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Abstract 

The relationship of polyploidization (DNA 
content) to differentiation is not well defined. 
We have developed centrifugal elutriation and 
Percoll density gradient centrifugation to 
obtain larye numbers of highly-purified mega­
karyocytes which subsequently were stained for 
DNA content with Hoechst 33342 and sorted by 
FACS into SC, 16C and 32C ploidy classes for 
correlated analysis of cell surface structures 
by scanning electron microscopy. Each ploidy 
class revealed unique surface characteristics 
that reflect differentiation occurring in 
megakaryocytes independent of their DNA content. 
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Introduction 

Megakaryocytes undergo a unique form of 
differentiation during which they exhibit 
nuclear endoreplication without cell division. 
In addition to the resultant extensive poly­
ploidization, these cells exhibit concomitant 
changes in cytoplasmic development that lead 
ultimately to platelet formation. 

Despite much study and speculation, the 
relationship of polyploidization to cell differ­
entiation is not well understood. As reviewed 
recently [14], several techniques including 
scanning microdensitometry have been used to 
quantitate DNA content in Feulgen-stained 
megakaryocytes of several species, and have 
confirmed that these cells contain DNA levels of 
SC, 16C, and 32C [5-7,9,17]. Previous attempts 
to relate ploidy to cytoplasmic maturation have 
involved light microscopic analysis of megakaryo­
cytes from each ploidy class [15,16], as well as 
ultrastructural analysis evaluated by trans­
mission electron microscopy (TEM) [18-20]. Such 
studies have offered a qualitative analysis of 
megakaryocyte differentiation within ploidy 
classes based primarily on morphologic consid­
erations. However, as a result of the complexity 
and tediousness of Feulgen microdensitometric 
measurements, this data base is rather limited. 

The surface ultrastructure of megakaryo­
cytes has also been examined by scanning 
electron microscopy (SEM) in several species 
[1-3,8,10,11], including man [4,7,23,25]. These 
latter studies have focused on the mechanism of 
platelet biogenesis and no data are available on 
the surface ultrastructure of cells within 
specific polyploid classes. 

In this study, we have used centrifugal 
elutriation [26] and discontinuous Percoll 
density gradient centrifugation to isolate large 
numbers of megakaryocytes from human bone 
marrow. After staining these cells with Hoechst 
33342, they were sorted on the basis of DNA 
fluorescence according to ploidy class, using 
flow cytometry [13,27]. We were able to examine 
in excess of 500 intact megakaryocytes per 
ploidy class by SEM. We conclude from this 
analysis that cell surface characteristics may 
be classified into specific categories that 
reflect differentiation occurring within each 
ploidy class that is independent of DNA content. 
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Materials and Methods 

Bone marrow preparation 
Megakaryocytes were isolated from human 

ribs removed from patients during routine thor­
acotomy. Hematologic parameters of each donor 
studied were normal, with no patient having 
undergone radiation or chemotherapy. Immediately 
after surgical removal, ribs were placed in 
CATCH medium [21]. The bone segment (usually 
12-18 cm long) was cut into 3 cm pieces using a 
bone ronguer and each piece opened to expose the 
marrow cavity. The marrow was flushed from the 
split bone fragments by gentle pipetting with 
CATCH + O. 5% albumin. As many subsequent pro­
cedures as possible were performed at 12°c [26]. 
Cells in the pooled marrow were monodispersed by 
gentle pipetting with a polypropylene pipette 
and then filtered by gravity through a 100 
micron nylon mesh (TETKO, Elmsford, NY). Total 
nucleated eel l (TNC) and megakaryocyte counts 
were performed using a Neubauer hemocytometer 
and light microscopy (American Optical, Buffalo, 
NY). 
Megakaryocyte isolation 

