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Abstract 

Nearly a quarter of all people rely on karst aquifers for drinking water. In the United States, the 

Safe Water Drinking Act requires a complete assessment of public water systems' vulnerabilities to 

contamination. As part of that assessment, watershed boundaries must be delineated, while recharge 

and supply locations identified. In the context of karst aquifers, surficial karst features, such as 

sinkholes, can act as a point source of direct recharge to karst aquifers and create vulnerabilities to 

critical drinking water sources. Historical methods of locating these features are inefficient and depend 

on basic field investigations, resulting in a clear need for advanced identification methods. To this end, 

this study focuses on developing more efficient identification methods that use remotely sensed data to 

locate and map surficial karst features that may require protection.  Satellite and unmanned aerial 

vehicle (UAV) data were used to explore the resolution needed to identify surficial karst feature 

signatures and the most promising methods for analyzing these data. This study's data included red, 

green, blue, and near-infrared reflectance rasters, thermal mosaics, and digital surface and terrain 

models. Spectral and thermal properties were used to filter data that could include karst features. 

Additionally, digital elevation models were used to explore multiple smoothing methods, image 

differencing, edge detection, terrain curvature, sink location, and watershed delineation. Findings from 

the different methods were compared to known karst feature locations. Data with a resolution between 

0.5 and 2.5 meters per pixel were found to be ideal for most methods tested.  However, vegetation 

removal, followed by a simple interpolation to fill these areas, created data analysis problems and 

highlighted the need for other data products, such as LiDAR, that provide accurate elevations of terrain 

shrouded by vegetation. In the end, it was found that edge detection, mapping curvature, and locating 

of low points (or sinks) via DEM analyses are all promising methods. It was concluded that by combining 

multiple methods, detailed digital terrain models could accurately locate many surficial karst features.  
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Introduction 

Ford and Williams (2007) estimate that soluble rocks suitable for developing karst networks 

cover as much as 10 – 15% of Earth's surface. Karst aquifers are an essential water resource throughout 

the world and supply water for various uses, including drinking, irrigation, and power supply 

(Goldscheider, 2005). Additionally, Ford and Williams (2007) estimate that as much as 20 – 25% of the 

global population may be relying on karst aquifers as a source of drinking water.  

In 1996, the Safe Water Drinking Act (SDWA) was amended by Congress and required all states 

to compile and submit Source Water Assessment Plans (SWAPs) (Ginsberg and Palmer, 2002). These 

SWAPs required a complete assessment of public water systems, including boundary delineations of 

water supply locations. Ginsberg and Palmer (2002) explain that karst aquifers are extremely susceptible 

to contamination from pollutants, which once in the aquifer can spread rapidly. This is due to karst 

systems containing multiple porosity types, including micropores, small fissures and fractures, and large 

fractures and conduits (Hartmann et al., 2014). These subterranean waterways widen and link together 

with continued flow along bedding planes, through fractures, and within existing dissolution features 

(Ewers, 1982; Ginsberg and Palmer, 2002; Hartmann et al., 2014).  This combination of porosity types 

and continuing maturity of karst networks increases hydraulic conductivity and decreases residence 

time (Goldscheider, 2005; Palmer, 2007).  Additionally, a karst aquifer with mature flow paths can 

experience limited pollutant filtration and increased potential for transport (Ginsberg and Palmer, 

2002). Karst aquifers experience recharge from both diffuse and point sources (Goldscheider, 2005). 

Though most water enters karst aquifers through bedding planes and fractures, dissolution features, 

such as sinkholes, are a point source for recharge to the aquifer (Ginsberg and Palmer, 2002). That 

knowledge illustrates the need to locate these vulnerable recharge areas that allow for direct 

contribution of pollutants into karst aquifers. 
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Understanding the interaction of karst features and aquifers is also essential because of their 

vast storage and ability to quickly transmit water. Because karst aquifers receive more recharge, and 

both store and transmit larger volumes of water (Kresic, 2013), it becomes clear that an improved 

understanding of underground reservoirs and conduits within karst features would result in an ability to 

quantify groundwater stores. It would also help discover how the anticipated shifts from a snow-

dominated system to a rain-dominated system across the Intermountain West will affect our water 

resources (Tyson, 2021). Before a better understanding of conduits and subsurface connections can be 

gained, surface karst features, primarily fractures and sinkholes, must be mapped. However, surficial 

karst features can be hard to locate due to terrain, remoteness, and vegetation cover.  

Utah's Bear River Range includes the Logan River watershed, where the canyon portion of the 

watershed is comprised of formations consisting primarily of carbonates with some units of quartz-

cemented quartz sandstone (Bahr, 2016).  One prominent feature of these units is a large number of 

karst features, such as sinkholes and cave structures, which act as subsurface drainage networks 

(Spangler, 2011). Water from these karst networks drain to the Logan River and is used to generate 

electricity and irrigate agricultural lands across Cache Valley and urban areas within Logan City. The karst 

networks and aquifers also provide drinking water to surrounding areas.   

Spangler (2011) used dye tracing to measure flow-through rates of the karst drainages and 

mapped the pour points of some of the more prominent karst features within Logan Canyon. 

Additionally, through groundwater chemical signatures, Spangler was able to suggest that the rocks 

through which the conduits run have notable differences.  Bahr (2016) focused on mapping the karst 

features in the locale of Tony Grove to study how structures within the geology affected the karst 

complexes. Bahr showed that these mountainous karst systems are "highly influenced" by the 

orientation, geometry, permeability, and deformation of the rock units in which they are located. More 
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recent work has focused on the connections between groundwater recharge and river and spring 

discharge changes throughout the watershed (Neilson et al., 2018). They documented significant gains 

and losses of water volume over expanses of the river channel that are primarily sourced by low 

residence time, karst conduit water. Recent, ongoing efforts are trying to relate snow accumulation and 

melt patterns to baseflow in the river (Tyson, 2021). However, these efforts do not account for sinkhole 

locations where the karst terrain plays a major role in water delivery to the river throughout the year.  

