
On the Correspondence between Nested Calculi
and Semantic Systems for Intuitionistic Logics

Tim Lyon

Institut für Logic and Computation, Technische Universität Wien, 1040 Wien, Austria
lyon@logic.at

Abstract. This paper studies the relationship between labelled and
nested calculi for propositional intuitionistic logic, first-order intuition-
istic logic with non-constant domains, and first-order intuitionistic logic
with constant domains. It is shown that Fitting’s nested calculi naturally
arise from their corresponding labelled calculi—for each of the aforemen-
tioned logics—via the elimination of structural rules in labelled deriva-
tions. The translational correspondence between the two types of sys-
tems is leveraged to show that the nested calculi inherit proof-theoretic
properties from their associated labelled calculi, such as completeness,
invertibility of rules, and cut-admissibility. Since labelled calculi are eas-
ily obtained via a logic’s semantics, the method presented in this paper
can be seen as one whereby refined versions of labelled calculi (contain-
ing nested calculi as fragments) with favorable properties are derived
directly from a logic’s semantics.

Keywords: First-order · Intuitionistic logic · Kripke semantics · La-
belled calculi · Nested calculi · Proof theory · Propositional · Refinement

1 Introduction

In his seminal work [12], Gentzen introduced the sequent calculus framework
for classical and intuitionistic logic, and proved the celebrated Hauptsatz, i.e.
cut-elimination theorem, for the systems. As a corollary of his theorem, it can
be observed that any formula provable in one of Gentzen’s systems, is provable
with an analytic derivation, that is, a derivation where all formulae used to reach
the conclusion of the derivation, occur in the conclusion of the derivation. This
method of proof happens to be of practical consequence, and as such, many
variations and extensions of Gentzen’s sequent calculi have been assembled and
proposed—examples include tableaux calculi [7,9], display calculi [2,18,28], hy-
persequent calculi [1,22], labelled calculi [11,24,27], and nested calculi [3,4,14].
Such calculi have been applied to provide decision algorithms [12,22], to auto-
mate the extraction of interpolants [19], and to automated counter-model ex-
traction [17,25].

In this paper, we focus entirely on the labelled and nested proof-theoretic
paradigms. The labelled paradigm may be qualified as semantic as calculi are
built by transforming the semantic clauses and Kripke-frame properties of a logic

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilPapers

https://core.ac.uk/display/397469347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Tim Lyon

into inference rules [24,27]. Despite some drawbacks and criticisms of this ap-
proach [1], the labelled paradigm offers many advantages. First, it is relatively
straightforward to transform the semantics of a logic into a calculus; in fact, this
process has been shown to be automatable [5]. Second, the approach is excep-
tionally modular—allowing for the addition or deletion of rules to immediately
obtain calculi for weaker or stronger logics—and is applicable to a wide vari-
ety of logics [6,17,24,27]. Last, labelled calculi consistently possess fundamental
proof-theoretic properties such as invertibility of rules, admissibility of struc-
tural rules, and cut-admissibility—with fairly general results provided for large
classes of modal, intuitionistic, and related logics [6,17,24,27]. Although these
characteristics are certainly favorable, a drawback of labelled calculi is that they
typically involve a complicated syntax (which incorporates a large amount of
semantic information), the sequents utilized in proofs encode general graphs,
and inference rules often violate the subformula property (i.e. labelled calculi
are not usually analytic). Such properties cause an unnecessary increase in the
size of sequents/proofs, and a decrease in the efficiency of associated automated
reasoning algorithms.

In contrast to the data structures (called, labelled sequents) employed in la-
belled calculi—which can be viewed as general graphs—the nested paradigm
employs treelike data structures (called, nested sequents) which manipulate log-
ical information and are used to derive theorems. The inception of the paradigm
is often attributed to Bull [4] and Kashima [14], though it should be noted that
nested calculi can be considered ‘upside down’ versions of prefixed tableaux cal-
culi, which were introduced much earlier in 1972 by Fitting [7]. (NB. See [9] for a
discussion on the relationship between nested and tableaux systems). A strength
of the nested paradigm is that the nested sequents employed reduce the bureau-
cracy and syntactic structures appearing in proofs, showing the nested formalism
to be more parsimonious than the labelled formalism. Also, the nested formalism
has proven itself useful in applications such as constructing analytic calculi [3,23],
developing automated reasoning methods [25], and verifying interpolation [19].
Still, in spite of these advantages, the construction of nested calculi and the con-
firmation of their proof-theoretic properties is often done on a case-by-case basis.
That is to say, the nested paradigm lacks general results—like those of the la-
belled paradigm—regarding the immediate construction of calculi in possession
of fundamental properties.

Due to the fact that the labelled formalism is well-suited for constructing
calculi possessing essential proof-theoretic properties, and the nested formalism
is more refined and better suited for a variety of applications, a method of
extracting nested calculi from labelled calculi—with the properties of the latter
preserved—is highly desirable. This refinement process allows us to capture the
best of both worlds: we invoke the general results of the labelled setting to obtain
satisfactory labelled calculi for a class of logics, and via refinement, transform
the systems into nested calculi better suited for applications. Similar ideas and
relationships have been discussed in the literature [13,17,16,20,21], where refined
calculi (which can be considered nested calculi) were derived from labelled calculi

On the Correspondence between Nested Calculi and Semantic Systems 3

for modal, intuitionistic, and related logics. (NB. The paper [21] mentions results
strongly related to Sect. 5. Although the results presented here were discovered
independently, the work of Sect. 5 can be seen as a detailed explication and
expansion of the work presented in [21]. Moreover, [21] does not consider the
non-trivial and interesting first-order cases considered here.)

In this paper we advance our understanding of the aforementioned method,
and show how to extract slight variants of Fitting’s nested calculi for propo-
sitional intuitionistic logic, first-order intuitionistic logic with non-constant do-
mains, and first-order intuitionistic logic with constant domains from the labelled
calculi for these logics. Additionally, we demonstrate the converse translation—
showing how to transform each considered nested calculus into its associated
labelled calculus. These translations are worthwhile in that they show how each
nested calculus inherits properties from its corresponding labelled calculus, and
also shed light on how the semantics of each logic affects the shape of rules and
syntactic structures inherent in nested derivations (via the labelled calculi).

The organization of this paper is as follows: Sect. 2 introduces the seman-
tics and axiomatizations for the intuitionistic logics we will consider. Sect. 3
introduces the labelled and nested calculi for these logics. Sect. 4 introduces
preliminary definitions and lemmata sufficient to translate intuitionistic labelled
calculi into nested calculi, and vice-versa. Sect. 5, Sect. 6, and Sect. 7 show how
to refine each labelled calculus through structural rule elimination, allowing for
the extraction of the nested calculus from the labelled calculus for propositional
intuitionistic logic, first-order intuitionistic logic with non-constant domains, and
first-order intuitionisitic logic with constant domains, respectively. Sect. 8 shows
how to translate each nested calculus into its associated labelled calculus, and
discusses corollaries of the translational correspondence between the calculi—
primarily focusing on the properties inherited by each nested calculus from its
corresponding labelled calculus. The last section, Sect. 9, concludes.

This paper serves as an enhanced and revised version of the conference pa-
per [16]. Most significantly, the nested-to-labelled translation of Sect. 4, the
content of Sect. 6, and the majority of content in Sect. 8 are entirely new. Be-
yond this, the paper was written with an increased focus and more detailed
exposition on how the labelled calculi are refined in order to extract each nested
calculus—this provides the paper with more explanatory force than [16]. Also, it
should be noted that this paper corrects an error that occurs in the conference
version. In [16], the labelled calculus G3IntQC is lacking a structural rule (called
(ihd) in this paper) corresponding to the condition that domains in first-order
intuitionistic models are non-empty, or inhabited. Without the inclusion of this
rule, G3IntQC is incomplete as modus ponens cannot be simulated in the calcu-
lus (see Thm. 3 and Appendix A for details). We have included this rule here
and adjusted the content of [16] regarding G3IntQC accordingly. Furthermore, to
increase the flow and readability of the paper, some results outside the scope of,
or auxiliary to, our main focus (i.e. the translational correspondence between la-
belled and nested calculi for intuitionistic logics) have been moved to a technical
appendix (Appendix A) for the interested reader.

4 Tim Lyon

G3Int

Thm. 5

**

⋂
IntL

N **

Lem. 19

jj ⋂
NInt

L

jj
⋂

Thm. 7

G3IntQ

Thm. 8

**

⋂
IntQL

N
Thm. 10

**

Lem. 20

kk

Cor. 5

��

NIntQ
L

Thm. 11

jj

Cor. 5

��
G3IntQC

Thm. 12
++
IntQCL

N
Thm. 14

++

Lem. 21

kk NIntQC
L

Thm. 15

kk

Fig. 1. Transformations and translations between the intuitionistic calculi considered.

Last, Fig. 1 shows the transformations (indicated by a solid arrow) and trans-
lations (indicated by a dotted arrow) between the various intuitionistic calculi
considered. Transformations indicate that derivations in one system (or in a
fragment of the system) are effectively (i.e. algorithmically) transformable to
derivations in another system, and translations indicate a transformation along
with a change in notation. The symbols N and L represent a change from labelled
to nested notation, and nested to labelled notation, respectively. The inclusion
sign ⊂ is taken to mean that one calculus consists of a proper subset of the rules
in another calculus.

2 Logical Preliminaries

In this section, we introduce the language, semantics, and axiomatizations for
propositional intuitionistic logic Int, first-order intuitionistic logic with non-
constant domains IntQ, and first-order intuitionistic logic with constant domains
IntQC. The first subsection will discuss the propositional setting, whereas the
second subsection will discuss the first-order setting.

2.1 Propositional Intuitionistic Logic

The propositional language L is defined via the BNF grammar shown below:

A ::= p | ⊥ | (A ∨A) | (A ∧A) | (A ⊃ A)

where p is among a denumerable set of propositional variables Prop = {p, q, r, . . .}.
As usual, we define intuitionistic negation as ¬A := A ⊃ ⊥. Moreover, the lan-
guage admits a relational (or, Kripke-style) semantics as defined below (cf. [15]).

Definition 1 (Int-Frame, Int-Model). An Int-frame is an ordered pair F =
(W,≤) such that:

I W is a non-empty set of worlds {w, u, v, . . .};

On the Correspondence between Nested Calculi and Semantic Systems 5

I ≤ ⊆W ×W is a reflexive and transitive binary relation on W .1

An Int-model is an ordered pair M = (F, V) where F is an Int-frame and
V : Prop 7→ 2W is a valuation function mapping propositional variables to
subsets of W satisfying the following monotonicity condition:

(M) If w ∈ V (p) and w ≤ v, then v ∈ V (p).

Definition 2 (Propositional Semantic Clauses). Let M = (W,≤, V) be an
Int-model with w ∈ W . The satisfaction relation M,w A between w ∈ W and
a formula A from L is inductively defined as follows:

I M,w 6 ⊥;
I M,w p iff w ∈ V (p);
I M,w A ∨B iff M,w A or M,w B;
I M,w A ∧B iff M,w A and M,w B;
I M,w A ⊃ B iff for all u ∈W , if w ≤ u and M,u A, then M,u B.

We say that a formula A is globally true on M , written M A, iff M,u A
for all worlds u ∈ W . A formula A is Int-valid, written Int A, iff it is globally
true on all Int-models. Last, we say that a set Φ of formulae semantically implies
a formula A, written Φ A, iff for all intuitionistic models M with w ∈ W , if
M,w B for all B ∈ Φ, then M,w A.2

The monotonicity condition (M), together with the intuitionistic semantics
defined above, necessitates a general form of monotonicity as detailed below:

Lemma 1 (General Monotonicity). Let M be a model with w, v ∈W of M .
If M,w A and w ≤ v, then M, v A.

Proof. See [10, Lem. 3.2.16] for details. ut

Additionally, propositional intuitionistic logic Int is finitely axiomatizable.
The axioms and inference rule syntactically characterizing Int are given in Fig. 2.
We define an Int-derivation (relative to the axiomatization of Int) from a set of
formulae Φ (written Φ ` A) in the usual way (cf. [10,26]). It is well-known that
the notion of semantic consequence for Int is equivalent to the syntactic notion
of an Int-derivation from a set of formulae:

Theorem 1 (Soundness and Completeness [10]). For any A ∈ L, Φ A
iff Φ ` A.

1The properties imposed on ≤ are defined as follows: (reflexivity) for all w ∈ W ,
w ≤ w, and (transitivity) for all w, u, v ∈W , if w ≤ v and v ≤ u, then w ≤ u.

2We note that we could define a global version of semantic implication as follows:
A set of formulae Φ globally implies a formula A iff for all intuitionistic models M , if
M B for all B ∈ Φ, then M A. We make use of the local version in Def. 2 however,
because the axiomatization we use for Int (shown in Fig. 2) is sound and complete
relative to the local version of semantic implication (Thm. 1) [10].

6 Tim Lyon

A ⊃ (B ⊃ A) (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)) A ⊃ (B ⊃ (A ∧B))

(A ∧B) ⊃ A (A ∧B) ⊃ B A ⊃ (A ∨B)
A A ⊃ B

(mp)
B

B ⊃ (A ∨B) ⊥ ⊃ A (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C))

Fig. 2. An axiomatization of propositional intuitionistic logic Int [10].

2.2 First-Order Intuitionistic Logics

The language Q for our first-order logics is defined via the BNF grammar below:

A ::= p(x1, . . . , xn) | ⊥ | (A ∨A) | (A ∧A) | (A ⊃ A) | (∀x)A | (∃x)A

where p is among a denumerable set of n-ary predicate symbols Pred = {p, q, r, . . .}
and x1, . . . , xn, x are variables (with n ∈ N). We refer to formulae of the form
p(x1, . . . , xn) as atomic formulae when n > 0, and refer to formulae of the form
p as propositional variables when n = 0 (i.e. a 0-ary predicate p is a propositional
variable). Furthermore, we define a variable x to be a free variable in A iff it is
not within the scope of a quantifier ∀x or ∃x, and to be a bound variable iff it is
within the scope of a quantifier. Last, as in the propositional case, our language
admits a relational semantics, defined below.

Definition 3 (IntQ-Frames, IntQ-Models [10]). We define an IntQ-frame to
be a tuple F = (W,≤, D) such that:

I W is a non-empty set of worlds {w, u, v, . . .};
I ≤ ⊆W ×W is a reflexive and transitive binary relation on W ;
I D is a domain function mapping a world w ∈W to a non-empty set Dw of

objects {a, b, c, . . . } satisfying the nested domain condition shown below:

(ND) If a ∈ Dw and w ≤ v, then a ∈ Dv.

A IntQC-frame is an IntQ-frame that additionally satisfies the following con-
stant domain condition shown below:

(CD) If a ∈ Dv and w ≤ v, then a ∈ Dw.

An IntQ-model (IntQC-model) M is an ordered pair (F, V) where F is an
IntQ-frame (IntQC-frame) and V is a valuation function such that V (p, w) ⊆
(Dw)n (with n ∈ N) satisfying the following monotonicity condition:

(M) If w ∈ V (p, w) and w ≤ v, then v ∈ V (p, v) (if p is of arity 0);
If w ≤ v, then V (p, w) ⊆ V (p, v) (if p is of arity n > 0).

We uphold the convention in [10] and assume that for each world w ∈ W ,
(Dw)0 = {w}, so V (p, w) = {w} or V (p, w) = ∅, for a propositional variable p.

On the Correspondence between Nested Calculi and Semantic Systems 7

As in [10], we forgo the direct interpretation of formulae from Q on rela-
tional models, and instead, introduce Dw-sentences (Def. 4) to be interpreted
on such models. Defining satisfaction relative to Dw-sentences gives rise to a
notion of validity for formulae in Q (Def. 5). However, this notion of validity
also depends on the universal closure of a formula: given that A ∈ Q contains
only x1, . . . , xn as free variables, the universal closure ∀ #»xA is taken to be the
formula ∀x1 . . . ∀xnA.

Definition 4 (Dw-Sentence). Let M = (W,≤, D, V) be an IntQ-model with
w ∈ W . We define Q(Dw) to be the language Q expanded with parameters
a, b, c, . . . corresponding to the objects in the set Dw = {a, b, c, . . .}. We define
a Dw-formula to be a formula in Q(Dw), and we define a Dw-sentence to be a
Dw-formula that does not contain any free variables.