Centrifugal elutriation of the bone marrow 
suspension was performed as described by 
Worthington and Nakeff [26]. Briefly, 5 x 106 
TNC/ml in 40 ml of CATCH medium were introduced 
into a centrifugal elutriator (Beckman, Palo 
Alto, CA) at a flow rate of 20 ml/min and speed 
of 2200 RPM at 12°c, using a Sanderson separa­
tion chamber and the JE-6 rotor. After intro­
duction of the load sample, 400 ml of CATCH 
medium was used as a wash leaving megakaryocytes 
suspended in the chamber volume (approximately 5 
ml). This sample was removed, layered on 5 ml 
of 30% Percoll (density 1.035 g/ml) diluted in 
CATCH medium pH 7.2 and 300 mOsm, (Pharmacia, 
Piscataway, NJ) and centrifuged at 700g for 20 
min at 12°C. The interface which contained the 
megakaryocytes was washed with CATCH medium 
without albumin. Cells were fixed immediately 
in 1% glutaraldehyde (Polyscience) in O.lM 
cacodylate buffer, pH 7.2, at 22°c for 1 h and 
stored at 4°C. 
Flow cytometry 

DNA staining. Megakaryocytes were stained 
with Hoechst 33342 (H342) (Calbiochem, San 
Diego, CA) which is presumed to be a DNA­
specific stain with preference for adenine­
thymine rich regi ans of DNA. 1-2 x 105 
megakaryocytes/ml were stained with H342 at a 
final concentration of 10 micromolar for 60 min 
at 4°C. 

Analysis and sorting. Megakaryocytes were 
analyzed and sorted according to ploidy class as 
described by Nakeff et al. [13] and Worthington 
et al. [27] on the basis of H342 DNA related 
fluorescence using a Becton-Dickinson FACS 440 
flow cytometer (Mountainview, CA). The instru­
ment was equipped with a 5 watt Argon ion laser 
(Spectra-Physics Model 164-05) operating at 30 
mW output power in the UV ( 351 and 364 nm). For 
analysis, cells were flowed one at a time 
through a 70 micron nozzle tip and past the 
laser beam at rates of about 500/sec. The H342 
signal was then detected using a 470 nm bandbass 
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(458-482 nm) filter (Omega, Brattleboro, VT) 
combined with a 1.0 nominal density filter 
(Oriel, Stanford, CT) to reduce signal 
intensity. For sorting, cells were jetted one 
at a time into air, analyzed for DNA content as 
described and the liquid jet then broken into 
droplets at resonant frequencies (approximately 
28 kHz). The droplets containing megakaryocytes 
to be sorted were then electrically charged and 
separated from the others during passage through 
a high-volta~e electrical field and collected 
onto slides (for SEM) at rates that varied from 
5-50 megakaryocytes/sec, depending on the 
particular ploidy class being sorted. Specific 
ploidy classes (SC, 16C and 32C) were defined by 
electronic windows on the resulting frequency 
distribution histograms (256 channels) of 
megakaryocyte DNA content. For sorting, ploidy 
classes were defined relative to the modal 
intensity of the diploid DNA region. Boundaries 
for each ploidy class were then designated as 
the point half-way between the modal intensity 
of adjacent peaks. A 5 channel buffer zone was 
included on each side of the minimum channel 
between adjacent DNA distributions to ensure 
minimal overlap. 
SEM preparation 

Megakaryocytes of each ploidy class were 
sorted onto poly-L-lysine coated coverslips into 
0.1 ml of 0.09% phosphate buffered saline. The 
cells were allowed to adhere for 30 min at 22°C 
with precautions taken to prevent complete 
evaporation. The coverslips then were immersed 
in 1% glutaraldehyde and stored at 4°C. They 
were washed with distilled water and freeze­
dried (Edwards High Vacuum, Sussex, England) 
under vacuum at -65°C. Coverslips were gold­
coated (Edwards High Vacuum) and viewed on an 
ETEC autoscanning electron microscope (Haywood, 
CA) at 20 kV with tilt of 25°. 

Results 

Megakaryocytes were studied from 8 human 
rib specimens. After isolation, a total of 1-3 
x 106 megakaryocytes were obtained from each rib 
sample which represented an average recovery of 
about 70% of those present in the starting 
material. Freeze drying of the SEM specimen 
resulted in minimal eel l loss. Using the unique 
morphology of cells with a DNA content greater 
than SC, it was possible to examine 500 
megakaryocytes from each ploidy class without 
difficulty. 