Given the importance of the karst aquifer to the future of Cache Valley's water, there is a clear 

need to further understand karst aquifer recharge and discharge. A critical component of this future 

work is identifying primary recharge locations and, in particular, sinkholes. Based on the size of karst 

features in the Bear River Range and the relatively small amount of vegetation, it was hypothesized that 

remote sensing methods could be used to provide a method for detecting sinkholes or openings into 

karst groundwater systems. To test that hypothesis, this study utilizes remotely sensed data in the form 

of satellite and UAV spatial data that has been geo-located. The satellite data was used in an attempt to 

visually identify anomalies amongst known karst features and test the resolution of available data to see 

if it is sufficient to move forward with additional analysis of data.  Data collected by UAV provided 

spectral imagery in red, green, blue, and near-infrared wavelengths; an elevation model; and thermal 

imagery of the ground surface. Analysis performed on these data include calculating vegetation indices, 

limiting data based on a spectral survey of vegetation, and filtering data based on a thermal survey of 

known karst features. Efforts to identify karst signatures applied methods including image differencing, 

edge detection, and curvature calculations. Identification of surficial karst locations using watershed 

delineation and sink identification was also explored. Because the UAV collected data had an extremely 

fine resolution, appropriate data resolution requirements for future studies were also investigated. In 

the end, this study succeeded in identifying promising methods for locating surficial karst features that 

should be further investigated. 
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Methods 

This study focuses on a location in the canyon portion of the Logan River watershed situated 

approximately 20–25 km east–northeast of Logan, UT. Logan Canyon is located in northern Utah's Bear 

River Range and is the consequence of Cretaceous west-to-east thrusting during the Laramide orogeny 

(Spangler, 2011). The Logan River is a third-order river that flows west-southwest with a snow-melt-

dominated hydrograph (Neilson et al. 2018).  The watershed includes coastal deposits that were 

materialized during the Paleozoic era, with most of the deposition between the Ordovician and 

Devonian periods (Spangler, 2011). Given the need to establish an identifiable signature of karst 

features, the study area in Logan Canyon has 80 horizontal and vertical karst features already identified 

(Figure 1). Data gathered for this study included high-resolution satellite data and higher resolution UAV 

survey data to test different feature identification methods (Table 2). 
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Figure 1: Study area (red polygon) with known karst locations (yellow points) used with satellite data. These karst locations 
include both vertical and horizontal dissolution features. The Tony Grove Climate site location, used for relative humidity and 
temperature data, is also noted as a red cross. 

Remotely Sensed Data 

Remotely sensed data products, and altered versions of those products (Table 2), were used to 

complete initial analyses. Satellite data were downloaded from Planet, a private company founded in 

2010, consisting of Red Green Blue (RGB) and Near Infrared (NIR) RapidEye Analytic Ortho Tile data, at a 

resolution of 3 – 5 meters per pixel (Planet Team, 2017). Additionally, a UAV survey was completed on 

September 29th, 2019, between 9:00 AM and Noon, by USU's AggieAir for two areas of interest. The 

location of these surveys was based on the density of known surficial karst features, hereafter referred 

to as Polygon 1 and Polygon 2 (Figure 2). An octocopter (Matrice 600 Pro) was equipped with both RGB-

NIR and thermal imaging sensors and was flown in a detailed zig-zag pattern to collect high-resolution 
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data for these areas (Figure 3). The purpose of the UAV flights was to provide fine spatial resolution data 

to test methods for identifying signatures common amongst karst features and assess data resolution 

requirements for future studies.  

 
Figure 2: Extent of UAV study; resulting from data collected following AggieAir UAV flight. Polygon 1 in green, Polygon 2 in blue, 
and known karst features in yellow. 
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Figure 3: Specifications of the Matrice 600 Pro octocopter, which conducted the UAV flight (https://uwrl.usu.edu/aggieair/uav-
service-center/platforms-sensors). 

Reflectance data obtained from the UAV flight consists of RGB and NIR data. That data was 

combined into a single dataset to make a single reflectance layer with a resolution of about 2.3 cm per 

pixel (Figure 4, Table 2). The resulting 4-band reflectance mosaics has band 1 containing the red 

wavelengths, band 2 covering the green wavelengths, band 3 the blue wavelengths, and band 4 the 

Near Infrared (NIR) wavelengths (Table 1). However, for much of this work, the reflectance layer is 

presented as a false-color composite (e.g., Figure 5a), where the color red has the NIR input, the green 

layer has the red input, and the blue layer has the green input (Figure 5a). 

 
Figure 4: Resolution of UAV-based spectral imagery (a), digital surface model/digital terrain model (b), and thermal raster (c). 

Table 1: Association between UAV bands within the 4-band reflectance layer and the colors those bands represent. 

Reflectance Layer Bands 

Band 1 2 3 4 

Reflectance Red Green Blue NIR 
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Figure 5: Raw data obtained through UAV flight. False-color composite of spectral imagery (a), digital surface model (DSM) 
displaying elevation (b), and thermal data showing the uncalibrated temperature in Celsius (c). Note thermal imagery not 
processed for Polygon 1. 

AggieAir technicians utilized the UAV reflectance data and Agisoft Metashape Professional 

software (Agisoft) to produce a Digital Surface Model (DSM) at a resolution of 2.3 cm per pixel (Figure 4 

and 5, Table 2). The process was completed by building a dense point cloud from UAV-collected imagery 

and assigning a calculated elevation for each pixel within the image. That data was then orthorectified 

to create the DSM for each polygon (Figure 5).  Utilizing the resulting DSM from each polygon, a Digital 

Terrain Model (DTM) was then created (Table 2). The difference between a DSM and a DTM is simply 

that a DTM does not include vegetation (Figure 6). To successfully produce a DTM, AggieAir technicians 

used Agisoft to isolate and remove vegetation through altering variables that define maximum allowable 

slope and cell size. Once removed, the new DTM underwent smoothing to fill holes left behind from the 

deletion of cells that were found to represent vegetation elevation rather than surface elevation. This 

step produced a DTM, also at a resolution of 2.3 cm per pixel (Figure 4, Table 2). In addition to the data 

outlined above, data for Polygon 2 also consisted of uncalibrated (meaning there was no external 

thermal ground-truthing data collected) thermal mosaics with data in degrees Celsius and a resolution 

of about 15 cm per pixel (Figures 4 and 5, Table 2).   
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Figure 6: Polygon 2 DSM (includes vegetation) (a) and DTM (vegetation removed) (b). Area in Polygon 2 clipped to a known large 
karst feature (c, d). Clipped DSM (includes vegetation) (c) and clipped DTM (vegetation removed) (d). Vegetation removal 
processed by AggieAir Technician through Agisoft Software. 