Definition 5 (First-Order Semantic Clauses). Let M = (W,≤, D, V) be an
IntQ- or IntQC-model with w ∈ W . The satisfaction relation M,w A between
w and a Dw-sentence A is inductively defined as follows:

I If p is a propositional variable, then M,w p iff w ∈ V (p, w);
I If p is an n-ary predicate symbol (with n > 0), then M,w p(a1, · · · , an) iff

(a1, · · · , an) ∈ V (p, w);
I M,w ∀xA iff for all v ∈W and all a ∈ Dv, if w ≤ v, then M, v A(a/x);
I M,w ∃xA iff there exists an a ∈ Dw such that M,w A(a/x).

The clauses for the ∨, ∧, and ⊃ connectives are the same as in Def. 2. We say
that a formula A is globally true on M , written M A, iff M,u ∀ #»xA for
all worlds u ∈ W . A formula A is IntQ-valid (IntQC-valid), written IntQ A
(IntQC A, resp.), iff it is globally true on all IntQ-models (IntQC-models).

Similar to the propositional case, the monotonicity condition imposed on
atomic formulae in models generalizes:

Lemma 2 (General Monotonicity). Let M be an IntQ- or IntQC-model with
w, v ∈W of M . For any Dw-sentence A, if M,w A and w ≤ v, then M,v A.

Proof. See [10, Lem. 3.2.16] for details. ut
Sound and complete axiomatizations for our first-order intuitionistic logics

(viz. IntQ and IntQC) are provided in Fig. 3. We define the substitution (y/x) of
the variable y for the free variable x on a formula A in the standard way as the
replacement of all free occurrences of x in A with y. Last, the side condition y
is free for x (see Fig. 3) is taken to mean that y does not become bound by a
quantifier if substituted for x.

The logics IntQ and IntQC are defined to be the smallest set of formulae from
Q closed under substitutions of the axioms and applications of the inference rules
in their axiomatizations. The sole difference between the axiomatizations for IntQ
and IntQC is that the former omits the constant domain axiom ∀x(A ∨ B) ⊃
∀xA∨B (with x 6∈ B) whereas the latter includes it. We write `IntQ A (`IntQC A)
to denote that A is an element, or theorem, of IntQ (IntQC, resp.).

Theorem 2 (Soundness and Completeness [10]). For any A ∈ Q, IntQ A
(IntQC A) iff `IntQ A (`IntQC A, resp.).

8 Tim Lyon

∀x(B ⊃ A) ⊃ (B ⊃ ∀xA) with x 6∈ B ∀x(A ⊃ B) ⊃ (∃xA ⊃ B) with x 6∈ B

∀xA ⊃ A(y/x) y free for x A(y/x) ⊃ ∃xA y free for x
A
∀xA

gen

∀x(A ∨B) ⊃ ∀xA ∨B with x 6∈ B

Fig. 3. The axiomatization for the logic IntQ is given by extending the axiomatization
of Int with the first two rows. The axiomatization for the logic IntQC is given by
extending the axiomatization of Int with all three rows. Both axiomatizations can be
found in [10].

3 Proof Calculi for Intuitionistic Logics

In this section, we introduce the labelled and nested proof systems for the intu-
itionistic logics Int, IntQ, and IntQC. The first subsection presents the labelled
system G3Int for propositional intuitionistic logic from [6] as well as the first-
order extensions of this calculus, that makes use of quantifier and structural rules
motivated by those (viz. ∀L, ∀R, id, and dd) given in [27, Ch. 6]. The second
subsection introduces (slight variants of) Fitting’s nested calculi for intuitionistic
logics from [9].

3.1 The Labelled Calculi G3Int, G3IntQ, and G3IntQC

We define propositional (first-order) labelled sequents to be syntactic objects of
the form L1 ⇒ L2 (L′1 ⇒ L′2, resp.), where L1 and L2 (L′1 and L′2, resp.) are
formulae defined via the BNF grammar below top (below bottom, resp.).

L1 ::= ε | w : A | w ≤ v | L1, L1 L2 ::= ε | w : A | L2, L2

L′1 ::= ε | w : A | a ∈ Dw | w ≤ v | L′1, L′1 L′2 ::= ε | w : A | L′2, L′2

In the propositional case, A is in the language L and w is among a denumer-
able set of labels {w, v, u, . . .}. In the first-order case, A is in the language Q,
a is among a denumerable set of parameters {a, b, c, . . .}, and w is among a de-
numerable set of labels {w, v, u, . . .}. We refer to formulae of the forms w ≤ v
and a ∈ Dw as relational atoms (with formulae of the form a ∈ Dw sometimes
referred to as domain atoms, more specifically) and refer to formulae of the form
w : A as labelled formulae. Due to the two types of formulae occurring in a
labelled sequent, we often use R to denote relational atoms, and Γ and ∆ to
denote labelled formulae, thus distinguishing between the two. Labelled sequents
are therefore written in a general form as R, Γ ⇒ ∆.

Moreover, we take the comma operator to be commutative and associative;
for example, we identify the labelled sequent w ≤ u,w : A, a ∈ Dw ⇒ v : C, u : B
with a ∈ Dw, w ≤ u,w : A ⇒ u : B, v : C. This interpretation of comma

On the Correspondence between Nested Calculi and Semantic Systems 9

(id)R, w ≤ v, w : p, Γ ⇒ ∆, v : p
R, w ≤ v, v : A,Γ ⇒ ∆, v : B

(⊃r)†1R, Γ ⇒ ∆,w : A ⊃ B

R, w : A,w : B,Γ ⇒ ∆
(∧l)R, w : A ∧B,Γ ⇒ ∆

R, Γ ⇒ ∆,w : A R, Γ ⇒ ∆,w : B
(∧r)R, Γ ⇒ ∆,w : A ∧B

R, w : A,Γ ⇒ ∆ R, w : B,Γ ⇒ ∆
(∨l)R, w : A ∨B,Γ ⇒ ∆

R, w ≤ v, v ≤ u,w ≤ u, Γ ⇒ ∆
(tra)R, w ≤ v, v ≤ u, Γ ⇒ ∆

R, w ≤ v, w : A ⊃ B,Γ ⇒ ∆, v : A R, w ≤ v, w : A ⊃ B, v : B,Γ ⇒ ∆
(⊃l)R, w ≤ v, w : A ⊃ B,Γ ⇒ ∆

R, w ≤ w, Γ ⇒ ∆
(ref)R, Γ ⇒ ∆

R, Γ ⇒ ∆,w : A,w : B
(∨r)R, Γ ⇒ ∆,w : A ∨B

(⊥l)R, w : ⊥, Γ ⇒ ∆

(idq)
R, w ≤ v, #»a ∈ Dw, w : p(#»a), Γ ⇒ ∆, v : p(#»a)

R, a ∈ Dw, Γ ⇒ ∆
(ihd)†2R, Γ ⇒ ∆

R, w ≤ v, a ∈ Dv, Γ ⇒ ∆, v : A(a/x)
(∀r)†3R, Γ ⇒ ∆,w : ∀xA

R, a ∈ Dw, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃r)

R, a ∈ Dw, Γ ⇒ ∆,w : ∃xA

R, a ∈ Dw, w : A(a/x), Γ ⇒ ∆
(∃l)†2R, w : ∃xA, Γ ⇒ ∆

R, w ≤ v, a ∈ Dv, v : A(a/x), w : ∀xA, Γ ⇒ ∆
(∀l)R, w ≤ v, a ∈ Dv, w : ∀xA, Γ ⇒ ∆

R, w ≤ v, a ∈ Dw, a ∈ Dv, Γ ⇒ ∆
(nd)R, w ≤ v, a ∈ Dw, Γ ⇒ ∆

R, w ≤ v, a ∈ Dv, a ∈ Dw, Γ ⇒ ∆
(cd)R, w ≤ v, a ∈ Dv, Γ ⇒ ∆

Fig. 4. The labelled calculus G3Int for Int consists of (id), (⊥l), (∧l), (∧r), (∨l), (∨r),
(⊃l), (⊃r), (ref), and (tra) (see [6]). The labelled calculus G3IntQ for IntQ consists of
all rules minus the (cd) rule, and all rules give the calculus G3IntQC for IntQC. The
side condition †1 states that the variable v does not occur in the conclusion, †2 states
that a does not occur in the conclusion, and †3 states that neither a nor v occurs in
the conclusion. Labels and parameters restricted from occurring in the conclusion of
an inference are called eigenvariables.

lets us view R, Γ (the antecedent) and ∆ (the succedent) of a labelled sequent
R, Γ ⇒ ∆ as multisets. Also, we use ε to denote the empty string which acts
as the identity element for the comma operator (e.g. we identify w ≤ v, ε, v : B
with w ≤ v, v : B), and we stipulate that if ε is the antecedent or succedent of
a sequent, then the antecedent or succedent is left empty. Therefore, ε will be
implicit in labelled sequents, but will never explicitly appear.

In the first-order setting, we syntactically distinguish between bound variables
{x, y, z, . . .} and free variables, which are replaced with parameters {a, b, c, . . .},
to avoid clashes between the two categories (cf. [9, Sect. 8]). Therefore, instead
of using formulae directly from the first-order language, we use formulae from
the first-order language where each freely occurring variable x has been replaced
by a distinct parameter a. For example, we would make use of the labelled

10 Tim Lyon

R, Γ ⇒ ∆
(lsub)

R(w/v), Γ (w/v)⇒ ∆(w/v)

R, Γ ⇒ ∆
(psub)

R(a/b), Γ (a/b)⇒ ∆(a/b)

R, Γ ⇒ ∆
(wk)

R′,R, Γ ′, Γ ⇒ ∆′,∆

R,R′,R′, Γ ⇒ ∆
(ctrR)

R,R′, Γ ⇒ ∆

R, Γ ′, Γ ′, Γ ⇒ ∆
(ctrl)R, Γ ′, Γ ⇒ ∆

R, Γ ⇒ ∆,∆′,∆′
(ctrr)

R, Γ ⇒ ∆,∆′
R, Γ ⇒ ∆,w : A R, w : A,Γ ⇒ ∆

(cut)R, Γ ⇒ ∆

Fig. 5. The set LR of admissible labelled rules consists of all rules shown above.

formula w : (∀x)p(a, x)∨q(a, b) instead of w : (∀x)p(y, x)∨q(y, z) in a first-order
sequent. Last, we use the notation A(a1, . . . , an), with n ∈ N, to denote that
the parameters a1, . . . , an are all parameters occurring in the formula A. (NB.
We will occasionally abuse notation and write A(a) to indicate that the formula
A contains a parameter a in which we are interested; however, when using this
notation we leave open the possibility that A may contain other parameters as
well.) We write A(#»a) as shorthand for A(a1, . . . , an) and #»a ∈ Dw as shorthand
for a1 ∈ Dw, . . . , an ∈ Dw. The labelled calculi are given in Fig. 4.

Each labelled calculus is obtained from the models and semantic clauses of
Int, IntQ, and IntQC. We note that the labelled calculus G3Int for Int is presented
in [6], whereas the labelled calculi G3IntQ and G3IntQC for IntQ and IntQC
(respectively) are new. The rules (⊥l), (∧l), (∧r), (∨l), (∨r), (⊃l), (⊃r), (∃l),
(∃r), (∀l), and (∀r) are rule representations of the semantic clauses given in
Def. 2 and Def. 5. The (ref) and (tra) rules allow inferences arising from the
fact that frames are reflexive and transitive, whereas (ihd), (nd), and (cd) allow
inferences based on the fact that the domains of frames are always inhabited
(i.e. non-empty), are nested, and are constant, respectively. The rules (id) and
(idq) encode the monotonicity condition imposed on models; note that (id) is an
instance of (idq) (the same holds for the corresponding rules in the nested setting,
which are introduced in the next subsection). Last, we write `G3Int Λ, `G3IntQ Λ,
and `G3IntQC Λ to indicate that the labelled sequent Λ is derivable in G3Int,
G3IntQ, and G3IntQC, respectively—this notation extends straightforwardly to
the other calculi we will consider.

We define a label substitution (w/v) on a multiset of labelled formulae or
relational atoms in the usual way as the replacement of all labels v occurring in
the mulitset with the label w. Similarly, we define a parameter substitution (a/b)
on a multiset of labelled formulae or relational atoms as the replacement of all
parameters b occurring in the multiset with the parameter a.

Our labelled calculi possess desirable proof-theoretic properties such as the
height-preserving (hp-) admissibility of substitutions and structural rules (e.g.
(psub) and (wk)), the height-preserving (hp-) invertibility of all rules, and ad-
missibility of (cut). These properties are detailed in the theorem below (Thm. 3)
with the (hp-)admissible rules shown in Fig. 5.

On the Correspondence between Nested Calculi and Semantic Systems 11

Theorem 3. Let G3X ∈ {G3IntQ,G3IntQC}. The calculi G3Int, G3IntQ, and
G3IntQC have the following properties:

(i) (a) For all A ∈ L, `G3Int R, w ≤ v, w : A,Γ ⇒ v : A,∆;
(b) For all A ∈ L, `G3Int R, w : A,Γ ⇒ ∆,w : A;
(c) For all A ∈ Q, `G3X R, w ≤ v, #»a ∈ Dw, w : A(#»a), Γ ⇒ v : A(#»a), ∆;
(d) For all A ∈ Q, `G3X R, #»a ∈ Dw, w : A(#»a), Γ ⇒ ∆,w : A(#»a);

(ii) All rules in LR− {(cut)} are hp-admissible;
(iii) All rules are hp-invertible;
(iv) The (cut) rule is admissible;
(v) G3Int, G3IntQ, and G3IntQC are sound and complete for Int, IntQ, and IntQC,

respectively.

Proof. We refer the reader to [6] for proofs of properties (i)–(v) for G3Int; note
that hp-admissibility of (psub) is trivial in the propositional setting since formu-
lae do not contain parameters. The proofs of properties (i)–(v) for G3IntQ and
G3IntQC are similar to those for G3Int and can be found in Appendix A. ut

3.2 The Nested Calculi NInt, NIntQ, and NIntQC

We define a propositional (or, first-order) nested sequent Σ to be a syntactic
object defined via the following BNF grammars:

X ::= ε | A | X,X Σ ::= X → X | X → X, [Σ], . . . , [Σ]

where A is in the propositional language L (first-order language Q, resp.). As
in the previous section, we take the comma operator to be commutative and
associative, allowing us to view syntactic entities X as multisets, and we let ε
represent the empty string which—as in the labelled setting—occurs implicitly,
but not explicitly, in sequents.

In the first-order setting, we syntactically distinguish between bound vari-
ables and free variables in first-order formulae, using {x, y, z, . . .} for bound vari-
ables and replacing the occurrence of free variables in formulae with parameters
{a, b, c, . . .}. For example, we would use p(a) → p(b), [⊥ → ∀xq(x, b)] instead of
the sequent p(x)→ p(y), [⊥ → ∀xq(x, y)] in a nested derivation (where the free
variable x has been replaced by the parameter a and y has been replaced by b).

Nested sequents are often written as Σ{X → Y, [Σ1], . . . , [Σn]}, which in-
dicates that X → Y, [Σ1], . . . , [Σn] occurs at some depth in the nestings of the
sequent Σ. For example, if Σ is taken to be p(a) → [⊥ → ∀xq(x, b), [→ >]],
then Σ{⊥ → ∀xq(x, b)}, Σ{⊥ → ∀xq(x, b), [→ >]}, and Σ{→ >} are correct
representations of Σ in our notation.

The nested calculi are given in Fig. 6 and are slight variants of the calculi
presented by Fitting in [9]. The only difference is that the rules (¬l), (lift), (⊃l),
(∃r), and (∀l) preserve copies of the principal formula in the premise of the rule.
Since we will be extracting Fitting’s nested calculi from our labelled calculi, it
will be seen that these copies of principal formulae are residua of this process,
which is based on the fact that our labelled calculi preserve copies of principal

12 Tim Lyon

(id)
Σ{X, p→ p, Y }

Σ{X,A,B → Y }
(∧l)

Σ{X,A ∧B → Y }
Σ{X,A→ Y, [X ′, A→ Y ′]}

(lift)
Σ{X,A→ Y, [X ′ → Y ′]}

Σ{X,A→ Y } Σ{X,B → Y }
(∨l)

Σ{X,A ∨B → Y }
Σ{X → A, Y } Σ{X → B, Y }

(∧r)
Σ{X → A ∧B, Y }

Σ{X → Y, [A→]}
(¬r)

Σ{X → Y,¬A}
Σ{X,¬A→ A, Y }

(¬l)
Σ{X,¬A→ Y }

Σ{X → A,B, Y }
(∨r)

Σ{X → A ∨B, Y }

Σ{X → Y, [A→ B]}
(⊃r)

Σ{X → A ⊃ B, Y }
Σ{X,A ⊃ B → A, Y } Σ{X,A ⊃ B,B → Y }

(⊃l)
Σ{X,A ⊃ B → Y }

(idq)
Σ{X, p(#»a)→ p(#»a), Y }

Σ{X → A(a/x), ∃xA, Y }
(∃r)†1

Σ{X → ∃xA, Y }

Σ{X,A(a/x)→ Y }
(∃l)†2

Σ{X, ∃xA→ Y }
Σ{X → Y, [→ A(a/x)]}

(∀nr)†2
Σ{X → ∀xA, Y }

Σ{X → A(a/x), Y }
(∀cr)†2

Σ{X → ∀xA, Y }
Σ{X, ∀xA,A(a/x)→ Y }

(∀l)†1
Σ{X, ∀xA→ Y }

Fig. 6. The nested calculus NInt for propositional intuitionistic logic consists of (id),
(∧l), (∧r), (∨r), (∨l), (¬l), (¬r), (⊃r), (⊃l), and (lift). The nested calculus NIntQ
extends NInt with (idq), (∃l), (∃r), (∀l), and (∀nr). The nested calculus NIntQC extends
NInt with (idq), (∃l), (∃r), (∀l), and (∀cr) and omits the side condition †1 on the (∃r)
and (∀l) rules [9]. The side condition †1 states that the parameter a is either available
or is an eigenvariable, and †2 states that a is an eigenvariable.

formulae in the premise(s) of certain rules. Howbeit, it is easy to confirm that the
calculi NInt, NIntQ, and NIntQC are equivalent to Fitting’s calculi from [9], as it
is straightforward to transform a derivation from one calculus into a derivation
in the other, and vice-versa.