Following SEM examination, the most 
striking observation was that megakaryocytes 
displayed a marked heterogeneity of surface 
ultrastructure within each of the major ploidy 
classes. Nevertheless, they could be classified 
into distinct categories of which some were 
common to all three classes, as summarized in 
Table 1. 

Megakaryocytes were observed that had a 
relatively smooth surface, with occasional minor 
~rojections (Figure 1). This type of surface 
structure was noted in all the ploidy classes 
and was characteristic of inegakaryocytes that 
exhibited the smallest cell diameters. In 
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Surface Features of Sorted Human Megakaryocytes 

Table 1 

MEGAKARYOCYTE SURFACE CHARACTERISTICS 
BY PLOIDY CLASS 

SEM-TYPE 

micro-
Smooth villi nodules blebs other 

BC 30* 40 10 <10 <10 

16C 30 30 20 <10 <10 

32C 30 10 30 0 30 

*Percent of all megakaryocytes within a specific 
ploidy class. 

Figure 1. BC megakaryocyte having a smooth 
surface with a few small projections. 

Figure 2. BC megakaryocyte displaying short, 
broad microvilli spread randomly over the entire 
surface. 
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addition, it was clear that in this category, 
cell size increased with increasing DNA content 
such that smooth 32C megakaryocytes generally 
were larger than 16C and those in turn larger 
than BC of the same type. Megakaryocytes with a 
smooth surface constituted approximately 30% of 
each ploidy class. 

The next most frequent category was com­
posed of cells with surface villi. Microvilli 
found on 8C cells (Figure 2} were shorter and 
broader than those found on 16C and 32C 
megakaryocytes. On the latter cells, they became 
longer and more filamentous (Figure 3). The 
diameter of villous cells increased with DNA 
content in a fashion similar to that observed 
for smooth cells. In contrast to the relatively 
constant proportion of cells with a smooth 
surface, the fraction of villous cells in each 

Figure 3. 16C megakaryocyte with longer, 
filamentous microvilli which are characteristic 
of this ploidy class. 

Figure 4: BC megakaryocyte with polarized 
microvilli. 
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ploidy class decreased with increasing DNA 
content. At least 40% of 8C megakaryocytes 
displayed microvilli, while 30% of 16C, and only 
10% of 32C cells belonged to this category. 

Although the number of villi varied, cell 
surfaces were randomly covered by them. 
However, among 8C and 16C cells, we did observe 
a peculiar microvillous formation. As shown in 
Figure 4, microvilli were polarized at one end 
of the eel l, with the remainder of its surface 
smooth. This type was rather rare and accounted 
for less than 10% of all megakaryocytes in each 
of these two classes. 

All ploidy classes contained megakaryocytes 
covered with small nodules which had diameters 
of about 0.2-U.=> microns (Figure~). Many of 
these cells also had smooth areas where the 
nodules were not apparent. As seen at higher 
magnification in Figure 6, the cell surface was 
intricate and was also covered with numerous 
fenestrations which revealed a complicated 
internal net\~ork. Althouyh there was a large 
variation in size within ploidy classes for 
eel ls exhibiting this particular surface, eel l 
diameters increased with increasing ploidy. 
This surface was found on 10% of 8C, 20% of 16C, 
and 30% of 32C megakaryocytes (Table 1). 

Although smooth, microvillous and nodular 
were the surface characteristics that predomi­
nated in megakaryocytes of all ploidy classes, a 
minority (approx. :>%) of megakaryocytes 
exhibited surface ridges. Less than~% of 8C 
and 16C megakaryocytes displayed surface blebs 
(approximately 2 microns in diameter) or, as 
shown in Figure 7, a combination of blebs and 
slender filaments. 