In some of the analyses outlined below, attempts at processing the whole study area using 

MATLAB failed due to available processing power and the large file size. Therefore, three small areas 

were clipped from Polygon 2 for each of the uncalibrated thermal mosaics, the 4-band reflectance 

mosaics, and the DTM rasters (Table 2). These clipped locations were limited to three areas that 

contained known surficial karst features at three different scales (Figure 7). From this point on, those 

clipped locations will be referred to as the large karst feature (Figure 4b), the medium karst feature 

(Figure 4c), and the small karst feature (Figure 4d). The large karst feature has an opening on the scale of 

approximately 30m x 10m. The medium karst feature has an opening at a scale around 25m x 10m. The 

small karst feature has an opening of approximately 3m x 2m. 

Table 2: Outline of the data used in the analysis of this study. Contains remotely sensed data products and their resolution and 
source. 

Remotely Sensed Data Resolution Source 

Red Green Blue Spectral Imagery 3 – 5 m Planet's Satellite Data 

Near-Infrared RapidEye Analytic Ortho Tile Data 3 – 5 m Planet's Satellite Data 

4-Band Reflectance Mosaics 0.023 m UAV Flight 

Digital Surface Model (DSM) 0.023 m UAV Flight 

Digital Terrain Model (DTM) 0.023 m Digital Surface Model 

Uncalibrated Thermal Mosaics 0.15 m UAV Flight 
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Clipped 4-Band Reflectance Mosaics (Clipped to the 
location of Large, Medium, and Small Karst) 

0.023 m UAV 4-Band Reflectance 
Mosaics 

Clipped Digital Terrain Model (Clipped to the location of 
Large, Medium, and Small Karst) 

0.023 m Digital Terrain Model 

Clipped Uncalibrated Thermal Mosaics (Clipped to the 
location of Large, Medium, and Small Karst) 

0.15 m Uncalibrated Thermal Mosaics 

 
Figure 7: False-color composite of Polygon 2 (a) and clipped areas within (b – d) limited to large (b), medium (c), and small (d) 
karst features. 
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Data Analysis 

The first set of analyses for this study investigated different data products and spatial 

resolutions to understand the level of detail needed to identify unique signatures associated with 

surficial karst features. Visual methods of identifying karst signatures began with Planet's satellite data 

at a resolution of 3 – 5 meters per pixel (Table 3). To begin, nearby temperature and relative humidity 

(RH) data were collected for 2016 through 2017 from a local Logan River Observatory weather station 

(Tony Grove Climate Station) (LRO, 2021). Based on that data, it was determined that February 2016 and 

August 2017 had the most significant difference between temperature and RH. This led to Planet's RGB-

NIR satellite data being downloaded for those months. Then, ArcMap software was used to create a 

Normalized Difference Vegetation Index (NDVI) layer (Eqn. 1), a false-color composite layer, and a Near-

Infrared (NIR) layer (Table 3).  

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
      Eqn. 1 

where 

NIR = Near-Infrared Band 

R = Red Band 

The NDVI layer displays calculated reflectance properties based on the difference between NIR and red 

wavelength reflectance. This method returns values ranging from 0 to 1, where values close to 0 

represent barren areas and values close to 1 represent high reflectance vegetation. To perform the NDVI 

calculations, the Band Arithmetic function in ArcGIS Pro was used. While there are many types of 

vegetation indices that can be calculated, the NDVI was initially used because it is the most common 

vegetation index for identifying vegetation (Gao, 1996).  Using the NDVI layers, false-color composite 
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layers, and NIR layers, a visual comparison between months was completed in an attempt to identify 

anomalies in the location of known karst features.  

The second analysis was the first to use the UAV collected data for Polygon 2 (Table 3). It 

focused on limiting the search area for karst features by eliminating locations where surficial karst was 

not present or could not be detected. First, an analysis of the spectral layers was completed (Table 3). 

Due to the nature of the UAV data and the cameras' inability to penetrate dense vegetation, no analysis 

of the terrain shrouded by vegetation could be completed (Wallace et al., 2016). Therefore, the first 

layer was created by simply removing vegetation based on sampled reflectance values. This was 

completed by creating a vegetation index and then sampling the reflectance of vegetation within 

Polygon 2 to obtain a representative range of values. That range of reflectance values was then used to 

filter the vegetation index layer and remove these data.  

NDVI was initially used in this analysis. However, after sampling reflectance properties within 

the study area, it was found that highly reflective carbonate in the area created an overlap in vegetation 

and bedrock reflectance values. Therefore, the vegetation index that was ultimately applied was the Soil 

Adjusted Vegetation Index (SAVI) using Eqn. 2.  

𝑆𝐴𝑉𝐼 = (
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅+𝐿
) ∗ (1 + 𝐿)     Eqn. 2  

where 

NIR = Near Infrared Band 

R = Red Band 

L = Soil Correction Factor (L = 0.5) 
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Similar to NDVI, SAVI returns reflectance values that range from 0 to 1. This vegetation index is 

preferable in this instance because it applies a soil correction factor (L), which results in a more 

significant difference between values obtained from the highly reflective carbonate bedrock and 

vegetation.  This layer was also created in ArcMap using the Band Arithmetic function. 

A shapefile consisting of points at locations with vegetation was created for identifying a range 

of reflectance values for vegetation within the study area. ArcMap's Extract Multiple Values to Points 

tool was then used to pull SAVI values at those locations and add them to the shapefile's attribute table. 

The minimum and maximum values were identified and used in ArcMap's Set to Null tool. This tool 

ultimately masked, or removed, all data that included reflectance values within the defined range from 

the SAVI layer. Additionally, because the desire is only to retain locations where the surficial karst 

features could be detected, once the SAVI layer had the undesirable data removed, it was used to clip 

corresponding data from the DSM.  

A similar methodology as outlined above for the spectral analysis was used to mask thermal 

data (Table 3). Though the first hundred meters of karst systems are influenced by external 

temperatures and seasonal variations, the temperature at the openings is also a function of radiation, 

precipitation, evapocondensation, and thermal exchanges between soil and air (Luetscher and Jeannin, 

2004). Preliminary results also showed a difference in temperature among the karst openings and the 

surrounding areas between the hours that the UAV flight was conducted (Figure 8). Therefore, 

proceeding with that understanding, thermal values for known karst feature locations were sampled to 

create a range of temperatures. Those temperatures were presumed to be representative of karst 

features within the study area and used to mask temperatures outside of that range. The resulting SAVI 

and thermal layers were then combined to create a new layer that only included data common to both 

datasets (Table 3).  
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Figure 8: Preliminary data collected by deploying two temperature and RH sensors. One sensor was placed close to a karst 
opening (RH Close and AirTemp_Avg Close), and a second placed ~10 m away from the karst opening (RH Away and Air 
Temp_Avg). 

