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Abstract 

Chromosomes and chromosome fragments from 
embryonic offspring of a transgenic rainbow trout 
were examined using scanning electron microscopy 
(SEM). SEM is an extremely useful technique for 
studying the structure of chromosome fragments 
since little morphological detail is revealed by con
ventional staining methodologies and light micros 
copy. The chromosome preparations were processed 
for SEM by combining an osmium-thiocarbohydrazide
osmium (OTO) technique with 2-4 nm of gold deposi 
tion. This technique revealed the organization of 
individual chromatin fibers in chromosome fragments 
and intact chromosomes. Both a linear chromosome 
fragment with a width similar to that of an intact 
chromatid (approximately 0 .60 micrometers) and a 
spherical chromosome fragment with a diameter 
slightly greater than the width of an intact chromat
id (0 .66 micrometers) were observed in metaphase 
c hromosome preparations . A connective fiber (200-
300 nm in diameter) between a chromosome fragment 
and a host chromosome was observed. Interconnec 
ting fibers (approximately 30 nm in diameter) be 
tween chromosomes, between chromosomes and frag
ments, and between sister chromatids were observed 
in every cell examined. We conclude that SEM per
mits a detailed analysis of chromosome fragment 
structure and the nature of chromosome-fragment as
sociations that cannot be obtained using conventional 
light microscopy techniques. 

Key words: scanning electron microscopy, chromo
somes, chromosome fragments, rainbow trout 
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Introduction 

Little information is currently available regard
ing the ultrastructure of fish metaphase chromo
somes. One scanning electron microscopy ( SE M) in
vestigation of fish chromosomes revealed few details 
of the organization of chromatin fibers (Webb, 1974). 
In contrast, the higher order structure of mammalian 
metaphase chromosomes has been extensively studied; 
a model of metaphase chromosome structure involving 
helical coiling of a 200 nm chromatin fiber (which is 
composed of a looped 30 nm chromatin fiber) has 
been proposed by Rattner and Lin (1985) and 
Taniguchi and Takayama ( 1986). 

The purpose of this study was to examine the 
chromatin organization of trout chromosomes and 
compare the chromatin structure of heritable trout 
chromosome fragments with intact trout chromosomes 
in offspring of transgenic trout. The transgenic 
trout were produced by fertilizing rainbow trout eggs 
with irradiated brook trout sperm, and then heat 
shocking the eggs to induce second polar body reten 
tion (Thorgaard, 1986, and Disney et al., 1987) in 
order to determine whether active , foreign genes of 
interest could be introduced into rainbow trout . 
Some of the chromosome fragments that we observed 
in our transgenic trout persisted through adulthood, 
and were heritable in backcross generations (Disney 
et al., 1988) . Using conventional Giemsa staining 
and light microscopy, the chromosome fragments 
often appeared to be spherical in shape and closely 
associated with an intact chromosome. In order to 
determine if actual connective fibers existed between 
chromosome fragments and host chromosomes and 
whether broken chromosome ends were indeed fusing 
to form circular fragments, we employed SE M and a 
fixation technique described by Allen et al. (1986a, 
b) that permits visualization of chromatin fibers from 
air-dried chromosomes. 

Materials and Methods 

Experimental fish 
Chromosome preparations from two nine-day 

embryos which resulted from a cross between a 
transgenic female rainbow trout (Salmo gairdneri, RT) 
and a normal male RT were exammed. The trans
genic parent was derived from a cross described by 
Thorgaard (1986). Briefly, this cross involved 
fertilization of RT eggs with brook trout ( Salvelinus 
fontinalis, ST) sperm that had been irradiated with 
!iOco. The eggs were then heat-shocked for 10 min 
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Figure 1. Light photomicrograph of a mitotic meta
phase cell from an offspring of a transgenic RT. 
Chromosome fragments inherited from a transgenic 
parent are indicated by an 'F'. Satellite chromo
somes are indicated by an 'S'. RT normally have 104 
chromosome arms; there are 105 chromosome arms in 
this figure. The arrowhead indicates a chromosome 
arm that has no homologous partner and is probably 
of ST origin. There is a small, lightly stained 
protrusion from the end of this chromosome arm that 
may correspond to the 200 nm chromatin fiber ob
served extending from the terminus of a chromosome 
arm with SEM (Fig. 2F) . An enlargement of this 
chromosome is indicated by an arrowhead in the 
lower left-hand corner of the photomicrograph. Bar 
equals 5 micrometers. 