The two distinguishing factors between the nested calculi NIntQ and NIntQC
are that (i) the former uses the (∀nr) rule whereas the latter uses the (∀cr) rule,
and (ii) the former imposes a side condition (see Fig. 6) on the (∃r) and (∀l)
rules, whereas the latter does not. This side condition ensures the soundness
of the (∃r) and (∀l) rules with respect to IntQ-models, that is, with respect to
models where domains are not necessarily constant (cf. [9]). The side condition
relies on the notion of an available parameter, which we define below:

Definition 6 (Available Parameter [9]). Let Σ{X → Y, [Σ1], . . . , [Σn]} be
a nested sequent. If there exists a formula A(a) ∈ X,Y , then the parameter a is
available in X → Y and in all boxed subsequents Σi (with i ∈ {1, . . . , n}).

As explained in the following section, a nested sequent can be seen as a tree
of sequents of the form X → Y . Intuitively, if a parameter is available at some

On the Correspondence between Nested Calculi and Semantic Systems 13

point X → Y in the tree, then it will be available at all points in the future of
that point, i.e. in the subtree with X → Y as its root. Since a nested sequent
can be seen as an abstraction of an IntQ-model encoding the model’s underlying
treelike structure, the notion of an available parameter corresponds to the fact
that if a parameter denotes an object in the domain of a world, then—due to
the nested domain condition (Def. 3)—that parameter denotes that object at all
future worlds and is available for use in sentences at such worlds.

A feature which distinguishes the nested formalism from the labelled is that
nested sequents may readily be converted into an equivalent formula, that is,
nested sequents allow for a straightforward formula translation (see Def. 7 be-
low). As a consequence of our refinement procedure, we will see in Sect. 8 (viz.
Cor. 4) that a nested sequent Σ is provable if and only if its formula interpreta-
tion is provable.

Definition 7 (Formula Interpretation). The formula interpretation of a
nested sequent is defined inductively as follows:

ι(X → Y) :=
∧
X ⊃

∨
Y

ι(X → Y, [Σ1], . . . , [Σn]) :=
∧
X ⊃

(∨
Y ∨

∨
1≤i≤n

ι(Σi)

)
In the propositional setting, ι(Σ) is a formula in L. In the first-order setting, we
interpret a nested sequent Σ as a formula in Q by taking the universal closure
∀ #»xι(Σ) of ι(Σ). Also, as usual

∧
ε := > and

∨
ε := ⊥, i.e. empty antecedents

translate to > and empty succedents translate to ⊥.

Proof-theoretic properties of NInt, NIntQ, and NIntQC will be discussed in
Sect. 8, though we do state the essential properties of soundness and complete-
ness below, which were proven by Fitting in [9]. By strongly sound and complete,
we mean that a nested sequent Σ is valid (relative to an Int-, IntQ-, or IntQC-
model) iff it is derivable (in NInt, NIntQ, or NIntQC, respectively).

Theorem 4 (Soundness and Completeness). NInt, NIntQ, and NIntQC are
strongly sound and complete for Int, IntQ, and IntQC, respectively.

Interestingly, the correspondence we establish between G3Int and NInt, and
G3IntQC and NIntQC, can be leveraged to show that NInt and NIntQC inherit
soundness and completeness from their associated labelled calculi. The corre-
spondence between NIntQ and G3IntQ cannot be leveraged to conclude the com-
pleteness of NIntQ however, because of the use of a lemma (Lem. 14 in Sect. 6)
that invokes the strong completeness of NIntQ (i.e. it invokes Thm. 4 above).
Still, we note in that section how the lemma may be proved independent of the
completeness of NIntQ, thus allowing for NIntQ to inherit the completeness of
G3IntQ via our refinement and translation processes. Last, in Sect. 8, we will
show that our nested calculi inherit additional properties from their correspond-
ing labelled calculi such as the admissibilty of certain structural rules (Cor. 2)
and the invertibility of all rules (Cor. 3).

14 Tim Lyon

4 Fundamentals for Establishing Correspondence

This section consists of two parts: in the first subsection, we define translation
functions that transform labelled sequents into nested sequents and vice-versa,
as well as define classes of labelled sequents that are fruitful for carrying out our
proof-theoretic transformation and translation work. In the second subsection,
we establish preliminary results that are convenient for refining our labelled
calculi, that is, such results will assist us in eliminating the structural rules (e.g.
(ref) and (nd)) from G3Int, G3IntQ, and G3IntQC (which will ultimately yield
systems that are close variants of Fitting’s nested systems).

4.1 Translating Notation: Labelled and Nested

It is instructive to observe that both nested and labelled sequents can be viewed
as graphs (with the former restricted to trees and the latter more general).
Graphs of sequents are significant for two reasons: the first (technical) reason is
that graphs can be leveraged to switch from labelled to nested notation; thus,
graphs will play a role in deriving our nested calculi from our labelled calculi,
and vice-versa. Second, graphs offer insight into why structural rule elimination
yields nested systems, which will be discussed in the next section (Sect. 5).

It is straightforward to define the graph of each type of sequent. To do this, we
first introduce a bit of notation and define the multiset Γ � w := {A | w : A ∈ Γ}.
For a labelled sequent Λ := R, Γ ⇒ ∆, the graph G(Λ) is the tuple (V,E, λ),
where (i) V := {w | w is a label in Λ.}, (ii) (w, v) ∈ E iff w ≤ v ∈ R, and

(iii) λ := {(w, Γ ′ ⇒ ∆′) | Γ ′ = Γ � w, ∆′ = ∆ � w, and w ∈ V }.

For a nested sequent, the graph is defined inductively on the structure of the
nestings; we use strings σ of natural numbers to denote vertices in the graph,
similar to the prefixes used in prefixed tableaux [7,8,9].

Base case. Let our nested sequent be of the form X → Y with X and Y
multisets of formulae. Then, Gσ(X → Y) := (Vσ, Eσ, λσ), where (i) Vσ := {σ},
(ii) Eσ := ∅, and (iii) λσ := {(σ,X → Y)}.

Inductive step. Suppose our nested sequent is of the formX → Y, [Σ1], . . . , [Σn].
We assume that each Gσ.i(Σi) = (Vσ.i, Eσ.i, λσ.i) (with i ∈ {1, . . . , n}) is already
defined, and define Gσ(X → Y, [Σ1], . . . , [Σn]) := (Vσ, Eσ, λσ) as follows:

(i) Vσ := {σ} ∪
⋃

1≤i≤n

Vσ.i (ii) Eσ := {(σ, σ.i) | 1 ≤ i ≤ n} ∪
⋃

1≤i≤n

Eσ.i

(iii) λσ := {(σ,X → Y)} ∪
⋃

1≤i≤n

λσ.i

We will occasionally refer to a sequent of the form X → Y in a nested sequent
Σ such that (σ,X → Y) ∈ λ0 (with G0(Σ) = (V0, E0, λ0)) as a component of
the nested sequent Σ.

On the Correspondence between Nested Calculi and Semantic Systems 15

Definition 8. Let G0 = (V0, E0, λ0) and G1 = (V1, E1, λ1) be two graphs. We
define an isomorphism f : V0 7→ V1 between G0 and G1 to be a function such
that: (i) f is bijective, (ii) (x, y) ∈ E0 iff (fx, fy) ∈ E1, (iii) λ0(x) = λ1(fx).
We say G0 and G1 are isomorphic iff there exists an isomorphism between them.

Although the formal definitions above may appear somewhat cumbersome,
the example below shows that transforming a sequent into its graph—or con-
versely, obtaining the sequent from its graph—is relatively straightforward.

Example 1. The nested sequent Σ is given below with its corresponding graph
G0(Σ) shown on the left, and the labelled sequent Λ is given below with its cor-
responding graph G(Λ) on the right. Regarding the labelled sequent, we assume
that Γi and ∆i consist solely of formulae labelled with wi (for i ∈ {0, 1, 2, 3}).

Σ = X0 → Y0, [X1 → Y1, [X2 → Y2]], [X3 → Y3]

X0 → Y0
0

//

��

X3 → Y3
0.1

X1 → Y1
0.0

// X2 → Y2
0.0.0

Γ0 � w0 ⇒ ∆0 � w0

w0

//

��

��

''

Γ3 � w3 ⇒ ∆3 � w3

w3

Γ1 � w1 ⇒ ∆1 � w1

w1

// Γ2 � w2 ⇒ ∆2 � w2

w2

Λ = w0 ≤ w0, w0 ≤ w1, w1 ≤ w2, w0 ≤ w2, w0 ≤ w3, Γ0, Γ1, Γ2, Γ3 ⇒ ∆0,∆1,∆2,∆3

In the above example there is a loop from w0 to itself in the graph of the
labelled sequent; furthermore, there is an undirected cycle occurring between w0,
w1, and w2. As will be explained in the next section (specifically, Thm. 6), the
(ref) and (tra) rules allow for such structures to appear in the graphs of labelled
sequents used to derive theorems; however, the elimination of these rules in our
labelled calculi has the effect that such structures can no longer occur in the
labelled derivation of a theorem. Consequently, it will be seen that eliminating
such rules yields a labelled derivation where every sequent has a purely treelike
structure (cf. [13]). This implies that each labelled sequent in the derivation
has a graph isomorphic to the graph of a nested sequent. It is this idea which
ultimately permits the extraction of our nested calculi from our labelled calculi.

Definition 9. Let Λ be a labelled sequent and G(Λ) = (V,E, λ). We say that Λ
is treelike iff there exists a unique vertex w ∈ V , called the root, such that there
exists a unique path from w to every other vertex v ∈ V .3 We say that a labelled
derivation is treelike iff every labelled sequent in the derivation is treelike.

If we take the graph of a treelike labelled sequent, then it can be viewed as
the graph of a nested sequent, as the example below demonstrates:

3Treelike sequents are equivalently characterized as sequents with graphs that are:
(i) connected, (ii) acyclic, and (iii) contain no backwards branching.

16 Tim Lyon

Example 2. The treelike labelled sequent Λ′ and its graph are given below. We
assume that Γi and∆i contain only formulae labelled with wi (for i ∈ {0, 1, 2, 3}).

Λ′ = w0 ≤ w1, w1 ≤ w2, w0 ≤ w3, Γ0, Γ1, Γ2, Γ3 ⇒ ∆0, ∆1, ∆2, ∆3

Γ ′2 ⇒ ∆′2
w2

Γ ′1 ⇒ ∆′1
w1

oo Γ ′0 ⇒ ∆′0
w0

//oo Γ ′3 ⇒ ∆′3
w3

Also, if we assume that Γ ′i = Γi � wi = Xi and ∆′i = ∆i � wi = Yi (for
i ∈ {0, 1, 2, 3}), then the above graph is isomorphic to the graph of the nested
sequent in Example 1, meaning that Λ can be translated as that nested sequent.

To make the above translation precise, we introduce the w-downward closure
of the graph of a labelled sequent. We may utilize this notion to explicitly define
the translation N (see Def. 11) that translates labelled sequents into nested
sequents. This translation will prove itself useful in extracting Fitting’s nested
calculi from our labelled calculi.

Definition 10 (Downward Closure). Let Λ be a treelike labelled sequent with
graph G(Λ) = (V,E, λ) and w ∈ V . We define the w-downward closure Gw(Λ) =
(V ′, E′, λ′) to be the smallest subgraph of G(Λ) such that w ∈ V ′ and

I if v ∈ V ′ and (v, u) ∈ E, then u ∈ V ′;
I E′ = {(u, v) | u, v ∈ V ′};
I λ′ = {(v, Γ ′ ⇒ ∆′) | v ∈ V ′ and (v, Γ ′ ⇒ ∆′) ∈ λ}.

Definition 11 (The Translation N). Let Λ be a treelike labelled sequent with
root w. We inductively define N(Λ) := N(Gw(Λ)) to be the nested sequent ob-
tained from the graph Gw(Λ) as follows:

I If Gu(Λ) = (V,E, λ), where V = {u}, E = ∅, and λ = {(u, Γ ′ ⇒ ∆′)}, then

N(Gu(Λ)) := Γ ′ → ∆′.

I If Gu(Λ) = (V,E, λ), where u, v1, . . . , vn ∈ V , (u, v1), . . . , (u, vn) ∈ E, and
(u, Γ ′ ⇒ ∆′) ∈ λ, then

N(Gu(Λ)) := Γ ′ → ∆′, [N(Gv1(Λ))], . . . , [N(Gvn(Λ))].

We also define a converse translation L that translates nested sequents into
labelled sequents. Whereas the former translation N is useful in extracting our
nested calculi from our labelled calculi, the translation L is useful in transferring
proof-theoretic properties of the latter to the former as well as establishing the
converse translation (see Sect. 8). In order to define this translation, we first
define two operations: (i) If X is a multiset of formulae from L or Q, then
w : X := {w : A | A ∈ X}, that is, w : X is the multiset of all formulae from X
labelled with w, and (ii) If Λ1 = R1, Γ1 ⇒ ∆1 and Λ2 = R2, Γ2 ⇒ ∆2, then we
define the sequent composition Λ1 ⊕ Λ2 := R1,R2, Γ1, Γ2 ⇒ ∆1, ∆2.

On the Correspondence between Nested Calculi and Semantic Systems 17

Definition 12 (The Translation L). Let Σ be a nested sequent. We induc-
tively define L(Σ) := L(G0(Σ)) to be the labelled sequent obtained from the graph
G0(Σ) as follows:

I If Gσ(Σ) = (Vσ, Eσ, λσ) with V = {σ}, E = ∅, λ = {(σ,X → Y)}, and #»a
are all parameters occurring in X,Y , then

L(Gσ(Σ)) := #»a ∈ Dσ, σ : X ⇒ σ : Y.

I If Gσ(Σ) = (Vσ, Eσ, λσ) with σ, σ.1, . . . , σ.n ∈ V , (σ, σ.1), . . . , (σ, σ.n) ∈ E,
(σ,X → Y) ∈ λ, and #»a are all parameters occurring in X,Y , then

L(Gσ(Σ)) :=
(
σ ≤ σ.1, . . . , σ ≤ σ.n, #»a ∈ Dσ, σ : X ⇒ σ : Y

)
⊕
(
L(Gσ.1(Σ))

)
⊕ · · · ⊕

(
L(Gσ.n(Σ))

)
.

To simplify notation when making use of the L translation, we will use the same
labels w, u, v, . . . employed in our labelled calculi in place of strings σ of natural
numbers.

Before finishing this subsection, we introduce a fundamental notion useful for
completing our translation from labelled to nested, which is based on the above
definition—the notion of a nestedlike labelled sequent:

Definition 13 (Nestedlike). We say that a labelled sequent Λ is nestedlike iff
there exists a nested sequent Σ such that L(Σ) = Λ.

It is not difficult to see that the following lemma holds:

Lemma 3. Let Λ := R, Γ ⇒ ∆ be a nestedlike labelled sequent. Then, (i) Λ
is treelike, (ii) L(N(Λ)) = Λ (up to a change in labels), and (iii) there exists a
domain atom a ∈ Dw ∈ R iff there exists a labelled formula w : A(a) ∈ Γ,∆.