The third data analysis approach focused on using edge detection to identify karst feature 

signatures. Using the 2.3 cm per pixel DTM for the large, medium, and small karst subsections of 

Polygon 2, edge detection methods were applied to the raw, smoothed, and differenced data (Table 3). 

Smoothing is commonly used to reduce noise within an image (Weickert, 1998). For this study, 

smoothing was tested using two different methods. The first method of smoothing is a moving average. 

This method defines the size of matrices and then calculates an average around a center pixel. The user 

can define the size of the matrix as well as the number of iterations performed. Various values were 

tested for both the size of the matrix and the number of iterations used.  

The second method of smoothing is Gaussian smoothing (Table 3). Through this smoothing 

method, the user can define the value of sigma (σ), where σ is the standard deviation of the Gaussian 

distribution and a larger σ results in increased "blurring." This smoothing method was applied using an 

array of different σ values to complete isotropic smoothing of the clipped DTMs. Utilizing the outputs 
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from the smoothing processes, the images were differenced. To complete this process, the elevations 

contained within the smoothed DTMs were subtracted from the original elevations contained within the 

clipped DTMs to create the new differenced elevation model.  

Edge detection is used to determine where the edges of features may exist. This study used 

three edge detection methods: the Canny, Sobel, and Roberts edge detection methods (Table 3).  All 

three methods were used on the raw DTMs, the smoothed DTMs, and the DTMs obtained from image 

differencing. The various methods of edge detection were used to locate enclosed circular edges. The 

Canny edge detection method works by identifying local maxima in the gradient, calculated as the 

derivative of a Gaussian filter. Canny utilizes strong and weak edges, but only includes weak edges if 

connected to strong edges (Gonzalez et al., 2009). Sobel edge detection locates edges by computing the 

gradient through calculating differences in rows and columns in a 3 x 3 neighborhood. Additionally, the 

center pixel is weighted by 2 to provide smoothing (Gonzalez et al., 2009). Roberts edge detection is one 

of the oldest and simplest edge detection methods in digital image processing. It detects edges by 

approximating first derivatives as differences between adjacent pixels (Gonzalez et al., 2009).  

Curvature calculations were completed on the small, medium, and large clipped subsections of 

Polygon 2 at the original resolution (Table 3). Prior to calculating curvature, smoothing by the Weickert 

method was performed to reduce noise in the image and still preserve regional edges through implicit 

discretization. This method of smoothing utilizes the COHERENCEFILTER function to perform anisotropic 

diffusion in 2 dimensions. The parameters T (the total diffusion time) and dt (the diffusion time step) 

were adjusted in the process. These parameters define the number of coherence filter iterations. Simple 

2-D curvature calculations were then completed. Once curvature was shown to be a potentially useful 

method for identifying a signature of karst features, the resolution of the data clipped from Polygon 2 

was coarsened. This was completed to test the resolution of data needed to identify the curvature of 
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the karst openings. The data representing the small, medium, and large karst features were aggregated 

through bilinear interpolation to a range of resolutions, noted in Table 3. Based on the findings from 

calculating the curvature of clipped data at various resolutions, the whole of Polygon 2 was similarly 

aggregated using bilinear interpolation to resolutions of 0.1, 0.5, and 1-meter per pixel to test and 

visualize the results of calculating curvature at different spatial scales (Table 3). Using methods already 

outlined, the Weickert method of smoothing and curvature calculations were performed on the 

aggregated data of Polygon 2. 

To determine if topography alone could be used to identify sinkholes, watershed delineation 

was performed on the unclipped Polygon 2 study area using the 1-meter resolution and identified sinks 

as pour points. Various neighborhoods, defined by the size and shape of a matrix, were used to run focal 

statistics properties in ArcGIS (Table 3). The neighborhoods and defined variables used to run focal 

statistics for each can be seen in Table 3. Flow Direction was then calculated for each of the resulting 

layers. Then using the Sink tool in ArcMap, a layer was created showing locations which had been 

identified as sinks. Watershed delineation then followed by using the sink locations as pour points. 

These delineated watersheds helped detect locations identified as sinks, which were as small as a single 

pixel in some cases. Finally, the results from calculating curvature, locating sinks, and performing 

watershed delineations were overlayed on each other (Table 3). This was completed to add supporting 

evidence or refute predictions of locations of karst features. 
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Table 3: Outline of data analysis performed. Includes data created, location of geo-located data, data used to perform analysis, and the resolution of the data produced. 

Analysis Data Created Location Data Used Resolution 

1 Normalized Difference Vegetation Index Tony Grove Study Area Planet's Satellite Data 3 – 5 m 

False Color Composite Tony Grove Study Area Planet's Satellite Data 3 – 5 m 

Near-Infrared Display Tony Grove Study Area Planet's Satellite Data 3 – 5 m 

2 Spectral Analysis Polygon 2 UAV 4-Band Reflectance 
Mosaics 

0.023 m 

Thermal Analysis Polygon 2 UAV Uncalibrated Thermal 
Mosaics 

0.15 m 

Spectral and Thermal Compilation Polygon 2 Results of Spectral and 
Thermal Analysis 

0.023 m and 0.15 m 

3 Moving Average Smoothing Large, Medium, and Small 
Karst Clips 

Clipped Digital Terrain Model  0.023 m 

Gaussian Smoothing Large, Medium, and Small 
Karst Clips 

Clipped Digital Terrain Model 0.023 m 

Image Differencing with Moving Average Smoothing Large, Medium, and Small 
Karst Clips 

Clipped Digital Terrain Model 
- Moving Average Smoothing 

0.023 m 

Image Differencing with Gaussian Smoothing Large, Medium, and Small 
Karst Clips 

Clipped Digital Terrain Model 
- Gaussian Smoothing 

0.023 m 

Canny Edge Detection Large, Medium, and Small 
Karst Clips 

Clipped Digital Terrain Model  0.023 m 

Moving Average Smoothing 0.023 m 

Gaussian Smoothing 0.023 m 

Image Differencing with 
Moving Average Smoothing 

0.023 m 

Image Differencing with 
Gaussian Smoothing 

0.023 m 

Sobel Edge Detection Large, Medium, and Small 
Karst Clips 

Clipped Digital Terrain Model 0.023 m 

Moving Average Smoothing 0.023 m 

Gaussian Smoothing 0.023 m 
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Analysis Data Created Location Data Used Resolution 

Image Differencing with 
Moving Average Smoothing 

0.023 m 

Image Differencing with 
Gaussian Smoothing 

0.023 m 

Roberts Edge Detection Large, Medium, and Small 
Karst Clips 

Clipped Digital Terrain Model 0.023 m 

Moving Average Smoothing 0.023 m 

Gaussian Smoothing 0.023 m 

Image Differencing with 
Moving Average Smoothing 

0.023 m 

Image Differencing with 
Gaussian Smoothing 

0.023 m 

4 Aggregated Clipped Digital Terrain Model Large, Medium, and Small 
Karst Clips 

Clipped Digital Terrain Model 0.05 m 

0.075 m 

0.1 m 

0.25 m 

0.5 m 

0.75 m 

1 m 

2.5 m 

5 m 

7.5 m 

10 m 

Weickert Smoothing Large, Medium, and Small 
Karst Clips 

Clipped and Aggregated 
DTMs 

0.023 – 10 m 

2-D Curvature Large, Medium, and Small 
Karst Clips 

Clipped and Aggregated 
DTMs 

0.023 – 10 m 

Aggregated Digital Terrain Model Polygon 2 Digital Terrain Model 0.1 m 

0.5 m 

1 m 
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Analysis Data Created Location Data Used Resolution 

Weickert Smoothing Polygon 2 Aggregated Digital Terrain 
Models 

0.1 – 1 m 

2-D Curvature Polygon 2 Aggregated Digital Terrain 
Models 

0.1 – 1 m 

5 Focal Statistics, Neighborhood: Rectangular 3 x 3, 
Statistic Type: Minimum 

Polygon 2 Digital Terrain Model 1 m 

Focal Statistics, Neighborhood: Rectangular 3 x 3, 
Statistic Type: Mean 

Focal Statistics, Neighborhood: Rectangular 5 x 5, 
Statistic Type: Minimum 

Focal Statistics, Neighborhood: Rectangular 5 x 5, 
Statistic Type: Mean 

Focal Statistics, Neighborhood: Circular w/ Radius of 3, 
Statistic Type: Mean 

Focal Statistics, Neighborhood: Annulus w/ Inner 
Radius of 1 and Outer Radius of 3, Statistic Type: Mean 

Focal Statistics; Neighborhood: Wedge w/ Radius of 3, 
Start Angle of 0, and End Angle of 90; Statistic Type: 
Mean 

Focal Statistics, Neighborhood: Irregular 3 x 3, Statistic 
Type: Mean 

Focal Statistics, Neighborhood: Weight 3 x 3, Statistic 
Type: Mean 

Flow Direction Polygon 2 Focal Statistics Results 1 m 

Sink Identification Polygon 2 Flow Direction 1 m 

Watershed Delineation Polygon 2 Flow Direction and Sink 
Identification 

1 m 

6 Curvature and Watershed Compilation Polygon 2 2D Curvature, Sink 
Identification, Watershed 
Delineation 

1 m 
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Results 

The first analysis performed tested Planet's high-resolution satellite imagery to determine if the 

resolution of data required to identify signatures unique to surficial karst features already existed for the 

defined study area. Data for the large karst feature location show anomalies occurring around the 

location of this known karst features and between times of the year with differing temperatures and RH 

(Figure 9 b – g). Through visually inspecting the false-color composite layer (Figure 9 b – c), the NDVI 

layer (Figure 9 d – e), and the NIR layer (Figure 9 f – g), it is apparent that there are differences between 

the known locations of karst features and the surrounding areas. Differences are also visible in the same 

locations, but at different times of low and high temperatures and relative humidity (Figure 9). However, 

the resolution of the data makes it difficult to have confidence in karst feature locations. It was 

determined that data at the resolution of 3 – 5 meters per pixel is not fine enough to test various 

methodologies for identifying karst signatures.  

 
Figure 9: Results obtained from Planet's 3 – 5 meter resolution satellite imagery. Figure 9a displays a false-color composite of 
Polygon 2 using much finer UAV data. Figures b, d, and f displays data collected during a period of low temperature and relative 
humidity (February 2016), and c, e, and g displays data collected during high temperature and relative humidity (August 2017). 
Figures 9 b – g display the results obtained by using Planet data in the known location of a large karst feature using false-color 
composite (b, c), NDVI (d, e), and near-infrared (f, g) layers. 
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Initial analysis of UAV imagery consisted of limiting data to locations where karst features could 

exist and be detected, based on a range of sampled values from the SAVI and thermal rasters. As 

discussed in the methods, values found to be outside of an acceptable selection for the corresponding 

data layers were removed to create filtered datasets. Spectral analysis using SAVI successfully 

eliminated areas where karst features could not be detected (Figures 10 and 11). Due to processing 

methods and the nature of the collected data, locations of karst shrouded by vegetation were 

unobservable. The results from a Soil Adjusted Vegetation Index and a Normalized Difference 

Vegetation Index were compared to each other, as well as to a false-color composite, for Polygon 2 

(Figure 10 a – c). Results from calculating the NDVI layer provided reflectance values ranging from 0 – 

0.90 (Figure 10b). Sampling vegetation within the NDVI layer resulted in a range of values from 0.59 – 

0.9. Values within the NDVI layer for Polygon 2 within that range were then removed. Similarly, SAVI 

results produced reflectance values ranging from 0 – 0.72 (Figure 10c). Sampling vegetation using the 

SAVI layer (Figure 11) resulted in a range of values between 0.27 – 0.72. Again, using the resulting range 

of values, the SAVI layer of Polygon 2 with values within the range were filtered out. It was found that 

even though NDVI and SAVI both underwent similar methods of sampling vegetation and filtering values 

out, SAVI was more successful at distinguishing between the reflectance of vegetation and the highly 

reflective bedrock in the area (Figure 11).   
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Figure 10: Reflectance values and contrast between vegetation and the surface obtained by using NDVI and SAVI indexes. False-
color composite (a), results of NDVI (b), results of SAVI (c). 
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Figure 11: Filtered reflectance values. False-color composite (a), filtered SAVI layer overlaying a false-color composite layer (b), 
large karst location (c), medium karst location (d), small karst location (e). 