at 29°C to induce retention of the second polar 
body. The resulting embryos had two chromosome 
sets from the female parent and a limited amount of 
genetic material (in the form of autonomous 
chromosome fragments) from the male parent. 
Preparation of embryos 

The embryonic offspring of the cross described 
above were prepared for chromosome analysis using a 
method described by Thorgaard et al. (1981). Briefly, 
this involved dissecting the embryos from the cho
rion while they were in physiological saline, dis 
rupting the yolk sac, and incubating the embryos in 
media with 25 µg/m l co lchicin e for five hours. The 
embryos were then placed in a hypotonic solution 
(0.56% KCl) for 30 min , fixed in 3 methanol : 1 
acetic acid and stored at -20°C. 
Chromosome preparation for light microscopy 

New glass shdes andcoverslips were soaked in 
a 1:1 solution of 95% ethanol and concentrated HCl 
for at least 24 hours , then placed in cold ethanol for 
at least 15 min and wiped dry with a piece of 
cheesecloth. This facilitated chromosome spreading 
and prevented the gold coating from flaking off of 
SE M preparations. 

Chromosome spreads were prepared from em -
bryos as described by Kligerman and Bloom (1977). 
Embryos were removed from the methanol:acetic acid 

Figure 2 (on the facing page). SE M photomicro
graphs of mitotic metaphase cells from two offspring 
of a transgenic RT. Bars all indicate 2 micrometers. 
A). The arrowhead on the left indicates t he same 
chromosome arm enlarged in Figure 2F. The arrow
head on the right indicates circumferentia l grooves 
on the short arm of a metacentric chromosome. 
B). Enlarged metacentric chromosome (M) with knob
by surface morphology. Arrowheads indicate circum
ferential grooves. Note the striated appearance of 
the centromeric constriction indicated by a 'C'. 
Interconnecting fibers between sister chromatids are 
indicated by an 'i' . 
C). Enlarged acrocentric chromosome (A) with knobby 
surface morphology . The arrowhead indicates a 200 -
300 nm connective between the acrocentric chromo
some and a spherical fragment (SF). Note the prev
alence of interconnecting fibers ( designated by an 'i') 
between chromosomes . The centromere region (C) 
has no distinctive morphology. 
D). Metacentric chromosome that has unravelled to 
reveal the 30 nm organizational fiber. In some re 
gions two 30 nm fibers run parallel to each other 
(indicated by a 'p') . Arrowheads indicate areas 
where the fiber is condensed or compacted. 
E). Linear fragment ( LF) with an apparent centro
meric constriction indicated by an arrowhead. The 
knobby appearance of the fragment surface is similar 
to the surface morphology of intact chromosomes. 
Note again the interconnecting fibers between chro
mosomes, between sister chromatids and between the 
fragment and surrounding chromosomes (indicated by 
an 'i'). 
F). Enlargement of the chromosome indicated with an 
arrowhead in Figure 2A. The arrowhead in this fig
ure indicates the 200 nm protrusion extending from a 
healed terminus of a fragmented chromosome arm. 
Int erco nnecting chromatin fibers between chromo
somes are again evident and indicated by an 'i'. 

fix , blotted and placed in 45% acetic acid, and 
macerated until a cell suspension was obtained. A 
drop of suspension was placed onto a clean glass 
slide that had been heated to 45 °C on a slide 
warmer. The drop was withdrawn into a pipette 
leaving a ring of cells on the slide. Slides were 
stained in 3% Giemsa in Gurr buffer (pH = 6 .8) for 
30 min and photomicrographs were made with an 
Olympus BH-2 light microscope. 
Scanning Electron Microscopy 