4.2 Setting the Stage for Refinement: Preliminary Results

In order to extract Fitting’s nested calculi from our labelled calculi, we will
expand our labelled calculi with rules sufficient for the elimination of certain
structural rules. Therefore, we first inflate our calculi to a large collection of
rules, and use the new additions to systematically eliminate certain rules from
each calculus, thus obtaining a refined variant of each calculus. To avoid lengthy
names for our inflated and refined calculi, we will use the following abbreviations
throughout the remainder of the paper (see Fig. 7 for newly introduced rules):

Definition 14. The inflated (G3Int∗, G3IntQ∗, and G3IntQC∗) and refined (IntL,
IntQL, and IntQCL) labelled calculi are defined as follows:

G3Int∗ := G3Int + {(id∗), (¬l), (¬r), (⊃∗l), (lift)}
G3IntQ∗ := G3IntQ + {(idnq), (¬l), (¬r), (⊃∗l), (lift), (∃nr), (∀nl), (∃inr), (∀inl)}
G3IntQC∗ := G3IntQC + {(idcq), (¬l), (¬r), (⊃∗l), (lift), (∃cr), (∀cl), (∃icr), (∀icl), (∀cr)}

18 Tim Lyon

(id∗)R, Γ, w : p⇒ w : p,∆
(idnq)†1

R, a1 ∈ Dv1 , . . . , an ∈ Dvn , Γ, w : p(#»a)⇒ w : p(#»a),∆

(idcq)†2
R, a1 ∈ Dv1 , . . . , an ∈ Dvn , Γ, w : p(#»a)⇒ w : p(#»a),∆

R, w ≤ v, v : A,Γ ⇒ ∆
(¬r)†3R, Γ ⇒ ∆,w : ¬A

R, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃nr)†4R, a ∈ Dv, Γ ⇒ ∆,w : ∃xA

R, w : ¬A,Γ ⇒ w : A,∆
(¬l)R, w : ¬A,Γ ⇒ ∆

R, a ∈ Dv, w : A(a/x), w : ∀xA, Γ ⇒ ∆
(∀nl)†4R, a ∈ Dv, w : ∀xA, Γ ⇒ ∆

R, a ∈ Dv, w : A(a/x), w : ∀xA, Γ ⇒ ∆
(∀cl)†5R, a ∈ Dv, w : ∀xA, Γ ⇒ ∆

R, a ∈ Dw, Γ ⇒ w : A(a/x),∆
(∀cr)†6R, Γ ⇒ w : ∀xA,∆

R, w ≤ u,w : A, u : A,Γ ⇒ ∆
(lift)R, w ≤ u,w : A,Γ ⇒ ∆

R, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃cr)†5R, a ∈ Dv, Γ ⇒ ∆,w : ∃xA

R, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃inr)†7R, Γ ⇒ w : ∃xA,∆

R, a ∈ Dv, Γ, w : ∀xA,w : A(a/x)⇒ ∆
(∀inl)†7R, Γ, w : ∀xA,⇒ ∆

R, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃icr)†8R, Γ ⇒ w : ∃xA,∆

R, a ∈ Dv, Γ, w : ∀xA,w : A(a/x)⇒ ∆
(∀icl)†8R, Γ, w : ∀xA,⇒ ∆

R, w : A ⊃ B,Γ ⇒ ∆,w : A R, w : A ⊃ B,w : B,Γ ⇒ ∆
(⊃∗l)R, w : A ⊃ B,Γ ⇒ ∆

Fig. 7. Rules used to derive NInt, NIntQ, and NIntQC from G3Int, G3IntQ, and G3IntQC,
respectively. Let R be the relational atoms occurring in the relevant rule; the side
condition †1 states that vi R w for each i ∈ {1, . . . , n}, †2 states that vi ∼R w for
each i ∈ {1, . . . , n}, †3 states that v is an eigenvariable, †4 states that v R w, †5
states that v ∼R w, †6 states that a is an eigenvariable, †7 states that v R w and a
is an eigenvariable, and †8 states that v ∼R w and a is an eigenvariable.

IntL := G3Int∗ − {(id), (⊥l), (⊃l), (ref), (tra)}
IntQL := G3IntQ∗ − {(idq), (⊥l), (⊃l), (ref), (tra), (∃r), (∀l), (nd), (ihd)}
IntQCL :=

G3IntQC∗ − {(idq), (⊥l), (⊃l), (ref), (tra), (∃r), (∀l), (∀r), (nd), (cd), (ihd)}
The next three sections will focus on the non-trivial refinement and transla-

tion of our labelled calculi into our nested calculi. As such, we present two useful
lemmata below which will aid us in the aforementioned endeavor and allow for us
to focus our attention on the refinement and translation from labelled to nested,
thus freeing us from being sidetracked by too many auxiliary details. Moreover,
we present the rules (mentioned in the abbreviations above and lemmata below)
that we expand each labelled calculus with in Fig. 7 below. Some of these rules
depend on the notion of a directed path or undirected path, whose definitions are
as follows:

On the Correspondence between Nested Calculi and Semantic Systems 19

Definition 15 (Directed Path). Let Λ = R, Γ ⇒ ∆ be a labelled sequent. We
say that there exists a directed path from w to u in R (written w R u) iff
w = u, or there exist worlds vi (with i ∈ {1, . . . , n}) such that w ≤ v1, . . . , vn ≤
u ∈ R holds (we stipulate that w ≤ u ∈ R when n = 0).

Definition 16 (Undirected Path). Let Λ = R, Γ ⇒ ∆ be a labelled sequent
and w ∼ v ∈ {w ≤ u, u ≤ w}. We say that there exists an undirected path
from w to u in R (written w ∼R u) iff w = u, or there exist worlds vi (with
i ∈ {1, . . . , n}) such that w ∼ v1, . . . , vn ∼ u ∈ R holds (we stipulate that
w ∼ u ∈ R when n = 0).

The following lemma confirms that the expansion of our labelled calculi G3Int,
G3IntQ, and G3IntQC with rules from Fig. 7 preserves (to a degree) favorable
proof-theoretic properties:

Lemma 4. Let G3X∗ ∈ {G3IntQ∗,G3IntQC∗}. The calculi G3Int∗, G3IntQ∗, and
G3IntQC∗ have the following properties:

(i) (a) For all A ∈ L, `G3Int∗ R, w ≤ v, w : A,Γ ⇒ v : A,∆;

(b) For all A ∈ L, `G3Int∗ R, w : A,Γ ⇒ ∆,w : A;

(c) For all A ∈ Q, `G3X∗ R, w ≤ v, #»a ∈ Dw, w : A(#»a), Γ ⇒ v : A(#»a), ∆;

(d) For all A ∈ Q, `G3X∗ R, #»a ∈ Dw, w : A(#»a), Γ ⇒ ∆,w : A(#»a);

(ii) The rules {(lsub), (psub), (wk), (ctrR), (ctrr)} are hp-admissible;

(iii) With the exception of {(∧l), (∃l)}, all rules are hp-invertible;

(iv) The rules {(∧l), (∃l)} are invertible;

(v) The rule (ctrl) is admissible.

Proof. See Appendix A for details. ut

The following lemma is useful in that it explicates what rules freely permute
with each other, thus letting us focus only on the non-trivial cases in the sequel.

Lemma 5. The following hold in G3Int∗, G3IntQ∗, and G3IntQC∗:

(i) The (ref) and (tra) rules can be permuted above (id∗), (⊥l), (∧l), (∧r), (∨l),
(∨r), (⊃∗l), (⊃r), (¬l), (¬r), (ihd), (∃l), (∃r), and (∀cr).

(ii) The (nd), (cd), and (ihd) rules can be permuted above (id), (id∗), (⊥l), (∧l),
(∧r), (∨l), (∨r), (⊃l), (⊃∗l), (⊃r), (¬l), (¬r), (lift), (ihd), (∃l), (∃inr), (∃icr),
(∀inl), (∀icl), (∀r), and (∀cr).

Proof. The claim of (i) follows from the fact that none of the rules mentioned
have active relational atoms of the form w ≤ u in the conclusion, and so, (ref)
and (tra) may be freely permuted above each rule. The claim of (ii) follows from
the fact that none of the rules mentioned contain active domain atoms in the
conclusion, allowing for (nd), (cd), and (ihd) to be permuted above each rule. ut

20 Tim Lyon

5 Deriving the Calculus NInt from G3Int

Deriving the calculus NInt from G3Int depends on a crucial observation concern-
ing labelled derivations: rules such as (ref) and (tra) allow for theorems to be
derived in proofs containing non-treelike labelled sequents. To demonstrate this
fact, observe the following derivation in G3Int:

w ≤ v, v ≤ v, v : p⇒ v : p
(ref)

w ≤ v, v : p⇒ v : p
(⊃r)⇒ w : p ⊃ p

The initial sequent is non-treelike due to the presence of the v ≤ v relational
atom; however, the application of (ref) deletes this structure from the initial
sequent and produces a treelike sequent as the conclusion.

In fact, it is true in general that every labelled derivation ending with a
treelike sequent can be partitioned into a top derivation consisting of non-treelike
sequents, and a bottom derivation consisting of treelike sequents. Note that if
a derivation ends with a treelike sequent, then the derivation must necessarily
contain a bottom treelike fragment. By contrast, the top non-treelike fragment
of the derivation may be empty (e.g. the minimal derivation of ⇒ w : ⊥ ⊃ p).

To demonstrate why the aforementioned partition always exists, suppose you
are given a labelled derivation of a treelike sequent and consider the derivation
in a bottom-up manner. Observe the each bottom-up application of a rule in
G3Int—with the exception of (ref) and (tra)—will produce a treelike sequent
(see Thm. 6 for auxiliary details). If, however, at some point in the derivation
(ref) or (tra) is applied, then all sequents above the inference will inherit the
(un)directed cycle produced by the rule, thus producing the non-treelike frag-
ment of the proof.

One can therefore imagine that permuting instances of the (ref) and (tra)
rules upward in a given derivation would potentially increase the bottom tree-
like fragment of the derivation and decrease the top non-treelike fragment. As
it so happens, this intuition is correct so long as we choose adequate rules—
that bottom-up preserve the treelike structure of sequents—to replace certain
instances of the (ref) and (tra) rules in a derivation, when necessary. We will
first examine permuting instances of the (ref) rule, and motivate which ade-
quate rules we ought to add to our calculus in order to achieve the complete
elimination of (ref). After, we will turn our attention toward eliminating the
(tra) rule, and conclude the section by leveraging our results to show that NInt
can be derived from G3Int.

Let us first observe an application of (ref) to an initial sequent obtained via
the (id) rule. There are two possible cases to consider: either the relational atom
principal in the initial sequent is active in the (ref) inference (shown below left),
or it is not (shown below right):

(id)R, w ≤ w,w : p, Γ ⇒ ∆,w : p
(ref)R, w : p, Γ ⇒ ∆,w : p

(id)R, u ≤ u,w ≤ v, w : p, Γ ⇒ ∆, v : p
(ref)R, w ≤ v, w : p, Γ ⇒ ∆, v : p

On the Correspondence between Nested Calculi and Semantic Systems 21

In the case shown above right, the end sequent is an instance of the (id) rule,
regardless of if u = w, u = v, or u is distinct from w and v. The case shown
above left however, indicates that we ought to add the (id∗) rule (see Fig. 7) to
our calculus if we aim to eliminate (ref) from any given derivation. These facts,
coupled with Lem. 5, imply that any application of (ref) to an initial sequent,
produces an initial sequent.

Concerning the remaining rules of G3Int, we need only investigate the per-
mutation of (ref) above the (⊃l) rule, if we rely on Lem. 5. There are two cases:
either the relational atom principal in the (⊃l) inference is active in the (ref)
inference, or it is not. The latter case is easily resolved, so we observe the former:

R, w ≤ w,w : A ⊃ B,Γ ⇒ ∆,w : A R, w ≤ w,w : A ⊃ B,w : B,Γ ⇒ ∆
(⊃l)R, w ≤ w,w : A ⊃ B,Γ ⇒ ∆

(ref)R, w : A ⊃ B,Γ ⇒ ∆

Applying (ref) to each premise of the (⊃l) inference yields the following:

R, w ≤ w,w : A ⊃ B,Γ ⇒ ∆,w : A
(ref)R, w : A ⊃ B,Γ ⇒ ∆,w : A

R, w ≤ w,w : A ⊃ B,w : B,Γ ⇒ ∆
(ref)R, w : A ⊃ B,w : B,Γ ⇒ ∆

The above observation suggests that we ought to add the (⊃∗l) rule (see Fig. 7) to
our calculus if we wish to permute (ref) above the (⊃l) rule; a single application
of the (⊃∗l) rule to the end sequents above gives the desired conclusion. With
the (⊃∗l) rule added to our calculus, we may freely permute the (ref) rule above
any (⊃l) inference.

On the basis of our investigation, together with Lem. 5, we may conclude the
following lemma:

Lemma 6. The (ref) rule is eliminable in G3Int + {(id∗), (⊃∗l)} − (tra).

Let us turn our attention toward eliminating the (tra) rule from a labelled
derivation. Since our aim is to eliminate both (ref) and (tra) from any derivation,
we assume that the rules {(id∗), (⊃∗l)} have been added to our calculus.

By Lem. 5, (tra) permutes with (⊥l) and (id∗), so we only consider the (id)
case. As with the (ref) rule, there are two cases to consider when permuting
(tra) above an (id) inference: either, the active formula of (tra) is principal in
(id), or it is not. In the latter case, the result of the (tra) rule is an initial sequent,
implying that the (tra) rule may be eliminated from the derivation. The former
case proves trickier and is explicitly given below:

(id)R, w ≤ u, u ≤ v, w ≤ v, w : p, Γ ⇒ ∆, v : p
(tra)R, w ≤ u, u ≤ v, w : p, Γ ⇒ ∆, v : p

Observe that the end sequent is not an initial sequent as it is not obtainable
from an (id), (id∗), or (⊥l) rule. The issue is solved by considering the (lift)
rule (see Fig. 7), which allows us to obtain the desired end sequent without the
use of (tra), as the following derivation demonstrates:

(id∗)R, w ≤ u, u ≤ v, w : p, u : p, v : p, Γ ⇒ v : p,∆
(lift)R, w ≤ u, u ≤ v, w : p, u : p, Γ ⇒ v : p,∆

(lift)R, w ≤ u, u ≤ v, w : p, Γ ⇒ v : p,∆

22 Tim Lyon

Thus, the addition of (lift) to our calculus resolves the issue of permuting (tra)
above any initial sequent. Nevertheless, by Lem. 5, we still need to consider
the permutation of (tra) above the (⊃l) and (lift) rules. However, due to the
following lemma, we may omit consideration of the (⊃l) case.

Lemma 7. The rule (⊃l) is admissible in G3Int + {(id∗), (⊃∗l), (lift)}.

Proof. The derivation below proves the admissibility of the rule:

R, x ≤ y, x : A ⊃ B,Γ ⇒ ∆, y : A
(wk)R, x ≤ y, x : A ⊃ B, y : A ⊃ B,Γ ⇒ ∆, y : A

R, x ≤ y, x : A ⊃ B, y : B,Γ ⇒ ∆
(wk)R, x ≤ y, x : A ⊃ B, y : A ⊃ B, y : B,Γ ⇒ ∆
(⊃∗l)R, x ≤ y, x : A ⊃ B, y : A ⊃ B,Γ ⇒ ∆

(lift)R, x ≤ y, x : A ⊃ B,Γ ⇒ ∆
ut

Last, the (tra) rule is permutable with the (lift) rule. In the case where the
principal relational atom of (lift) is not active in the ensuing (tra) application,
the two rules freely permute. The alternative case is resolved as shown below:

R, w ≤ u, u ≤ v, w ≤ v, w : A, v : A,Γ ⇒ ∆
(lift)R, w ≤ u, u ≤ v, w ≤ v, w : A,Γ ⇒ ∆

(tra)R, w ≤ u, u ≤ v, w : A,Γ ⇒ ∆

R, w ≤ u, u ≤ v, w ≤ v, w : A, v : A,Γ ⇒ ∆
(tra)R, w ≤ u, u ≤ v, w : A, v : A,Γ ⇒ ∆
(wk)R, w ≤ u, u ≤ v, w : A, u : A, v : A,Γ ⇒ ∆
(lift)R, w ≤ u, u ≤ v, w : A, u : A,Γ ⇒ ∆

(lift)R, w ≤ u, u ≤ v, w : A,Γ ⇒ ∆

Hence, we obtain the following:

Lemma 8. The (tra) rule is eliminable in G3Int+ {(id∗), (⊃∗l), (lift)} − (ref).

Enough groundwork has been laid to state one of our main lemmata, which
is also a consequence of the work in [21].