The thermal analysis was completed using a similar process to that of the spectral analysis, that 

is by limiting temperatures within the thermal dataset based on known sinkhole locations.  While it was 

expected that large swaths of data would be removed, it was found to only be successful in locations 

that were exposed to sunlight. Still, in those sunny locations, this method was much more successful 

than SAVI (Figure 12). Unfortunately, shaded areas had thermal signatures within the range of 

temperatures sampled from known karst features, resulting in less data removal than sunlit areas. In the 

end, the thermal analysis proved to be very useful in limiting search areas for locations that were 

exposed to sunlight and that were not shrouded by vegetation (Figure 12). As such, this method was 

found to be only partially successful at identifying karst feature locations. 
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Figure 12: Results of filtering using thermal imagery. An unaltered thermal layer (a), filtered thermal layer on a hillshade (b), 
large karst location (c), medium karst location (d), small karst location (e). 

Given that both the thermal and spectral analysis were only partially successful and each 

method had different weaknesses, the combination of these results were combined to create more 

evidence regarding potential karst feature locations (Figure 13). By combining the SAVI and thermal 

layers, the area was further reduced, however, the potential karst locations included a large portion of 

the study area.   
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Figure 13: Results of limiting layers to include areas that meet all constraints from masking SAVI and thermal (a) with small (d), 
medium (c), and large (b) karst features blown up. 

It was anticipated that karst features could be identified by their edges. Therefore, in continuing 

the search for methods that could successfully provide a unique surficial karst signature, multiple edge 

detection methods were explored. While these edge detection methods were used on DTM's directly, 

they were also used on smoothed DTMs and differenced DTMs.  Smoothing was completed to reduce 

noise when used with edge detection methods and enhance edge features when used with image 

differencing. The new layers were created from moving average and Gaussian smoothing methods 

(Figures 14 and 15). When comparing the data from the original DTM (Figure 14a) to increasingly 
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smoothed topography (Figures 14b – d), it is clear that an increased matrix size used to calculate the 

average value at the center pixel results in increased smoothing. 

 
Figure 14: Original DTM with 2.3 cm resolution limited to the large karst feature area (a). Moving average smoothing performed 
on large karst feature (b – d). 3 x 3 Matrix with 10 iterations (b), 100 x 100 Matrix with 10 iterations (c), 1000 x 1000 Matrix with 
10 iterations (d). 

Similarly, the topography in the original 2.3 cm resolution DTM clipped to the large karst feature 

location (Figure 15a) was smoothed using the Gaussian method where σ is increased (Figure 15b – d). It 

can be seen that as σ increased, the topography again becomes increasingly smoother. Both methods 

offered a noise reduction, but also resulted in the smoothing of the identified karst features. Though 

there were differences in the results of using the moving average method versus the Gaussian method 

of smoothing, it was not immediately apparent which smoothing method provided a more desirable 

result.  
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Figure 15: Original DTM with 2.3 cm resolution limited to the area of the large karst feature (a). Gaussian smoothing performed 
on large karst feature (b – d), σ = 6 (b), σ = 60 (c), σ = 600 (d). 

Image differencing, or the differencing of a smoothed DTM from the original DTM, was the first 

method that directly made use of the smoothed DTM layers (Figure 16). Figure 16a was created by 

subtracting the layer produced by using the moving average filter with a matrix of 100 x 100 with 10 

iterations (Figure 14c) from the original DTM limited to the area of a large karst feature (Figure 14a). 

Similarly, Figure 16b was obtained by subtracting the layer produced by using the Gaussian Filter with σ 

= 60 (Figure 15c) from the original DTM limited to the area of a large karst feature (Figure 15a). Image 

differencing resulted in edges of the large karst feature being enhanced in some locations around the 

opening. However, because the enhanced edge around the karst feature is not consistent, it does not 

produce the desired result of a continuous encompassing boundary.  Again, it is not apparent which 

method of smoothing produced a more desirable result.  
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Figure 16: Results of image differencing layers with a 2.3 cm resolution where (a) is obtained from subtracting the layer 
produced by using the moving average filter with a matrix of 100 x 100 with 10 iterations (Figure 14c) from the original DTM 
limited to the area of a large karst feature (Figure 14a). (b) is obtained by subtracting the layer produced by using the Gaussian 
filter with σ = 60 (Figure 15c) from the original DTM limited to the area of a large karst feature (Figure 15a). 

The desired outcome of edge detection methods was to identify a continuous edge that 

encircled an area around the locations of known surficial karst features. The results of using the Canny 

edge detection method with smoothed data layers showed some promise (Figure 17). Figure 17a – c was 

obtained from using Canny edge detection with the moving average method of smoothing with 20 (a), 

25 (b), and 30 (c) iterations of a 10 x 10 matrix. Figure 17d – f shows the results from using Canny edge 

detection with the Gaussian smoothing method where the values of σ = 14 (d), 16 (e), and 18 (f).  It was 

found that using Canny edge detection on the data layer produced from the Gaussian smoothing 

method with σ = 16 provided the closest figure to the desired result (Figure 17e). Through visibly 

comparing results, Canny edge detection appeared more successful at removing undesirable noise and 

producing a more continuous boundary around the known karst features than both the Sobel and 

Roberts edge detection methods. Even with Canny's ability to detect strong and weak edges, it failed to 

provide a continuous edge around the known karst features.  
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Figure 17: Comparing Canny edge detection method used with moving average filter (a – c) and Canny edge detection method 
used with Gaussian smoothing filter (d – f). The top three images show Canny edge detection used with moving average 
smoothing with a 10 x 10 matrix with 20 iterations (a), 25 iterations (b), and 30 iterations (c). The bottom three images show the 
results of using the Canny edge detection method used with Gaussian smoothing when σ = 14 (d), σ = 16 (e), and σ = 18 (f). 

Curvature calculations were looked at as a method to produce results with a more complete 

boundary around known karst features. First, utilizing clipped locations within Polygon 2 at the original 

2.3 cm resolution, curvature calculations were expected to result in concentric rings of positive 

curvature around known sinkholes. Results of curvature calculations were promising on the small, 

medium, and large karst features at the very high 2.3 cm resolution (Figure 18a); however, as clipped 
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data was aggregated to more coarse resolutions, findings changed (Figure 18 b – l). Curvature 

calculations on aggregated data showed that even with the largest karst feature in Polygon 2, 2.5 m 

pixel resolution became too coarse (Figure 18i). Conversely, Figure 18 a – e, shows that when the 

resolution is too fine, undesirable noise increased, making it harder to identify/isolate the desired 

signatures. It was found that resolutions between 0.5 and 2.5 meters per pixel sufficiently produced the 

desired signature while reducing undesirable noise (Figure f – h). It was determined that processing 

requirements to calculate curvature for the whole of Polygon 2 would be met if the resolution of data 

were aggregated to the 1-meter resolution. 