Chromosome preparations were obtained as 
stated above except that ce ll suspensions were placed 
on circular (12 mm) glass cover slips. Cover slips were 
placed directly onto 38 mm watchglasses and proc
essed as described by Allen et al. ( 1986a, b), with 
some modifications. Chromosome preparations were 
fixed with cold (4°C) 3% glutaraldehyde buffered with 
O.lM sodium phosphate (pH= 7.3) for 20 min. Fol
lowing three rinses in O.lM sodium phosphate buffer, 
the samples were postfixed with 1% osmium tetroxide 
(Os04) for 10 min, rinsed three times with distilled 
water and incubated in a saturated solution of thio 
car bohydrazide (TCH) in distilled water for 5 min. 
Following three rinses in distilled water, the samples 
received another Os04 and another TCH treatment 
with a final fixation in Os04. Chromosome prepara
tions were dehydrated through an ethanol series (30-
100%) and critical point dried from CO2 using a 
Bomar 1500 critical point dryer. Cover slips were 
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attached to aluminum SEM mounts using a thick coat 
of colloidal graphite (Ted Pella Co.) and overlayed 
with 2-4 nm of gold using a Technics V hummer 
sputter coater. Samples were examined with an 
Hitachi S570 SEM at 20 kV using a 60° tilt. Tilt 
compensation was engaged prior to photography. 

Results 

Chromosome morphology Whereas only gross 
morphological differences between chromosomes could 
be distinguished with the light microscope (Figure 1), 
the ultrastructure of rainbow trout chromosomes was 
revealed in this SEM study. We observed that the 
morphology of rainbow trout (RT) chromosomes was 
similar to that of mammalian chromosomes. In Fig
ure 2A the cylindrical shape of both metacentric and 
acrocentric chromosomes is evident. Individual chro
matids measure approximately O .6 micrometers in dia 
meter. Some chromosome arms display circumferen
tial grooves (Figures 2A, 2B) like those characteristic 
of unbanded mammalian chromosomes (Harrison et al., 
1983). The knobby surface of RT chromosomes is 
apparent in Figure 2B; the knobs averaged about 70 
nm in diameter. Similar-sized knobs have been 
observed in SEM preparations of human metaphase 
chromosomes and interpreted to be the result of the 
30 nm chromatin fiber looping out to the surface and 
back into the interior (Harrison et al., 1982; Jack et 
al., 1985; and Allen et al., 1986a). 

The centromeres of RT metacentric chromo
somes are distinctive in appearance (Figure 2B). 
Chromatin fibers are stretched between the long and 
short arms of individual chromatids. Harrison et al. 
( 1983) noted a similar organization of chromatin 
fibers at the primary constriction of human metacen
tric chromosomes. There is no distinctive chromatin 
fiber organization at the centromere of RT acrocen
tric chromosomes (Figure 2C). 

The basic organizational fiber of RT chromo
somes is a 30-40 nm fiber as revealed in Figure 2D 
where the chromatin has unravelled . Some areas of 
fiber compaction are evident as well as regions 
where two 30 nm fibers appear to be running parallel 
through the chromatid. 

Chromosome fragment morphology Few morpho
logical details of the chromosome fragments are ap
parent in light microscope preparations (see Figure 
1). SEM preparations of trout chromosomes reveal 
that some fragments appear linear, while others are 
spherical in nature. The knobby surface and cylin
drical appearance of these fragments indicate that 
their chromatin organization is similar to that of 
intact RT chromosomes. The linear fragment in Fig
ure 2E, 1. 9 micrometers in length, is shorter than 
the smallest RT chromosome (2.6 micrometers) and 
similar in width to the chromatid of an intact chro
mosome (0 .6 micrometers). It has a constriction that 
is similar in appearance to the centromeres of meta
centric RT chromosomes. The fragment has one 
chromatid; this fragment may not have replicated. 
Some fragments have a consistently rounded appear
ance within each cell, similar to double minutes (see 
Jack et al., 1987) . The particular spherical fragment 
depicted in Figure 2C is 0.66 micrometers in dia
meter, slightly wider than the chromatid of a meta
phase chromosome. It also has no apparent sister 
chromatid and may not have replicated. Spherical 
chromosome fragments are often associated with an-
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other chromosome. The connective fiber between the 
fragment and the acrocentric chromosome in Figure 
2C is approximately 200 nm in diameter . DuPraw 
(1970) also described visible connectives between 
chromosomes and chromosome fragments. 