Lemma 9. The (ref) and (tra) rules are admissible in the calculus G3Int +
{(id∗), (⊃∗l), (lift)}.

Proof. Suppose we are given a derivation in G3Int + {(id∗), (⊃∗l), (lift)}, and
consider the topmost occurrence of either (ref) or (tra). If we can show that the
(ref) rule permutes above the (lift) rule, then we may invoke Lem. 6 and Lem. 8
to conclude that each topmost occurrence of (ref) and (tra) can be eliminated
from the given derivation in succession. This yields a (ref)- and (tra)-free proof
of the end sequent and establishes the claim. Thus, we prove that the (ref) rule
permutes above the (lift) rule.

In the case where the relational atom active in (ref) is not principal in the
(lift) inference, the two rules may be permuted; the alternative case is resolved
as shown below:

On the Correspondence between Nested Calculi and Semantic Systems 23

R, w ≤ w,w : A,w : A,Γ ⇒ ∆
(lift)R, w ≤ w,w : A,Γ ⇒ ∆

(ref)R, w : A,Γ ⇒ ∆

IHR, w : A,w : A,Γ ⇒ ∆
(ctrl)R, w : A,Γ ⇒ ∆

ut

The addition of the rules {(id∗), (⊃∗l), (lift)} to our calculus and the above
admissibility results demonstrate that we are readily advancing toward our goal
of deriving NInt. Howbeit, our labelled calculus is still distinct since it makes use
of the logical signature {⊥,∧,∨,⊃}, whereas NInt uses the signature {¬,∧,∨,⊃}.
Therefore, we need to show that (⊥l) (we define ⊥ := p ∧ ¬p) is admissible in
the presence of (labelled versions of) the (¬r) and (¬l) rules (see Fig. 7). This
admissibility result is explained in the theorem below.

Theorem 5. The rules {(id), (⊥l), (⊃l), (ref), (tra)} are admissible in IntL.

Proof. Follows from Lem. 5, Lem. 9, the fact that (id) is derivable using (id∗)
and (lift), and the fact that (⊥l) is derivable from (¬l) and (∧l). Also, the
admissibility of (⊃l) is shown as in Lem. 7. ut

Although the above theorem is sufficient to conclude the completeness of IntL,
we obtain a stronger result. As shown in the theorem below, we may conclude
that IntL is complete relative to treelike derivations possessing the fixed root
property ; i.e. for every Int-valid formula A ∈ L, (i) ⇒ w : A is derivable in IntL
with a treelike derivation, and (ii) the label w is the root of each treelike labelled
sequent in the derivation.

Theorem 6. (i) The calculus IntL is complete relative to treelike derivations
with the fixed root property. (ii) Every derivation in IntL of a treelike labelled
sequent is a treelike derivation with the fixed root property.

Proof. We prove (i), as (ii) is proven similarly. By Thm. 5 above, we know that
IntL is complete. To prove claim (i) then, we assume that we are given a derivation
in IntL of a labelled theorem, i.e. the end sequent is of the form⇒ w : A. It is not
difficult to see that the derivation of⇒ w : A must be treelike with the fixed root
property since applying inference rules from the calculus bottom-up to ⇒ w : A
either preserves relational structure or adds forward relational structure (e.g.
(⊃r) and (¬r)), thus constructing a tree emanating from the root w. ut

We may leverage the above theorem and the translation N (from Def. 11)
to complete the extraction of the nested calculus NInt from the labelled calcu-
lus G3Int (via the calculus IntL). The theorem below shows that (the treelike
fragment of) IntL and NInt are notational variants of one another:

Theorem 7. (i) Every derivation in IntL of a nestedlike labelled sequent Λ is
effectively translatable to a derivation of the nested sequent N(Λ) in NInt. (ii)
Every derivation in NInt of a nested sequent Σ is effectively translatable to a
derivation of the labelled sequent L(Σ) in IntL.

24 Tim Lyon

Proof. By Lem. 3, we know that Λ is treelike, implying that our derivation of Λ
is treelike by Thm. 6, which further implies that the translation function N is
defined for each labelled sequent in the derivation. It is straightforward to verify
that each rule in IntL translates to an instance of the corresponding rule in NInt
under the N translation, and every rule of NInt translates to an instance of the
corresponding rule in IntL under the L translation. ut

6 Deriving the Calculus NIntQ from G3IntQ

In the preceding section, we observed that the elimination of the (ref) and
(tra) rules yielded derivations where every labelled sequent was of a treelike
shape. In this section (and the succeeding section) the same effect obtains via
the elimination of these two structural rules. Therefore, the majority of this
section is dedicated to investigating the effects of eliminating the (nd) and (ihd)
structural rules instead.

Similar to our analysis of eliminating the (ref) and (tra) rules, we motivate
and explain the adequate rules we ought to add to G3IntQ in order to obtain
the complete elimination of (nd) and (ihd). Although the reader may refer to
Fig. 7 to witness what rules are needed for the admissibility of (nd) and (ihd),
a central aim of this section is to demonstrate how such rules emerge from our
analysis when attempting to eliminate (nd) and (ihd) from a derivation—this
begets a deeper understanding of how the semantics of IntQ affects the shape of
rules in NIntQ (via the labelled calculus G3IntQ). Ultimately, our admissibility
results will permit the extraction of NIntQ from G3IntQ.

Lemma 10. The (ref) and (tra) rules are admissible in the calculus G3IntQ∗.

Proof. We prove the result by induction on the height of the given derivation and
assume w.l.o.g. that the derivation ends with (ref) or (tra), and that no other
instances of (ref) or (tra) occur in the derivation. The general result follows
by considering a topmost occurrence of (ref) or (tra) and eliminating each
topmost occurrence in succession until a proof free of (ref) and (tra) inferences
is obtained.

By Lem. 5, we need only show that (ref) and (tra) permute above the rules
(idq), (id

n
q), (⊃l), (lift), (∃nr), (∃inr), (∀l), (∀nl), (∀inl), and (nd). The cases of

permuting (ref) and (tra) above (lift) are similar as for Thm. 5 and Lem. 8,
respectively. Also, (⊃l) is admissible in the presence of (⊃∗l) (similar to Lem. 7),
(idq) is an instance of (idnq) (by Lem. 11 below), and (∀l) is an instance of (∀nl)
(also by Lem. 11 below), so these cases may be omitted. Hence, we focus only on
the nontrivial cases involving the (idnq), (∃nr), (∃inr), (∀nl), (∀inl), and (nd) rules,
which are shown below to the left and resolved as shown below on the right.
We prove the elimination of (ref) and refer the reader to Appendix A for the
similar proof of (tra) elimination.

Base case. We let R′ := R, a1 ∈ Dv1 , . . . , an ∈ Dvn in the (idnq) case below.
Observe that the end sequent of the derivation below left is an instance of (idnq)

since the side condition that vi R
′
w for i ∈ {1, . . . , n} holds: if none of the

On the Correspondence between Nested Calculi and Semantic Systems 25

directed paths from vi to w contain u ≤ u, then the paths are present in R′, and
if a directed path from vi to w does contain u ≤ u, then deleting each occurrence
of u ≤ u from the directed path gives a new path from vi to w in R′.

(idnq)
R′, u ≤ u, Γ,w : p(#»a)⇒ w : p(#»a), ∆

(ref)
R′, Γ, w : p(#»a)⇒ w : p(#»a), ∆

(idnq)
R′, Γ, w : p(#»a)⇒ w : p(#»a), ∆

Inductive step. For the inductive step, we consider the non-trivial (∃nr), (∃inr),
(∀nl), (∀inl), and (nd) cases.

R, u ≤ u, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃nr)R, u ≤ u, a ∈ Dv, Γ ⇒ w : ∃xA,∆

(ref)R, a ∈ Dv, Γ ⇒ w : ∃xA,∆

IHR, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃nr)R, a ∈ Dv, Γ ⇒ w : ∃xA,∆

R, u ≤ u, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃inr)R, u ≤ u, Γ ⇒ w : ∃xA,∆

(ref)R, Γ ⇒ w : ∃xA,∆

IHR, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃inr)R, Γ ⇒ w : ∃xA,∆

R, u ≤ u, a ∈ Dv, w : A(a/x), w : ∀xA, Γ ⇒ ∆
(∀nl)R, u ≤ u, a ∈ Dv, w : ∀xA, Γ ⇒ ∆

(ref)R, a ∈ Dv, w : ∀xA, Γ ⇒ ∆

IHR, a ∈ Dv, w : A(a/x), w : ∀xA, Γ ⇒ ∆
(∀nl)R, a ∈ Dv, w : ∀xA, Γ ⇒ ∆

R, u ≤ u, a ∈ Dv, Γ, w : A(a/x), w : ∀xA⇒ ∆
(∀inl)R, u ≤ u, Γ,w : ∀xA⇒ ∆

(ref)R, w : ∀xA, Γ ⇒ ∆

IHR, a ∈ Dv, Γ, w : A(a/x), w : ∀xA, Γ ⇒ ∆
(∀inl)R, w : ∀xA, Γ ⇒ ∆

R, w ≤ w, a ∈ Dw, a ∈ Dw, Γ ⇒ ∆
(nd)R, w ≤ w, a ∈ Dw, Γ ⇒ ∆

(ref)R, a ∈ Dw, Γ ⇒ ∆

R, w ≤ w, a ∈ Dw, a ∈ Dw, Γ ⇒ ∆
(ctrR)R, w ≤ w, a ∈ Dw, Γ ⇒ ∆

IHR, a ∈ Dw, Γ ⇒ ∆

26 Tim Lyon

We now argue that the side condition (v R w) of (∃nr), (∃inr), (∀nl), and (∀inl)
continues to hold after applying IH above. If the directed path from v to w does
not go through u, then the side condition trivially holds. Alternatively, if the
directed path from v to w does go through u, then by deleting each occurrence
of u ≤ u from the path, we obtain a new directed path from v to w, which
continues to be present after the invocation of IH. ut

We now analyze the admissibility of (nd) in G3IntQ∗ − {(ref), (tra)}, and
afterward, analyze the admissibility of the (ihd) rule. It will be instructive to first
consider the case of permuting (nd) above the (∃r) rule solely. It will be seen that
in order to permute (nd) above (∃r), it is sufficient to strengthen the (∃r) rule
through the addition of a side condition; this motivates a similar side condition
that we will impose on (idq) (yielding the rule (idnq)) and on (∀l) (yielding the
rule (∀nl)).

To begin our analysis, observe (1) a non-trivial application of (nd) after an
(∃r) inference, and (2) the result of applying (nd) to the top sequent in (1).

R, v ≤ w, a ∈ Dv, a ∈ Dw, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃r)R, v ≤ w, a ∈ Dv, a ∈ Dw, Γ ⇒ ∆,w : ∃xA

(nd)R, v ≤ w, a ∈ Dv, Γ ⇒ ∆,w : ∃xA
(1)

R, v ≤ w, a ∈ Dv, a ∈ Dw, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(nd)

R, v ≤ w, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(2)

In (2), the application of (nd) has generated a labelled sequent where the
domain atom (i.e. a ∈ Dv) is associated with the label v one step in the past
of w (due to the presence of the v ≤ w relational atom). One possible solution
to overcome this obstacle, and to allow for the permutation of (nd) above (∃r),
would be to add the following rule to our calculus:

R, v ≤ w, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃r)′R, v ≤ w, a ∈ Dv, Γ ⇒ ∆,w : ∃xA

In the rule above, the domain atom a ∈ Dv is associated with the label v, which
is one step in the past of w. Although the addition of the above rule solves the
problem of permuting (nd) above the (∃r) rule, its inclusion into our calculus
would inevitably place us in a similar, undesirable circumstance:

R, u ≤ v, v ≤ w, a ∈ Du, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃r)′R, u ≤ v, v ≤ w, a ∈ Du, a ∈ Dv, Γ ⇒ ∆,w : ∃xA

(nd)R, u ≤ v, v ≤ w, a ∈ Du, Γ ⇒ ∆,w : ∃xA

R, u ≤ v, v ≤ w, a ∈ Du, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(nd)

R, u ≤ v, v ≤ w, a ∈ Du, Γ ⇒ ∆,w : A(a/x), w : ∃xA

It appears that now we would need to add a new version of the (∃r) rule allowing
us to delete w : A(a) when the required relational atom a ∈ Du is associated
with a label (viz. u) that is two steps in the past of w (due to the occurrence

On the Correspondence between Nested Calculi and Semantic Systems 27

of u ≤ v, v ≤ w). Including such a rule however, would inevitably force us to
add another existential rule where the required relational atom is associated
with a label three steps in the past—such rule inclusions would then continue ad
infinitum. To resolve the problem, and capture all such possibilities, we add the
following rule to our calculus, which has the side condition v R w (see Def. 15
and Fig. 7):

R, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃nr)R, a ∈ Dv, Γ ⇒ ∆,w : ∃xA

This rule generalizes the shifting behaviour of the domain atom witnessed above
to include all possible shifts. Furthermore, due to the fact that the labelled
sequents we are considering encode an IntQ-model—which satisfies the nested
domain condition—it is appropriate to impose the above side condition, which
essentially states that if an object is an element of some domain Dv in the past
of w, then it is an element of the domain Dw. It is straightforward to verify that
the (∃nr) rule is sound relative to IntQ-models.

If one analyzes the cases of permuting (nd) above the (idq) and (∀l) rules,
then they will observe the same shifting behavior of domain atoms as in the (∃r)
case. We therefore impose a similar side condition on (idq) and (∀l) to obtain
the (idnq) and (∀nl) rules (see Fig. 7). It is not difficult to see that the following
holds:

Lemma 11. The (idq), (∃r), and (∀l) rules are instances of the (idnq), (∃nr), and
(∀nl) rules, respectively.

The lemma below shows that the (idnq), (∀nl), and (∃nr) rules are sufficient to
prove the admissibility of (nd):

Lemma 12. The rule (nd) is admissible in the calculus G3IntQ∗−{(ref), (tra)}.

Proof. We prove the result by induction on the height of the given derivation.
By Lem. 5 and Lem. 10, we need only consider the non-trivial (idnq), (∃nr), and
(∀nl) cases.

Base case. We let R′ := R, u ≤ v, a1 ∈ Dv1 , . . . , an ∈ Dvn and assume that
both v R

′
w and vi R

′
w (for i ∈ {1, . . . , n}) hold. Observe that the end

sequent is an instance of (idnq) since (i) the paths from vi to w are still present
and (ii) there is a directed path from u to w composed of the relational atom
u ≤ v and the direct path from v to w (i.e. u R

′
w holds).

(idnq)
R′, b ∈ Du, b ∈ Dv, Γ, w : p(#»a , b)⇒ w : p(#»a , b), ∆

(nd)
R′, b ∈ Du, Γ, w : p(#»a , b)⇒ w : p(#»a , b), ∆

Inductive step. We provide each proof below showing that (nd) can be per-
muted above (∃nr) and (∀nl) (we consider only the non-trivial cases). Also, we
assume that there is a directed path from v to w, i.e. the side condition v R w
holds.

28 Tim Lyon

R, u ≤ v, a ∈ Du, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃nr)R, u ≤ v, a ∈ Du, a ∈ Dv, Γ ⇒ ∆,w : ∃xA

(nd)R, u ≤ v, a ∈ Du, Γ ⇒ ∆,w : ∃xA

IHR, u ≤ v, a ∈ Du, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃nr)R, u ≤ v, a ∈ Du, Γ ⇒ ∆,w : ∃xA

R, u ≤ v, a ∈ Du, a ∈ Dv, Γ, w : ∀xA,w : A(a/x)⇒ ∆
(∀nl)R, u ≤ v, a ∈ Du, a ∈ Dv, Γ, w : ∀xA⇒ ∆

(nd)R, u ≤ v, a ∈ Du, Γ, w : ∀xA⇒ ∆

IHR, u ≤ v, a ∈ Du, Γ, w : ∀xA,w : A(a/x)⇒ ∆
(∀nl)R, u ≤ v, a ∈ Du, Γ, w : ∀xA⇒ ∆

By assumption, there is a directed path from v to w in R. Observe that the side
condition is still satisfied after the invocation of IH since there is a directed path
from u to w composed of the relational atom u ≤ v and the directed path from
v to w in R. ut

We now turn our attention toward analyzing the admissibility of (ihd) in the
calculus G3IntQ∗ − {(ref), (tra), (nd)}. We will see that sufficient modifications
must be made to the (∃nr) and (∀nl) rules to necessitate the elimination of (ihd)
from a given derivation. (NB. Due to Lem. 11, we may omit consideration of
permuting (ihd) above (∃r) and (∀l).) Let us consider non-trivial applications of
(ihd) after an (∃nr) and (∀nl) inference:

R, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃nr)R, a ∈ Dv, Γ ⇒ w : ∃xA,∆

(ihd)R, Γ ⇒ w : ∃xA,∆

R, a ∈ Dv, Γ, w : ∀xA,w : A(a/x)⇒ ∆
(∀nl)R, a ∈ Dv, Γ, w : ∀xA,⇒ ∆

(ihd)R, Γ, w : ∀xA,⇒ ∆

Observe that the (ihd) rule cannot be permuted above the (∃nr) or (∀nl) rules
due to the existence of the labelled formula w : A(a/x) in the top sequent which
violates the side condition on (ihd) stating that a must be an eigenvariable. Our
solution to this issue is to absorb the (ihd) rule into the (∃nr) and (∀nl) rules
yielding the new versions (∃inr) and (∀inl):

R, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃inr)R, Γ ⇒ w : ∃xA,∆

R, a ∈ Dv, Γ, w : ∀xA,w : A(a/x)⇒ ∆
(∀inl)R, Γ, w : ∀xA,⇒ ∆

where we impose the side condition that v R w and a is an eigenvariable.
This side condition essentially states that there exists an element of Dw, which
is also in a domain Dv in the past of w. It can be shown that each rule is sound
relative to IntQ-models, and relies both on the nested domain condition and the
fact that such domains are non-empty, i.e. inhabited.

