTC1 TTC1 TTC2 TTC2 

 

 Raw FC FCR3 FCR3- 

t(4/-20/4) 

FCR3- 

t(-20/4/4) 

FCR3-

t(4/65/4) 

FCR3-

t(4/4/65) 

BV 1.3 ± 

0.02 a 

1.1±

0.1 b 

0.9± 

0.01 cd 

0.8±0.02 cd 0.8±0.03 d 0.5 ±0.1e 0.9±0.01 c 

Different superscripts in the same row indicate significant differences (p<0.05) (n=3). 

V.3.2 Thermal characteristics of TTC-processed potato tuber  

The first peak temperature in the derivative curve of heat flow of gelatinised potato tuber starches 

was defined as the specific glass transition temperature (Sang, Alavi, & Shi, 2009; Wang & Jane, 1994) 

Tg’, -0.9°C, and the onset temperature of ice melting temperature Tm' was -2.5°C ( 

Figure V.2).  

When the storage temperature (T) of cooked potato tubers drops below the ice melting temperature, 

water in the starchy matrix progressively freezes to ice and the motion of gelatinised amylose and 

amylopectin is restricted (Yu, Ma, Zheng, Liu, & Sun, 2012). At this point, removal of water into ice 

crystal concentrates the solutes in the matrix. This results in alternating starch-deplete regions (ice) and 

starch-rich regions (Colwell, Axford, Chamberlain, & Elton, 1969). Later on during storage at 4°C, the 

starch-rich region might facilitate retrogradation (Kim, Muhrbeck, & Eliasson, 1993). Indeed, Table 

 
 

Figure V.2 Endotherm curve of potato tuber and its derivative curve. 
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V.3 shows the retrogradation enthalpy of the TTC1 samples to be significantly higher than for FCR3 

(p<0.05).  

Retrogradation is likely to proceed as a crystallisation sequence of nucleation, propagation then 

maturation, each with temperature dependencies either thermodynamic or kinetic (Slade & Levine, 

1987). We considered retrogradation likely to be accelerated if nucleation occurs at low temperature, 

and subsequent storage close to melting temperature is likely to enhance crystal growth rate (Slade & 

Levine, 1987). However, the retrogradation transition peak temperature Tp of FCR3 samples were 

higher than TTC2 samples. The retrogradation enthalpy ΔHR of FCR3 samples and FCR3-t(4/65/4) and 

FCR3-t(4/4/65) samples showed no significant difference (Table V.3) where the signature of 

endothermal curves for TTC2 were not as obvious as for TTC1 samples (Figure V.3). It might be 

because there is also an optimum duration for nucleation and propagation to maximize retrogradation.  

 

Figure V.3 Endothermal curves of 3-day retrograded tuber and TTC processed potato tubers. 

 

Overall, retrogradation peak temperatures Tp of TTC1 chill-retrograded samples were significantly 

lower than for 3-day warm-retrograded TTC2 samples, which may imply the TTC1 retrograded starches 

were less compact than the sporadic nuclei of TTC2 retrograded starch. But the retrogradation 

enthalpies of FCR3-t(-20/4/4) samples were significantly higher than FCR3 and TTC2 samples which 

might show that, even though the structure were loose, there was overall more aggregation of 

retrograded starch. It might be that recrystallization of amorphous starch during chill storage was 

enhanced by prior freeze-concentration. Molecular mobility was enhanced by unfrozen water and 
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consequently, molecular rearrangements for nucleation could take place (Ronda & Roos, 2008) during 

the later stages of two-day storage at 4°C of FCR3-t(-20/4/4) samples. 

Table V.3 Thermal characteristics of time-temperature cycle treated potato starch in tuber. 

Process Samples To (°C) Tp (°C) Tc (°C) Tc-To (°C) ΔHR (J/g d.b.) 

 Raw 65.9 ±0.2a 68.3±0.1a 74.5 ±1.3a 8.6 ±1.3b 12.7 ±2.0a 

 FC - - - - - 

 FCR3 47.0 ±1.5b 64.4 ±0.9b 74.4 ±0.9a 27.5 ±0.9a 1.6 ±0.4c 

TTC1 FCR3-t(-20/4/4) 43.8 ±0.7b 54.3 ±0.8d 73.9 ±1.4a 30.1 ±2.1a 4.7 ±0.6b 

TTC1 FCR3-t(4/-20/4) 44.7 ±0.4b 56.3 ±0.5d 75.7 ±0.8a 31.0 ±0.9a 3.8 ±0.7b 

TTC2 FCR3-t(4/65/4) 46.5 ±2.2b 60.7 ±2.0c 75.6 ±0.9a 29.1 ±3.0a 2.3 ±0.9bc 

TTC2 FCR3-t(4/4/65) 46.8 ±0.3b 60.4 ±2.2c 74.0 ±3.4a 27.1 ±3.3a 2.2 ±0.8bc 

Different superscripts in the same column indicate significant differences (n=3, p< 0.05). 

V.3.3 Water mobility of TTC processed potato tubers 

There are four water pools in potato (i.e. water within the starch double helices of crystalline regions, 

in the amorphous region of amylose and amylopectin, loosely associated with the gelatinised starchy 

matrix, and within potato tuber cell cytoplasm).  Different relaxation times T20, T21, T22, and T23 can be 

discerned in freshly cooked potatoes (FC) (Figure V.4a) (Chen et al., 2018).  

The merging of water pools with relaxation time T21 and T22 was evident in TTC1-processed potatoes 

(Figure V.4b), which might be due to ice crystals damaging potato cells allowing extracellular and 

intracellular water to mix (Micklander et al., 2008).  Simultaneously water congregates as ice at low 

temperatures creating zones within the tuber of frozen water fully dissociated from starch. The 

combined effects of the cellular structural changes and the changing concentration of starch within the 

matrix would have altered the water mobility of different water pools. As molecular movement at 

temperatures below the glass transition temperature were restricted, the crystallization of retrograded 

starch may not complete within a finite duration (Levine & Slade, 1988). Once the temperature was 

increased to 4°C during the freeze-chill cycle, starch retrogradation was impacted by water 

redistribution - nucleation may have been facilitated within the starch-rich, water-lean region leading 

to enhanced starch retrogradation overall. Tubers stored at -20°C for a day and then 4°C for two days, 

FCR3-t(-20/4/4) had the lowest relaxation time T22 (Figure V.4b).  This might point to a higher level of 

retrogradation because the relaxation time T22 has been shown to correlate negatively with the enthalpy 

of retrogradation (Chen et al., 2018). A similar effect was observed in frozen bread as the level of starch 

retrogradation was higher when subjected to temperature fluctuation between -18°C and 4°C (Ronda et 

al., 2011).  

The TTC2 cycle process was set to maximize both nucleation and propagation of starch 

retrogradation at temperatures between Tg’ and Tm
’. The relaxation time T22 of FCR3-t(4/65°C 24hrs/4) 

was lower than for FCR3-t(4/65°C 30hrs/4) and FCR3-t(4/65°C 6hrs/4) (Figure V.4c) which might 

indicate that the 3-day storage condition of FCR3-t(4/65°C 24hrs/4) was nearest the optimum condition 
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for recrystallization. Lu et al. (1997) showed a smaller molecular subfraction of retrograded amylose 

entangled at 45°C than 25°C indicating starch propagation. Therefore, another three sets of TTC2 

processes were performed with 3-day storage at (i) 4°C refrigeration (FCR3), at (ii) 4°C refrigeration 

then 25°C water bath (TTC-4/25), and at (iii) 4°C refrigeration then 65°C water bath (TTC-4/65) 

(Figure V.4d). The relaxation time T22 of FCR3-t(4/65/4) was lower than FCR3-t(4/25/4) (Figure V.4d) 

showing a higher level retrogradation. This might be due to a higher propagation temperature of TTC2 

process giving enough molecular mobility to allow starch to rearrange its structure. The relaxation time 

T22 of FCR3-t(4/4/65) was the highest observed indicating that a relatively long nucleation period i.e. 

4°C for two days and then propagation at 65°C for a day failed to promote substantial starch 

retrogradation (Figure V.4d). 

V.3.4 Texture profile analysis 

Texture profiles of TTC1 and TTC2-processed tubers revealed effects of the temperature 

fluctuations imposed during cooking and cold storage (Table V.4). The hardness and the cohesiveness 

of the raw tuber samples decreased after cooking (Table V.4). Cooking is known to soften the texture 

of potatoes because of starch gelatinisation and the rounding-off of cells by internal turgor pressure 

 
 

Figure V.4 Water pool profiles of (a) freshly cooked potato tubers, FC, and 3-day retrograded potato tubers, 

FCR3, and (b) TTC1-processed potato tubers, (c) TTC2-processed potato tubers, and (d) TTC-4/25 and 4/65 

potato tubers. 
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(Shomer, 1995).  Besides, thermal β-eliminative degradation of pectin in the middle lamella causes cell 

separation and permits cells to distend spontaneously (Matsuura-Endo, Ohara-Takada, Yamauchi, 

Mukasa, et al., 2002). Chill storage at 4°C of starchy food such as potato tubers was found to increase 

the hardness (Jankowski, 1992), however, the hardness of the freshly cooked samples was harder than 

FCR3 and the TTC1 samples (Table V.4). Freezing was shown to reduce the hardness of potatoes due 

to the loss of orderly cellular arrangement and deformation caused by intracellular and extracellular ice 

crystals (Sun & Li, 2003). Hence, the hardness of the TTC1-processed cylinders was significantly lower 

than for TTC2-processed cylinders (n=3, p<0.05) (Table V.4).  However, the cohesiveness, i.e. the 

ability of the TTC1-processed cylinders to resist deformation between two compressions, was higher in 

TTC1 than for TTC2 samples, consistent with a coherent sponge-like structure. Springiness of all 

samples was similar.  The high springiness recorded for FCR3 is an artefact of the potato cylinder 

adhering to the retracting probe in the second compression (Table V.4). The chewiness score (derived 

from hardness, cohesiveness, and springiness), was least in the FCR3 samples (Table V.4) indicating 

the temperature fluctuation of TTC probably changed the cellular structure.  

Table V.4 Texture profile analysis of 3-days retrograded potato tubers under different time-temperature cycles 

process. 

Process Samples Hardness (N) Cohesiveness (%) Springiness (%)  Chewiness (J) 

 Raw 41.5 ±0.7 a 49 b  69 b 14.0 ±0.2 a 

 FC 12.0 ±0.3 b 23 d 66 b 1.8 ±0.2 c 

 FCR3 1.0 ± 0.1 d  16 d 120 a 0.2 ±0.1 e 

TTC1 FCR3-t(-20/4/4)  2.3 ± 0.3 d 59 a 76 ab 1.0 ±0.1 d 

TTC1 FCR3-t(4/-20/4) 2.0 ± 0.1 d 58 a 80 ab 0.9 ±0.1 d 

TTC2 FCR3-t(4/65/4)  10.8 ± 0.4 bc 32 c  76 ab 2.3 ±0.2 b 

TTC2 FCR3-t(4/4/65) 10.1 ± 0.7 c 36 c 87 ab 3.2 ±0.6 b 

Different superscripts in the same column indicate significant differences (n=3, p< 0.05). 

V.3.5 Starch hydrolysis (%) and estimated glycaemic index 

The starch hydrolysis (%) curves of TTC-processed tubers are shown in Figure V.5. Measurement 

of the ease of starch digestion started with two minutes of simulated oral digestion where potato tubers 

were blended with SSF in mass ratio 1:1.  α-Amylase is generally well integrated within the food bolus 

during this simulated oral processing and continues to release some glucose during gastric digestion 

(Rosenblum, Irwin, & Alpers, 1988; Tamura et al., 2017).  However, starch hydrolysis (%) observed 

during the full digestion process ranged from 1-10% across the samples (Figure V.5) implying 

differences in ease of access to starch locally within the bolus.  After 5 minutes of simulated small–

intestinal digestion, starch hydrolysis of the FC tubers, at 76.3% was higher than for the TTC1-

processed tubers (e.g. FCR3-t(-20/4/4), 37.7% and FCR3-t(4/-20/4), 39%) and for TTC2-processed 

tubers (e.g. FCR3-t(4/65/4), 40% and FCR3-t(4/4/65), 51.2%) (Figure V.5). This is consistent with 

rapidly digestible starch of FC (78.4%) being more abundant than in TTC-processed tubers (FCR3-t(-
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20/4/4), 56.1%, FCR3-t(4/-20/4), 58.7%, FCR3-t(4/65/4), 51.6%, and FCR3-t(4/4/65), 58.9%) (Xie et 

al., 2014; Yadav, Sharma, & Yadav, 2009).  

 

Figure V.5 Starch hydrolysis (%) of 3-day retrograded tubers, TTC1-processed tubers, and TTC2-processed 

tubers. Error bars represent standard deviation (n=3). 

 

Starch hydrolysis (C∞ experimental), hydrolysis index (HI), and estimated glycaemic index (eGI) are 

shown in Table V.5. The HI of FC exceeded 100% as the white bread was used as reference (Chen et 

al., 2018; Goñi et al., 1997) and the AUC of bread was less than freshly cooked potato tuber. There 

were no significant differences between the experimental C∞ of 3-day retrograded samples, the TTC1-

processed tubers, and the TTC2-processed potato tubers (Table V.5). This implies that the effect of 

TTC1 and TTC2 on cellular structure might make the processed starch equally vulnerable to enzymatic 

breakdown compared to 3-day retrograded samples even though TTC1-processed tubers showed a 

higher level of retrogradation (i.e. higher ΔHR and lower T22).  Similarly, there were no significant 

difference of the HI and the eGI of the 3-day retrograded tubers, the TTC1 processed tubers, and the 

TTC2-processed tubers (Table V.5). There is potential for TTC1 to make big lumps recruiting more 

starch into retrograded structures, whereas TTC2 might make lots of small crystallites with much 

surface area for a small amount of retrograded starch - both time-temperature processes could result in 

similar starch hydrolysis behaviour as FCR3. 
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Table V.5 Starch hydrolysis (C∞ experimental), hydrolysis index (HI), and estimated glycaemic index (eGI) of TTC-

processed potato tubers. 

C∞, experimental starch hydrolysis (%) after 2 hours of simulated small-intestinal digestion; HI, hydrolysis index; 

eGI, estimated glycaemic index. Different superscripts in same column indicate significant differences (p<0.05) 

(n=3). 

 

V.3.5.1 The particle size distribution of the potato digesta 

The median diameter (d0,5) of digesta particles of TTC-processed tubers, measured by laser light 

diffraction, ranged from 0.15mm to 0.2mm (Figure V.6). The bimodal peaks of the particle size 

distribution curves (Figure V.6a) are comparable to mastication results (Hoebler et al., 2000). The 

volume represented by large particles (12.7-15.9%) (Figure V.6c) was generally greater than the volume 

of small particles (0.5-1.5%) (Figure V.6b). For the freshly cooked samples, FCR3-t(4/-20/4) samples, 

FCR3-t(-20/4/4) samples, and FCR3-t(4/4/65) samples, the integrated volume of the small particle sizes 

increased and the volume of the large particle sizes decreased by the end of the simulated small-

intestinal digestion (Figure V.6b &3c) which is consistent with the increase in starch hydrolysis (%) 

during simulated gastric small-intestinal digestion. For FCR3, the integrated volume of both the large 

particles (Figure V.6b) and the small particles (Figure V.6c) decreased which might reflect the texture 

profiles such as the lower cohesiveness/chewiness and the higher springiness. For FCR3-t(4/65/4), the 

bimodal particle size distribution of the bolus of FCR3-t(4/65/4) changed to a unimodal particle 

distribution curve with a shoulder at 43µm at the end of the digestion (Figure V.6b &3c). This might 

indicate competition between digestion of small, high surface area particles, and fission of larger 

particles into smaller ones. 

Process Samples C∞ experimental (%) HI eGI 

 FC  87.2 ± 4.4 a 132.1 ± 0.7 a 112.3 ± 0.4 a 

 FCR3  72.3 ± 5.8 ab 98.2 ± 6.0 b 93.6 ± 3.3 b 

TTC1 FCR3-t(-20/4/4)  66.6 ± 4.3 b 92.7 ± 5.1 b 90.6 ± 2.8 b 

TTC1 FCR3-t(4/-20/4)  63.1 ± 8.1 b 87.0 ± 9.8 b 87.5 ± 5.4 b 

TTC2 FCR3-t(4/4/65)  65.1 ± 10.0 b 97.3 ± 9.2 b 93.1 ± 5.0 b 

TTC2 FCR3-t(4/65/4)  60.3 ± 1.2 b 85.1 ± 5.4 b 86.5 ± 3.0 b 
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Figure V.6(a) Particle size distribution curves of bolus (O2, ---) and digesta (I120, −) of freshly cooked potato 

tubers, and (b) the volume changes of small particles and (c) the large particles of different samples during and 

after digestion. *The particle size distribution of the digesta I120 of FCR3-t(4/65/4) was a unimodal curve with a 

shoulder at 43µm. And error bars indicate the standard deviation of triplicate results. 

 

Microstructural changes of FC (Figure V.7a,b,c), FCR3 (Figure V.7d,e,f), and TTC (Figure 

V.7g,h,i,j,k,l) processed tubers were revealed by SEM. From left to right, Figure V.7 shows SEM 

images of samples after 2 minutes of simulated oral digestion (O2), and after 5 minutes (I5) and 120 

minutes (I120) of simulated small-intestinal digestion.  Increased cavities can be seen in the digested 

starchy matrix (Figure V.7b,e,h,k), especially for freshly cooked samples after simulated oral and 

gastric small-intestinal digestion. This might be due to in vitro digestion (Tamura et al., 2016) or 

removal of water during freeze-drying, causing shrinkage and wrinkles (Lopez-Rubio, Flanagan, 

Shrestha, Gidley, & Gilbert, 2008). In contrast to the cell shrinkage (Figure V.7d,j), the rounded-off 

potato cells of FCR3-t(-20/4/4) (Figure V.7g) might be due to the freezing right after cooking preventing 

moisture loss during storage (De Kock, Minnaar, Berry, & Taylor, 1995; Szymońska, Krok, & Tomasik, 

2000). But ice crystal formation within the starchy matrix can weaken resistance to enzymatic 

breakdown yielding the uneven surface visible after digestion. TTC-processed samples appear to have 

more cell debris and starchy matrix remaining after digestion (Figure V.7i.l). 
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Figure V.7 SEM images of freshly cooked potato tubers digesta at O2 (a), I5 (b), and I120 (c); and 3-day retrograded tubers digesta at O2 (d), I5 (e), and I120 (f); and FCR3-t(-

20/4/4) digesta at O2 (g), I5 (h), and I120 (i); and FCR3-t(4/65/4) digesta at O2 (j), I5 (k), and I120 (l). 