In this particular backcross family, additional 
chromosome arms as well as smaller chromosome 
fragments were inherited from the transgenic parent. 
Some of these arms have distinctive morphologies 
even at the light microscope level (see arrowhead in 
Figure 1). A 200-300 nm fiber can be seen extend
ing from the healed end of one such fragmented 
chromosome (Figures 2A, 2F). Rattner and Lin 
(1985) frequently observed the end of an internal 
200-300 nm fiber (which they interpreted to be the 
fiber which compacts to form the mammalian meta
phase chromatid) extending from the terminus of 
chromosomes in certain cell lines. 

We observed numerous interconnecting fibers 
(approximately 30 nm in diameter) between RT chro
mosomes and between fragments and chromosomes in 
every metaphase cell (see Figures 2B, 2C, 2E, 2F). 
We also observed interconnecting fibers between 
mammalian chromosomes in SEM photomicrographs in 
the review by Harrison et al. (1987), and in articles 
by Jack et al. ( 1987), Allen et al. (1986a, b) and 
Niiro and Seed, (1988), although they are not as 
prevalent as in preparations of RT chromosomes. 
Interconnecting fibers are present between sister 
chromatids of RT chromosomes (see Figure 2B); this 
is consistent with observations of connective fibers 
between sister chromatids in human chromosomes 
(DuPraw, 1970 , and Comings and Okada, 1975). 

Discussion 

The ultrastructure of chromatin organization in 
RT metaphase chromosomes and chromosome frag
ments, as revealed by scanning electron microscopy 
using an osmium tetroxide-thiocarbohydrazide tech 
nique, is quite similar to that of mammalian meta 
phase chromosomes. Rattner and Lin (1985) and 
Taniguchi and Takayama (1986) described models of 
mammalian metaphase chromosome structure in which 
the 30 nm chromatin fiber is looped into a 200 nm 
fiber which coils and compacts to form a mammalian 
metaphase chromatid. Rattner and Lin (1985) fre
quently observed the end of the 200 nm fiber ex
tending from the telomere of chromatids in certain 
cell lines. We observe a similar sized fiber extend
ing from the healed terminus of a fragmented chro
mosome arm and a 200-300 nm fiber forming a con
nective between a chromosome and a chromosome 
fragment. These connectives, in conjunction with 
the fact that 70 nm "knobs" appear on the surface of 
RT chromosomes, suggest that the organization of 
trout chromosomes is similar to that of mammalian 
chromosomes. 

Al though the chromatin organization of trout 
and mammalian chromosomes is similar, they differ in 
that trout chromosomes do not G-band (Hartley and 
Horne , 1985) and display only limited interstitial 
banding when subjected to restriction enzyme diges
tion (Lloyd and Thorgaard, 1988). However, trout 
chromosomes display a longitudinal fluorescent band
ing pattern in response to replication banding tech
niques (Delany and Bloom, 1984), as do mammalian 
chromosomes (for example, see Latt, 1973). The evo
lution of G-bands is hypothesized to have occurred 
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much more recently than the temporal arrangement 
of replicon clusters (Holmquist et al., 1982). The 
only example of clear euchromatin banding in fish 
chromosomes is for the European eel (Wiberg, 1983). 
Medrano et al. (1988) suggest that this G-banding 
may be related to the observation that DNA from 
European eels produces bands in CsCl density gradi
ents that are characterized by a high compositional 
heterogeneity and a strong asymmetry as compared 
with the species of fish that do not G-band. 

Similar correlative DNA data are not available 
for trout; nonetheless, the pattern of circumferential 
grooves observed on RT chromosomes in the SEM 
suggests that some G-banding of trout chromosomes 
could be possible, especially since grooves enhanced 
by trypsin treatment in human chromosomes corre
spond to G-bands in the light microscope (Harrison 
et al., 1981, 1985). SEM studies involving trypsin 
treated trout chromosomes may reveal whether trout 
chromosomes do indeed have the potential to G-band. 