Lemma 13. The rule (ihd) is admissible in G3IntQ∗ − {(ref), (tra), (nd)}.

On the Correspondence between Nested Calculi and Semantic Systems 29

Proof. We prove the result by induction on the height of the given derivation.
The base case is simple as any application of (ihd) to (idnq) or (⊥l) yields another
instance of the rule. By Lem. 5 and Lem. 11, the only cases we need to consider
in the inductive step are the non-trivial (∃nr) and (∀nl) cases; however, as we
saw above, the non-trivial cases can be handled by applying (∃inr) or (∀inl),
respectively. ut

Theorem 8. The rules {(idq), (⊥l), (⊃l), (ref), (tra), (∃r), (∀l), (nd), (ihd)} are
admissible in the calculus G3IntQ∗.

Proof. The admissibility of {(ref), (tra)}, {(idq), (∃r), (∀l)}, (nd), and (ihd) fol-
low from Lem. 10, Lem. 11, Lem. 12, and Lem. 13, respectively. Admissibility of
(⊃l) is similar to Lem. 7 and admissibility of (⊥l) follows from the fact that the
rule can be derived using (¬l) and (∧l). ut

Theorem 9. (i) The calculus IntQL is complete relative to treelike derivations
with the fixed root property. (ii) Every derivation in IntQL of a treelike labelled
sequent is a treelike derivation with the fixed root property.

Proof. Similar to Thm. 6. ut

Although the above theorem is fundamental for translating derivations in
IntQL into derivations in NIntQ, additional work needs to be done to ensure
that the (∃nr) and (∀nl) rules properly translate to instances of the (∃r) and (∀l)
rules. The side condition imposed on (∃nr) and (∀nl) relies on the existence of
a domain atom containing a parameter a, whereas the side condition imposed
on the nested (∃r) and (∀l) rules stipulates that the parameter a must either
be an eigenvariable or available. The question arises: how do we reconcile these
seemingly distinct side conditions?

Interestingly, our process of refinement has offered us an unadulterated per-
spective of the nested (∃r) and (∀l) rules. As will be argued below (Thm. 10),
the rules (∃inr) and (∀inl) in IntQL translate to instances of the nested (∃r) and
(∀l) rules where the relevant parameter of the inference is an eigenvariable, and
the rules (∃nr) and (∀nl) translate to instances of the nested (∃r) and (∀l) rules
where the relevant parameter of the inference is available. In other words, what
are single rules with a disjunctive side condition in the nested setting have bi-
furcated into distinct sets of rules with atomic side conditions in the labelled
setting.

In order to ensure that instances of (∃nr) and (∀nl) properly translate to
instances of the nested (∃r) and (∀l) rules then, we must show that if the side
condition of the former rules holds, then the side condition of the latter rules
holds. This motivates the definition of a nested form derivation:

Definition 17 (Nested Form). Let Π be a derivation of a labelled sequent Λ
in IntQL. We define Π to be in nested form iff (i) Λ is nestedlike, and (ii) for
each instance of (∃nr) and (∀nl) in Π:

R, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃nr)R, a ∈ Dv, Γ ⇒ ∆,w : ∃xA

R, a ∈ Dv, w : A(a/x), w : ∀xA, Γ ⇒ ∆
(∀nl)R, a ∈ Dv, w : ∀xA, Γ ⇒ ∆

30 Tim Lyon

there exists a formula u : B(a) such that u R w in the conclusion of the
inference.

Assuming we are given a nested form derivation in IntQL, condition (ii) of the
above definition ensures that instances of (∃nr) and (∀nl) will properly translate
into instances of (∃r) and (∀l) in NIntQ. Additionally, nested form proofs are
significant because one can view the space of nested form proofs in IntQL as
being equivalent to the space of proofs generated by NIntQ, as confirmed by
Thm. 10 and 11 below. Before we establish this correspondence however, the
following lemma is needed for the proof of Thm. 10, that is, for showing that
if a nestedlike labelled sequent Λ is provable in IntQL, then N(Λ) is provable in
NIntQ.

Lemma 14. If a nestedlike labelled sequent Λ is derivable in IntQL, then Λ has
a nested form derivation in IntQL.

The truth of the above lemma can be seen to follow from Thm. 11 below
(which states that each derivation in NIntQ of a nested sequent Σ can be trans-
lated into a nested form derivation of L(Σ) in IntQL) in conjunction with a few
facts: (i) IntQL is sound, (ii) one can show by semantic arguments that if a nest-
edlike labelled sequent Λ is valid, then so is N(Λ), (iii) by Fitting’s work in [9],
we know that NIntQ is strongly complete (Thm. 4), and (iv) for any nestedlike
labelled sequent Λ, L(N(Λ)) = Λ (Lem. 3).4 Hence, given a derivable nestedlike
labelled sequent Λ, which is therefore valid since IntQL is sound by (i), it follows
that N(Λ) is valid by (ii), meaning that N(Λ) is derivable by (iii), and so by
Thm. 11 below, L(N(Λ)) has a nested form derivation, i.e. Λ has a nested form
derivation by (iv). Although this argument serves as a proof of Lem. 14, it is not
entirely satisfactory.

The above argument relies on the completeness of NIntQ, and so, if our aim
were to extract NIntQ from G3IntQ without any prior knowledge of NIntQ or its
properties, or to show NIntQ complete via this extraction, then since the above
argument relies on the completeness of NIntQ (i.e. Thm. 4), we would fail to
reach our aim. The author sees at least two possible strategies for confirming
the above lemma without relying on the completeness of NIntQ. In the first
method, one could write a (potentially non-terminating) proof-search procedure
for IntQL that takes a nestedlike labelled sequent Λ as input and attempts to
construct a nested form proof of Λ, showing that a counter-model for Λ can be
constructed given that the procedure does not halt with a nested form proof of
the input. Such a method of proof would effectively prove the completeness of
IntQL relative to valid nestedlike labelled sequents while showing that every such
sequent possesses a nested form proof. The second method consists of showing
how to algorithmically transform any derivation of a nestedlike labelled sequent

4The soundness of IntQL is established by Thm. 16 in Sect. 8, where it is shown
that every derivation in IntQL can be effectively transformed into a derivation of the
same labelled sequent in G3IntQ. Since G3IntQ is sound by Thm. 3, this establishes the
soundness of IntQL.

On the Correspondence between Nested Calculi and Semantic Systems 31

Λ in IntQL into a nested form proof of Λ. Such methods of proof are desirable
as they would effectively demonstrate that NIntQ inherits completeness from
its associated labelled calculus G3IntQ, however, we leave such results to future
work, and continue our investigation of the correspondence between semantic
and nested systems.

Theorem 10. If a nestedlike labelled sequent Λ is derivable in IntQL, then N(Λ)
is derivable in NIntQ.

Proof. Since Λ is nestedlike and derivable by assumption, we know that Λ is
treelike (by Lem. 3) and has a nested form derivation Π (by Lem. 14), implying
that Π is treelike by Thm. 9. Hence, the translation function N is defined for each
labelled sequent inΠ. It is straightforward to verify that each rule in IntQL—with
the exception of (∃nr), (∃inr), (∀nl), and (∀inl)—translates to an instance of the
corresponding rule in NIntQ under the N translation. We show the translation
of the (∃nr) and (∃inr) inferences below; the (∀nl) and (∀inl) inferences are similar.

In the (∃nr) inference top-left below, we know that there exists a labelled
formula u : B(a) ∈ Γ,∆ where u R w since our given derivation is in nested
form (Def. 17). Hence, after applying N to the premise of the (∃nr) inference, the
parameter a will occur in the formula B(a) that is either in the component Γ �
w → A(a/x),∃xA,∆ � w (and is different than the occurrence of A(a/x)) or is in
the past of the component in the nested sequent Σ{Γ � w → A(a/x),∃xA,∆ �
w}. Hence, the parameter a is available, and so, the necessary side condition of
the (∃r) inference is met. In the (∃inr) inference below, the parameter a is an
eigenvariable and continues to be so after applying the translation N, implying
that the nested (∃r) inference is valid.

R, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃nr)R, a ∈ Dv, Γ ⇒ ∆,w : ∃xA

N(R, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA)
. =

Σ{Γ � w → A(a/x),∃xA,∆ � w}
(∃r)

Σ{Γ � w → ∃xA,∆ � w}
. =
N(R, a ∈ Dv, Γ ⇒ ∆,w : ∃xA)

R, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃inr)R, Γ ⇒ ∆,w : ∃xA

N(R, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA)
. =

Σ{Γ � w → A(a/x),∃xA,∆ � w}
(∃r)

Σ{Γ � w → ∃xA,∆ � w}
. =
N(R, Γ ⇒ ∆,w : ∃xA)

ut

Theorem 11. Every derivation in NIntQ of a nested sequent Σ is effectively
translatable to a nested form derivation of the labelled sequent L(Σ) in IntQL.

32 Tim Lyon

Proof. We show how to translate the (∨l), (lift), (⊃r) and (∃r) rules as all other
cases are simple or similar. Last, we argue that the derivation obtained in IntQL
is in nested form.

(∨l). Our given (∨l) inference is shown below top. Let ~a := a1, . . . , an be all

free parameters in A,X, Y that do not occur in B,X, Y , and let ~b := b1, . . . , bk
be all free parameters in B,X, Y that do not occur in A,X, Y . To obtain the
desired conclusion, we first apply the hp-admissibility of (wk) (Lem. 4) in order
to ensure that the contexts of the premises match, followed by an application
of the (∨l) rule. We assume that w is the label assigned to the formulae of the
components X,A → Y and X,B → Y in Σ{X,A → Y } and Σ{X,B → Y },
respectively.

Σ{X,A→ Y } Σ{X,B → Y }
(∨l)

Σ{X,A ∨B → Y }

L(Σ{X,A→ Y })
. =
R,~a ∈ Dw, w : A,Γ ⇒ ∆

(wk)
R,~a ∈ Dw,~b ∈ Dw, w : A,Γ ⇒ ∆

L(Σ{X,B → Y })
. =
R,~b ∈ Dw, w : B,Γ ⇒ ∆

(wk)
R,~a ∈ Dw,~b ∈ Dw, w : B,Γ ⇒ ∆

(∨l)
R,~a ∈ Dw,~b ∈ Dw, w : A ∨B,Γ ⇒ ∆

. =
L(Σ{X,A ∨B → Y })

(lift). Our given (lift) inference is shown below top-left. Let ~a := a1, . . . , an
be all free parameters occurring in A that do not occur in X ′, Y ′, w be the label
assigned to the formulae of the component X,A→ Y , and u be the label assigned
to the formulae of the component X ′, A → Y ′. If we invoke the admissibility
of (nd) (Thm. 8) n times to delete all domain atoms ~a ∈ Du, then after an
application of (lift), we obtain the desired conclusion.

Σ{X,A→ Y, [X ′, A→ Y ′]}
(lift)

Σ{X,A→ Y, [X ′ → Y ′]}

L(Σ{X,A→ Y, [X ′, A→ Y ′]})
. =
R,~a ∈ Dw,~a ∈ Du, w ≤ u,w : A, u : A,Γ ⇒ ∆

(nd)× n
R,~a ∈ Dw, w ≤ u,w : A, u : A,Γ ⇒ ∆

(lift)
R,~a ∈ Dw, w ≤ u,w : A,Γ ⇒ ∆

. =
L(Σ{X,A→ Y, [X ′ → Y ′]})

(⊃r). Let ~a := a1, . . . , an be the free parameters occurring in the active for-
mulae A and B (shown in the (⊃r) inference below). Let w be the label assigned
to the formulae of the component X → Y and v be the label assigned to the
formulae of the component A→ B after applying the translation function L. In
order to obtain the desired conclusion, we first apply the hp-admissibility of (wk)
(Lem. 4), which introduces the domain atoms ~a′ ∈ Dw := ai1 ∈ Dw, . . . , aik ∈
Dw such that aij ∈ Dw 6∈ R for ij ∈ {1, . . . , n} and j ∈ {1, . . . , k}, i.e. for each
parameter aij in ~a we introduce the domain atom aij ∈ Dw given that it does
not already occur in R. Next, we apply admissibility of (nd) (Thm. 8) n times

On the Correspondence between Nested Calculi and Semantic Systems 33

to delete all domain atoms ~a ∈ Dv, making v an eigenvarible, and permitting
(⊃r) to be applied.

Σ{X → Y, [A→ B]}
(⊃r)

Σ{X → A ⊃ B, Y }

L(Σ{X → Y, [A→ B]})
. =
R,~a ∈ Dv, w ≤ v, v : A,Γ ⇒ ∆, v : B

(wk)
R,~a′ ∈ Dw,~a ∈ Dv, w ≤ v, v : A,Γ ⇒ ∆, v : B

(nd)× n
R,~a′ ∈ Dw, w ≤ v, v : A,Γ ⇒ ∆, v : B

(⊃r)R,~a′ ∈ Dw, Γ ⇒ ∆,w : A ⊃ B
. =

L(Σ{X → A ⊃ B, Y })

(∃r). If the relevant parameter a (in the active formula A(a/x)) is an eigen-
variable in the (∃r) inference below, then the inference translates to an instance
of (∃inr). If the relevant parameter is available in the inference, then the trans-
lation requires more care, so we focus on showing how to translate this case
below.

Σ{X → A(a/x),∃xA, Y }
(∃r)

Σ{X → ∃xA, Y }

Since the parameter a is available in (∃r), this implies that there exists some
formula B(a) (different than the occurrence of A(a/x)) occurring in, or in the
past of, the displayed component X → A(a/x),∃xA, Y of the nested sequent
Σ{X → A(a/x),∃xA, Y } (i.e. the premise of the (∃r) inference above). We
assume that the translation L assigns the label u to all formulae in the component
where B(a) occurs, and note that u : B(a) ∈ Γ,∆ below. By the definition of
L (Def. 12), this implies the existence of a domain atom a ∈ Du in the image
of Σ{X → A(a/x),∃xA, Y } under L (which we have explicitly included in the
derivation below). Because B(a) is available and is associated with the label u,
this implies that there is a directed path u ≤ v1, . . ., vn ≤ w from u to w in R,
i.e. u R w. (NB. If u = w, then the translation is straightforward, so we omit
consideration of that case.) If we weaken in domain atoms of the form a ∈ Dvi

(with i ∈ {1, . . . , n}) along this directed path, invoke the admissibility of (nd)
(Thm. 8), and then apply (∃nr), we obtain the image of the conclusion of the
(∃r) inference above under the L translation. This entire process is succinctly
demonstrated in the derivation below:

L(Σ{X → A(a/x),∃xA, Y })
. =
R, a ∈ Du, a ∈ Dw, Γ ⇒ w : A(a/x), w : ∃xA,∆

(wk)
R, a ∈ Du, a ∈ Dv1 , . . . , a ∈ Dvn , a ∈ Dw, Γ ⇒ w : A(a/x), w : ∃xA,∆

(nd)× (n+ 1)
R, a ∈ Du, Γ ⇒ w : A(a/x), w : ∃xA,∆

(∃nr)R, a ∈ Du, Γ ⇒ w : ∃xA,∆
. =

L(Σ{X → ∃xA, Y })

34 Tim Lyon

To see why the output derivation is in nested form, first observe that the con-
clusion of the derivation will be L(Σ), which, ipso facto, makes the conclusion a
nestedlike labelled sequent; hence, the derivation satisfies property (i) of Def. 17.
Second, observe that the output derivation in IntQL satisfies property (ii) of
Def. 17 since each (∃nr) and (∀nr) inference is obtained from an (∃r) or (∀l) infer-
ence in the input derivation, ensuring the existence of a labelled formula u : B(a)
in the conclusion of any (∃nr) or (∀nr) inference such that there is a directed path
from u to the label w prefixing the principal formula. ut

7 Deriving the Calculus NIntQC from G3IntQC

In the previous section, we saw that strengthening the (∃r) and (∀l) rules allowed
for the rules (nd) and (ihd) to be eliminated from any given derivation. In
this section, we will focus on how to strengthen these rules even further to
additionally obtain the elimination of (cd) from any given derivation. We begin
our analysis after first stating the following admissibility result:

Lemma 15. The (ref) and (tra) rules are admissible in the calculus G3IntQC∗.