A novel, though by no means rare, 
megakaryocyte was noted among the 32C ploidy 
class (Figure 8). This cell had a round, 
central mass (presumably the nucleus) surrounded 
by a veil of cytoplasm. The uniqueness of this 
topography among 3<'.'.C megakaryocytes must be a 
µroµerty intrinsic to these cells since their 
fixation prior to sorting would be exµected to 
prevent any "active spreading" on the poly-L­
lysine substrate. The perimeter of this cell 
was round, and its surface smooth with an 
absence of projections. These cells were 
consistently among the largest in diameter 
within this ploidy class and represented about 
30% of all 32C megakaryocytes. 

Discussion 

To our knowledge, the SEM evaluation of the 
surface features of megakaryocytes that have 
been sorted into distinct ploidy classes has 
never before been reported. This work 
represents a complex combination of techniques 
which permitted the analysis of relatively large 
numbers of isolated, intact megakaryocytes. 

Centrifugal elutriation and discontinuous 
Percoll density gradient centrifugation are 
gentle yet quantitative methods for enriching 
megakaryocytes while the use of CATCH medium 
prevented cellular activation [12] which may 
have altered surface characteristics prior to 
fixation. Osrnolarity (3UU mOsm), pH (7.2) and 
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temperature (12°C) were optimized for maximal 
yield and preservation of megakaryocytes. In 
addition, flow cytometry permitted their rapid 
separation into ploidy classes. We believe that 
this combination of techniques represents a 
unique approach to elucidate the relationship 
between polyploidization and differentiation. 
Multivectorial analysis [27] provides a means to 
correlate several parameters, including DNA 
content, cell size (by light scatter and 
microscopy) and ultrastructural characteristics 
defined at the cell surface (SEM). 

From previous work [18,20] combining 
Feul gen mi crospectrophotometry and TEM, it has 
been reported that the principal ploidy classes 
in murine marrow contain megakaryocytes in 
several stages of differentiation, in some cases 
including cells undergoing "platelet formation". 
Although we make no attempt, using SEM alone, to 
propose that surface structure reflects differ­
entiation, we do feel, in agreement with others 
[7], that megakaryocytes exhibiting similar sur­
face features may be cells at the same stage of 
differentiation. The fact that we found similar­
ities in terms of surface structure type among 
ploidy classes may indicate that each class con­
tains cells at the same stage of differentia­
tion. Early studies [18,20] suggested that there 
was no simple correspondence between ploidy 
level and differentiation. Also, cell diameter 
alone may not be a reasonable µarameter of 
differentiation. The latter conclusion was based 
on the observation [18] that some me~akaryocytes 
in the 8C class which were "producing" platelets 
by TEM examination were smaller than some of the 
32C cells which exhibited a characteristically 
immature cytoplasm. 

The complexity of this interpretation is 
supported by the studies reported here as it 
appears that the size of the megakaryocyte 
generally increases with ploidy while maturation 
may be independent of ploidy. Megakaryocyte size 
among the predominant surface types did indeed 
increase with increasing DNA content although 
there was substantial overlap among ploidy 
classes which most probably reflects the finding 
that mature cells of a lower ploidy class may be 
similar in size to immature cells of a higher 
ploidy class. Within each ploidy class, smooth 
megakaryocytes were among the smallest in cell 
diameter, with microvillous cells being inter­
mediate, and those covered with nodules consti­
tuting the largest. For example, some 32C smooth 
megakaryocytes were smaller than 8C meyakaryo­
cytes that were covered with nodules. 

The presence of megakaryocytes with micro­
villi µresent solely at one pole of the cell 
(Figure 4) may be the in vitro correlate of such 
cells reported in vivoby~[22]. These cells 
were reported tobelocated next to the 
abluminal surface of the bone marrow endothelium 
with their microvilli serving to secure the 
megakaryocyte in position counter to the blood 
flow. This has also been demonstrated in TEM 
µreparations by Tavassoli and Aoki [24]. The 
presence of these rare cells may indicate that 
the isolation and analysis methods we have 
applied are gentle and quantitative. 
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Figure~: 32C megakaryocyte displaying nodules 
(0.2-0.5 microns in diameter) over most of its 
surface. 

Figure 7: 8C megakaryocyte covered with round 
blebs (2 microns in diameter) and long 
filaments. 

We believe that these studies have provided 
a fascinating look at the complexities that may 
be inherent in the interpretation of polyploidi­
zation and differentiation in megakaryocytes. 
Future studies being carried out in this labora­
tory should permit us to examine the surface and 
internal ultrastructure of i ndi victual rneyakaryo­
cytes from discrete ploidy classes in an attempt 
to begin to unravel these complexities. 
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Discussion with Reviewers 

M. Tavassoli: How much do the elutriation and 
flow cytometry interfere with the cell viability 
and is it possible to obtain viable cells 
through this technique for in vitro culture? 
Have the authors attempted such cultures? 
Authors: Following elutriation and Percoll 
density gradient centrifugation, viabilities of 
human megakaryocytes were always> 80% by Trypan 
Blue exclusion. We have never attempted 
cultures of these cells. However, Worthington 
and Nakeff [26] have used rat marrow in this 
same system and have demonstrated thromboxane 
production by elutriated megakaryocytes 
attesting to the preservation of their metabolic 
capabilities. 

R.P. Becker: Have you seen megakaryocytes fixed 
in the process of producing platelets? If so 
what was the ploidy of these cells? 
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Authors: As stated in the Discussion, we cannot 
discern which meyakaryocytes, if any, are pro­
ducing platelets. This is, however, of yreat 
interest and we are currently involved in single 
eel l analysis by SEM and subsequent TEM examina­
tion. This will permit correlation of surface 
characteristics with internal ultrastructure. 

D. Zucker-Franklin: Why do you perform the 
experiments at l2°C? 
Authors: We have found 12°C to give the optimum 
recovery of megakaryocytes during elutriation 
[Ref. 26]. 

D. Zucker-Franklin: Please explain the column 
designated "other" in Table 1. 
Authors: For SC and 16C meyakaryocytes, "other" 
refers to megakaryocytes with polarized micro­
villi (similar to Fig. 4) or those with a 
combination of surface features (Fig. 7). For 
32C megakaryocytes, "other" refers to eel ls 
similar to Fig. 8. 

D. Zucker-Franklin: Figs. 1, 2, 4, and 7 all 
have a ploidy of 8N, but what features do they 
share? 
Authors: These figures clearly demonstrate the 
degree of heterogeneity in cell surface ultra­
structure that was surprising to us for cells 
that had the same DNA content, namely 8C. 
Whether this heterogeneity reflects cells at 
different physiological stayes remains to be 
determined. We also wish to emphasize that 
since our measurement of DNA was the total H342 
nuclear fluorescence per megakaryocyte, relative 
to the UNA content of diploid cells, it is most 
reasonable to express the value for this ploidy 
class as 8C rather than 8N. 
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J.C. Mattson: Which morphologic features do the 
authors believe represent platelet formation? 
Are there any correlative TEM studies that might 
shed light on this? 
Authors: The surface detail in these SEM photo­
micrographs raises several questions concerning 
the physiologic events occurring within each 
morphologic category. As previously stated, we 
cannot discern which surface represents platelet 
formation. The fine microvillous projections 
(Figs. 2,3,4) are approximately 0.2-0.4µm in 
diameter which is much too small for platelets. 
The surface blebs (Fig. 7) are about the proper 
size (2µm) but we cannot say, based on size 
alone, that the blebs represent platelets or 
"proplatelet formation". It is further 
interesting to speculate that the fenistrations 
seen in Fig. 6 could represent the formation of 
demarcation membranes. These questions should 
be answered by correlative TEM studies which are 
ongoing in our laboratory. 

J.C. Mattson: It has been suggested that 
platelet size is related to the ploidy class of 
the µarent megakaryocyte. Do the authors have 
any data to support this; i.e., could they 
observe formation of different sized platelets 
from rnegakaryocytes of different ploidy classes? 
Authors: Observations of this tyµe could not be 
made on the basis of surface structure. The 
correlative TEM work should, however, provide 
the means to obtain this data. 
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