The chromatin structure of chromosome frag
ments in progeny of a transgenic individual is similar 
to that of intact chromosomes. Although some frag
ments appear to have a centromere-like constriction, 
others do not. Associations of fragments with host 
chromosomes are repeatedly observed and may be a 
mechanism by which fragments segregate into daugh
ter nuclei. This is the mechanism by which it is hy 
pothesized that acentric double minute chromosomes 
segregate (Jack et al., 1987). It is interesting that 
sonie fragments do not appear to have sister chro
matids. Many adult transgenic RT were mosaic for 
pigment gene expression and foreign isozyme expres
sion (Disney et al., 1987 , 1988); failure of fragments 
to replicate may be one explanation for the observed 
mosaicism. 

Interconnecting fibers between RT chromosomes 
and sister chromatids may arise during preparation or 
may reflect a real cytological phenomenon. DuPraw 
(1970) presented intriguing evidence that non - homol
ogous chromosomes often have physical connections 
and speculated that chromosome-to-chromosome con
nectives might play a role in the evolution of chro
mosome number and morphology. The prevalence of 
these fibers between RT c hromosomes (in comparison 
to the dearth of fibers between human chromosomes 
in similarly spread preparations) is particularly 
intriguing in light of the interesting evolutionary 
history of salmonids (see Wright et al., 1983). 
Robertsonian fusion is the primary mechanism of 
chromosome evolution in these tetraploid derived ani
mals (see review by Hartley and Horne, 1987). Rain
bow trout chromosomes undergo extensive multivalent 
pairing at meiosis (Ohno et al., 1969) which, in 
males, may result in co-segregation of unlinked 
genes. Associations of mitotic RT chromosomes are 
also often observed (see Bolla, 1987). 

The structure of segregating chromosome frag
ments was revealed by comparing their surface mor
phology to that of intact chromosomes. The SEM 
analysis of trout chromosomes also revealed some 
interesting details of trout chromatin organization . 
A thorough SEM study of trout chromatin structure, 
involving treating the chromosomes with chemicals 
such 33258 Hoechst or 5-azacytidine to decondense 
the chromosomes, might elucidate why differential G
banding has not been obtained with trout chromo
somes . Mechanisms involved in chromosome fusion 
and multivalent pairing might become evident as well. 
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Discussion with Reviewers 

T. D. Allen: Was an intermediate solvent used be
tween the absolute alcohol and liquid CO2. 
Authors: No. 

T . M. Seed: Do the authors have any ideas of the 
stability of chromosome fragments? 
Authors: In light microscopy studies, we often ob
served fragments in close association with intact 
host chromosomes (Disney et al., 1988). These ob
servations led us to hypothesize that some fragments 
may be segregating by association with intact chro
mosomes. We undertook this SEM study in an at
tempt to visualize an actual physical connection be
tween fragments and intact chromosomes. In 4 cells, 
we observed a 200-300 nm connective fiber extending 
between an apparently acentric spherical chromosome 
fragment and a host chromosome (for example, see 
Figure 2C). We have previously observed that chro
mosomes with NORs (nucleolar organizer regions) are 
often associated in trout metaphase preparations (un
published data). This led us to question whether 
some stable fragments carry NORs (Disney et al., 
1988). Indeed, 9 of 14 embryos (from 4 transgenic 
parents) that were examined for NOR expression had 
additional active NOR regions either on chromosome 
fragments or in association with or integrated into 
host chromosomes. Segregation by association may 
not be the only mechanism by which chromosome 
fragments are maintained in these transgenic fish. 
Certainly, further studies on the structural compo
nents of these fragments (i.e. do some fragments 
have kinetochores and telomeres?) are necessary to 
fully understand the mechanism of fragment stability. 