Proof. The proof is similar to Lem. 10 and is detailed in Appendix A for the
interested reader. ut

The exclusion of (ref) and (tra) implies the completeness of G3IntQC∗ −
{(ref), (tra)} relative to treelike derivations, similar to Lem. 9. We therefore
assume for the rest of the section that all labelled sequents we consider are
treelike—this assumption will ease our admissibility analyses of (nd), (cd), and
(ihd), though note that the assumption can be omitted, if desired.

Previously, we saw that permutations of the (nd) rule above the (idq), (∃r),
and (∀l) rules shifted domain atoms to the past. We now investigate how permu-
tations of the (cd) rule affect domain atoms in (idq), (∃r), and (∀l). As before,
we first concentrate on permuting (cd) above the (∃r) rule solely. Observing the
effect of permuting (cd) above (∃r) will motivate how we strengthen the rule—
and the (idq) and (∀l) rules—to obtain the complete elimination of (cd) from
any given derivation.

To begin our analysis, observe (3) a non-trivial application of (cd) after an
(∃r) inference, and (4) the result of applying (cd) to the top sequent in (3).

R, w ≤ v, a ∈ Dw, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃r)R, w ≤ v, a ∈ Dw, a ∈ Dv, Γ ⇒ ∆,w : ∃xA

(cd)R, w ≤ v, a ∈ Dv, Γ ⇒ ∆,w : ∃xA
(3)

R, w ≤ v, a ∈ Dw, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(cd)

R, w ≤ v, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(4)

The application of (cd) has generated a labelled sequent where the domain
atom (i.e. a ∈ Dv) is associated with the label v one step in the future of w (due
to the presence of the w ≤ v relational atom). By analogy to what we saw in

On the Correspondence between Nested Calculi and Semantic Systems 35

the last section (in the case of permuting (nd) above (∃r)), it is not hard to see
that successive (non-trivial) permutations of (cd) above an (∃r) inference will
continually shift the domain atom to the future. If—at the same time—we also
consider (non-trivial) permutations of the (nd) rule above the (∃r) rule, then the
domain atom can shift either to the future or the past.

Recall that we have restricted our analysis to only consider derivations in
G3IntQC∗ − {(ref), (tra)} that employ treelike labelled sequents. Observe that
any node in the graph of a treelike labelled sequent is reachable from any other
node by a sequence of forward and backwards edges. This property of treelike
labelled sequents, accompanied by the witnessed shifting behavior discussed in
the previous paragraph, suggests that we ought to add the following (∃cr) rule
(see Fig. 7) to our calculus:

R, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃cr)R, a ∈ Dv, Γ ⇒ ∆,w : ∃xA

with the side condition that v ∼R w, i.e. there is an undirected path from the
label v to the label w. Observe that this side condition generalizes the shifting
behaviour of the domain atom to include all possible forward and backward
shifts. Intuitively, this side condition states that if an object is an element of
some domain Dv, then it is an element of the domain Dw, which always holds
in the constant domain setting.

The same shifting behavior can be witnessed by considering the permutation
of (nd) and (cd) above the (idq) and (∀l) rules. Thus, we strengthen those rules
in a similar way to obtain the (idcq) and (∀cl) rules (see Fig. 7).

Lemma 16. The (idq), (∃r), and (∀l) rules are instances of the (idcq), (∃cr), and
(∀cl) rules, respectively.

The lemma below confirms that the strengthened versions of (idq), (∃r), and
(∀l) are sufficient to prove the admissibility of the (nd) and (cd) rules in the
calculus G3IntQC∗ − {(ref), (tra)}:

Lemma 17. The rules (nd) and (cd) are admissible in the calculus G3IntQC∗−
{(ref), (tra)}.

Proof. The proof is similar to the proof of Lem. 12, but where undirected paths
(Def. 16) are used instead of directed paths (Def. 15). ut

In the previous section, we saw that permutations of (ihd) above the (∃nr)
and (∀nl) rules could not be performed in certain cases. To resolve this issue,
we introduced versions of the rules that absorbed the (ihd) rule. The same
phenomenon occurs in the case of the (∃cr) and (∀cl) rules, implying that we need
to add (∃icr) and (∀icl) to our calculus (see Fig. 7).

Lemma 18. The rule (ihd) is admissible in G3IntQC∗−{(ref), (tra), (nd), (cd)}.

Proof. Similar to the proof of Lem. 13. ut

36 Tim Lyon

Theorem 12. The rules (idq), (⊥l), (⊃l), (ref), (tra), (∃r), (∀l), (∀r), (nd),
(cd), and (ihd) are admissible in the calculus IntQCL.

Proof. The admissibility of {(ref), (tra)}, {(idq), (∃r), (∀l)}, {(nd), (cd)}, and
(ihd) follow from Lem. 15, Lem. 16, Lem. 17, and Lem. 18, respectively. Admis-
sibility of (⊃l) and (⊥l) is shown as stated in Thm. 8. Admissibility of (∀r) in
the presence of (∀cr) is shown below:

R, w ≤ v, a ∈ Dv, Γ ⇒ v : A(a/x), ∆
(lsub)

R, w ≤ w, a ∈ Dw, Γ ⇒ w : A(a/x), ∆
(ref)

R, a ∈ Dw, Γ ⇒ w : A(a/x), ∆
(∀cr)R, Γ ⇒ w : ∀xA,∆

ut

Theorem 13. (i) The calculus IntQCL is complete relative to treelike deriva-
tions with the fixed root property. (ii) Every derivation in IntQCL of a treelike
labelled sequent is a treelike derivation with the fixed root property.

Proof. Similar to Thm. 6. ut

Although we relied on the notion of a nested form derivation (Def. 17) in
the previous section to translate proofs from the refined labelled calculus IntQL
into proofs in the nested calculus NIntQ, we note that this notion, or an analog
thereof, is unnecessary to translate derivations from IntQCL to NIntQC. This
follows from the fact that side conditions are not imposed on (∃r) and (∀l)
in NIntQC—contrary to what is the case in NIntQ. Hence, applications of (∃cr)
and (∀cl) in IntQCL need not satisfy certain condition in order to be translated,
thus simplifying the translation from labelled to nested in the constant domain
setting.

Theorem 14. Every derivation in IntQCL of a nestedlike labelled sequent Λ is
effectively translatable to a derivation of the nested sequent N(Λ) in NIntQC.

Proof. By Lem. 3, we know that Λ is treelike, implying that the derivation of
Λ is treelike by Thm. 13, and so, the translation function N is defined. When
translating from labelled to nested, the existential rules (∃cr) and (∃icr), and the
universal rules (∀cl) and (∀icl), translate to instances of (∃r) and (∀l), respectively.
All remaining rules in IntQCL translate to their corresponding version in the
nested calculus. ut

Theorem 15. Every derivation in NIntQC of a nested sequent Σ is effectively
translatable to a derivation of the labelled sequent L(Σ) in IntQCL.

Proof. We show how to translate an instance of (∃r); the remaining cases are
similar to those in the proof of Thm. 10. Suppose we aim to translate an (∃r)
inference occurring in our input derivation:

Σ{X → A(a/x),∃xA, Y }
(∃r)

Σ{X → ∃xA, Y }

On the Correspondence between Nested Calculi and Semantic Systems 37

If the parameter a in the above inference is an eigenvariable, then we translate
the inference to an instance of (∃inr) in IntQCL. However, if the parameter occurs
in a side formula, then the translation is non-trivial. Suppose then, that there
exists some formula B(a) (different than the occurrence of A(a/x)) occurring in
the premise of the (∃r) inference above. Suppose that the translation L assigns
the label u to all formulae in the component where B(a) occurs, and note that u :
B(a) ∈ Γ,∆ below. This, in conjunction with the definition of L (Def. 12), implies
the existence of a domain atom a ∈ Du in the image of Σ{X → A(a/x),∃xA, Y }
under L (which is explicitly included in the derivation below). Since L(Σ{X →
A(a/x),∃xA, Y }) is a treelike labelled sequent, there must exist an undirected
path u ∼ v1, . . ., vn ∼ w from u to w in R, i.e. u ∼R w. (NB. If u = w, then
the translation is straightforward, so we omit consideration of that case.) If we
weaken in domain atoms of the form a ∈ Dvi (with i ∈ {1, . . . , n}) along this
undirected path, invoke the admissibility of (nd) and (cd) (Thm. 12), and then
apply (∃cr), we obtain the image of the conclusion of the (∃r) inference above
under the L translation. This entire process is succinctly demonstrated in the
derivation below:

L(Σ{X → A(a/x),∃xA, Y })
. =
R, a ∈ Du, a ∈ Dw, Γ ⇒ w : A(a/x), w : ∃xA,∆

(wk)
R, a ∈ Du, a ∈ Dv1 , . . . , a ∈ Dvn , a ∈ Dw, Γ ⇒ w : A(a/x), w : ∃xA,∆

(nd)× k1 + (cd)× k2R, a ∈ Du, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃cr)R, a ∈ Du, Γ ⇒ w : ∃xA,∆

. =
L(Σ{X → ∃xA, Y })

Note that k1 + k2 = n + 1, i.e. k1 + k2 is the number of labels occurring in the
undirected path from u to w occurring after u and including w. ut

8 Reverse Translations, Corollaries, and Inheritance

The previous three sections were dedicated to refining the labelled calculi G3Int,
G3IntQ, and G3IntQC to obtain refined labelled variants that were translatable
into nested calculi. In this section, we analyze and provide the reverse transla-
tions from NInt, NIntQ, and NIntQC to G3Int, G3IntQ, and G3IntQC, respectively.
These reverse translations are interesting in that they demonstrate how to add
further syntactic structures and semantic information in order to obtain the
more complicated semantic systems from the more refined nested systems. Ad-
ditionally, these reverse translations can be leveraged to show that each nested
calculus inherits proof theoretic properties from each labelled calculus, which we
discuss in the second subsection.

8.1 Reverse Translations

When translating from labelled to nested, we discovered what new rules and
what strengthened versions of rules were needed in order to allow the elimina-
tion of certain structural rules (e.g. (ref) and (nd)) from a derivation. Obtaining

38 Tim Lyon

the reverse translation is much simpler, as we already know what rules need to be
shown admissible. Lem. 19–21 below show how to effectively transform deriva-
tions from IntL, IntQL, and IntQCL into G3Int, G3IntQ, and G3IntQC, respectively.
These transformations, coupled with the translations from Thm. 7, 11, and 15,
yield effective translations from our nested calculi to the G3-style labelled calculi.

Lemma 19 ([21]). The rules (id∗), (⊃∗l), and (lift) are admissible in G3Int.

Proof. The proof of the admissibility of each rule in G3Int is shown below:

(id)R, w ≤ w, Γ,w : p⇒ w : p,∆
(ref)R, Γ, w : p⇒ w : p,∆

R, w : A ⊃ B,Γ ⇒ ∆,w : A
(wk)R, w ≤ w,w : A ⊃ B,Γ ⇒ ∆,w : A

R, w : A ⊃ B,w : B,Γ ⇒ ∆
(wk)R, w ≤ w,w : A ⊃ B,w : B,Γ ⇒ ∆
(⊃l)R, w ≤ w,w : A ⊃ B,Γ ⇒ ∆

(ref)R, w : A ⊃ B,Γ ⇒ ∆

Thm. 3-(i)-(a)R, w ≤ v, Γ, w : A⇒ v : A,∆ R, w ≤ v, Γ, w : A, v : A⇒ ∆
(cut)R, w ≤ v, Γ, w : A⇒ ∆
ut

Lemma 20. The rules (idnq), (¬l), (¬r), (⊃∗l), (lift), (∃nr), (∀nl), (∃inr), and

(∀inl) are admissible in G3IntQ.

Proof. The (idnq) rule can be derived by using (idq), (ref), and (nd). The ad-
missibility of (⊃∗l) and (lift) are shown similarly as in Lem. 19. Recall that
¬A := A ⊃ ⊥; using this fact, the proofs of the admissibility of (¬l) and (¬r)
are as shown below:

R, w : A ⊃ ⊥, Γ ⇒ ∆,w : A
(wk)R, w ≤ w,w : A ⊃ ⊥, Γ ⇒ ∆,w : A

(⊥l)R, w : A ⊃ ⊥, w : ⊥, Γ ⇒ ∆
(wk)R, w ≤ w,w : A ⊃ ⊥, w : ⊥, Γ ⇒ ∆
(⊃l)R, w ≤ w,w : A ⊃ ⊥, Γ ⇒ ∆

(ref)R, w : A ⊃ ⊥, Γ ⇒ ∆

R, w ≤ v, Γ, v : A⇒ ∆
(wk)R, w ≤ v, Γ, v : A⇒ v : ⊥, ∆
(⊃r)R, Γ ⇒ w : A ⊃ ⊥, ∆

The admissibility of (∃nr) and (∀nl) are shown below. We assume that there
exists a directed path from v to w of a length greater than 0 in R, i.e. v ≤
u1, . . . , un ≤ w ∈ R. The cases where the directed path from v to w is of length
0 (i.e. v = w) are simple and are handled similarly.

R, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(wk)

R, a ∈ Dv, a ∈ Du1 , . . . , a ∈ Dun , a ∈ Dw, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃r)R, a ∈ Dv, a ∈ Du1

, . . . , a ∈ Dun
, a ∈ Dw, Γ ⇒ ∆,w : ∃xA

(nd)× (n+ 1)R, a ∈ Dv, Γ ⇒ ∆,w : ∃xA

On the Correspondence between Nested Calculi and Semantic Systems 39

R, a ∈ Dv, Γ, w : A(a/x), w : ∀xA⇒ ∆
(wk)

R, w ≤ w, a ∈ Dv, a ∈ Du1
, . . . , a ∈ Dun

, a ∈ Dw, Γ, w : A(a/x), w : ∀xA⇒ ∆
(∀l)R, w ≤ w, a ∈ Dv, a ∈ Du1

, . . . , a ∈ Dun
, a ∈ Dw, Γ, w : ∀xA⇒ ∆

(ref)R, a ∈ Dv, a ∈ Du1 , . . . , a ∈ Dun , a ∈ Dw, Γ, w : ∀xA⇒ ∆
(nd)× (n+ 1)R, a ∈ Dv, Γ, w : ∀xA⇒ ∆

Similar to the previous two proofs, to show the admissibility of (∃inr) and
(∀inl), we assume that v ≤ u1, . . . , un ≤ w ∈ R, i.e. there exists a directed path
of length greater than 0 in R. The cases where the directed path from v to w is
of length 0 (i.e. v = w) are simple and are handled similarly.

R, a ∈ Dv, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(wk)

R, a ∈ Dv, a ∈ Du1 , . . . , a ∈ Dun , a ∈ Dw, Γ ⇒ ∆,w : A(a/x), w : ∃xA
(∃r)R, a ∈ Dv, a ∈ Du1

, . . . , a ∈ Dun
, a ∈ Dw, Γ ⇒ ∆,w : ∃xA

(nd)× (n+ 1)R, a ∈ Dv, Γ ⇒ ∆,w : ∃xA
(ihd)R, Γ ⇒ ∆,w : ∃xA

R, a ∈ Dv, Γ, w : A(a/x), w : ∀xA⇒ ∆
(wk)

R, w ≤ w, a ∈ Dv, a ∈ Du1
, . . . , a ∈ Dun

, a ∈ Dw, Γ, w : A(a/x), w : ∀xA⇒ ∆
(∀l)R, w ≤ w, a ∈ Dv, a ∈ Du1

, . . . , a ∈ Dun
, a ∈ Dw, Γ, w : ∀xA⇒ ∆

(ref)R, a ∈ Dv, a ∈ Du1 , . . . , a ∈ Dun , a ∈ Dw, Γ, w : ∀xA⇒ ∆
(nd)× (n+ 1)R, a ∈ Dv, Γ, w : ∀xA⇒ ∆

(ihd)R, Γ, w : ∀xA⇒ ∆
ut

Lemma 21. The rules (idcq), (¬l), (¬r), (⊃∗l), (lift), (∀cr), (∃cr), (∀cl), (∃icr),

and (∀icl) are admissible in G3IntQC.