 
Figure 18: RGB data clipped to area of a known large karst feature (left), compared to curvature calculated at various 
aggregated resolutions, where resolution specific to each image is noted above. 
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Figure 19: RGB data clipped to area of a known large karst feature (left) compared to the results of aggregating the resolution of 
the DTM for Polygon 2 with the resolution specific to each figure noted above. 

Curvature calculations were able to be completed for the whole of Polygon 2 by using the data 

aggregated to a 1-meter resolution (Figure 20). Completing curvature calculations for the entire polygon 

allowed the results of this method to be visualized for a more expansive area that included a more 

comprehensive range of surficial karst sizes. The success of this method was determined by the 

calculations producing a nonlinear area of positive curvature encircled by negative curvature. Through 

further testing of the Weickert parameters at the 1-meter resolution, it was found that using default 

parameters (T=5, dt=1) worked best at reducing undesirable noise while providing the best possible 

signature of karst features (Figure 20c). Still, there was enough noise that identifying karst features 

through curvature calculations alone was not possible for all sizes of karst features. Additionally, some 

signatures mimicked a karst feature where there did not appear to be one. This method was found 
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useful, but it would need to be combined with another method to predict karst locations more 

accurately. 

 
Figure 20: Curvature comparison for Polygon 2 at 1-meter resolution, white/black = negative/positive curvature; T = 1, dt = 0.5 
(a); T = 5, dt = 0.5 (b); T = 5, dt = 1 (c) T = 10, dt = 0.5 (d); T = 20, dt = 0.5 (e). Small, medium, and large karst features circled in 
orange. 

Using watershed properties to identify karst features was investigated using the UAV DTMs with 

a 1-meter resolution. This analysis sought to use sinks as pour points to delineate watersheds and as a 

method for identifying karst locations. Other studies have shown that fractures and bedding planes 

likely drain more surface water than karst openings (Ginsberg and Palmer, 2002). However, many 

surficial karst features represent surface locations that do not have another drainage outlet (e.g., 

sinkholes). Various neighborhoods, defined by the matrix size and shape used to calculate statistics for 

the central pixel, were used to run focal statistics properties in ArcGIS. Sinks were then located, and 

watersheds delineated using each of the resulting layers from running the focal statistics tool.  After 

locating sinks, the results were examined, with the only difference between the resulting layers being 

neighborhoods used in the focal statistics step. Examining the results, it appeared that the rectangular 

neighborhood, with length and width dimensions of 3 x 3 and a statistic type set to mean, produced the 

best results (Figure 21). This was determined because there are sinks located when the rectangular 
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matrix is used with the focal statistic that other neighborhoods did not consistently identify (except for 

circular in a few cases). Additionally, there are also instances where using a rectangular neighborhood 

resulted in sinks being successfully located in visible pits/large fractures that are unmapped (Figure 21). 

There also appear to be occurrences with every focal statistic method used where sinks are placed 

amongst vegetation. In this instance, and with this data, the rectangular matrix appears to be best. 

However, more experimentation may be needed if these methods are applied to LiDAR data that does 

not include vegetation influences. In comparing the locations of pour points to sites of known surficial 

karst features, some pour points matched (or nearly matched) locales of known karst features, others 

did not (Figure 22). Because it is unlikely that all pour points represented locations of unmapped karst, 

this method needed to be combined with another method. 
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Figure 21: Results from rectangular 3 x 3 with a mean statistic type (a), with blow-ups of two areas within Polygon 2 to display 
accuracy of pour points predicting locations of surficial karst (b and c). 
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Figure 22: Known karst locations, calculated pour points, and delineated watersheds on a hillshade layer. Watersheds and pour 
points calculated using focal statistics with a 3 x 3 rectangular neighborhood used to calculate mean values. 

Curvature calculations and locating sinks both were successful at detecting known karst 

features, as well as correctly predicting some sites of unknown karst. However, they also predicted 

locations where there do not appear to be sinkholes. Combining the results from these methods was a 

natural next step.  Based on analysis using unclipped UAV DTMs at 1-meter resolution, the 

overlay/combination of curvature and sink location/watershed delineation provided additional evidence 

of likely locations of unmapped sinkholes (Figure 23). It is unclear what effects the removal, or presence, 

of vegetation has directly on these results.  



38 
 

 
Figure 23: Calculated pour points and delineated watersheds on top of a curvature layer. Watersheds and pour points were 
calculated using focal statistics with a 3 x 3 rectangular matrix used to calculate mean values. The curvature layer was 
calculated using T = 5 and dt = 1. 

Discussion 

Satellite data was used to visually compare known karst features to the surrounding areas and 

provided insight and promise that this study's hypothesis could be tested. It was also key in 

understanding that a resolution finer than 3 – 5 meters was needed to further test methods for 

identifying karst features (Figure 9). With that understanding, the UAV data was obtained and 

successfully provided the high-resolution data needed to test different potential methods (Figure 4). 

Additionally, the UAV data also provided further insight into the resolution needed to identify signatures 

(Figure 19).  
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 With regard to the initial processing methods for the UAV data, there are some concerns that 

vegetation deletion and smoothing methods may have resulted in the removal of possible karst 

features. While both NDVI (Eqn. 1) and SAVI (Eqn. 2) were successful at identifying vegetation through 

reflectance values (Figure 10), the soil correction factor contained within the SAVI formula allowed for 

better isolation of vegetation. Therefore, the SAVI formula was ultimately used to sample reflectance 

values and remove vegetation (Eqn. 2, Figure 11). However, by simply eliminating vegetated portions of 

the study area, increased limitations to the utility of tested methods also resulted. Given that LiDAR data 

is uninterrupted by vegetation removal, it is thought that it will include additional success in method 

testing and is therefore recommended for future investigation. 

The thermal assessment completed as part of the second analysis took advantage of detectable 

differences in temperature between known karst features and the surrounding area. These differences 

were known to exist from preliminary data collected within the study area (Figure 8). However, the 

success of identifying karst features was limited to areas that were in sunlight (Figure 12). There is no 

known reliable method for correcting the temperature of shaded areas without additional data. 

Additionally, a vegetation canopy would also affect thermal data, thereby making the detection of karst 

shrouded by vegetation unlikely. Because analysis of a thermal layer appears that it would require 

multiple flights to avoid shadows, resulting in a higher cost of data, it is thought to be a less desirable 

method at predicting surficial karst locations. The compilation of spectral and thermal analysis results 

showed that both masking methods had limited success at best and only limited search area (Figure 13). 

Still, combining methods and masking only to include areas both resulting layers had in common was 

more successful than either the spectral or thermal method alone.  

Though image differencing succeeded at making some features of karst more prominent, this 

method failed to provide an identifiable signature for all three scales of karst features that were tested 
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(Figure 16). Edge detection was performed on the results of both smoothed images and images that 

utilized smoothing methods in combination with image differencing. Canny edge detection used in 

combination with Gaussian smoothing was found to produce a more complete edge outline around 

known karst features than when the Canny edge detection method was used in combination with 

moving average smoothing (Figure 17). Additionally, it was found that when Gaussian smoothing had an 

increased σ, undesirable noise was reduced; however, it also resulted in a more dashed edge around 

karst features (Figure 17d – f). The Canny method of edge detection is thought to have provided better 

results than other edge detection methods because, in addition to using strong detectable edges, it also 

uses weak edges connected to the strong edges (Gonzalez et al., 2009). In the end, using Gaussian 

smoothing, with σ = 16, in combination with Canny edge detection provided the best results (Figure 

17e). Future studies may still find this method useful with additional adjustments of the parameters, 

using it in arrangement with additional layers, and/or in combination with machine learning. 

Through using aggregated data to provide a range of resolutions, it was easy to see that even 

with the largest karst feature in Polygon 2, pixel resolution became too coarse by 2.5 meters per pixel to 

use curvature calculation as a method of identification (Figure 18i – l). Calculating curvature on 

aggregated data also showed that when the resolution was too fine, undesirable noise increased, 

making it harder to identify a signature of karst features. Based on those observations, it was 

determined that the ideal resolution existed between 0.5 and 2.5 meters per pixel (Figure 18 f – i). Using 

that understanding, Polygon 2 was aggregated to the resolution of 1-meter per pixel, and various 

parameters were tested for calculating curvature (Figure 20). It was found that when using spatial data 

that was clipped to a known karst feature, adjustments to the default Weickert parameters of T and dt 

were beneficial in enhancing an identifiable signature. However, when those changes to the parameters 

were applied to the whole of Polygon 2, it was found that those modifications did not work well with the 

wide range of scales that the karst features had within the study area. In the end, using default 
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parameters (T=5, dt=1) worked best at reducing undesirable noise while providing the best possible 

signature of karst features (Figure 20c). Still, there was enough noise that identifying karst features 

through curvature calculations alone was not possible for all sizes of karst features (Figure 20).  

Because of concerns with noise and accuracy associated with using curvature results as a 

predictor, it was desirable to find another method of locating potential locations of karst that could be 

used in combination with the results from calculating curvature. With that in mind, watershed 

delineation and watershed properties were investigated as a potential method. Watersheds were 

successfully delineated using sinks as pour points (Figure 22). Through this method, it was found that 

the sink tool was useful in predicting locations of karst features (Figure 21). While some pour points 

matched (or nearly matched) locations of known karst features, others did not (Figure 22). Because it is 

unlikely that all pourpoints represented locations of unmapped karst features, this method needed to 

be combined with another method. Through combining results of methods used on aggregated data, it 

was found that using pour points and watersheds in combination with calculated curvature provided 

more evidence for likely locations of unmapped karst features (Figure 23).  

This study has successfully identified promising methods that could be beneficial to future 

investigations. Future studies will likely have the most success by utilizing digital elevation data that 

does not contain a vegetative canopy. Data such as this is obtainable through LiDAR. With LiDAR data, 

future researchers should investigate edge detection, curvature, sink location, and watershed 

delineation. Adjustments to the Canny edge detection methods could provide a more desirable 

signature. Further adjustments to the Weickert smoothing parameters could provide added noise 

reduction when curvature is calculated. Also, supplementary analysis of 2-D curvature, as well as an 

investigation into 3-D curvature and planform curvature, may provide beneficial results. Using sinks and 

watershed delineation to predict locations of surficial karst features will also likely be more accurate 
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with the use of a more expansive dataset. That dataset should not include vegetation and should be 

clipped to the boundary of a larger watershed. Future investigations should keep in mind that these 

methods potentially deal with three resolutions or scales; first, the scale of the surficial karst opening; 

second, the resolution of the data being used; and third, the scale of the parameters being adjusted for 

each analysis. Future efforts could further investigate the relationships between these scales to 

collectively help locate and enhance karst feature signatures. 

Conclusion 

If there is one finding that surpasses all other findings in this study, it is that the presence and 

removal of vegetation poses a problem to successfully locating surficial karst features. Therefore, future 

studies should utilize data that does not include vegetation. Limiting the search area based on thermal 

values was very successful in sunlit areas. However, if thermal data is to be used in future studies, 

additional data will likely be required. Though edge detection was explored, it did not provide an 

uninterrupted boundary around known karst features. At the time, it was thought that other methods 

could provide a more complete signature; therefore, it was not explored further. Looking back on this 

study, this method may have been dismissed too quickly and there could still be potential associated 

with a deeper study of utilizing edge detection methods to identify surficial karst.  Future studies could 

explore edge detection further and use it in combination with other methods. 

Calculating curvature was beneficial and provided a signature. However, depending on the data 

resolution, the scale of the surficial karst opening, and terrain characteristics, there are also false 

positives and locations where this method fails to predict known karst features. Future studies should 

explore this method further by adjusting other parameters associated with the Weickert method of 

smoothing and include an analysis of average curvature in the x and y direction, curvature of the 

principal orientation, planform, and 3-D curvature. Using sinks to predict the location of karst features 
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was successful. However, the UAV data resulted in sinks in locales where vegetation had been removed 

and in locations along the edges of the study area. Therefore, potential studies may have more success 

using this method with data that does not include vegetation and clipping a more expansive area to a 

watershed. Future studies will likely find the most success at predicting surficial karst locations by 

utilizing machine learning with the results of two or more methods to locate karst features.  
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