R.B. Phillips: Did the authors observe any pattern to 
the mterchromosomal fibers? Were the fibers just as 
numerous in spreads with widely separated chromo
somes as in more compact spreads such as the one 
illustrated? 
Authors: We observed no particular pattern regard
mg the interchromosomal fibers except that they 
were parallel to each other (i.e. these fibers did not 
criss-cross). Otherwise, they appeared to be ran
domly distributed among the chromosomes and chro
mosome fragments. In more widely separated chro
mosome spreads, these interchromosomal fibers were 
not observed , however, fibrous connections between 
sister chromatids were still evident. 

M.E. Delaney : Were the chromosome fragments ob
served 1n all cells examined? 
Authors: Fragments were not observed in all cells 
examined, although we are not certain that these in
dividuals were mosaic. Small fragments are eas ily 
obscured by intact chromosomes or lost during meta
phase chromosome preparation. To address this 
question we examined anaphase preparations and in 
terpreted anaphase aberrations as being indicative of 
fragment instability (Disney et al. 1988). Siblings of 
the embryos examined in this SEM study did indeed 
display significant numbers of anaphase aberrations 
(lagging chromosomes and bridge formations) as com
pared to control embryos. The association of frag
ments with intact chromosomes mig ht interfere with 
the ability of chromos omes to segregate properly. 
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M. E. Delaney: Was a centromere-like constriction 
ever observed within the spherical fragments? 
Authors: The spherical fragment was observed using 
SE M in 12 cells and a centromere-like constriction 
was never apparent. 

M .E. Delaney: Does the lack of distinctive centro
meric organization observed in the acrocentric chro
mosomes provide evidence that these chromosomes 
should be designated telocentric? Was this observed 
in all acrocentrics? How does this result compare 
with the centromere structure observed by SEM of 
mammalian aero- and telocentrics? 
Authors: We have made light microscope and SEM 
preparations of human chromosomes from peripheral 
lymphocyte cultures. Human acrocentric chromo
somes did not always appear to have a primary con
striction in our light microscope preparations but all 
10 human acrocentric chromosomes always had a pri
mary constriction in our SEM preparations. In our 
trout chromosome preparations, however, we observed 
only 2-4 acrocentric chromosomes with primary con
strictions (we typically refer to these chromosomes 
as subtelocentrics) and the remaining acrocentric 
chromosomes truly had no distinctive chromatin fiber 
organization at the centromere. Therefore, "telocen
tric" might be a better designation for these chromo
somes. 

J.B. Rattner: Are the smallest spherical fragments 
comparable in size to the reported size of chromo
meres? I wonder if there is a minimal size for a 
chromosome fragment. 

Authors: We estimate a trout chromomere to be ap
proximately O .3-0 .5 micrometers in length. The 
smallest spherical fragment that we measured was 
slightly larger (0 .66 micrometers) than the estimated 
size of a chromomere. We are also interested in 
what constitutes a minimal autonomous chromosome 
fragment. We suggest that this in vivo chromosome
mediated gene transfer system might prove useful for 
defining the minimal requirements of a functional 
higher eukaryotic chromosome. 

T .D. Allen: Is it possible to produce spreads in 
which individual chromosomes are more spaced? If 
so, firstly there will be more ultrastructural informa
tion available, as some is masked by adjacent chro
mosomes. Secondly, in mentioning interconnecting 
fibers, we feel that these fibers are probably slightly 
dispersed chromatin loops at the chromosome peri
phery, and tend to be merely 'tangled' in those of 
adjacent chromosomes. Thus if adjacent chromo
somes were further away, the nature of this dis
persed surface chromatin might become apparent. 
Authors: Yes, it is possible to produce spreads in 
which individual chromosomes are more spaced. In 
such preparations, the interconnecting fibers could 
not be seen and may have broken during the air
drying and spreading process. Although it is possible 
that these fibers are dispersed chromatin loops at 
the chromosome periphery that have become 'tangled' 
with dispersed chromatin loops of adjacent chromo
somes, we never observed "intermediately" spread 
chromosome preparations with overlapping points of 
entanglement. The interconnecting fibers were either 
present in parallel between chromosomes or were not 
present. 
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