Proof. The admissibility of (idcq), (¬l), (¬r), (⊃∗l), (lift), (∃cr), (∀cl), (∃icr), and

(∀icl) are shown similarly to the admissibility of the corresponding rules in G3IntQ
(Lem. 20 above). The admissibility of (∀cr) is shown below; we assume that v is
a fresh label.

Π1 Π2 (cut)
R, w ≤ v, a ∈ Dw, a ∈ Dv, Γ ⇒ v : A(a/x), ∆

(cd)
R, w ≤ v, a ∈ Dv, Γ ⇒ v : A(a/x), ∆

(∀r)R, Γ ⇒ w : ∀xA,∆

Π1 =
{ R, a ∈ Dw, Γ ⇒ w : A(a/x), ∆

(wk)
R, w ≤ v, a ∈ Dw, a ∈ Dv, Γ ⇒ w : A(a/x), v : A(a/x), ∆

Π2 =
{

Thm. 3-(i)-(c)
R, w ≤ v, a ∈ Dw, a ∈ Dv, Γ, w : A(a/x)⇒ v : A(a/x), ∆

ut

Theorem 16. Every derivation of a labelled sequent Λ in IntL, IntQL, and
IntQCL can be effectively transformed into a derivation of Λ in G3Int, G3IntQ,
and G3IntQC, respectively, and vice-versa.

40 Tim Lyon

Proof. The forward directions follow from Thm. 5, 8, and 12. The backward
directions follow from Lem. 19, 20, and 21, respectively. ut

Theorem 17. (i) If a nestedlike labelled sequent Λ is derivable in G3Int, G3IntQ,
and G3IntQC, then N(Λ) is derivable in NInt, NIntQ, and NIntQC, respectively.
(ii) Every derivation in NInt, NIntQ, and NIntQC of a nested sequent Σ can
be effectively translated into a derivation of the labelled sequent L(Σ) in G3Int,
G3IntQ, and G3IntQC, respectively.

Proof. Follows from Thm. 7, 10, 11, 14, 15, and 16. ut

8.2 Corollaries and Inheritance

An appealing consequence of our refinement and translation procedures is that
our nested calculi inherit desirable proof-theoretic properties from their associ-
ated labelled calculi. Such properties are stated in Cor. 1–4 below.

As mentioned near the end of Sect. 6, the translation of proofs from IntQL
into proofs in NIntQ (Thm. 10) relies on the completeness of the latter (Thm. 4);
hence, we are barred from leveraging this proof-theoretic translation to conclude
that NIntQ ultimately inherits completeness from G3IntQ. (NB. In Sect. 6, we also
discussed methods of proof that would free us from relying on the completeness
of NIntQ, thus allowing for this inheritance result to go through.) Nevertheless,
this issue does not arise in our work concerning propositional intuitionistic logic
Int and first-order intuitionistic logic with constant domains IntQC, and so, we
may conclude the following corollary:

Corollary 1. The calculi NInt and NIntQC have inherited soundness and com-
pleteness from G3Int and G3IntQC, respectively.

Proof. Soundness follows from Thm. 3 and 17. Regarding completeness, observe
that if A is a theorem of Int or IntQC, then ~a ∈ Dw ⇒ w : A is derivable in G3Int
or G3IntQC (respectively) by Thm. 3. By Thm. 5 and 7, or Thm. 12 and 14,
the derivation of ~a ∈ Dw ⇒ w : A may be transformed and translated into a
derivation of A in NInt or NIntQC, respectively. ut

Furthermore, we obtain the admissibility of the set of structural rules pre-
sented in Fig. 8. This set of structural rules was primarily identified by investi-
gating the variety of ways in which labelled structural rules (e.g. (wk), (ctrr),
etc.) can be applied to manipulate treelike labelled sequents. Therefore, such
rules offer a more fine-grained view of the types of operations inherent in the
more general functionality of the aforementioned labelled structural rules. Al-
though the admissibility of the rules in Fig. 8 can be established by confirming
the soundness of each rule, and recognizing that each nested calculus is com-
plete (Thm. 4), we provide proof-theoretic arguments which demonstrate how
such rules are obtained from their associated labelled structural rules. The proof
of this admissibility result (Cor. 2 below) can be found in Appendix A for the
interested reader.

On the Correspondence between Nested Calculi and Semantic Systems 41

Σ{X → Y }
(wkl)

Σ{X,Z → Y }
Σ{X → Y }

(wkr)
Σ{X → Y,Z}

Σ (psub)
Σ(a/b)

Σ{X,Z,Z → Y }
(ctrl)

Σ{X,Z → Y }
Σ{X → Z,Z, Y }

(ctrr)
Σ{X → Z, Y }

Σ (nr)
→ [Σ]

Σ{X → Y, [Σ′], [Σ′]}
(mrg1)

Σ{X → Y, [Σ′]}
Σ{X1 → Y1, [X2 → Y2, [Σ1], . . . , [Σn]]}

(mrg2)
Σ{X1, X2 → Y1, Y2, [Σ1], . . . , [Σn]}

Σ{X → Y }
(ew1)

Σ{X → Y, [Σ′]}
Σ{X1 → Y1, [X2 → Y2, [Σ1], . . . , [Σn]]}

(ew2)
Σ{X1 → Y1, [→ [X2 → Y2, [Σ1], . . . , [Σn]]]}

Σ{X1 → A, Y1, [X2 → A, Y2]}
(lwr)

Σ{X1 → Y1, [X2 → A, Y2]}
Σ{X → A, Y } Σ{X,A→ Y }

(cut)
Σ{X → Y }

Fig. 8. The set NR of admissible rules in NInt, NIntQ, and NIntQC.

Corollary 2. All rules in NR are admissible in NInt, NIntQ and NIntQC.

Additionally, we obtain the invertibility of the rules in our nested calculi:

Corollary 3. All rules in NInt, NIntQ and NIntQC are invertible.

Proof. Follows from Lem. 4 and Thm. 17. ut

By making use of the previous two corollaries, we can prove that derivability
of a nested sequent is equivalent to the derivability of its formula interpretation
(Def. 7). Note that in the propositional case the universal closure ∀ #»x is vacuous,
and so, → ∀ #»xι(Σ) is identical to → ι(Σ).

Corollary 4. The nested sequent Σ is derivable in NInt, NIntQ and NIntQC iff
the nested sequent → ∀ #»xι(Σ) is derivable in NInt, NIntQ and NIntQC, respec-
tively.

Proof. We begin with the forward direction, and assume that Σ is derivable in
one of our nested systems. By the admissibility of (nr) (Cor. 2), we know that
→ [Σ] is derivable. Starting at the leaves of the nested sequent and continuously
applying (∧l), (∨r), and (⊃r), we eventually obtain a derivation of→ ι(Σ). From
here, we have three cases to consider: (i) If we are working in the nested system
NInt, then we are done. (ii) If we are working in the nested system NIntQ, and
→ ι(Σ) contains no free variables (i.e. parameters), then we are done. Otherwise,
if the free variables (i.e. parameters) a1, . . . , an occur in ι(Σ), then we apply the
(nr) rule n times to obtain:

→ [. . . [→ ι(Σ)] . . .]︸ ︷︷ ︸
n

42 Tim Lyon

Applying the (∀nr) rule n times gives a derivation of → ∀ #»xι(Σ). (iii) If we
are working in the nested system NIntQC and → ι(Σ) does not contain any
occurences of free variables (i.e. parameters), then we are done. Otherwise, we
repeatedly apply (∀cr) to obtain a derivation of the desired conclusion.

For the backwards direction, we invoke the invertibility of (∧l), (∨r), (⊃r),
(∀nr), and (∀cr) (Cor. 3), as well as the admissibility of (mrg2) (Cor. 3), to obtain
a derivation of Σ. ut

Last, by making use of the admissibility of (mrg2), we can show that each
derivation in NIntQ can be transformed into a derivation in NIntQC. We also
show that the same embedding holds between IntQL and IntQCL to complete
our mapping of the relationships mentioned in Fig. 1 of Sect. 1.

Corollary 5. (i) Every derivation in IntQL is transformable into a derivation
in IntQCL. (ii) Every derivation in NIntQ is transformable into a derivation in
NIntQC.

Proof. Observe that the (∃nr), (∃inr), (∀nl), and (∀inl) rules in IntQL are instances of
the (∃cr), (∃icr), (∀cl), and (∀icl) rules in IntQCL. Additionally, the same relationship
holds true of the (∃r) and (∀l) rules in NIntQ and NIntQC. Thus, the only rules
that differ between the systems IntQL and IntQCL are the (∀r) and (∀cr) rules,
and the only rules that differ between the systems NIntQ and NIntQC are the
(∀nr) and (∀cr) rules. Therefore, we show below that (∀r) and (∀nr) are admissible
in IntQCL and NIntQC, respectively, which proves the claim since all remaining
cases are straightforward.

R, w ≤ v, a ∈ Dv, Γ ⇒ v : A(a/x), ∆
(lsub)

R, w ≤ w, a ∈ Dw, Γ ⇒ w : A(a/x), ∆
(ref)

R, a ∈ Dw, Γ ⇒ w : A(a/x), ∆
(∀cr)R, Γ ⇒ w : ∀xA,∆

Σ{X → Y, [→ A(a/x)]}
(mrg2)

Σ{X → A(a/x), Y }
(∀cr)Σ{X → ∀xA, Y }

ut

9 Conclusion

In this paper, we mapped out the interrelationships between semantic systems
and Fitting’s nested calculi for intuitionistic logics. We focused extensively on
how to eliminate the structural rules of the labelled calculi G3Int, G3IntQ, and
G3IntQC from derivations, by considering how to strengthen their logical rules, or
via the addition of new rules. We referred to this process as the method of refine-
ment since it ultimately yielded the more refined (sound and complete) calculi
IntL, IntQL, and IntQCL which omitted the use of semantically explicit structural
rules (e.g. (ref) and (nd)) and only required treelike labelled sequents in deriva-
tions. We saw that fragments of these refined labelled calculi were equivalent
to Fitting’s nested calculi [9]. Moreover, we also observed that Fitting’s nested
calculi inherited proof-theoretic properties from their associated labelled calculi;
e.g. soundness and completeness, invertibility of rules, and admissibility of (cut).

On the Correspondence between Nested Calculi and Semantic Systems 43

Such results suggest that structural rule elimination is a natural method for con-
necting the relational semantics of a logic to a nested calculus for the logic (via
the labelled sequent paradigm).

The method of refining labelled calculi into nested calculi for intuitionistic
logics is part of a larger project that seeks to investigate the extent to which such
refinements can be performed. Due to general results concerning the construction
of labelled calculi, their modularity, and the confirmation of their proof-theoretic
properties [5,6,11,24], the exposition of a method for deriving refined (or, nested)
calculi—which utilize sequents with a simpler underlying data structure (e.g.
trees) and have proven to be well-suited for certain automated reasoning tasks
(e.g. proof-search [25], counter-model extraction [17,25], and effective interpola-
tion [19])—from semantic systems could prove to be of practical consequence.
Moreover, since labelled calculi are easily obtained from a logic’s semantics, the
method of refinement provides a means by which (nested) proof calculi with
favorable properties may be obtained directly from a logic’s semantics.

Acknowledgments. Work funded by FWF projects I2982 and W1255-N23.

References

1. Avron, A.: The method of hypersequents in the proof theory of propositional non-
classical logics. In: W. Hodges, M. Hyland, C. Steinhorn, J. Truss (eds.) Logic:
From Foundations to Applications: European Logic Colloquium, p. 1–32. Claren-
don Press, USA (1996)

2. Belnap, N.D.: Display logic. Journal of philosophical logic 11(4), 375–417 (1982)
3. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48(6),

551–577 (2009). DOI 10.1007/s00153-009-0137-3. URL https://doi.org/10.1007/
s00153-009-0137-3

4. Bull, R.A.: Cut elimination for propositional dynamic logic without *. Z. Math.
Logik Grundlag. Math. 38(2), 85–100 (1992)

5. Ciabattoni, A., Maffezioli, P., Spendier, L.: Hypersequent and labelled calculi for
intermediate logics. In: D. Galmiche, D. Larchey-Wendling (eds.) Automated Rea-
soning with Analytic Tableaux and Related Methods, Lecture Notes in Computer
Science, vol. 8123, pp. 81–96. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

6. Dyckhoff, R., Negri, S.: Proof analysis in intermediate logics. Archive for Mathe-
matical Logic 51(1-2), 71–92 (2012)

7. Fitting, M.: Tableau methods of proof for modal logics. Notre Dame Journal of
Formal Logic 13(2), 237–247 (1972)

8. Fitting, M.: Prefixed tableaus and nested sequents. Annals of Pure and Applied
Logic 163(3), 291 – 313 (2012). DOI https://doi.org/10.1016/j.apal.2011.09.004

9. Fitting, M.: Nested sequents for intuitionistic logics. Notre Dame Journal of Formal
Logic 55(1), 41–61 (2014)

10. Gabbay, D., Shehtman, V., Skvortsov, D.: Quantification in Non-classical Logics.
Studies in Logic and Foundations of Mathematics. Elsevier (2009)

11. Gabbay, D.M.: Labelled deductive systems, Oxford Logic guides, vol. 33. Clarendon
Press/Oxford Science Publications (1996)

12. Gentzen, G.: Untersuchungen uber das logische schliessen. Mathematische
Zeitschrift 39(3), 405–431 (1935)

https://doi.org/10.1007/s00153-009-0137-3
https://doi.org/10.1007/s00153-009-0137-3

44 Tim Lyon

13. Goré, R., Ramanayake, R.: Labelled tree sequents, tree hypersequents and nested
(deep) sequents. In: T. Bolander, T. Braüner, S. Ghilardi, L.S. Moss (eds.)
Advances in Modal Logic 9, papers from the ninth conference on ”Advances
in Modal Logic,” held in Copenhagen, Denmark, 22-25 August 2012, pp. 279–
299. College Publications (2012). URL http://www.aiml.net/volumes/volume9/
Gore-Ramanayake.pdf

14. Kashima, R.: Cut-free sequent calculi for some tense logics. Studia Logica 53(1),
119–135 (1994)

15. Kripke, S.A.: Semantical analysis of intuitionistic logic i. In: J. Crossley, M. Dum-
mett (eds.) Formal Systems and Recursive Functions, Studies in Logic and the
Foundations of Mathematics, vol. 40, pp. 92 – 130. Elsevier (1965). DOI
https://doi.org/10.1016/S0049-237X(08)71685-9. URL http://www.sciencedirect.
com/science/article/pii/S0049237X08716859

16. Lyon, T.: On deriving nested calculi for intuitionistic logics from semantic systems.
In: S.N. Artëmov, A. Nerode (eds.) Logical Foundations of Computer Science -
International Symposium, LFCS 2020, Deerfield Beach, FL, USA, January 4-7,
2020, Proceedings, Lecture Notes in Computer Science, vol. 11972, pp. 177–194.
Springer (2020). DOI 10.1007/978-3-030-36755-8\ 12. URL https://doi.org/10.
1007/978-3-030-36755-8 12

17. Lyon, T., van Berkel, K.: Automating agential reasoning: Proof-calculi and syn-
tactic decidability for stit logics. In: M. Baldoni, M. Dastani, B. Liao, Y. Sakurai,
R. Zalila Wenkstern (eds.) PRIMA 2019: Principles and Practice of Multi-Agent
Systems - 22nd International Conference, Turin, Italy, October 28-31, 2019, Pro-
ceedings, Lecture Notes in Computer Science, vol. 11873, pp. 202–218. Springer
International Publishing, Cham (2019)

18. Lyon, T., Ittner, C., Eckhardt, T., Gratzl, N.: The basics of display calculi. Krite-
rion – Journal of Philosophy 31(2), 55–100 (2017)

19. Lyon, T., Tiu, A., Goré, R., Clouston, R.: Syntactic interpolation for tense logics
and bi-intuitionistic logic via nested sequents. In: M. Fernández, A. Muscholl (eds.)
28th EACSL Annual Conference on Computer Science Logic, CSL 2020, January
13-16, 2020, Barcelona, Spain, LIPIcs, vol. 152, pp. 28:1–28:16. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020). DOI 10.4230/LIPIcs.CSL.2020.28. URL
https://doi.org/10.4230/LIPIcs.CSL.2020.28

20. Minari, P.: Labeled sequent calculi for modal logics and implicit contractions. