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Abstract

The Scanning Tunneling Microscope (STM) can
image gold surfaces covered with a variety of liquids.
This paper reviews the results obtained using the
STM to image gold surfaces covered with liquid.
These results include the creation of 10 nm struc-
tures, images of the electrochemical process of elec-
troplating, and the production of atomically flat Au
(111) surfaces. We conclude that in the future STM
will find further application in the area of nano-
structure fabrication and electrochemistry. The
trend in the field is toward greater control of the
electrochemical environment.
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Introduction

Scanning Tunneling Microscopy (STM) [5, 13,
16, 17, 27, 41] can be used to produce three-dimen-
sional images of surfaces with atomic resolution.
The operation of the microscope is shown in Fig. 1.
A sharp metal tip is brought within tunneling range
(typically 0.1 to 10 nm) of the surface. Then, when
a bias voltage is applied between the tip and surface
a tunneling current flows. The tunneling current is
a sensitive indicator of the distance between the tip
and surface. For a typical surface work function of
4 eV, the current decreases by an order of magni-
tude for a change in tip surface distance of 0.1 nm.

In operation the tip is X-Y raster scanned over
the sample while a feedback network changes the
distance between the tip and surface to keep the
tunneling current constant. An image consists of a
z(x,y) map in which the distance between the tip and
surface z is plotted versus the lateral position x,y.
All of the images shown in this paper were obtained
in 1 minute or less.

The STM can be used to study vacuum-solid,
gas-solid, and liquid-solid interfaces. A number of
reviews of STM have appeared [13, 16, 17, 27, 41].
One in particular reviews STM at the liquid-solid in-
terface and contains over 100 references to work in
this field [41]. The liquid-covered surfaces that have
been imaged with the STM include: graphite [37],
nickel [20], GaAs [40], DNA [22], iron [8], platinum
[23], silver [39], and gold [31, 33, 34, 35 41]. In
this tutorial we will review the results obtained
using STM to image gold surfaces covered with liquid
(in particular, the liquid-gold interface).

The liquid-gold interface was chosen for two
reasons: 1) Gold is an inert material which does not
form an insulating oxide layer under air or water,
and 2) It is easy to prepare atomically flat single
crystal gold surfaces in air.

First we will describe how to produce an atom-
ically flat Au (111) surface [35]. Then we will de-
scribe the creation of nanometer scale features on a
Au (111) surface covered with non-polar liquids [33,
35]. To image surfaces covered with conducting lig-
uids, special tips must be used, the preparation of
these tips will be described. Using these tips, elec-
troplating on a Au (111) surface may be observed in
situ with a STM [31].

Producing Flat Au Surfaces

An atomically flat surface is desirable for many
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Discussion with Reviewers

H. van Kempen: In the section "Creating nanometer
scale structures”" the authors describe the creation of
mounds. Is it also possible to create holes? Are
there effects of tip contamination as seen by
Gimzewski et al. [12]?

Authors: It is possible to make holes. Sometimes
mounds are formed and sometimes holes are formed.
We are not sure of the reason for this. Because we
are running outside of vacuum we always see low
work functions which indicate tip contamination.

J.D. Andrade: Regarding the mound formation under
the tip as a result of application of a high bias
voltage, can the authors suggest a mechanism or at
least a hypothesis related to the mound forming
process?

Authors: Two possible mechanisms are mechanical
contact and chemical reactions caused by the
tunneling electrons.

H. van Kempen: An additional method to handle
STM in conducting liquid is to use AC modulation
technique. For example, a suitable DC voltage can
be applied to prevent any electrolysis at the tunnel
junction while at the same time an AC current is
used to sense the tip-sample distance.

Authors: Thank you for your suggestion.
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H. van Kempen: Are there estimates about the
surface area of the part of the tip which is not
covered with SiO? Do the authors know any method
to determine this area?

Authors: We have no estimate of the surface area
of the tip. Reference 11 describes how this can be
done electrochemically.

H. van Kempen: Electroplating: Is the tip retracted
out of the fluid or just backed off somewhat (how

much?)? Is any electroplating observable due to the
tunnel current?
Authors: The tip is not retracted out of the fluid.

It is backed up about 1 micrometer. No electro-
plating is observable due to the tunneling current.

J.D. Andrade: It is stated that non-polar fluids
appear to make surface modification process more
reproducible with no net effect on the imaging
process. Could the authors elaborate on the role of
both non-polar and polar fluids on STM imaging?
Authors: The molecules in the fluid are moving
about rapidly and so they have no net effect on the
imaging process. The fluids can have an electro-
chemical effect. For example, they can cause band
bending in semiconductors.

S. Lindsay: I add the following comments of a
practical nature:

Better Substrates: We have used these melted gold
spheres as substrates, but have changed to gold
grown epitaxially on mica. Although this involves
more work initially (we use a UHV oil-free system
and heated substrates) the substrates are much more
reliable, being flat to within a few atomic steps over
micron distances, and free of high molecular weight
contaminants (they are kept under clean argon prior
to use).

Better tips: Hard coatings (such as glass and un-
plasticized polymers) tend to fracture near the tip
during handling (increasing leakage). We now
prepare our own tips with electrochemical etching in
a CN solution, and insulate them by pushing them up
through Apiezon wax. The temperature of the wax
is adjusted to leave a few micrometers? of metal
unexposed.

Authors: Thank you for your helpful comments.
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