(g) (h) 
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V.3.5.2 Thermal characteristics of TTC digesta 

Enthalpies of the remnants after the simulated oral-gastric-small intestinal digestion of raw tubers, 

freshly cooked tubers, 3-day retrograded tubers and TTC-processed tubers were measured by DSC 

(Table V.6). The retrogradation enthalpies of FCR3 and TTC digesta might reflect the abundance of 

starch crystallites remaining in the SDS, which would be a mix of amorphous and semi-crystalline 

material. The TTC process probably altered the distribution of starchy matrix in parenchyma cells 

resulting in SDS less prone to complete digestion (Guraya, James, & Champagne, 2001). A two-way 

ANOVA was run on 20 samples with replicates to examine the effect of TTC processes and digestion 

stages and time on retrogradation enthalpies. There was a significant interaction between the effects of 

TTC processes and of digestion stage on retrogradation enthalpies of the digesta, F (12, 20) = 2.79, p = 

.021. Simple main effects analysis showed that TTC processes affected retrogradation enthalpy of 

digesta more than did the digestion stage (p<0.05). This might indicate that the formation of slowly 

digestible starch (SDS) through a TTC process unless disrupted in the oral cavity by salivary α-amylase, 

is not greatly prone to subsequent attach by gastric acid or other digestive mechanisms.  Usually, SDS 

is mostly hydrolysed by enzymes secreted from the pancreas and is converted into small linear 

oligomers and α-limit dextrins in the small intestine (Lehmann & Robin, 2007b).  

Table V.6 Retrogradation enthalpies of the TTC digesta samples (J/g d.b.) at different digestion time and stages. 

   Digestion time and stage 

  Undigested O2 G30 I5 I120 

 Raw 10.6 ±0.3 10.1 ±0.3 9.3 ±2.5 8.7 ±1.8 11.7 ±2.2 

 FC 1.1±0.0 1.3 ±0.3 2.2 ±0.5 1.8 ±0.9 0.2 ±0.1 

 FCR3 3.5±0.2 4.0 ±0.6 1.1 ±0.2 1.7 ±0.4 0.7 ±0.3 

TTC1 FCR3-t(-20/4/4) 4.7±0.2 1.8 ±0.4 3.8 ±0.6 2.0 ±0.7 3.4 ±0.8 

TTC2 FCR3-t(4/65/4) 3.4±0.1 4.2 ±0 2.5 ±1.3 0.9 ±0.4 1.9 ±1.0 

V.4 Conclusion 

A graphical precis of results obtained is in the Table V.7 where the relative starch crystalline 

structure were indicated by the numbers of the star- higher numbers of stars indicate more quantities of 

crystalline structure. Several, but not all, of the time-temperature cycle processes tested facilitated starch 

retrogradation in tuber more than did storage fixed at 4°C (FCR3) (Table V.7). The TTC1 process 

increased the retrogradation enthalpy and decreased water mobility, signifying that starch-rich and 

starch-depleted regions may have facilitated the formation of retrograded starch in starch-rich regions 

(Table V.7). TTC2-processed tubers held under chill and warm conditions showed the lowest blue value 

and starch digestibility in vitro (Table V.7).  TTC processed tubers subsequently exposed to digestive 

enzyme in vitro showed, at 60-67%, lower extent of starch hydrolysis than either tubers retrograded for 

3-days at 4°C (72%) or freshly cooked potato tubers (87%).  These two sets of time-temperature 
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processes induced starch retrogradation in tuber differently though all such samples showed higher 

retrogradation enthalpies and lower starch digestibility where a negative correlation (r=-0.65, p=0.005) 

was obtained. The residual retrogradation enthalpies of digesta of TTC processed tubers suggest the 

formation of slowly digestible starch. Similar time-temperature cycle processes may be useful to the 

drive physicochemical changes of the potato product within the industrial cold chain.  

Process Code Blue 

value 

Thermal 

properties 

Relaxation 

time T22 

In vitro 

digestion 

Digesta 

thermal 

Digesta 

PSD  
Raw ****** ****** ****** ****** ****** ******  
FC ** * ** ** ** ** 

TTC1 FCR3-t(-20/4/4) **** **** ***** *** **** ** 

TTC1 FCR3-t(4/-20/4) **** **** ** *** − **  
FCR3 *** **** **** *** ** *** 

TTC2 FCR3-t(4/65/4) ***** *** *** *** *** *** 

TTC2 FCR3-t(4/4/65) *** *** ** *** − ** 

* The higher numbers of stars indicate more quantities of crystalline structure as indicated by each method. 

PSD, particle size distribution. 

 

  

Table V.7 Summary of all time-temperature cycle processes (left) and the relative level of starch crystalline 

structure implied by the test method was indicated by the number of stars (right). 
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Chapter VI Starch retrogradation of sous vide 

processed potato tubers and oral-

gastric-small intestinal starch 

digestion in vitro 

VI.1 Introduction 

Sous vide, known as cuisine en papillote sous vide, is a process where raw food is vacuum-sealed in 

a plastic pouch and cooked under controlled temperature. Sous vide cooked vegetables can give fresh-

like taste and retain more nutrient than conventionally cooked vegetables (Iborra-Bernad, García-

Segovia, & Martínez-Monzó, 2015; Kosewski et al., 2018). The development of sous vide product has 

great potential owing to the growing ready-meal (Euromonitor International, 2017b, 2017a). A sous 

vide catering system consists of sous vide cooking, rapid chilling, chilled storage, and reheating before 

serving (Sheard & Rodger, 1995; SVAC, 1991). The safety of sous vide products requires special 

attention due to the lower cooking temperatures than those used for conventional cooking. The 

recommended thermal process for sous vide cooked vegetables is 90°C for 10 minutes at the centre or 

its time-temperature equivalent to ensure a sufficient Pasteurization, such as a 6-log10 reduction in 

psychrotrophic Clostridium botulinum and Listeria monocytogenes, or a 3-log10 reduction in Salmonella 

species (Schellekens, 1996). The recommended chilled storage period is <5 days at <5°C  owing to the 

potential temperature abuse in the chill chain, where botulinum spores could grow in the product and 

produce a potentially lethal toxin (New Zealand Food Safety, 2017).  

Sous vide cooking is usually done at controlled temperatures for an extended period of time up to 72 

hours with a shock heat burst before rapid chilling and chill /frozen storage to enhance shelf life. 

Optimising the time and temperature of a sous vide cooking process is the key to the desirable texture 

(Kadam, Tiwari, & O’Donnell, 2015). For traditionally cooked potato, cell wall separation and starch 

gelatinisation are two main changes in potato tissue contributing to the textural properties (Bartolome 

& Hoff, 1972b). Sous vide cooking softens vegetables by dissolving pectic material that cements the 

cells together but leaving the cell walls mostly intact. Composition of pectic material being abundant in 

the plant middle lamella is dependent on both enzymatic (Van Dijk, Fischer, Beekhuizen, Boeriu, & 

Stolle-Smits, 2002) and nonenzymatic reactions (Warren & Woodman, 1974). Pectin hydrolysis to 

demethylated pectin chains is catalysed by pectinases, such as polygalacturonases (PGs), pectin lyase 

(PL), and pectin methylesterases (PMEs) at low temperature (30-70°C) (Gummadi & Panda, 2003). 

The unesterified carboxyl groups can then link via calcium inter-chelation into egg box structures 

resulting in strengthening cell wall. The proton released may, on the other hand, stimulate the activity 

of cell wall hydrolases thus weakening the cell wall. Low-temperature blanching (LTB) from 50°C to 
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70°C is known to tailor the desired texture of potato product via selective denaturation of endogenous 

pectic hydrolases (Alessandrini, Romani, Rocculi, Sjöholm, & Rosa, 2011; García-Segovia, Andrés-

Bello, & Martínez-Monzó, 2008). For instance, a stepwise LTB that increases the firmness of French 

fries is desirable (Kadam et al., 2015; Torres & Parreño, 2016) due to cross-linked pectate formation 

reducing sloughing and optimising oil uptake (Abu-Ghannam & Crowley, 2006; Yemenicioğlu, 2015; 

Yildiz & Wiley, 2017).  

Annealing is a process whereby a partially crystalline material is held at a temperature below its 

melting temperature but above the glass transition temperature (Jayakody & Hoover, 2008). This 

permits a modest molecular reorganisation to occur and a more organized structure of lower free energy 

to form (Hoover & Vasanthan, 1993). The annealing temperature was often chosen as a function of the 

gelatinisation temperatures of the native starches, i.e., 3 to 4% below the gelatinisation peak temperature 

in Kelvin determined by DSC (Jacobs et al., 1995). When starch is gelatinised sufficiently (which will 

be associated with desirability to eat), the starch will be converted to glucose easily and have a 

correspondingly high glycaemic response. Hydrostatic pressure processed+retrograded potato starch 

has been shown to have greater resistance to digestive enzymes breakdown (Colussi, Kaur, et al., 2017). 

Two temperatures at below gelatinisation temperature (55°C) and at near to gelatinisation temperature 

(65°C) were, therefore set to study the effect of sous vide cooked starch in tuber.  

The work reported below sought to use sous vide to achieve a process akin to annealing, resulting in 

potato pieces with good eating properties but significant resistance to digestive enzymes. 

Physicochemical properties of sous vide processed then refrigerated cv. Agria were studied to 

investigate the effect of sous vide on starch retrogradation in tuber. This included relative crystallinity 

measurements by XRD and thermal characteristics by DSC, as well as characterisation of structural 

changes of starch granules in potato cells by LF NMR. Potato cv. Nadine, a fairly firm and multi-

purpose type, was sous vide processed and studied parallelly to investigate the influence of 

compositions and microstructure in different potato tubers. Wedges made from potato cv. Agria was 

vacuum-packed and cooked at low temperature (55°C and 65°C) for an extended period of time (10min 

to 48h) then refrigerated at 4°C and reheated at 60°C. The ease of starch digestibility of sous vide cooked 

potato was investigated by in vitro oral-gastric-small intestinal models.  

VI.2 Materials and methods 

VI.2.1 Materials and sample preparation  

Both in-season cv. Agria (Solanum tuberosum L., cv. Agria) and cv. Nadine (Solanum tuberosum L., 

cv. Nadine) potatoes were purchased from the local market. Tubers of 120-150g were cut into 8 wedge-

shaped potato pieces and vacuum-packed to prevent enzymatic browning by polyphenol oxidase 

(Rocha, Coulon, & Morais, 2003). Vacuum-packed cv. Agria potato wedges (A) and cv. Nadine potato 

wedges (N) were then individually immersed in a water bath at either 55°C (A55 and N55) or 65°C 
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(A65 and N65) for 48hours. Treated samples were freeze-dried, milled, and sieved (by 500μm mesh) 

prior to measuring the total starch content, amylose content, pasting properties, and relative 

crystallinity. Enzymes α-amylase (Aspergillus oryzae, 1.5 U/mg), pepsin (porcine gastric mucosa, 800–

2500 units/mg protein), pancreatin (hog pancreas, 4 × USP), and invertase (Invertase, grade VII from 

baker’s yeast, 401 U/mg solid) were purchased from Sigma–Aldrich Ltd. (St Louis, USA). 

Amyloglucosidase (3260 U/ml) was purchased from Megazyme International Ireland Ltd. (Ireland). 

VI.2.2 Dry matter, total starch content, and amylose content 

Dry matter content of fresh tubers was determined by the AOAC 934.01 method (AOAC, 1990). 

Total starch content of both freeze-dried cv. Agria and cv. Nadine was analysed by total starch assay kit 

K-TSTA 07/11 (Megazyme International, Ireland). Amylose content was estimated by lectin 

concanavalin A (Con A) solubility using Megazyme kit K-AMYL 12/16 (Megazyme International, 

Ireland).  

VI.2.3 Potato microstructure  

Thin slices of approximately 1 μm of perimedullary parenchyma of sous vide cooked wedges were 

viewed under a light microscope (LM) with differential interference contrast (DIC) optics (Zeiss, 

Germany). The same sections from the sous vide cooked wedges were freeze-dried and their fractured 

surface examined by scanning electron microscope (SEM) (FEI Quanta 200 FEI Electron Optics, 

Eindhoven, The Netherlands). Micrographs were taken at different magnifications and representative 

images were chosen. An accelerating potential of 20 kV was used during micrography. 

Particle size distribution of powdered and milled (by 500 μm mesh) samples was determined by 

using laser diffraction particle size analysis (Mastersizer 2000, Malvern Instruments Ltd., UK). The 

relative refractive index applied was 1.70. All measurements were done in triplicate. 

Cold-water solubility of sous vide cooked powdered and milled samples was measured (Eastman & 

Moore, 1984). One gram of sample was mixed with 100 mL of distilled water and stirred at low speed 

(120 rpm) for 20 min. The solution was centrifuged at room temperature (25°C) for 20 min at 1200g, 

then 25 ml of the supernatant was weighed after drying at 110 °C for 4 h. Cold-water solubility was 

calculated: 𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
𝑆𝑜𝑙𝑖𝑑 𝑖𝑛 25𝑚𝑙 𝑠𝑢𝑝𝑒𝑟𝑛𝑎𝑡𝑎𝑛𝑡 (𝑔)×4

𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑔)
× 100. All measurements were done in 

triplicate. 

VI.2.4 Pasting properties 

The pasting profiles of freeze-dried and powdered sous vide cooked wedges were obtained using a 

Rapid Visco-Analyzer (RVA, Newport Scientific, Sydney, Australia) with the 7.7 RVATM Potato 

Starch Method (2.0 g starch and 14% moisture basis) (AACCI Method 76-21.01, 1996). Parameters 

including peak viscosity (PV), viscosity at the end of hold time at 95 °C or hot-paste viscosity (HPV), 
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final viscosity (FV) at the end of cooling, breakdown (BD=PV−HPV), setback (SB=FV−HPV) and 

pasting temperature were recorded. All measurements were done in triplicate. 

VI.2.5 X-ray diffraction 

Sous vide cooked potato (freeze-dried and milled) was tightly packed in a 2 mm internal diameter 

polymer sleeve of a sample holder. Powder X-ray diffraction data were collected using a Rigaku Spider 

diffractometer equipped with a Micromax MM007 rotating anode generator with CuKα radiation 

(wavelength = 1.54180 Å), high flux Osmic multilayer mirror optics, and a curved image plate detector. 

Powder X-ray diffraction patterns measured with an exposure time of 180s, and with a rotation speed 

of 6° per second around the φ axis were processed into 1D diffractograms. Data were corrected by 

subtraction of the scattering measured from the empty polymer sleeve. The relative crystallinity, RC 

(%) was calculated by dividing the area of the peaks by the total area of the diffractogram from 4 to 

40°. 

VI.2.6 Thermal characteristics 

A piece of fresh raw tuber of approximately 12.6 mg was sealed in a pan (Tzero Pan and Tzero 

Hermetic Lid, TA Instruments, USA).  Then all samples were immersed in a water bath at 55°C or 65°C 

for 2 days. Thermal characteristics of sous vide cooked potatoes were obtained by TA Instruments Q100 

Differential Scanning Calorimeter (DSC) (New Castle, Germany) scanning from 20°C to 95°C a rate 

of 10°C per minute. To determine dry matter content, the pan was pierced and placed in an oven at 

105°C for 24 hours. The gelatinisation onset temperature (To, °C), gelatinisation peak temperature (Tp, 

°C), gelatinisation conclusion temperature (Tc, °C), and the enthalpy of starch gelatinisation (ΔHG, 

expressed as J/g dry matter) were determined by TA Universal Analysis 2000 software (New Castle, 

Germany) supplied with the equipment. Then peak height index (PHI), the ratio of ΔH/(Tp-To), were 

calculated to provide numerical values descriptive of the relative shape of the endotherm (Krueger, 

Knutson, Inglett, & Walker, 1987). All measurements were done in triplicate.  

VI.2.7 Water mobility by LF-NMR 

Parenchyma tissue of both cv. Agria and cv. Nadine potato tubers were sampled longitudinally by 

cork borer (⌀3.4*80 mm, approximately 0.5 g), and these samples were inserted into glass tubes of 5 

mm outside diameter (Wilmad-LabGlass) and sealed to prevent moisture loss. Then the water mobility 

of potato cylinders was measured after 1, 2, 20, 24, and 48 hours of sous vide cooking at 55°C or 65°C. 

Samples were placed in the 4°C refrigerator for three days, followed by reheating at 60°C for 5 minutes. 

Before every relaxation time measurement, all samples were equilibrated at 25°C for 30 minutes. LF-

NMR proton relaxation time measurements were performed with a Spinsolve 1.5 LF-NMR 

spectrometer at an operating resonance frequency of 42.5 MHz (Magritek Ltd., NZ). The transverse 

relaxation time T2 was acquired by the Spinsolve®Carbon apparatus built-in program T2 bulk function 
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using the Carr-Purcell-Meiboom-Gill sequence (CPMG). The experimental setup of the measurements 

was the same as the previous study (Chen et al., 2018) and the relaxation times T2 were analysed using 

Prospa©v3.1 (Magritek, 2016). All measurements were done in triplicate. 

VI.2.8 Oral-gastric-small intestinal digestion in vitro 

Simulated salivary fluid (SSF) was prepared according to Kong, Oztop, Singh, & McCarthy (2011). 

Simulated gastric buffer (SGF) and simulated small intestine buffer (SIF) were prepared according to 

the US Pharmacopeia (Pharmacopeia U.S, 1995, 2000). SSF contained α-amylase, SGF contained 

pepsin, and  SIF contained pancreatin, invertase, and amyloglucosidase (Bordoloi, Singh, et al., 2012). 

To simulate sous vide catering from cooking through chill storage to serving (Baldwin, 2012), both 

vacuum-packed cv. Agria, A and cv. Nadine, N wedges were firstly immersed in a water bath at either 

55°C (A55 and N55) or 65°C (A65 and N65) for 48hours. Only sous vide cooked cv. Agria wedges 

were then stored in a 4°C refrigerator for three days (A65R3), followed by reheating at 60°C for 10 

minutes (A65R3-r60). Due to the extensive exudate from A55 (Figure VI.1a), N55 (Figure VI.1b) and 

N65 (Figure VI.1c) tubers observed in preliminary experiments, sous vide cooked cv. Agria at 55°C and 

cv. Nadine at 55 & 65°C was not continued through chill storage and reheating. In addition, the raw-

like texture these samples (A55, N55, and N65) might indicate that longer sous vide cooking time 

(>48hr) was needed (Bordoloi, Kaur, et al., 2012) to acquire a desirable texture.  

(a) A55 (b) N55 (c) N65 

 
 

  

Figure VI.1 Appearance of sous vide cooked cv. Agria (a) at 55°C and cv. Nadine (b) at 55°C and (c) at 65°C. 

 

Sous vide cooked wedges (40g) and pre-warmed SSF were weighed in a mass ratio of 1:1 and mixed 

by mini food processor for 2 minutes (The Mini Wizz Food Chopper, Breville®) (Tamura et al., 2013, 

2017). The resulting bolus samples (80g) were topped up to 170g with distilled water and placed in a 

polyethylene mesh (Chen et al., 2018; Tamura et al., 2016). Starch digestibility was measured by the 

glucose released during simulated oral digestion and simulated gastric-small intestinal digestion. The 
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glucose content released after simulated oral mastication (O2), thirty minutes of gastric digestion (G0 

and G30) and two hours of small intestinal digestion (I0, I5, I10, I15, I30, I90, and I120) were analysed by 

GOPOD reagent (Format K-GLUK 07/11, Megazyme International Ireland Ltd, Ireland) and the results 

were expressed as starch hydrolysis (%). Hydrolysis index (HI) of the samples was calculated as the 

area under the curves during simulated small intestinal digestion, using white bread as a reference. The 

estimated glycaemic index (eGI) was calculated by the following equation (Goñi et al., 1997): 𝑒𝐺𝐼 =

39.71 + 0.549𝐻𝐼. All measurements were done in triplicate. 

VI.2.9 Statistical analysis 

Results are expressed as means ± one standard deviation. Subsequently, an analysis of variance 

(ANOVA) with Tukey's test was used to determine significant differences among the means at a 

significance level of p < 0.05 by Minitab Statistical Software version 13 (Minitab, Inc., State College, 

PA).  

VI.3 Results and discussion 

VI.3.1 Dry matter, total starch content, amylose content  

Dry matter of fresh tubers and total starch content and amylose content of freeze-dried powder of 

cv. Agria and cv. Nadine are shown in Table VI.1. Potato cv. Agria are commonly perceived as floury 

potatoes while cv. Nadine are known as waxy potatoes in culinary parlance. This perception could be 

related to the higher dry matter content and higher total starch content of cv. Agria than of cv. Nadine 

though the amylose content of starch from cv. Agria was lower than cv. Nadine (Van Dijk et al., 2002) 

(Table VI.1). 

Table VI.1 Dry matter, total starch content and amylose content of potato cv. Agria and cv. Nadine. 

Cultivars Dry matter 

(%) 

Total starch content 

(%, db) 

Amylose content 

(%) 

Amylose: 

Amylopectin* 

cv. Agria 22.1 ±1.4a 73.8 ±2.0a 23.6 ±0.7b 1:3.2b 

cv. Nadine 15.7 ±0.7b 63.9 ±0.2b 28.2 ±0.6a 1:2.6a 

Different superscripts in the same column indicate significant differences (p < 0.05) (n=3). Amylose: Amylopectin 

ratio was calculated by the difference. 

VI.3.2 Microstructure of sous vide cooked potatoes  

Parenchyma tissue of raw potato cv. Agria and cv. Nadine tuber was composed of polyhedral cells 

with a diameter of approximately 200 μm and some intercellular spaces (Figure VI.3a&d). Globular to 

ellipsoid shapes of starch granules ranging from 5 to 100 μm in long dimension lay inside the potato 

cells (Figure VI.3a&d). LM and SEM micrographs of sous vide cooked potato tuber, A55, A65, N55 

and N65 are shown in Figure VI.3b, c, e, &f. Swollen granules (Ratnayake & Jackson, 2007) can be 
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observed from the LM micrographs of both A55 and N55, but no granule surface changes (Rocha et al., 

2011) are visible from the SEM micrographs (A55, Figure VI.3b and N55, Figure VI.3e). LM of A65 

(Figure VI.3c) and N65 (Figure VI.3f) show remaining swollen starch granules embedded in a mixture 

of leached amylose and starchy matrix indicating the initiation of starch gelatinisation (García-Segovia 

et al., 2008). Both A65 (Figure VI.3c) and N65 (Figure VI.3f) show more debris on the surface of starch 

granules which could be either gelatinised starch or other cellular material. The SEM of A65 showed a 

sponge-like structure inside the potato cell indicating part of the granules were disrupted during sous 

vide cooking at 65°C. However, there were more intact starch granules in the potato cells of N65 

observed by both LM and SEM than A65.  
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Figure VI.2 LM and SEM micrographs of (a) raw cv. Agria, sous vide cooked (b) at 55°C and (c) at 65°C cv. 

Agria; and for (d) raw cv. Nadine, and sous vide cooked at (e) 55°C and (f) 65°C cv. Nadine. 

Particle size distribution of the powdered and sieved raw potato wedges and sous vide cooked potato 

wedges (at 55°C and 65°C) are shown (Figure VI.3a,b,c). Raw cv. Agria had a lower average particle 

diameter (d3,2, 36.4 ±0.1 μm) than raw cv. Nadine (d3,2, 47.9 ±0.2 μm) (Figure VI.3a). Raw potato cv. 

Nadine had a wider particle size distribution such that a bimodal peak showed the existence of large 

and small cells and other cell components. For cv. Agria, particle size distribution curves only showed 

a bimodal peak with d3,2 at 47.8 μm after sous vide cooking at 55°C (Figure VI.3b). This could indicate 

the progression of cells and starch granules swelling over sous vide cooking (Gough & Pybus, 1971; 

Liu, Yu, Simon, Dean, & Chen, 2009). Inhomogeneous swelling may have contributed to starch 

granules of varied size fractions (Singh & Kaur, 2004) or the interaction of other cellular materials.  

Similarly, the particle size distribution curve of N55 continued to show a bimodal peak with a slightly 

increasing d3,2 at 55.4 μm (Figure VI.3b). Sous vide cv. Agria at 55°C hydrated due to the ratio of surface 

area to weight, leading to the increase in particle size. The swollen particles (d3,2, 94.8 μm) and some 

possible granule disruption of A65 were shown by the particle size distribution curve with a main peak 

at 187 μm and a broad shoulder at 28 μm (Figure VI.3c). The d3,2 of N65 (53 μm) increased only slightly 

though the volume proportion of small particles decreased (Figure VI.3c). This indicated potato cv. 

Nadine might be resistant to swelling upon heating at 65°C compared to cv. Agria. This might be due 

to the wider particles size distribution of cv. Nadine (Figure VI.3a). Nevertheless, other cell materials 

and molecular arrangements, such as amylose and amylopectin interaction and crystalline/amorphous 

lamella in starch granules might also affect the granules’ deformation since higher amylose wheat 

starches have been shown to deform less than for lower amylose wheat starch (Kiseleva et al., 2005).    
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Figure VI.3 Particle size distribution of (a) Araw and Nraw, for (b) A55 and N55, and for (c) A65 and N65. 

 

Cold-water solubility of potato cv. Agria and cv. Nadine tend to decrease after sous vide cooking 

(Table VI.2). The reduced cold-water solubility of sous vide cooked potatoes (A55, A65, and N65) than 

raw tuber occurred due to limited swelling as observed by the micrographs. There was no significant 

difference between the cold-water solubility of two cultivars regardless in raw tubers or in sous vide 

cooked ones at 55°C or at 65°C (Table VI.2). Disruption of starch granular structure by superheating in 

aqueous ethanol solution are known to increase cold-water solubility (Chen & Jane, 1994; Jane, Craig, 

Seib, & Hoseney, 1986). This has been attributed to the disruption of granular structure where hydroxyl 

group of starch chains expose to water molecules, resulting in an increase in the solubility (Singh & 

Singh, 2003). Though N65 was partially gelatinised as observed by micrographs, cold-water solubility 

of N65 was the lowest among all the samples (Table VI.2), concurring with the lowest granule size of 

the residual starch. Crystalline perfect in residual starch of N65 may have contributed to less solubility.  

Table VI.2 Cold-water solubility of sous vide cooked samples. 

Samples Cold-water solubility (%) 

Raw cv. Agria 19.4 ±0.5 a 

Raw cv. Nadine 18.7 ±0.5 a 

A55 13.3 ±0.7 bc 

N55 16.8 ±0.9 ab 

A65 11.2 ±0.9 cd 

N65 9 ±2.1d 

Different superscripts in same column indicate significant differences (n=3, p<0.05). 

VI.3.3 Pasting properties 

Pasting profiles of raw freeze-dried and powdered potato cv. Agria (Araw) and cv. Nadine (Nraw) are 

shown in Figure VI.4a. Initially, raw starch granules swelled, along with a pronounced increase in 

viscosity as the temperature was increased. Further granule swelling at 90°C led to a loss of granule 

integrity resulting in reduced viscosity.  Entanglement of leached amylose during cooling likely led to 

the increased viscosity (Figure VI.4a). Pasting temperature of raw cv. Nadine (70.4 ±1°C) was higher 

than for raw cv. Agria (68.5 ±0°C) (n=3, p<0.05) (Figure VI.4a). The higher pasting temperature of raw 

cv. Nadine might be due to a wider particle size distribution (Kim, Wiesenborn, Lorenzen, & Berglund, 

1996; Wiesenborn, Orr, Casper, & Tacke, 1994). However, other pasting parameters, such as peak 

viscosity, breakdown viscosity, final viscosity, setback (%) of Araw were higher than Nraw (Figure VI.4a). 

Pasting properties are influenced by the size, rigidity, amylose to amylopectin ratio and swelling power 

of raw starch granules (Kaur, Singh, McCarthy, & Singh, 2007).  

Annealed potato starches have been shown to exhibit lower peak viscosity and improved shear 

stability due to reduced granular swelling and amylose leaching (Hoover & Vasanthan, 1994b; Tester, 

Debon, & Sommerville, 2000), and increased interaction between starch chains (Hoover & Vasanthan, 

1994b).  Consistently, the peak viscosity of sous vide cooked cv. Agria and cv. Nadine shifted toward a 
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higher temperature and a lower value (Figure VI.4b). Sous vide cooking below gelatinisation 

temperature allowed starch granules to swell reversibly leading to hydration of amorphous region and 

the increased mobility of glucan chains (Jayakody & Hoover, 2008). With the progression of sous vide 

cooking at 55°C, the order of the amorphous lamellae probably increased and, subsequently, the order 

of double helices of amylopectin was enhanced. The more ordered alignment of crystalline and 

amorphous lamellae in A55 and N55 than raw sample strengthened the interactions among molecular 

chains and restricted the hydrogen bonding forces between starch-water molecules, thus influencing 

pasting properties. The peak viscosity of A55 and N55 was lower than for Araw and Nraw (Figure VI.4b). 

The lower breakdown viscosity of A55 and N55 than for Araw and Nraw (Figure VI.4b) is attributed to 

the enhanced shear stability, which prevents the disruption of starch granules (Wang et al., 2017; Xu et 

al., 2018). Pasting viscosity of A65 and N65 increased gradually without displaying any obvious peak 

viscosity curve. Sous vide cooking at 65°C (only 1°C below gelatinisation onset temperature) induced 

more swollen granules which occupied the cellular space extensively and may have resulted in restricted 

water flow in potato cells. Aligned with the limited swelling of granules, pasting viscosity increased 

only gradually. The breakdown viscosities of A65 and N65 were lower than A55 and N55 indicated a 

better heat-shear pasting stability. 

 

Figure VI.4 Pasting profile of freeze-dried and powered (a) raw potato cv. Agria and cv. Nadine and (b) sous 

vide cooked (at 55°C and 65°C) potatoes. 

 

VI.3.4 Relative crystallinity 

X-ray diffraction patterns of both freeze-dried and powdered raw potatoes cv. Agria (Araw) and cv. 

Nadine (Nraw), and sous vide cooked potatoes (at 55°C and 65°C) showed a B-type crystalline pattern 

with reflections at 5.6°, 15.0°, 17.2°, 22.4°, and 24.1° at 2θ (Figure VI.5). After sous vide cooking the 

X-ray diffraction patterns of both potato cultivars remained the same (Figure VI.5) indicating the 

polymorphic patterns were unchanged (Vermeylen, Goderis, et al., 2006). The relative crystallinity, RC 

(%) of Araw and Nraw were 27% and 23%, respectively (Figure VI.5). The RC of both sous vide cooked 
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potato cv. Agria, A55 and A65, and potato cv. Nadine, N55 and N65 increased when compared to Araw 

and Nraw (Figure VI.5) though sous vide cooking at both 55°C or 65°C seemed to have altered the 

structure of starch granules. The increasing relative crystallinity could be due to the interplay of some 

factors such as the orientation of crystalline structure (Buléon, Gérard, et al., 1998), or the perfection of 

crystalline and amorphous regions (Gomand et al., 2012; Rocha et al., 2011), or the formation of 

amylose crystallite (Krueger, Knutson, et al., 1987; Krueger, Walker, Knutson, & Inglett, 1987). Potato 

cv. Nadine with low relative crystallinity (23%) increased greatly to 33% than potato cv. Agria did 

(from RC of 27% for Araw to 32% for A55) after sous vide cooking at 55°C (Figure VI.5). This could 

be attributed to the higher amylose content of potato cv. Nadine in amorphous lamella, triggering the 

amorphous lamella to hydrate before other semi-crystalline regions. The extra water introduced to the 

amorphous lamella may have induced the transition of amorphous regions from a rigid glassy state to a 

mobile rubbery state, which in turn may have facilitated the hydration and dissociation of double helices 

in crystallites. Dissociation of crystallites occurs at the Tg of amorphous regions, but at 55°C (<Tm) 

limited dissociation of amylopectin double helices (most of which were in crystallites) was associated 

with limited swelling of granules (Tester & Debon, 2000). Thus, increased relative crystallinity of N55 

was more pronounced (Figure VI.5). The phenomenon of raw potato with higher relative crystallinity 

exhibiting less change during sous vide cooking reinforced the findings in other research (Alvani, Qi, 

& Tester, 2012). However, when the temperature increased as in sous vide cooking at 65°C for 48 hours, 

the amorphous/crystalline lamella of A65 and N65 had gone through the early phase involving enhanced 

mobility of amorphous regions, but simultaneously with uncoiling of double helices and converting 

crystalline to amorphous material. The relative crystallinity of A65 and N65 was, therefore, lower than 

A55 and N55 with A65 very close Araw and Nraw. 
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Figure VI.5 X-ray diffraction patterns and relative crystallinity of freeze-dried and powered raw and sous vide 

cooked (a) cv. Agria and (b) cv. Nadine. 

*Relative crystallinity of the freeze-dried potato samples may vary by moisture content where the average 

moisture content of the samples were 7.6 ± 0.1%. More experiments may be done for further confirmation. 

 

VI.3.5 Thermal characteristics of sous vide cooked potato tubers 

Endothermal curves and thermal characteristics (To, Tp, Tc, ΔH, and PHI) of raw, sous vide cooked, 

sous vide cooked-chill, and sous vide cooked-chill+reheated samples are shown in Figure VI.6 and 

Table VI.3. No significant difference between thermal characteristics of raw cv. Agria, a medium dry 

matter potato and raw cv. Nadine, a low dry matter potato (Karlsson & Eliasson, 2003a; Tester, Ansell, 

Snape, & Yusuph, 2005) were observed (Table VI.3a). Sous vide cooked (at 55°C) potato tubers showed 

similar effects to annealed potato starches (Kohyama & Sasaki, 2006) by increasing To and Tp, and the 

narrower transition temperature (Tc-To), unchanged gelatinisation enthalpies, and the higher PHI than 

raw tubers (Table VI.3a,b). The To and Tp of A55, N55, A55R3, N55R3, A55R3-r60, N55R3-r60 

samples were all significantly higher than their raw potato tubers but not the Tc (Table VI.3a,b).  Over 

48 hours of sous vide cooking, the resulting higher To reflected that more energy was needed to initiate 

melting, indicating the possibility of weaker crystallites between crystalline/ amorphous lamella. The 

higher Tp concurred with the improvement of chain organization within the crystalline lamellae whereas 

other crystallites represented by Tc are less susceptible to chain movement on annealing (Larsson & 

Eliasson, 1991; Nakazawa & Wang, 2003; Wang, Powell, & Oates, 1997), and thus no significant 
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difference of Tc before and after sous vide cooking were shown (Table VI.3b). The significantly higher 

PHI of A55, N55, A55R3, N55R3, A55R3-r60, N55R3-r60 samples than raw cv. Agria and cv. Nadine 

was due to the significantly narrower transition temperature (Tc-To ) (Table VI.3), which might indicate 

greater homogeneity and cooperative melting of crystallites (Kaur, Singh, Singh Sodhi, & Singh Gujral, 

2002; Krueger, Walker, et al., 1987; Lawton & Wu, 1993). The starch crystalline perfection of A55, 

N55, A55R3, N55R3, A55R3-r60, N55R3-r60 samples were, however, not reflected by the significant 

difference in the enthalpies compared to their raw tubers (Table VI.3). Sous vide cooked potato tubers 

(A55 & N55) were so stable after storage (A55R3 & N55R3) and reheating (A55R3-r60 & N55R3-r60) 

that there was no significant difference in the thermal characteristics (Table VI.3a,b).  This phenomenon 

could be attributed to the perfection of crystallites formed during sous vide cooking at 55°C.  

 

Figure VI.6 Endothermal curves of sous vide cooked-chill then reheated potato cv. Agria and cv. Nadine. 

 
The DSC curve for sous vide cooked cv. Agria at 65°C did not reveal any obvious endothermal 

signature for A65 or A65R3-r60 (Figure VI.7). Sous vide cooking temperature (at 65°C) may cause 

partial gelatinisation (Siswoyo & Morita, 2010; Tsutsui et al., 2013). The A65R3 samples revealed a 

wider transition temperature (Tc-To) and smaller melting enthalpies (ΔH) than A55, exhibiting 

aggregation of disrupted starch granules during storage, similar to the effect of retrogradation (Chen et 

al., 2018) (Table VI.3c). However, the To, Tp, Tc of N65, N65R3, and N65R3-r60 significantly increased 
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(Table VI.3c) which might indicate some annealing on some of the starch granules. The ΔH, Tc-To, and 

PHI values of N65, N65R3, and N65R3-r60 were not significantly different from values for raw cv. 

Nadine tuber (Table VI.3c). Partially gelatinised starch with higher ΔH may have evened out gelatinised 

starches with lower ΔH. Differences in thermal characteristics between A65 and N65 occurred due to 

the different molecular arrangement in starch granules of each cultivar. This can be the interplay of 

amylose content, location of amylose and amylopectin within the starch granule interior, and 

amylopectin unit chain length distribution (Rocha et al., 2011; Waduge, Hoover, Vasanthan, Gao, & 

Li, 2006). 

 

Figure VI.7 Endothermal curves of sous vide cooked-chill then reheated potato cv. Agria and cv. Nadine. 

Table VI.3 Thermal characteristics of sous vide cooked potato tubers. 

Samples To (°C) Tp (°C) Tc (°C) ΔH (J/g 

d.b.) 

Tc-To (°C) PHI 

(J/g/°C) 

(a) Raw tubers 

Agria Raw 66.0 ±0.3c 68.4±0.3c 74.2±1.5c 10.4±0.3ab 8.2±1.5b 4.3±0.1b 

Nadine Raw 66.2 ±0.4c 68.5±0.6c 74.6±0.5c 13.1±0.9 ab 8.4±0.2b 5.7±1.0b 

(b) Sous vide cooking at 55°C, 48hrs→Chill storage at 4°C, 3days→Reheating at 60°C, 10mins  

A55 73.4 ±1.2b 74.3±1.2b 78.0±2.5c 13.5±0.6ab 3.9±0.5c 15.7±2.0a 

A55R3 73.5 ±1.4b 74.4±1.4b 76.9±1.0c 12.8±0.5ab 3.3±0.4c 14.1±0.6a 

A55R3-r60 73.5 ±1.2b 74.4±1.3b 78.3±2.5c 12.5±2.0ab 3.8±0.3c 14.7±1.9a 

N55 74.5 ±1.4b 75.4±1.4b 78.4±1.6c 13.8±3.5 ab 3.9±0.3c 15.8±3.7a 

N55R3 74.6 ±1.5b 75.4±1.5b 78.7±2.5bc 14.3±0.4 ab 3.3±0.2c 16.7±1.4a 
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N55R3-r60 74.3 ±1.4b 75.1±1.4b 77.8±1.9c 14.9±1.6a 3.5±0.5c 18.7±2.8a 

 (c) Sous vide cooking at 65°C, 48hrs→Chill storage at 4°C, 3days→Reheating at 60°C, 10mins  

A65 n.d. n.d. n.d. n.d. n.d. n.d. 

A65R3 51.2 ±4.8d 61.5±4.1d 72.7±3.9c 1.1±0.6c 21.5±5.0a - 

A65R3-r60 n.d. n.d. n.d. n.d. n.d. n.d. 

N65 80.6±0.6a 81.6±0.6a 84.8±1.8ab 7.9±5.4abc 3.5±0.1c 7.7±5.9b 

N65R3 80.8±0.5a 81.9±0.5a 85.8±1.8a 8.0±4.3abc 6.2±0.8bc 7.6±5b 

N65R3-r60 80.0±1.3a 81.3±1.1a 85.0±2.0ab 7.2±2.8bc 4.9±0.8c 5.4±1.6b 

To, onset temperature; Tp, peak temperature; Tc, conclusion temperature; and Tc-To transition temperature. ΔH, 

starch gelatinisation enthalpy, and 𝑃𝐻𝐼, peak height index =
∆𝐻

𝑇𝑝−𝑇𝑜
. Different superscripts in the same column 

indicate significant differences (p < 0.05) (n=3). 

VI.3.6 Water mobility of sous vide cooked potatoes 

The average amplitude (M0) of the initial signal of the relaxation time of cv. Agria (M0=3.7*105 a.u., 

n=3) was lower than for cv. Nadine (M0=3.9*105 a.u., n=3) indicating the higher dry matter of cv. Agria 

(22% relative to dm of 15% for cv. Nadine) (Hansen et al., 2010). Four water populations with relaxation 

times T20, T21, T22, and T23 can be discerned in both cv. Agria (Chen et al., 2018) and cv. Nadine (Figure 

VI.8a). Relaxation time T20 represents the mobility of water in amylopectin double-helical structure of 

B-type crystallites (Figure VI.8a). The T20 of raw cv. Agria was not significantly different from the T20 

of raw cv. Nadine as they are both B-type starch. Relaxation time T21 may indicate the mobility of water 

in alternating amorphous and crystalline layers (Figure VI.8a). The T21 of raw cv. Nadine, 8.6ms was 

significantly higher than the T21 of raw cv. Agria, 6.1ms (n=3, p<0.05) indicating the higher water 

mobility in the crystalline/ amorphous lamella. This may also reflect the higher water content of cv. 

Nadine. The relaxation time distribution curves of A55 showed a bimodal peak at relaxation time T22 

and T23 like raw tubers resembling the diffusive exchange of water populations between the subcellular 

compartments (Figure VI.8a). This is consistent with a relatively undisrupted potato cell structure. The 

lower relaxation time T22 and T23 of A55 than for raw cv. Agria could indicate that the water in 

subcellular compartments was less mobile due to limited swelling (Figure VI.8a). Different to sous vide 

cooking at 55°C, the relaxation time distribution curve of A65 showed four separated peaks, which 

were similar to the cooked cv. Agria (Figure VI.8b). The peak separation at relaxation time T22 and T23 

might indicate that leached amylose was able to hydrogen bond with part of the water distinct from the 

rest of the water existing freely in the cells (Figure VI.8b). The lower relaxation time T22 and T23 of 

A65 than Acooked indicated less mobile water and a more compact structure of A65 than the starchy 

matrix in traditionally cooked potato (Figure VI.8b).  
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Figure VI.8 Relaxation time distribution curves of (a) raw cv. Agria and cv. Nadine and A55, and (b) cooked cv. 

Agria and A65. 

 

Development of relaxation time of A55 and N55 reflected the granule structural changes during sous 

vide cooking at 55°C, chill storage, and reheating (Figure VI.9). There were no significant changes in 

T20 over sous vide cooking, refrigeration, and reheating (Figure VI.9). Perry & Donald, (2000) reported 

that water in crystalline lamellae shows a lower density than water in amorphous lamellae, implying 

that crystalline lamellae are relatively impenetrable to bulk water at room temperature. Cooking above 

glass transition temperature but below gelatinisation temperature such as sous vide cooking at 55°C, 

allows starch granules to swell reversibly due to water flow between amorphous and crystalline lamellae 

(Ritota et al., 2008). Simultaneously, rising pressure from the movements of starch molecular chains in 

the crystalline regions (Vamadevan, Bertoft, Soldatov, & Seetharaman, 2013) and increasing glucan 

chain mobility in the amorphous regions (Genkina, Wasserman, & Yuryev, 2004) seem to have led to 

an increase in T21 (Figure VI.9). The T21 of A55 increased significantly after 2 hours of sous vide 

cooking but remained around 7-7.4 ms till the end of 48 hours of sous vide cooking, then chill storage 

and reheating at 60°C (Figure VI.9). During the initial swelling, the mobility of water diffusing between 

subcellular compartments decreased presumably due to increasing interaction between water molecules 

and starch granules (Micklander et al., 2008). Relaxation times T22 and T23 of A55 and N55 decreased 

significantly within 2 hours of sous vide cooking but remained stable at 50ms during the rest of the 

process (Figure VI.9).  Cooke & Gidley, (1992) found that 40% of the helical units remain in the helical 

conformation when wheat, corn, potato starches were heated at gelatinisation onset temperature. This 

rearrangement occurred in a smaller scale than starch gelatinisation.  

0

2000

4000

6000

8000

10000

12000

0.1 1 10 100 1000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

T23

T21
T22

 A_Raw

 N_Raw

 A55_48hrs

(a)

T20

 A_Cooked

 A65_48hrs

(b)

A
v

er
ag

ed
 a

m
p

li
tu

d
e 

(a
.u

.)

Relaxation time (ms)

T23

T22

T21T20



126 

 

 

Figure VI.9 Development of relaxation time T20 (from 0.6 to 0.8ms, ■□), T21 (from 5 to 10ms, ●○), T22 (from 50 

to 120ms, ◆◇), and T23 (from 250 to 1000ms, ▲△) during sous vide cooking at 55°C. Filled symbols represent 

cv. Agria and empty symbols represent cv. Nadine (mean ±SD, n=3). 

 

Substantial loss of helical order and hence unwinding of the double helices was observed as 

evidenced by a significant increase in the T21 of A65 and N65 (Figure VI.10).  This small motion of the 

unwinding units was observed to be reversible and they were able to slip back into their original 

positions upon cooling (Donald, Lisa Kato, Perry, & Waigh, 2001). There were, therefore, no significant 

differences between the T21 of A65R3 and its raw counterparts (Figure VI.10). Amylose appeared to 

entangle with the unwinding amylopectin side chains in corn starches causing no reformation of the 

double helices upon cooling (Donald et al., 2001). Indeed, N65 with higher amount of amylose content 

seemed to form entanglements with chains from amylopectin double helices soon after 1 hour of sous 

vide cooking as no significant development of relaxation time T21 was observed for the rest of the 

process (Figure VI.10).  The relaxation time T22 and T23 of A65 and N65 significantly increased after 

sous vide cooking probably due to the disruption of some starch granules (Figure VI.10). The leached 

amylose and gelatinised starch seemed to aggregate upon cooling so that the relaxation time of T22 and 

T23 decreased (Figure VI.10).  
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Figure VI.10 Development of relaxation time T20 (from 0.6 to 0.8ms, ■□), T21 (from 5 to 30ms, ●○), T22 (from 

50 to 240ms, ◆◇), and T23 (from 250 to 2000ms, ▲△) during sous vide cooking at 65°C. Filled symbols 

represent cv. Agria and empty symbols represent cv. Nadine (mean ±SD, n=3). 

VI.3.7 Oral-gastric-small intestinal digestion in vitro of sous vide cooked potatoes 

Starch hydrolysis (%) of sous vide cooked cv. Agria (A55, ranged from 0.2 to 1.4 %) and sous vide 

cooked cv. Nadine (N55, ranged from 4.9 to 11.7 %) maintained at low values, displaying the resistance 

toward enzymatic hydrolysis like raw tubers (Figure VI.11a). Different research reports have shown 

different trends for α-amylase hydrolysis of annealed starches owing to varied botanical sources, 

enzyme sources and concentration, and annealing conditions (Hoover & Vasanthan, 1993; Jacobs, 

Eerlingen, Spaepen, Grobet, & Delcour, 1997; O’Brien & Wang, 2008; Wang et al., 2017). Potato cell 

integrity depending on different cooking conditions has been shown to alter starch digestion more 

(Alvani et al., 2014) than its composition (Ek, Brand-Miller, & Copeland, 2012). This may be attributed 

to the particle size distribution of the bolus as well as the interaction between cellular components and 

the annealed starch in tuber (Figure VI.11a). There were no significant differences between A55 and 

N55 (Figure VI.11a) as the morphology of both sous vide cooked potato starch granules were swollen 

but intact. Starch hydrolysis (%) of sous vide cooked cv. Agria, A65 and cv. Nadine, N65 at 65°C 
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increased gradually reaching 60% and at 51% at the end of 2.5hr digestion (Figure VI.11a). The lower 

hydrolysis (%) levels of sous vide than freshly cooked potatoes may be attributed to starch structural 

perfection during sous vide cooking (Chung et al., 2010; Chung, Liu, et al., 2009). To simulate the cook-

chill sous vide process, the sous vide cooked cv. Agria wedges at 65°C, A65 were stored in 4°C 

refrigerator for 3 days, A65R3 (Figure VI.11b) and then reheated at 60°C for 10 minutes, A65R3-r60 

(Figure VI.11c). Starch hydrolysis (%) of A65R3 increased slowly during small-intestinal digestion due 

to the aggregation of leached amylose (Figure VI.11b). The lower starch hydrolysis of FCR3 than 

freshly cooked tubers may be attributed to the aggregation of disrupted amylose and amylopectin (Chen 

et al., 2018). However, the starch hydrolysis curve of A65R3-r60 overlapped with FCR3-r60 (Figure 

VI.11c). This showed that even though the structure of A65R3 has a mixture of starch granules with 

ordered crystalline/amorphous lamellae and leached amylose aggregated during chill storage, it was 

still sensitive to heat.  

 

Figure VI.11 Starch hydrolysis (%) of (a) sous vide cooked potato wedges, (b) sous vide cooked-chill potato 

wedges, and (c) sous vide cooked-chill+reheated potato wedges. Error bars represent standard deviation (n=3). 

 

 

 

 

Starch hydrolysis of in vitro digestion (CI120 experimental), hydrolysis index (HI), and estimated 

glycaemic index (eGI) are shown in Table VI.4. Hydrolysis index (HI) and estimated glycaemic index 

(eGI) of FC, A65 and N65 were significantly different from each other (Table VI.4). This implies that 

the extent of hydrolysis was proportional to the starch gelatinisation of samples (Chung, Lim, & Lim, 

2006) as the extent of cooking or starch gelatinisation increases the glycaemic index. Hydrolysis index 

and estimated glycaemic index of A65 were significantly lower than traditionally cooked tubers (FC) 

but were not significantly different from A65R3-r60, FCR3 and FCR3-r60 (Table VI.4). Starch 

retrogradation during chill storage increased the starch melting temperatures of A65R3 (To 51.2 and Tc 
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72.2°C). Therefore, the HI and eGI of A65R3 were significantly lower than A65, A65R3-r60, FCR3 

and FCR3-r60. The hydrolysis will be restricted (Alvani et al., 2014) unless the reheating temperature 

of cook-chill sous vide potato is higher than 51° C. Indeed, the cook-chill sous vide potato reheated at 

60°C resulted in greatly hydrolysed starch. 

Table VI.4 Starch hydrolysis (C∞ experimental), hydrolysis index (HI), and estimated glycaemic index (eGI) of sous 

vide cooked-chill then reheated potato wedges. 

Samples C∞ experimental (%) HI  eGI  

FC 93.1 ±5.8a 82.8 ±0.04a  85.2 ±0.02a 

Sous vide cooking at 55°C or 65°C for 48 hours 

A55 3.4 ±3.6e 2.6 ±2.5e 41.1 ±1.4e 

N55 11.7 ±0.8e 8.5 ±1.6e 44.4 ±0.9e 

A65 60.2 ±8.9c 60.2 ±0.9b 72.8 ±0.5b 

N65 50.9 ±0.9cd 47.1 ±1.3c 65.6 ±0.7c 

Chill storage at 4°C, 3days 

FCR3 74.7 ±1.8b 61.3 ±2.2b 73.4 ±1.2b 

A65R3 38.8 ±0.01d 32.7 ±4.0d 57.7 ±2.2d 

Reheating at 60°C, 10mins 

FCR3-r60 78.1±5.7b 64.9±1.3b  75.3 ±0.7b 

A65R3-r60 76.5 ±2.5b 67.2±5.1b 76.6±2.8b 

C∞, experimental starch hydrolysis (%) after 2.5 hours of simulated gastric small-intestinal digestion; k, kinetic 

constant; HI, hydrolysis index; eGI, estimated glycaemic index. Different superscripts in same column indicate 

significant differences (p<0.05) (n=3). 

VI.4 Conclusion 

Sous vide processing changes multiple properties of potato as summarised in Table VI.5. Sous vide 

cooking at both 55°C and 65°C improved pasting properties and increased relative crystallinity of both 

potato cv. Agria and cv. Nadine. Upon sous vide cooking at 55°C, both cultivars showed more 

homogenous crystalline structure indicated by higher PHI and lower starch hydrolysis than traditionally 

cooked wedges by 81-90%. Sous vide cooked potato cv. Agria and cv. Nadine at 55°C, except the raw-

like appearance, displayed strengthened potato cell structure as evidenced by the micrographs, resulting 

in low starch hydrolysis (%). Relative crystallinity of raw cv. Agria increased from 27% to 32% after 

sous vide cooking. While potato cv. Nadine showed a larger increase in relative crystallinity from 23% 

to 33% after sous vide cooking.  A sous vide processed potato tuber (at 65°C) contains an average 

amount of resistant starch of 11.4g/150g  (where  the average weight of a medium potato is 150g). The 

recommended intake of resistant starch is 15-20 grams per day for alduts to regulate bowel health 

(https://www.csiro.au/en/Research/Health/Nutrition-science/Nutrition-facts/Resistant-starch). The 

intake of resistant starch in infants, however, shows a different picture. Resistant starch, particularly the 

lower molecular weight portions that escape digestion in the small intestine or after hydrolysis by the 

colonic microflora, can generate an excessive osmotic load in the large bowel, leading to diarrhoea. 

https://www.csiro.au/en/Research/Health/Nutrition-science/Nutrition-facts/Resistant-starch
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The development of water mobility of two cultivars indicated the molecular rearrangement during 

sous vide cooking. This molecular rearrangement during sous vide cooking at 55°C occurred at a lower 

extend than that occurs during complete starch gelatinisation. The helical units was unchanged as 

evidenced by the relaxation time of T21 ranged from 7-7.4ms over sous vide cooked-chill process.  

Substantial loss of helical order, unwinding of the double helices, was observed during sous vide 

cooking at 65°C as evidenced by a significant increase in the T21 of A65 and N65.  The leached amylose 

and gelatinised starch aggregated upon cooling as the relaxation time of T22 and T23 decreased. During 

sous vide cooking at 65°C, potato cv. Agria was partially gelatinised (∆H, n.d.) in contrast to potato cv. 

Nadine which retained higher thermal characteristics (∆H, 7.9 ±5.4 J/g d.b.). Despite sous vide cooking 

at 65°C initiating gelatinisation of some starch granules, part of the starch granules was still intact and 

thus A65 exhibited lower estimated glycaemic index (eGI) than traditionally cooked potato by 12.4. 

Sous vide cooked potato cv. Agria at 65°C was perceived more appealing with less exudate than from 

sous vide cooking at 55°C. Sous vide processing in both 55°C and 65°C combined with other hurdle 

techniques to control microbial growth and texture optimisation may be necessary for sous vide cooked 

potato. 

Table VI.5 Observations and interpretations of sous vide cooked potatoes. 

Observation 55°C 65°C 

Microscopy Limited swelling. Partially gelatinised starches and 

leached amylose with cellular 

materials. 

Pasting properties ↑ ↑ 

Relative crystallinity ↑ ↑ 

Thermal characteristics ↑ cv. Agria ↓; cv. Nadine ↑ 

Relaxation times T20 X, T21 ↑, T22 ↓, T23↓ T20 X, T21 ↑, T22 ↑, T23↑ 

Starch hydrolysis (%) A55, 3.4%; N55, 11.7%. A65, 60.2%; N65, 50.9%. 

Interpretation • Starch granules close to raw. 

• Crystalline structures were highly 

ordered. 

• Starch digestibility closes to raw. 

• Starch partially gelatinised. 

• Residual crystalline structures 

were more ordered. 

• Digestibility intermediate raw-

cooked. 
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Chapter VII Stability of retrograded starch in 

tuber during reheating 

VII.1  Introduction 

Starch is the main carbohydrate in human nutrition. It is hydrolysed to glucose as energy resource 

by digestive enzymes. A common measurement of the blood glucose response after consuming starchy 

food is the Glycaemic Index (GI). It is defined as the incremental area under the blood glucose response 

curve of a test food containing a standard amount of carbohydrates relative to a control food (glucose 

or white bread) during the first 2h after consumption (Foster-Powell et al., 2002; Ludwig, 2002). 

Predicting the glycaemic response of ingredients or complex foods by in vitro carbohydrate digestibility 

(Goñi et al., 1997) is a cost-effective way for product screening. Based on the rate of the glucose release 

during starch digestion in vitro, starch can be classified into rapidly digestible starch (RDS), slowly 

digestible starch (SDS) and resistant starch (RS) (Englyst et al., 1992). The digestibility and absorption 

of digested carbohydrates of native starches are dependent on physicochemical characteristics such as 

starch granule morphology, amylose to amylopectin ratio, molecular structure (Tester, Karkalas, & Qi, 

2004), degree of branching in terms of steric hindrance and consequently mass transfer resistance 

(Colonna, Leloup, & Buléon, 1992). The diffusion of α-amylase into the substrate is considered as an 

important step of hydrolysis. For examples, the surface characteristics of native starches lead to an 

inside-out hydrolysis for corn and sorghum starch, or an exo-corrosion for potato starch (Benmoussa, 

Suhendra, Aboubacar, & Hamaker, 2006; Fannon et al., 1992). Additionally, interactions of starch with 

fibre, protein and other food components can also limit diffusion and adsorption of the enzyme (Colonna 

et al., 1992).  

Starch is normally consumed after processing. Cooking/processing increases starch digestibility and 

palatability (Bordoloi, Kaur, et al., 2012; Tamura et al., 2016). The nutritional quality of starch depends 

on the processing and the state of the starch and its surrounding ingredients (Singh, Dartois, et al., 2010; 

Würsch, Del Vedovo, & Koellreutter, 1986). The excess of water and high temperature during 

processing causes starch gelatinisation and destroys its granular structure. Starch retrogradation 

decreases the starch digestibility due to the re-crystallisation of gelatinised starch (Dupuis et al., 2016; 

Gormley & Walshe, 1999; Mishra et al., 2008). The decrease in the digestibility of retrograded starch 

shows up as an increase in slowly digestible starch or resistant starch (Zhang & Hamaker, 2009). The 

rate of starch digestion is associated with physiological properties. Slowly digestible starch has a 

medium to low GI and thus reduces the glycaemic load of a food product compared to rapidly digestible 

starch with a high GI (Ells, Seal, Kettlitz, Bal, & Mathers, 2005). The physiological advantage of slowly 

digestible starch compared to rapidly digestible starch is the stabilizing effect on the blood glucose 
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level, resulting in distinct hormonal and metabolic profile. But the low thermal stability of the SDS 

structure limits the application in the food industry (Lehmann & Robin, 2007a). 

Starch responds differently to the level of heating and cooling cycles (Hoover, 2001) as well as the 

water level during cooking (Slaughter, Ellis, & Butterworth, 2001). Hydrothermal treatments cause the 

swelling of granules, the loss of double-helical order within starch molecules, and amylose leaching 

and amylopectin unwinding. With subsequent cooling, the manner in which re-association of these 

disrupted starch molecules occurs during cooling and storage conditions to reform the starchy matrix 

(Chapter V) largely determines the resistance of the starch to enzymatic digestion (Shin et al., 2005). If 

starch is cooked at a temperature below gelatinisation temperature in excess water, the granule swelling 

is limited which is known as starch annealing. Annealing leads to the reorganisation of starch molecules 

e.g. amylopectin double helices and crystalline perfection (Jayakody & Hoover, 2008). This permits 

modest molecular reorganisation to occur and a more organized structure of lower free energy to form 

(Hoover & Vasanthan, 1993). Hence, sous vide cooked potatoes were shown to have higher 

retrogradation temperature, higher relative crystallinity and low digestibility (Chapter VI). The 

retrograded starchy matrix in tuber from TTC treatment and sous vide processing could exhibit in a 

different manner than from traditional cooked-chill potatoes during reheating. Experiments were carried 

out to characterise the structural changes of retrograded starch in tuber during reheating. Structural 

characteristics both of the time-temperature cycled treated potato and the sous vide cooked-chill potato 

during reheating were studied by LF-NMR, FTIR, and X-ray. And their structure-digestibility relations 

were investigated by a three-stage simulated oral-gastric-small intestinal digestion in vitro. 

VII.2  Materials and methods 

VII.2.1 Materials and sample preparations 

In season cv. Agria and cv. Nadine potato tubers (120g-150g) were purchased from a local 

supermarket. Whole uniform-sized tubers were put singly into polythene bags and were either cooked 

conventionally in a water bath at 90°C for 25 minutes, refrigerated at 4°C for 3 days, then reheated at 

90°C as control. The 3-day time-temperature cycles (TTC) processed potatoes as described in Chapter 

V were reheated at 90°C (Table VII.1). 

Sous vide potatoes were cooked in a water bath at 65°C for 2 days (S) and then were stored in 

constant 4°C for 3 days as described in Chapter VI. The sous vide cooked potato tubers were reheated 

at 60°C for 10 minutes as the peak temperature of A65R3 by DSC was 61°C  measured in Chapter VI 

(Table VII.1). The control (CL) for sous vide cooked-chill+reheated potatoes were traditionally cooked 

(90°C, 0.4h)-chill (4°C, 3days) + reheated at low temperature 60°C. 

Table VII.1 Processing conditions of retrograded+reheated potato starch in tuber (left) and the structural stability 

refers to the parameters from the test methods (right). 
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Process Code Cooking (temp 

°C/ duration hr) 

Storage (temp °C/ 

duration hr) 

Reheating (temp 

°C/ duration min) 

Potato cultivar  

C FCR3-r90 90 °C/ 0.4h 4°C/72h 90 °C/ 10min cv. Agria 

TTC1 FCR3-t(-20/4/4)-

r90 

90 °C/ 0.4h -20°C/24h→ 

4°C/24h→ 4°C/24h 

90 °C/ 10min cv. Agria 

TTC1 FCR3-t(4/-20/4)-

r90 

90 °C/ 0.4h 4°C/24h→   -

20°C/24h→ 4°C/24h 

90 °C/ 10min cv. Agria 

TTC2 FCR3-t(4/65/4)-

r90 

90 °C/ 0.4h 4°C/24h→ 65°C/24h→ 

4°C/24h 

90 °C/ 10min cv. Agria 

TTC2 FCR3-t(4/4/65)-

r90 

90 °C/ 0.4h 4°C/24h→ 4°C/24h→ 

65°C/24h 

90 °C/ 10min cv. Agria 

CL FCR3-r60 90 °C/ 0.4h 4°C/72h 60 °C/ 10min cv. Agria & cv. 

Nadine 

S A65R3-r60 65 °C/ 48h 4°C/72h 60 °C/ 10min cv. Agria & cv. 

Nadine 

S N65R3-r60 65 °C/ 48h 4°C/72h 60 °C/ 10min cv. Agria & cv. 

Nadine 

 

VII.2.2 Water mobility 

Parenchyma tissue of cv. Agria was sampled longitudinally by cork borer (⌀3.4*80 mm, 

approximately 0.5 g). These samples were inserted into glass tubes of 5 mm outside diameter (Wilmad-

LabGlass) and sealed to prevent moisture loss. Water mobility of all TTC retrograded+reheated samples 

was measured by a Spinsolve 1.5 LF-NMR spectrometer (Magritek Ltd.) with operating resonance 

frequency at 42.5 MHz. Before every measurement, samples were equilibrated at 25°C for 30 minutes. 

The transverse relaxation time T2 was acquired by the Spinsolve®Carbon apparatus built-in program T2 

bulk function using the Carr-Purcell-Meiboom-Gill sequence (CPMG). The apparatus parameter setup 

was as previously reported (Chen et al., 2018). Raw data were transformed to a continuous relaxation 

time distribution curve by inverse Laplace transformation. Then the Lawson and Hanson NNLS analysis 

method in Prospa©v3.1 (Magritek Ltd., NZ) was used to calculate relaxation time T2. All measurements 

were done in triplicate. 

VII.2.3 ATR-FTIR measurement 

FTIR spectra of the sous vide cooked-chill+reheated samples were obtained using a Nicolet 5700 

spectrometer equipped with a Smart iTR™ Attenuated Total Reflectance (Thermo Electron Scientific 

Instruments Corp., Madison, WI USA). In ATR mode, an IR beam traverses a prism so it is internally 

reflected from the back of the prism where it is in contact with the sample. The depth of IR beam 

penetration is related to the wavelength (Harrick & Beckmann, 1974). The larger the wavelength, the 

greater the penetration of the wave. For starches, the absorbance of the wavenumber is between 1200 

and 800 cm-1 in which the wavelength is between 8 and 12 μm, and so the average penetration depth is 

2 μm. Because the average penetration depth is smaller than the average diameter of potato starch 

granules (43.0 μm),  ATR-FTIR is often considered as a surface measurement (Sevenou et al., 2002a).  

Samples were scanned from 4000 to 400 cm−1 with a spectral resolution of 4 cm−1 and 64 co-added 

scans were made per sample to acquire each spectrum. A background spectrum was used as a reference. 

Spectra were baseline-corrected over the wavenumber range between 1200 and 800 cm−1 and were self-
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deconvoluted by Happ-Genzel apodization (Bretzlaff & Bahder, 1986; Cameron & Moffatt, 1984; 

Kauppinen et al., 1981) with a bandwidth of 38cm-1 and a resolution enhancement factor of 2.1 using 

Omnic software (Wang et al., 2017). IR absorbance values at 1047 and 1022 cm−1 were extracted from 

the spectra after baseline correction and deconvolution. The ratio of 1047 to 1022 cm−1 was used to 

express the amount of the ordered crystalline relative to the amorphous domains in starches (Capron et 

al., 2007; Van Soest et al., 1995).  

VII.2.4 X-ray 

Sous vide cooked potato flour was tightly packed in a 2 mm internal diameter polymer sleeves of a 

sample holder. Powder X-ray diffraction data were collected using a Rigaku Spider diffractometer 

equipped with a Micromax MM007 rotating anode generator with CuKα radiation (wavelength 1.5 Å), 

high flux Osmic multilayer mirror optics, and a curved image plate detector. Powder X-ray diffraction 

patterns measured with an exposure time of 180s, with a rotation speed of 6° per second around the φ 

axis were processed into 1D diffractograms. Data were corrected by subtraction of the scattering 

measured from the empty polymer sleeve. The relative crystallinity, RC (%) was calculated by dividing 

the area of the peaks by the total area of the diffractogram from 4 to 40°. 

VII.2.5 Starch digestion in vitro 

Simulated salivary fluid (SSF) was prepared according to Kong, Oztop, Singh, & McCarthy (2011). 

Simulated gastric buffer (SGF) and simulated small intestine buffer (SIF) were prepared according to 

the US Pharmacopeia (Pharmacopeia U.S, 1995, 2000). SSF contained α-amylase, SGF contained 

pepsin, and  SIF contained pancreatin, invertase, and amyloglucosidase (Bordoloi, Singh, et al., 2012). 

Potato tubers were mixed with pre-warmed SSF at mass ratio 1:1 using a mini food processor (The 

Mini Wizz Food Chopper, Breville®) for two minutes (Tamura et al., 2017). The resulting potato bolus 

samples, approximately 80g, were topped up to 170g with distilled water and placed in a polyethylene 

mesh. Starch digestibility was measured by the glucose released after a certain time of simulated oral 

digestion and simulated gastric-small intestinal digestion. Glucose released after two minutes of oral 

mastication (O2), thirty minutes of gastric digestion (G0 and G30) and two hours of small intestinal 

digestion (I0, I5, I10, I15, I30, I90, and I120) were analysed by GOPOD reagent (Format K-GLUK 07/11, 

Megazyme International Ireland Ltd, Ireland) and the results were expressed as starch hydrolysis (%). 

Hydrolysis index (HI) of the samples was calculated as the area under the curve during simulated small 

intestinal digestion, using white bread as a reference. Estimated glycaemic index (eGI) was calculated 

by the equation: 𝑒GI = 39.71 + 0.549HI (Goñi et al., 1997). All measurements were done in triplicate.   

VII.2.6 Statistical analysis 

Results are expressed as means ± one standard deviation. Subsequently, an analysis of variance 

(ANOVA) with Tukey's test was used to determine significant differences among the means at a 
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significance level of p < 0.05. The data were subjected to correlation analysis and Pearson correlation 

coefficients were calculated by Minitab Statistical Software version 13 (Minitab, Inc., State College, 

PA). 

VII.3  Results and discussion 

VII.3.1 Structural stability of TTC-retrograded+reheated starch in tuber and its digestibility   

Different water pools with relaxation time (T20, T21, T22, and T23) in tuber represent the existing water 

in various cell compartments (Chen et al., 2018). The relaxation time T22 was observed to be negatively 

correlated with retrogradation enthalpy (p<0.05), so it can be an indicator for the extent of the starch 

retrogradation in tuber (Chen et al., 2018). For the T22 of TTC-retrograded tubers, FCR3-t(-20/4/4) had 

the lowest while FCR3-t(4/4/65) had the highest (Figure VII.1). This might indicate that FCR3-t(-

20/4/4) had higher levels of retrograded starch and FCR3-t(4/4/65) had the least. As discussed in 

Chapter V several, but not all, TTC processes tested, facilitated starch retrogradation in tuber more than 

that noticed during storage at 4°C without TTC. There is potential for TTC1 to make few big aggregates, 

whereas TTC2 might make many small crystallites with much surface area. So the larger surface area 

of TTC2 retrograded tubers may require more heat than TTC1 retrograded tubers to melt the structure 

during reheating. Hence the relaxation times T22 of TTC2 retrograded+reheated tubers (FCR3-t(4/65/4)-

r90 & FCR3-t(4/4/65)-r90) were lower than FCR3-r90 and FCR3-t(4/-20/4)-r90 (Figure VII.1). But the 

T22 of the FCR3-t(-20/4/4)-r90 was still the lowest (Figure VII.1). 
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Figure VII.1 Relaxation time distribution curves of (a) traditionally cooked retrograded+reheated potato tubers 

and (b)-(e) TTC retrograded+reheated potato tubers. 

 
 

 

The starch hydrolysis (%) curves of TTC-processed +reheated tubers are shown in Figure VII.2. 

Starch hydrolysis (%) observed during oral and gastric digestion in vitro ranged from 1-10% across the 

samples (Figure VII.2) reflecting differences in ease of access to starch locally within the bolus and 

stomach.  After 5 minutes of simulated small–intestinal digestion, starch hydrolysis of the FC tubers, 

was calculated at 76.3%, higher than for TTC1-processed+reheated tubers (e.g. FCR3-t(-20/4/4)-r90, 

65.2% and FCR3-t(4/-20/4)-r90, 68.5%) and TTC2-processed+reheated tubers (e.g. FCR3-t(4/65/4)-

r90, 51.8% and FCR3-t(4/4/65), 58.6%) (Figure VII.2). The higher amount of slowly digestible starch 

in TTC-processed tubers (Xie et al., 2014; Yadav et al., 2009) may have contributed towards their 

improved heat stability and hence led to a lower starch hydrolysis (%).  
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Figure VII.2 Starch hydrolysis (%) of (a) traditionally cooked retrograded+reheated, (b) the TTC1 

retrograded+reheated, and (c) the TTC2 retrograded +reheated potato tubers.  

 

 Starch hydrolysis (C∞ experimental), hydrolysis index (HI), and estimated glycaemic index (eGI) are 

shown in Table VII.2. There were no significant differences between the experimental C∞ of 3-day 

retrograded+reheated samples, the TTC1-processed+reheated tubers, and the TTC2-processed+ 

reheated potato tubers (Table VII.2). But the HI and eGI of FCR3-t(4/65/4)-r90 were significantly lower 

than FC and FCR3-t(-20/4/4)-r90 (Table VII.2).  

Table VII.2 Starch hydrolysis (C∞ experimental), hydrolysis index (HI), and estimated glycaemic index (eGI) of TTC-

retrograded+reheated potato tubers. 

Different superscripts in same column indicate significant differences (p<0.05) (n=3). 

VII.3.2 Structural changes of sous vide cooked potato tubers during reheating  

The short-range order i.e., the amount of double helix and the long-range order, the overall packing 

of double helices, of starch in sous vide cooked-chill+reheated potatoes were measured by ATR-FTIR 

and X-ray, respectively (Figure VII.3). Deconvoluted FTIR curves of the sous vide cooked-chill 

+reheated potatoes are shown in Figure VII.3a and the values represented the 1047/1022 of each sample. 

The absorbance at 1047 cm−1 and 1022 cm−1 were assigned to the ordered molecule domain and the 

Samples C∞ experimental (%) HI eGI 

FC  87.2 ± 4.4 a 132.1 ± 0.7 a  112.3 ± 0.4 a 

FCR3-r90  82.5 ± 7.8 ab 102.2 ± 6.0 bc 95.8± 3.3 bc 

FCR3-t(-20/4/4)-r90  79.4 ± 7.3 ab 123.5 ± 11.7 ab 107.5 ± 6.4 ab 

FCR3-t(4/-20/4)-r90 78.1 ± 0.4 ab 118.1 ± 8.3 abc 104.6 ± 4.5 abc 

FCR3-t(4/4/65)-r90 74.9 ± 4.4 ab 114.6 ± 5.9 abc 102.6 ± 3.3 abc 

FCR3-t(4/65/4)-r90 68.6 ± 9.9 ab 98.4 ± 10.0 c 93.8 ± 5.5 c 
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amorphous domain, respectively (Sevenou et al., 2002a). The ratio of the absorbance of 1047 cm−1 to 

1022 cm−1 has been shown to be related to the amount of ordered starch to amorphous starch (Capron 

et al., 2007). The 1047/1022 of raw cv. Agria (0.79) were significantly lower than cv. Nadine (0.93) 

(p<0.05) (n=3) though the RC of cv. Agria was observed to be higher than cv. Nadine. This may have 

occurred due to the higher levels of ordered starch molecules near the surface of the starch granule in 

cv. Nadine. The higher ratio of amylose (AM) to amylopectin (AP) in cv. Nadine (AM: AP= 1:2.55) 

than from cv. Agria (AM: AP= 1:3.24) may also be responsible for more ordered alignment of AP 

double helices in cv. Nadine (r=0.909, p= 0.033). There was no significant difference between the 

1047/1022 of Araw, A65, A65R3, and A65R3-r60 samples (Figure VII.3a) though their thermal 

characteristics were significantly different from each other (Chapter VI). This could be attributed to the 

alignment of amylose/amylopectin chains formed over the long sous vide cooking hours which were 

stable in subsequent cooling and reheating. For sous vide cooked cv. Nadine, the higher 1047/1022 of 

N65R3-r60 than for N65R3 (Figure VII.3a) occurred owing to the improved short-range order of 

N65R3 during low temperature reheating at 60°C. Comparing the 1047/1022 of all samples, the 

1047/1022 of A65R3-r60 were significantly lower than N65R3-r60. This may be the molecular structure 

of sous vide cooked cv. Nadine is more thermally stable.  

The ordered structures at a short-range level (Figure VII.3a) would be a prerequisite for the 

occurrence of long-range order (Figure VII.3b), but long-range order would not necessarily be presented 

when short-range order exists (Sevenou et al., 2002a). For potato cv. Agria, the RC of samples seemed 

to follow the same trend as the 1047/1022. The RC of A65 increased (28%) after sous vide cooking, 

and decreased after cooling (A65R3, 25%) and reheating (A65R3-r60, 24%) (Figure VII.3b). The RC 

of N65 increased (31%) after sous vide cooking, and further increased after cooling (N65R3, 34%), then 

slightly decreased after reheating (N65R3-r60, 31%) (Figure VII.3b). This happened due to the 

structural changes in cv. Nadine occurring deeper in the tuber during sous vide cooking than it could be 

detected by FTIR. The RC of all cv. Nadine followed the same trend as its thermal characteristics 

(Chapter VI) rather than its 1047/1022. This trend, the increase in both RC and To of N65, N65R3, and 

N65R3-r60, showed that structural change may have taken place in inter-block amylopectin chain 

(Vamadevan, Bertoft, & Seetharaman, 2013) instead of the alignment of crystalline and amorphous 

domain as 1047/1022 measured by FTIR.  
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Figure VII.3(a) Deconvoluted FTIR curves of freeze-dried powder of cv. Agria, A and cv. Nadine, N. The values 

represented the 1047/1022 of each sample and different superscripts indicated significant differences (p<0.05) 

(n=3). (b) X-ray diffraction patterns and relative crystallinity of freeze-dried powder of cv. Agria and cv. Nadine. 

*Relative crystallinity of the freeze-dried potato samples may vary by moisture content where the average 

moisture content of the samples were 7.6 ± 0.1%. More experiments may be done for further confirmation.  

 

VII.3.3 Digestibility of sous vide cooked-chill+reheated potatoes 

Starch hydrolysis (%) of sous vide cooked-chill+reheated cv. Agria (A65R3-r60) and cv. Nadine 

(N65R3-r60) are shown in Figure VII.4. Starch hydrolysis (%) of A65R3-r60 and N65R3-r60 ranged 

from 12-18% throughout oral and gastric digestion phases (Figure VII.4) implying differences in ease 

of access to starch locally within the bolus.  Soon after 5 minutes of simulated small intestinal digestion, 

starch hydrolysis of the N65R3-r60 tubers (25%) was lower than for the A65R3-r60 (47%) and for the 

FCR3-r60 tubers (42%) (Figure VII.4). This is consistent with the results of the starch hydrolysis of 

sous vide cooked-chill tubers (Chapter VI) indicating potato cv. Nadine starch is more resistant to 

enzymatic breakdown after sous vide cooking. The starch hydrolysis (%) of N65R3-r60 gradually 

increased to a plateau value at 30% after small intestinal digestion (Figure VII.4). This might be 

attributed to perfection of crystalline domain leading to the increase in resistant starch (Chung et al., 

2010). Starch hydrolysis curve of A65R3-r60, although overlapped with FCR3-r60 (Figure VII.4) 
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exhibited the same resistance toward enzymatic breakdown. Overall, sous vide cooked starch (at 65°C) 

in cv. Nadine was more resistant towards enzymatic digestion than in cv. Agria. Consistently, starch 

hydrolysis (C∞ experimental), hydrolysis index (HI) and estimated glycaemic index (eGI) of FCR3-r60 and 

A65R3-r60 were significantly higher than N65R3-r60 (Table VII.3). This shows the potential of potato 

cv. Nadine for developing the processed potato product with moderate eGI.  

 

Table VII.3 Starch hydrolysis (C∞ experimental), hydrolysis index (HI), and estimated glycaemic index (eGI) of sous 

vide cooked potato tubers. 

 

 

 

 

 

 

 

Different superscripts in same column indicate significant differences (p<0.05) (n=3). 

VII.4 Conclusion 

Time-temperature cycle treatments induced different extents of starch retrogradation in tuber (Table 

VII.4), but all TTC processed+reheated tubers had at least the same or lower relaxation time T22 than 

FCR3-r90. The TTC treated potato tubers were more stable than the 3-day retrograded tubers during 

reheating as shown by the relaxation time T22 (Table VII.4). TTC processed tubers, especially those 

stored at -20°C for a day and then at 4°C for 2days, had lower relaxation time T22 than 3-day retrograded 

tubers during reheating (Table VII.4). The resistance toward digestive enzymes hydrolysis, i.e. eGI 

 

Figure VII.4 Starch hydrolysis (%) of retrograded +reheated cv. Agria potato tubers and sous vide cooked+ 

reheated cv. Agria and cv. Nadine potato. 

 

Samples C∞ experimental (%) HI eGI 

FCR3-r60  72.3 ± 7.4 a 64.9 ± 1.3 a  75.3 ± 0.7 a 

A65R3-r60  74.0 ± 8.1 a 63.5 ± 7.4 a 74.6 ± 4.0 a 

N65R3-r60  34.0 ± 9.6 b 31.3 ± 10.3 b 56.9 ± 5.7 b 
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were, however, not significantly different in TTC processed+reheated tubers and 3-day 

retrograded+reheated tubers. Optimum TTC process may enhance the formation of retrograded starch 

in tuber (Chapter V), but the reheating stability in terms of starch hydrolysis was not as promising.  

Sous vide cooking altered the structure of cv. Agria at the level of different depth into tuber molecular 

structure. Different trends in the short-range order (measured by FTIR) and long-range order (measured 

by XRD) of sous vide processed tubers were measured. No significant differences in the 1047/1022 of 

the samples after sous vide cooking at 65°C (0.78), chill storage (0.77) and reheating (0.71) were 

detected, neither for the relative crystallinity (RC) were measured in cv. Agria. The 1047/1022 of sous 

vide cooked-chill then reheated cv. Nadine (0.96) were significantly higher than for sous vide cooked-

chill cv. Nadine (0.86), whereas the RC of sous vide cooked was higher than raw cv. Nadine. For potato 

cv. Agria, starch hydrolysis (%) of sous vide cooked wedges (at 65°C) were significantly lower than 

traditionally cooked wedges and they remained more resistant than 3-day retrograded wedges after 

refrigeration 4°C (Chapter VI). There was, however, no significant difference in the starch hydrolysis 

(%) between the 3-day retrograded+reheated (at 60°C) (72.3%) and sous vide cooked-chill+reheated (at 

60°C) wedges upon reheating (74%) (Table VII.4). Sous vide cooked cv. Nadine, on the other hand, 

provided better nutritional functionality with moderate eGI (56.9) after chill storage and reheating, only 

the exudates appeared after 3-day refrigeration needed to be improved for possible commercial 

application. 

Process Code Relaxation time T22 1047/ 1022  Relative crystallinity Starch 

hydrolysis 

C FCR3-r90 * - - * 

TTC1 FCR3-t(-20/4/4)-r90 *** - - * 

TTC1 FCR3-t(4/-20/4)-r90 * - - ** 

TTC2 FCR3-t(4/65/4)-r90 ** - - *** 

TTC2 FCR3-t(4/4/65)-r90 ** - - *** 

CL FCR3-r60 - - - *** 

S A65R3-r60 - * * *** 

S N65R3-r60 - *** *** ***** 

* Number of stars indicate the stability of the structure- the more the stars, the more stable the structure. 

 

 

  

Table VII.4 Structural stability refers to the parameters from the test methods. 



142 

 

Chapter VIII Industrial relevance 

VIII.1 Introduction 

Potato varieties have been developed to suit the purpose of 

processing. For instance, varieties with moderate to high dry 

matter (DM), low reducing sugar, and large, long, oval tubers 

are suitable for French fries (Figure VIII.1), while high DM, 

low reducing sugar, and moderate-sized oval tubers are 

preferred for crisps (Figure VIII.1). Moderate to low DM and 

small tubers are, on the other hand, the essential requirements 

for canned potatoes. The compositions of potato tubers (Agle 

& Woodbury, 1968) greatly determine the quality of 

processed potato products. Dry matter content is one of the 

most important factors of processing qualities over a range of 

uses due to the substantial effect on the texture, therefore, the 

suitability for processing. Potato cv. Agria, a multi-purpose and popular domestic use cultivar with 

medium-firm to slightly mealy potatoes, was chosen and used in the project. 

During pre-harvest and post-harvest, agrotechnical practices (e.g. climatic factors and soil type) and 

technological conditions attribute to the quality and the composition of potato tubers (Mazza, Hung, & 

Dench, 1983) and hence the final product. Potatoes are normally washed after harvest to prevent surface 

contamination from soil, mud, and sand (Ahvenainen, 1996). Sometimes another washing after peeling 

and cutting/dicing is needed to remove microbes and tissue fluids before continuing on processing 

(Table VIII.1). Washing, combined with the air-bubble is preferable to dipping into water (Ohta & 

Sugawara, 1987). Blanching is a thermal treatment that commonly performed during the manufacture 

of potato products (Table VIII.1). Primary objective of blanching is to inactivate enzymes, which are 

responsible for alterations in sensory attributes (e.g. off-flavours and off-odours), but nutritional loss 

such as vitamins is inevitable. The blanched product is then either rapidly cooled or passed to the next 

process immediately. Vegetable tissue rupture during freezing is known to be due to the recrystallisation 

and sublimation of water. Quality of the frozen potato products deteriorates owing to temperature 

oscillation that ice crystals melt on the surface of smaller crystals and recrystallize on larger ones 

simultaneously during storage (Canet, 1989). Long periods of frozen storage are not harmful if a 

constant low temperature is maintained. For instance, a number of mechanical properties of blanched 

and frozen potatoes remained when storing at constant −24 °C (Canet, 1989; Steinka, Barone, Parisi, & 

Micali, 2017). 

Table VIII.1 Processing flow charts of some common frozen potato products 

 

 

Figure VIII.1 Characteristics of different 

uses of potatoes (TOMRA Food, 2019). 
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The following discussions are projections from the main three studies on the possible industrial 

applications with some foreseen issues that may need to be taken into consideration during upscaling 

and commercializing.  

VIII.1.1 Retrograded+reheated potato tubers 

Assertion: Consuming boiled potato after cooling or reheated at low temperature (50°C) after at 

least a day of refrigeration is recommended. 

Rationale: 

With the growing consumers’ preference for convenient but healthy, natural, and high-quality food 

products, modulating starchy food to low glycaemic features through retrogradation has a great 

opportunity. Starch that escapes hydrolysis and absorption in the small intestine and enters the colon 

for fermentation is known as resistant starch (RS) (Englyst, Kingman, & Cummings, 1992). RS exhibits 

a low and slow digestibility which can be used as a vehicle for slow-release glucose in starchy food 

(Sajilata et al., 2006). Resistant starch, associated with a number of physiological effects has been 

proved to be beneficial for health (Nugent, 2005). During the fermentation of resistant starch by the 

colonic microflora, short-chain fatty acids (SCFA) such as acetic, propionic and butyric acids are 

formed. SCFA profiles derived from RS are lower in acetate and higher in butyrate than indigestible 

carbohydrates of those conventional dietary fibres. The SCFA such as butyrate are an energy source for 

colonic cells (Goñi et al., 1997) and may have a preventive role against development of colonic diseases, 

such as ulcerative colitis (Hoover & Zhou, 2003). Resistant starch content in a meal may modulate 

blood glucose by reducing peak postprandial blood glucose concentration (Hoebler, Karinthi, Chiron, 

Champ, & Barry, 1999; Jenkins et al., 1998). 

Based on the food forms, in which the food is eaten, different measuring methods of RS were used 

leading to varied results (Åkerberg, Liljeberg, Granfeldt, Drews, & Björck, 1998; Haralampu, 2000). 

In our studies (Chapter IV, V, VI, and VII), the starch digestion in vitro simulates physiologic digestion, 

including the chewing process, followed by incubation of pepsin in simulated gastric condition (Goñi, 



144 

 

García-Diz, Mañas, & Saura-Calixto, 1996), and then in simulated small-intestinal condition with a 

mixture of digestive enzymes (pancreatin, amyloglucosidase and invertase) (Englyst et al., 1992). 

Starch nutritional fractions, i.e., rapidly digestible starch (RDS), slowly digestible starch (SDS), and 

resistant starch (RS) are defined by the glucose released after a certain time of simulated small-intestinal 

digestion (Figure VIII.2). The amount of resistant starch measured would be different from the result 

of regulated methods in FSANZ. The trend of RS content has been yet found to be similar among 

different methods- increasing resistant starch content with a longer period of starch retrogradation 

(Zhou, Chung, Kim, & Lim, 2013). 

The significantly lower eGI of the 7-day retrograded tubers (FCR7, 71) than the freshly cooked 

tubers (FC, 101) and 7-day retrograded+reheated (at 90°C) tubers (FCR7-r90, 84) (Chen et al., 2018) 

can be attributed to the amount of resistant starch formed during 4°C refrigeration (Figure VIII.2). Our 

results concurred with the glycaemic responses of the 21 participants after consuming cooled (for 3 

days) potato product (Tahvonen et al., 2006). Serving temperature has been reported to be more 

influential on the resistant starch content than variety (Raatz et al., 2016). The retrograded starch formed 

during cooling retained to some extent after reheating: the eGI and GI of retrograded+reheated (at 80 

or 90 °C) potatoes were significantly lower than freshly cooked potatoes (Chen et al., 2018; Tahvonen 

et al., 2006). The resistant starch of the 1,3, and 7day-retrograded+reheated at 50°C tubers (FCR1-r50, 

FCR3-r50, and FCR7-r50) were significantly higher than freshly cooked and the 1-day 

retrograded+reheated at 90°C tubers potatoes by 25-32% (n=3, p<0.05) (Figure VIII.2). Resistant starch 

was observed to be heat sensitive where reheating at 70°C and 90°C decreased the resistant starch by 

5-17% and 7-32%, respectively (Figure VIII.2).  

  

Figure VIII.2 Starch nutritional fractions (%) in boiled-chill+reheated potato tubers.  Values on the bars indicate 

the relative amount of starch nutritional fractions (%).  And error bars indicate the standard deviation of triplicate 

results. 

 

70.8
59.5

50.3
41.6

59.1

44.3
52.5

67.0 64.8 63.3

81.1
68.9 67.8

22.3

18.1
24.6

15.5

6.5

17.2

17.7

11.1
9.2 10.8

12.7

13.7
8.8

6.9

22.4 25.0

42.9
34.4 38.5

30.6
22.0 26.0 25.9

6.1
17.5

23.3

FC FCR1 FCR3 FCR7 FCR1-r50 FCR3-r50 FCR7-r50 FCR1-r70 FCR3-r70 FCR7-r70 FCR1-r90 FCR3-r90 FCR7-r90
Freshly cooked 4°C chilled 50°C reheated 70°C reheated 90°C reheated

0

20

40

60

80

100

S
ta

rc
h
 n

u
tr

it
io

n
al

 f
ra

ct
io

n
 (

%
)

 RDS= amount of glucose released after 20 min.  SDS= amount of glucose released between 20 to 120 min.  RS=Total starch-(RDS+SDS).
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VIII.1.2 Time-temperature cycles process 

Assertion: A proper combination of the suitable cultivar with optimum time-temperature cycle 

process can obtain both healthy (i.e. high in resistant starch) and delicious (e.g. smooth and creamy 

mashed potato) processed potato product. 

Rationale:  

Starch retrogradation, the on-going and non-equilibrium process of recrystallisation of gelatinised 

starch during cooling and storage (Ratnajothi Hoover, 1995; Jacobson et al., 1997), involves three 

phases of crystallisation: (i) nucleation, (ii) propagation or growth of crystals, and (iii) maturation or 

crystal perfection (Slade & Levine, 1987; Wunderlich, 1980). The crystallisation is dependent on the 

relativity of starch temperature to the glass transition temperature of the starch-water system, Tg and to 

its melting temperature, Tm, due to variable levels of segmental motion within amorphous and crystalline 

domains.  

A temperature cycling process is likely to induce stepwise nucleation and propagation which 

promotes the growth of crystalline regions and perfection of crystallites, resulting in a higher content 

of slowly digestible starch (SDS) and resistant starch (RS) in cereal, potato, and pea starches (Sievert 

& Pomeranz, 1989; Silverio et al., 2000). In an attempt to enhance the formation of the retrograded 

starch in cooked tubers, time-temperature cycle processes were studied. Several, but not all, of the time-

temperature cycle processes tested facilitated starch retrogradation in tuber more than did storage fixed 

at 4°C (Chapter V).  

Processed potato products commonly experience temperature fluctuation throughout storage and 

retail and foodservice (Nam, 2018). Product quality such as drip loss (syneresis) and textural changes 

are the main concerns for food manufactures despite the potential health benefit derived from the 

increase in the content of resistant starch by enhanced starch retrogradation in TTC processed potato 

tubers (Figure VIII.3).  



146 

 

 A project from The Pure Food Co. was carried out by Rina Nam to solve the undesirable sensory 

properties of the mashed potato mainly developed for the elderly. This foodservice supply chain 

involved two freeze-chill cycles (between -18°C and 4°C) before the reheating (at 75°C) and then 

serving (Nam, 2018). Some advantages of freeze-chill over chill storage in logistics include: (i) bulk 

production, (ii) microbiological control during storage, and (iii) controlled-release of frozen product 

into the chill chain during transportation  (Redmond et al., 2004; Zanoni & Zavanella, 2012).  

 During cooking, starch granules imbibe water and swell as hydrogen bonding formed between water 

and hydroxyl groups on amylose or amylopectin. Gradually starch granules disintegrate owing to the 

disruption of crystalline structure. With subsequent cooling of the gelatinised starch in cooked potato, 

re-crystallisation of the starch chains occurs slowly expelling the excess of water. Freezing predisposes 

boiled potatoes to fragile cell structure as ice crystals freeze from the excess water introduced during 

cooking (Li, Zhu, & Sun, 2018). Freeze-chill, thus, causes the increase in syneresis, i.e. drip loss in the 

products than chill foods that had not been previously frozen. The time length of frozen storage had, 

however, no effect on syneresis, firmness/adhesiveness, vitamin C content, total viable count, or the 

sensory score as comparing the freeze-chill mashed potato with frozen mashed potato (Redmond, 

Gormley, & Butler, 2003). 

 Potato cultivars have a range of different characteristics in terms of appearance, size and shape as 

well as eating and cooking qualities. Two potato cultivars have been used to examine the effect of 

freeze-chill on the quality of mashed potato in her preliminary experiments (Nam, 2018).Potato dices 

of a 150g tuber have been cooked in boiling water till soft, then the water were drained. After one 

freeze-chill cycle at -18°C for one day then 4°C for a day, potato cv. Agria was observed to have less 

syneresis (%) at 2.1% than potato cv. Nadine did at a syneresis (%) of 27.9 % (Nam, 2018). This has 

  
 

Figure VIII.3 Starch nutritional fractions (%) in TTC processed and TTC processed+reheated potato tubers. 

Values on the bars indicate the relative amount of starch nutritional fractions (%).  And error bars indicate the 

standard deviation of triplicate results. 
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happened due to the dry matter content of two cultivars: the floury potato cv. Agria with a high dry 

matter of 23.1% compared to the waxy potato cv. Nadine with a low dry matter of 15.7%. Similarly, 

the mashed potato from cv. Maris Piper, a waxy and smooth textured potato has been observed to have 

the highest syneresis (%) followed by the mash from cv. Rooster, an all-round potato and cv. Golden 

Wonder, a very dry and floury potato (Redmond et al., 2003).   

After reheating by microwave, the mashed potato from cv. Agria retained shape better than the mash 

of potato cv. Nadine (Nam, 2018). At the molecular level, amylose content, mainly located in the 

amorphous region, was higher in potato cv. Nadine (28.2%) than in cv. Agria (23.6%), triggering the 

amorphous lamella to hydrate excessively in potato cv. Nadine during cooking. Excess water was 

introduced to the amorphous lamella of potato cv. Nadine inducing the phase transition of amorphous 

regions followed by crystalline regions during cooking. The resulting disrupted amylose and 

amylopectin recrystallize during cooling where linear chains of amylose facilitate cross-linkages 

through hydrogen bonds, expelling the excess water from the retrograded potato cv. Nadine. 

Consequently, a more compact retrograded amylose in cook-chill then reheated cv. Nadine (than cv. 

Agria) were not able to imbibe the water again during reheating, resulting in less shaped mashed potato 

cv. Nadine than cv. Agria.  

Additional water as well as other ingredients have been added to Rina Nam’s recipe of the mashed 

potato to improve the sensory perception (Nam, 2018). These ingredients added (confidential) can either 

promote or delay starch retrogradation as discussed in Chapter II Review of literature though the 

physicochemical characteristics (NMR, X-ray, hydrolysis) haven’t been examined in Rina’s thesis. The 

logistic of the supply chain in Rina’s report was very identical to the concept developed in Chapter V. 

The increase in retrograded starch in tuber induced by time-temperature cycle, i.e. -20C then 4C 

therefore, combined with other ingredients added to the mash can reduce GI potentially- confirmation 

of the physicochemical characteristics of the mashed potatoes are required. 

VIII.1.3 Sous vide cooked-chill/cooked-frozen then reheated potato wedges 

Microbial growth, the main concern of sous vide cooked product (Schellekens, 1996), could be 

control by blanching with a minimum heat penetration depth before sous vide cooking.  Blanching 

involves heating vegetables and fruits rapidly to a predetermined temperature for a specified amount of 

time, typically 1 to less than 10 min. Blanching temperature and time are selected to inactivate oxidases, 

peroxidases, catalases, and lipoxygenases (Table VIII.2); meanwhile to retain as many nutrients as 

possible (Xiao et al., 2017).  

Peroxidase (POD) is considered to be the most heat resistant enzyme in potato tuber (Anthon & 

Barrett, 2002); therefore, the activity of peroxidase has been widely used as an indicator for the level of 

blanching (Müftügil, 1985; Ramaswamy & Chen, 2011). POD, a heme-containing enzyme, is 

associated with wound-healing processes in plants. POD induces single-electron oxidation of phenolic 

compounds with the existence of hydrogen peroxide (H2O2). This reaction leads to the formation of 
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melanin and thus a browning effect. The assumption still needs to be further investigated due to the low 

hydrogen peroxide content in vegetable tissues (Veljovic-Jovanovic, Noctor, & Foyer, 2002). It could 

be the synergistic action between POD and polyphenol oxidase (PPO), where PPO oxidise some 

phenolics to generate hydrogen peroxide for POD (Jiang & Miles, 1993; Toivonen & Brummell, 2008).  

Polyphenol oxidase activity is the greatest at the tuber exterior, including the skin and cortex tissue 

(where it is 1 to 2 mm beneath the skin) (Thygesen, Dry, & Robinson, 1995). PPO catalyses two 

continuous reactions: hydroxylation of monophenols to diphenols then oxidation of diphenols to 

quinones. Subsequent reactions of quinones, the highly reactive compounds lead to melanin 

accumulation, resulting in less attractive appearance (brown- or black-coloured products) and 

nutritional loss (Espín et al., 2000).  

Pectin methyl esterase (PME) becomes active as potatoes are heated to the temperature between 

50°C and 70°C (Canet, Alvarez, & Fernández, 2005). PME demethylates carboxymethyl groups of 

pectic polysaccharide chains and produces free carboxylic acid (Manmohit Kalia, 2015). 

Simultaneously, the increased permeability of cell walls allows the migration of solutes (e.g. Ca2+ or 

Mg2+ cations) from cytoplasm and vacuole to the membrane. Demethylated pectin chains can then link 

via calcium interchelation into egg box structures, which may lead to the strengthening of the cell wall 

(Grant, Morris, Rees, Smith, & Thom, 1973; Ross et al., 2011).  

Table VIII.2 Enzyme activities of potato cv. Russet Burbank after a certain level of blanching. 

Enzymes Mechanism Influences T (°C) 

for 

D=5min 

Peroxidase 

(POD) 

POD may bond to endogenous hydrogen 

peroxide creating free radicals that react 

with a wide range of food constituents such 

as ascorbic acid, carotenoids and fatty 

acids.  

Loss of colour and 

flavour, as well as 

nutrients 

degradation. 

83.2 

Polyphenol 

oxidase (PPO) 

PPO catalyses the conversion 

of monophenols to o-diphenols and o-

dihydroxyphenols, and then to 

o-quinones. 

Melanin 

accumulation leads 

to brown- or black-

coloured products. 

66 

Pectin methyl 

esterase 

(PME) 

Demethylation of pectin materials by pectin 

methyl esterase (PME) leads to the cross-

linking between demethoxylated pectin and 

calcium ions at low-temperature (50-70°C). 

Low-temperature 

blanching firmness. 

70 

A stepwise blanching is often applied to the production of French fries to optimise the texture (Abu-

Ghannam & Crowley, 2006; Canet et al., 2005) and to prevent both enzymatic and non-enzymatic 

browning (Kaymak & Kincal, 2007). Blanching at low temperature (50-70 °C) leads to a firmer texture, 

as a result of strengthened cell walls by pectin methyl esterase (Bartolome & Hoff, 1972a) and reduces 

disintegration of intercellular substances (Verlinden, Yuksel, Baheri, De Baerdemaeker, & Van Dijk, 

2000). Blanching at high temperatures (80-100 °C) for long times (15 min), on the other hand, leads to 
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the loss of firmness (Andersson, Gekas, Lind, Oliveira, & Oste, 1994). Changes in both structural and 

physical properties of the constituents in the parenchyma, alter the texture of the resulting blanched 

fries (Ngobese, Workneh, & Siwela, 2017; Thygesen, Thybo, & Engelsen, 2001).  

In the sous vide study (Chapter VI), wedges were vacuum packed immediately after peeling and 

cutting to prevent enzymatic browning by polyphenol oxidase (Rocha et al., 2003). Colour of the sous 

vide cooked potato wedges are yet to be quantified to ensure no undesirable effects occur (Figure 

VIII.4). Water exudates from sous vide cooked wedges (at 55°C) of potato cv. Agria and cv. Nadine 

were observed (Figure VIII.4a, b). This may have happened simultaneously with the crystalline 

perfection where excess water in amorphous and semi-crystalline regions of starch granules migrate to 

the space of inter/intra cell compartment, then appeared as exudates. No water/ less water was observed 

in sous vide cooked (at 65°C) wedges cv. Agria and cv. Nadine (Figure VIII.4c, d). Excess water, 

appearing as a result of crystalline perfection, may be stabilised by leached amylose from partially 

gelatinised starch, therefore no water (Figure VIII.4c) or fewer exudates (Figure VIII.4d). Lower dry 

matter and lower total starch content of potato cv. Nadine than cv. Agria may lead to more exudates in 

potato cv. Nadine. 

  

 
 

 
Figure VIII.4 Appearance of sous vide cooked wedges from cv. Agria (a) at 55°C and (c) at 65°C and from cv. 

Nadine (b) at 55°C and (d) at 65°C. 

The study of starch microstructural changes in sous vide cooked potatoes and its starch digestion in 

vitro was carried out as mentioned in chapter VI. Discussions about the hardiness, an important sensory 

perception for processed potato products, are given in the following context.  

Assertion: For commercial application, sous vide cooking at 55°C for 2 hours could be chosen 

regardless of cultivars for further production and sensory optimisation. 

Rationale:  

(a) A55 (48h) (b) N55 (48h) 

(c) A65 (48h) (d) N65 (48h) 
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Throughout sous vide cooking, refrigeration, and reheating, the processing temperature was kept 

below gelatinisation peak temperature. The texture of the sous vide cooked wedges thus could be 

attributed to both the swollen granules (Figure VIII.5a) or partially gelatinised starch (Figure VIII.5b) 

and the strengthening effect of the cell wall structure by PME. Significant decreases in hardness of cv. 

Agria occurred after 2 hours and 20 hours of sous vide cooking at 55°C but still significantly higher 

than traditionally cooked cv. Agria tuber (Figure VIII.5a). The texture of blanched potato strips at low 

temperatures (62.8 & 68.3°C) has been found to be independent on blanching time, whereas the texture 

of blanched strips at high temperatures (73.9, 79.4, 85 & 90.6°C) has been observed as a function of 

both temperature and time (Liu & Scanlon, 2007). For cv. Nadine, significant decreases in hardness 

happened soon after 10 minutes of sous vide cooking but remained at 22.5 ±3.5 N till the end of sous 

vide cooking, yet statistically similar to the traditionally cooked cv. Nadine (Figure VIII.5a). Changes 

in hardness by time concurred with the development of the relaxation time where relaxation times (T21, 

T22, and T23) had significant changes after 2h of sous vide cooking at 55°C (Chapter VI).  

Assertion: For commercial application, sous vide cooking at 65°C for 1 hour could be chosen 

regardless of cultivars for further production and sensory optimisation. 

Rationale:  

As for sous vide cooking at 65°C, a significant decrease in hardness of A65 took place after 1h 

(Figure VIII.5b). The hardness values of the sous vide cooked cv. Agria potatoes were similar to 

traditionally cooked cv. Nadine potatoes at 32h of sous vide cooking (Figure VIII.5b). For N65, the 

significant reduction in hardness happened within 10 min and remained at 21.8N to 24.7N till the end 

of sous vide cooking (Figure VIII.5b). It is, therefore, sensible to explore the possibility of sous vide 

cooking at 65°C for 1 hour on both cultivars. 

 

Figure VIII.5 Changes in hardness of potato cv. Agria and cv. Nadine during sous vide cooking at (a) 55°C and 

(b) 65°C. 
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The effect of sous vide cooking on the hardness might last even after reheating (Abu-Ghannam & 

Crowley, 2006). There was no significant difference between the hardness of A65 (for 48h) and 

traditionally cooked tubers (Figure VIII.6). After refrigeration then reheating at 60°C, the hardiness of 

both FCR3 and FCR3-r60 were, however, significantly lower than for both A65R3 and A65R3-r60 

(Figure VIII.6). This could also be the starch retrogradation came into play in terms of hardness.  

 

Rationale:  

Sous vide cook-freeze then reheating process was carried out preliminarily to explore the alternative 

for longer shelf life. Appearance and microstructure (Figure VIII.7) and relaxation time distribution 

(Figure VIII.8) of sous vide cooked-frozen then reheated whole potato tuber were studied. Sous vide 

cooked-frozen cv. Agria were microwave reheated (1100W) for 5min, resulting in fully gelatinised 

starch with excess exudates in tuber (Figure VIII.7a). The other sous vide cooked-frozen cv. Agria was 

reheated in a water bath at 90°C, partially gelatinised potato cv. Agria, some swollen granules with 

ruptured ones, was obtained (Figure VIII.7b). For both reheating methods, cracks on the crosscut section 

seemed to align with pith (Figure VIII.7) where starch granules are found to be less compared to other 

sections, such as cortex, perimedullary zone and a vascular ring of the tuber (Rommens, Shakya, Heap, 

& Fessenden, 2010). It could be due to either the heat transfer or the inhomogeneous distribution of 

starch in tuber. Reheating in 90°C water bath (for 40min until the core temperature of the tuber reached 

70°C) allowed frozen sous vide tuber to defrost progressively, resulting in more swollen but intact 

granules (Figure VIII.7b). This progressive reheating may allow hydroxyl group to interact with water 

molecules without disruption of granular structure, keeping more water within tuber than microwave 

reheated one.  

 

Figure VIII.6 Comparison of the hardness between the traditionally cooked-chill then reheated and the sous vide 

(at 65°C) cooked-chill then reheated potato cv. Agria. 

 

Assertion: Sous vide cook-freeze process can be an alternative to sous vide cook-chill process for 

longer shelf life. 
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(a) Sous vide cooked-frozen then microwave reheated cv. Agria. 

   

(b) Sous vide cooked-frozen then water-bath reheated cv. Agria. 

Figure VIII.7 Appearances and micrographs of sous vide cooked-frozen then reheated cv. Agria by (a) a 

microwave or (b) a water bath. 

 

Freezing, a long-term preservation technique for foods offers a means to suppress microbial growth 

and to preserve taste and nutritional value. Formation of ice crystals or ice recrystallisation can, 

however, deteriorate the quality of foods in the cold chain. During freezing, ice nucleation initiates from 

extracellular space then propagate, compromising cell wall rigidity and cytoplasm intactness (Pearce, 

2001). Ice crystals have a larger volume than water, so the cell walls and membranes are submitted to 

mechanical stresses leading to possible cell damage during freezing. As discussed in chapter VI, the 

relaxation time distribution of A65 was similar to freshly cooked tuber that four separated peaks were 

discerned (Figure VIII.8a). Relaxation time T22, indicating the mobility of water associated with the 

starchy matrix, were lower in A65 than in freshly cooked tuber due to the crystalline perfection over 

sous vide process (Figure VIII.8a). The merging of water pools with relaxation time T21 and T22 was 

evident in both cooked-frozen and sous vide cooked-frozen tubers (Figure VIII.8b) where ice crystals 

may have damaged potato cells, allowing intercellular and intracellular water to mix (Micklander et al., 

2008).  The merged relaxation time of T21 and T22 was lower in cooked-frozen tuber than in sous vide 

cooked-frozen tuber (Figure VIII.8b). Freezing-concentrated effect may have been promoted in 

gelatinised starch of cooked-frozen tuber where amylose and amylopectin were more disrupted, 

compared to sous vide cooked-frozen tuber. During reheating, fully gelatinised starch in cooked-

frozen+reheated tuber seemed to be able to form hydrogen bonds with water molecules again as 

evidenced by the lower relaxation time T23 (Figure VIII.8c).  Sous vide cooked-frozen then reheated 

Starchy matrix fills up the 

cell. 

Swollen granule 

Ruptured 

granule 
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tuber with higher relaxation time T23 (Figure VIII.8c), on the other hand, appeared to have more water 

freely flow between intracellular and intercellular spaces.  

 

Figure VIII.8 Relaxation time of (a) freshly cooked and sous vide cooked (at 65°C) cv. Agria, and for (b) cooked-

frozen and sous vide cooked-frozen cv. Agria, and for (c) cooked-frozen then reheated and sous vide cooked-

frozen then reheated cv. Agria. 

 

Bearing in mind the potential opportunity for commercialisation, the optimisation of the cooking 

duration can be further tested by full factorial design based on the change of hardness and the 

appearance/ colour by time. Sensory test should be conducted along the side. Understanding the critical 

control points (Table VIII.3), sufficient heat treatment combined other hurdle techniques (Table VIII.4) 

may be essential for the ‘haute cuisine’ of sous vide processed potato. 

Table VIII.3 Processing steps and critical control points (CCPs) of sous vide cooked-chill/ cooked-frozen potato. 

 Processes Critical control points 

←
  
  
  
  
  
  
L

o
w

 r
is

k
 a

re
a 

Potato tuber receipt/ storage. CCP1: Microbial growth (temp. abuse). 

Cutting, peeling, blanching.  

Manual/automatic pump to the line.  

Thermoforming sous vide pouches.  

Manual/automatic product filling. CCP2: Foreign body contamination. 

Vacuum sealing & cutting of sous vide pouches. CCP3: Microbial contamination/ 

growth. 

Sous vide processing (65-95°C) by steam or water 

immersion, or water steaming in retort/cooker for 

a certain period of time and then cooling. 

CCP4: Microbial growth. 

H
ig

h
 r

is
k
 a

re
a Blast-chilling (<5°C/90 min or blast freezing). CCP5: Microbial growth (temp. abuse). 

Metal detection. CCP6: Metal contamination. 

Labelling, boxing, palletising.  

Chilled (<5°C) or frozen storage (<-18°C). CCP7: Microbial growth (temp. abuse). 

Chilled or frozen distribution. CCP8: Microbial growth (temp. abuse). 

Reheating and serving at home.  
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Reprinted from “Handbook of Food Safety Engineering”, P468-496, Chapter 19 “Sous vide and cook-chill 

processing”, Gormley &Tansey, 2012, with permission from Elsevier. 

Types Techniques 

Physical hurdles Heat: blanching; pasteurisation; cooking.  

 Cold: chilling; freezing; freeze-chilling. 

 Packaging: ambient; vacuum; aseptic; MAP. 

Physico-chemical hurdles Salt; sugar; dehydration (aw); spices. 

 Acidity: acidulants; fermentation. 

 Preservatives: sulphur dioxide; ethanol; smoke. 

 Chlorine; ozone. 

Microbial-derived hurdles Competitive flora.  

 Starter cultures. 

 Bacteriocins. 

Combined hurdles  

Reprinted from “Handbook of Food Safety Engineering”, P468-496, Chapter 19 “Sous vide and cook-chill 

processing”, Gormley &Tansey, 2012, with permission from Elsevier. 

  

Table VIII.4 Examples of hurdles. 
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Chapter IX General discussion and conclusion 

IX.1 Introduction 

This thesis asked whether functional processed potato products with low glycaemic features could 

be made through starch retrogradation in whole tuber (in tuber). The underlying aim was to gain a better 

understanding of the mechanisms of starch retrogradation in tuber. This knowledge is expected to bring 

insights for optimising manufacturing condition and to formulate a scientific basis for new process 

designs. Challenges were to investigate starch retrogradation in tuber and to tailor a structure with low 

glycaemic features, and to retain resistance to digestive enzymes after reheating. In this chapter, the 

most important findings will be discussed and concluding remarks provided. 

IX.2 Main findings and discussions 

A literature review of mechanisms of starch retrogradation and its health implications is given in 

Chapter II, with a focus on existing and new technologies to create tailor-made structures displaying 

low glycaemic features. The research gap, lack of knowledge of the mechanism of starch retrogradation 

in tuber rather than starch-water systems, is identified in Chapter II, and thus methods to study starch 

retrogradation in potato tubers are developed and described in Chapter III.  

Potato cv. Agria, the most popular cultivar to household use in New Zealand, was chosen in Chapter 

IV as a model to study starch retrogradation in a whole food. Potato tubers encompass different cell 

compartments (e.g. cell wall, vacuole, cytoplasm and intracellular spaces) where starch gelatinisation 

and starch retrogradation can occur, subject to local interactions with other cell components and subject 

to water availability. Starch retrogradation in tuber was investigated successfully by LF-NMR, a non-

invasive technique. Water, the most abundant component in tuber appeared to exist in four states during 

starch retrogradation each with a relaxation time. Effects of processing, cooling and reheating on 

structures formed by gelatinised amylose and amylopectin, and the effects on water migration, were 

inferred from the vibration of hydrogen bonding as indicated by relaxation time. A cyclic pattern of the 

relaxation time T22 of freshly cooked, retrograded, and retrograded-then-reheated tubers was observed. 

The relaxation time of a water population indicates mobility- the water with low relaxation time is more 

mobile and less restricted.  This could facilitate enzyme diffusion during digestion leading to greater 

starch hydrolysis (%): low relaxation time T22 was positively correlated to greater starch hydrolysis of 

the treated tubers (p < 0.05) in Chapter IV.  

A 36% reduction of starch hydrolysis was observed with longer retrogradation times (for 7 days). 

Reheating of retrograded tuber restored 10% of the susceptibility to enzymatic hydrolysis and some 
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internal water mobility (measured by relaxation time T22) in Chapter IV. Longer chill storage further 

improved the stability of retrograded tuber against reheating effects (Chen et al., 2018).  

A temperature cycling process is likely to induce stepwise nucleation and propagation which 

promotes the growth of crystalline regions and perfection of crystallites, potentially resulting in a higher 

content of slowly digestible starch (SDS). We extended the idea of time-temperature cycle (TTC) 

processes to freeze/ chill (at -20°C /4°C,  TTC1) and chill/warm (at 4°C /65°C, TTC2) domains to 

investigate the effect of TTC on retrogradation rate of starch in cooked potato tuber in Chapter V. Time-

temperature cycle processes tested gave different indications of starch retrogradation in tuber compared 

to storage fixed at 4°C. The TTC1 process increased the retrogradation enthalpy to 4.7 J/g 

d.b.(compared to the 1.6 J/g d.b. of the retrogradation enthalpy of 3-day retrograded tuber) and 

decreased water mobility to T22, 86.5 ms signifying that starch-rich and starch-depleted regions 

facilitated the formation of retrograded starch in starch-rich regions. The TTC2-processed tubers held 

under chill and warm conditions showed the lowest blue value (at 0.5) and least starch digestibility in 

vitro (60.3%).  These two sets of time-temperature processes induced starch retrogradation in tuber 

differently though all such samples (n=6) showed higher retrogradation enthalpies and lower starch 

digestibility between which a negative correlation (r=-0.65, p=0.005) was obtained. Similar time-

temperature cycle processes can be useful to drive physico-chemical changes of the potato product 

within the industrial cold chain. 

Annealing (heating starch at a temperature below gelatinisation temperature in excess water) permits 

a modest molecular reorganisation to occur and a more organised structure of lower free energy to form. 

In Chapter VI, a sous vide process akin to annealing was investigated, intending to create edible potato 

pieces with resistance to digestive enzymes. Extent of potato cell disruption and degree of the starch 

gelatinisation, resulting from a sous vide process, alter starch retrogradation. During cooling, the 

manner of re-association of sous vide cooked starch largely determines the resistance to digestive 

enzymes.  Sous vide cooked (at 55°C) potato cv. Agria and cv. Nadine both retained intact potato cell 

structure as evidenced by limited swelling and the raw-like texture with the hardeness of 24-27 N. 

During sous vide cooking at 65°C, potato cv. Agria was partially gelatinised, in contrast to potato cv. 

Nadine as seen from its endotherm curve. Although sous vide cooking at 65°C initiated gelatinisation 

in some starch granules, others were swollen but intact; cv. Agria treated at 65°C exhibited lower 

estimated glycaemic index (eGI) than traditionally cooked potato. For successful sous vide processing 

potato at either 55°C or 65°C, it needs to be combined with other hurdle techniques to control microbial 

growth and for texture optimisation. 

Retrograded starch generated in TTC and sous vide processed tubers responded differently from 

traditionally cooked tuber during reheating. Reheating stability of processed then retrograded starch in 

tuber was investigated by LF-NMR, X-ray, FTIR and starch hydrolysis in Chapter VII. After reheating, 

one set of time-temperature cycle (TTC) processed potato tubers, stored at -20°C for a day then 4°C for 

2 days, had a lower relaxation time T22 (at 88.7ms) than 3-day retrograded tubers (at 144.5ms) and the 
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rest of TTC processed+retrograded samples (at >120.7 ms). Starch hydrolysis (%) of TTC 

processed+retrograded then reheated samples were, however, not significantly different from the 3-day 

retrograded+reheated samples. Optimal TTC processing may enhance the formation of retrograded 

starch in tuber as observed in Chapter V, but the reheating stability in terms of starch hydrolysis was 

not as promising as in Chapter VII.  

Trends of the value of 1047/1022 measured by ATR-FTIR were different from relative crystallinity 

measured by X-ray. This indicated that sous vide increased the overall crystallinity but decreased the 

regional alignment of crystalline to amorphous lamella. For potato cv. Agria, there was no significant 

difference between the starch hydrolysis of the 3-day retrograded then reheated (at 60°C) wedges 

(FCR3-r60) and for sous vide cooked-chill then reheated (at 60°C) wedges (A65-r60). Whereas sous 

vide cooked-chill then reheated cv. Nadine had moderate eGI at 56.9 (significantly lower than FCR3-

r60 at 75.3 and A65R3-r60 at 74.6, n=3, p< 0.05), excess exudates appeared after refrigeration for 3 

days.  

Industrial relevance of Chapter IV, V, and VI, is discussed in Chapter VIII, with some issues 

foreseen for consideration during upscaling and commercialisation. Our results showed that boiled 

potatoes after at least a day of refrigeration then reheated at the low temperature (50°C) had higher 

resistant starch content (34.4%, d.b.) than did freshly cooked (6.9%, d.b.) or boiled-chill then reheated 

(at 90°C) tubers (6.1%, d.b.). Recommendation is, therefore, to consume boiled potato after cooling 

(where resistant starch content ranged 22.4- 42.9 %, d.b.), or reheated at low temperature (50°C) after 

at least a day of refrigeration. Product quality such as drip loss (syneresis), textural and nutritional 

changes are a concern for a food manufacturer. Combinations of suitable cultivars with appropriate 

time-temperature cycle processing can potentially produce potato products high in resistant starch with 

good organoleptic properties, but the problem remains a difficult one. Sous vide processing, a process 

akin to annealing, is industrially practicable to produce potato tuber with an intermediate GI (of 65.6-

72.8). The desirable texture could be achieved by optimum cooking temperature and duration. For the 

‘haute cuisine’ of sous vide processed potatoes, understanding the critical control points of the process 

is essential.  

Resistant starch is regarded as dietary fibre in food regulations, e.g. USFDA or EU General Food 

law (EC) NO. 178/2002 around the world. In 2018, FSANZ (Food Standards Australia New Zealand) 

regulated a standard method to quantify resistant starch and can be labelled on nutrition information 

panel as a subgroup of dietary fibre. Assessment of dietary fibre needs is complex as the endpoints are 

ill defined. There is no biochemical marker that can be used to determine dietary fibre needs, so 

appearance or disappearance of clinical endpoints needs to be considered. In keeping with the concept 

of setting EARs (estimated average requirement) and RDIs (recommended dietary intake) or AIs 

(adequate intake) for prevention of deficiency states, the endpoints chosen in the estimation of 

requirements were adequate gastrointestinal function and adequate laxation rather than reduction of risk 

for chronic disease.  Adequate intake of dietary fibre based on median intakes in populations of 
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Australia and New Zealand can be found in Nutrient Reference Values website 

(https://www.nrv.gov.au/home), no up to date limitation on RS intake was found.   

IX.3 Concluding remarks 

The current study brought to bear a wide variety of investigative tools in an attempt to discern 

whether an industrially practicable process could significantly reduce starch digestibility without 

making the potato unpleasant to eat. 

Whole potato tuber is multi-component, more complex than is an isolated starch-water system, a 

difference to be considered when designing low glycaemic processed potato products. Starch, composed 

of amylose and amylopectin, in potato tubers can be structurally manipulated by controlled processing 

to modulate the starch digestion rate. Interactions of starch with other non-starch components in tuber 

also play a part in postprandial glycaemic response, influencing the assimilation of starch-derived 

glucose. Structural layout of a tuber (e.g. cell wall intactness, starch molecular architecture and water 

mobility) at each stage of food processing (i.e. degree of starch gelatinisation related to temperature and 

water content, degree of shear) and storage (such as cooling rate and time related to starch 

retrogradation) all influence its resistance to the hydrolysis of digestive enzymes. Understanding the 

mechanism of starch gelatinisation and retrogradation in tuber during processing is key to designing a 

tuber with low and slow glycaemic features. Other cell components in tuber e.g. protein, phosphorous, 

and cell wall may also impact relationships between starch structure and digestibility. 

Potato cv. Agria was chosen as the main cultivar to study starch retrogradation in tuber due to its 

availability and popularity to New Zealand consumer. Sensory perception and culinary use of cv. Agria, 

(fairly firm and multi-purpose), are similar to cv. Russet Burbank, which is the cultivar used in Simplot’s 

products.  Potato cv. Nadine was occasionally tested in parallel for contrast. 

Multiple techniques, e.g. microscopy (LM, and CLSM), DSC, and LF-NMR, were used in this thesis 

to study starch retrogradation in tuber. Details of the techniques developed are described in Chapter III.  

A full picture requires starch retrogradation to be studied from the macroscopic scale down to molecular 

level. Some of the techniques employed gave greater confidence than others.  DSC showed endotherms 

which were long (spanning over 10K) and subtle, implying a slow evolution of structure rather than 

sudden transformation. Endotherms should be regarded as indicative and read in context with 

corroborating indicators. Among all, relaxation time T22 was positively correlated to greater starch 

hydrolysis (%) of the treated tubers (r= 0.797, p= 0.032) in this thesis. Relaxation time T22 represented 

the most abundant water population in the tubers, loosely interacting with starch by hydrogen bonding. 

An oral-gastro-small intestinal digestion in vitro model was used to measure ease of starch 

hydrolysis expressed as an estimated glycaemia index. It is noted that when comparing and referencing 

across research papers, the parameters, such as pH, duration, enzyme concentration and activity, and 

composition of simulated digestive fluids of in vitro digestion, are needed to be considered. 

https://www.nrv.gov.au/home
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Various approaches, including starch retrogradation in tuber described in Chapter IV, the time-

temperature cycles process in Chapter V, and the sous vide cooked-chill process in Chapter VI, were 

thus carried out to produce potato tubers with lower eGI than the freshly cooked tuber. A significant 

reduction in eGI was observed with longer retrogradation times. Longer chill storage further improved 

the stability of retrograded tuber against reheating effects. Realignment of the gelatinised amylose and 

amylopectin is thought to have changed the distribution of crystalline and amorphous regions during 

refrigerated storage and subsequent reheating, resulting in starch digestibility varying with treatment 

combination. Sous vide processing combined with starch retrogradation in tuber resulted in potato 

tubers with intermediate eGI (40-72). After reheating at 60°C, the eGI of sous vide cooked-chill potatoes 

increased moderately (56-75).  

Discoveries in this thesis can be helpful in refining existing process conditions (Chapter V) or as a 

basis for developing a new product with low estimated glyceamic index (Chapter VI). Utilization of 

existing or new technologies (e.g. HMT, UHP, or ultrasound as reviewed in Chapter II.3) to trigger 

starch molecular realignment during cooking and cooling, to create tailor-made structures displaying 

low glycaemic features seems to be possible: 1) When starch gelatinisation and retrogradation 

temperatures of certain potato cultivars are known, starch structure in tuber can be manipulated by 

controlled cooking and cooling regimes within existing or new technologies e.g. high hydrostatic 

pressure process and microwave. By different physico-chemical measurements, the relative amount of 

crystallites, contributed to slowly digestible starch, can then be examined in the processed potato tubers 

as a preliminarily screening. 2) When the optimum processing parameters are determined, reheating 

temperature can be set to ensure the delivery of health benefits of resistant starch type 3 to consumer 

ends. We envision that the knowledge generated, along with other new techniques, will be helpful for 

the food industry to produce processed potato products with low glycaemic features.  

However, the challenge is not trivial.  Those processes shown in this thesis to be most effective at 

reducing eGI tended to be long and slow which is unattractive to a manufacturer.  Reheating of treated 

tuber needed to be carefully controlled at temperatures such as 50-60°C which is difficult for a 

consumer. The potato reheated in this temperature range give a lukewarm sensation which may not be 

most appreciated by a consumer.  Some of the emerging technologies are slow and expensive (UHP).  

For all this, structures can be influenced and eGI can be lowered and acceptable rewarmed products can 

be made.  And there is a range of laboratory techniques able to be used to track a process during 

development.  It may be possible yet to find a combination of industrially practicable techniques 

powerful enough to win a place in the potato process lines of the world. 
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Appendix A 

• Tube specification 

Wilmad NMR tubers 5mm 600MHZ frequency L7 in. 

• Sample preparation 
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• Open SPINSOLVE app. 

1. Under <system>, run <powershim>  (41 min), using 10% water tube EVERY TIME before 

every use. 

 

2. Back to <Menu>. 

3. Under <1H> find <T2Bulk>. 

4. And the parameters set up are as below. 
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5. Save the data in H drive. 

• Analyse the 1D file “data” with either MesteReNova or Prospa. 

 

A. Export the 1D file to text by MesteReNova. 

1. Under tab <Scripts><Export><1D FID>. 
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B. Analyse the T2 relaxation time distribution curve by Prospa. 

1. Open 1D file with Prospa. 

2. Under tab <1D> <calibrate1d> change the <By range> to the settings below. 

 

3. Under the tab <NNLS><AnalyseT2plot> follow the same settings below. 

 

4. Click <Calculate Spectrum> the relaxation time distribution curve will be at the top left corner. 
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5. Click <Save data>, and under the same file in the H drive, all the data files after “L&H 

transformation” by Prospa will show up, the <spectrum> excel file is the raw data set of the 

above Relaxation spectrum in Prospa. 

 

 

 

 












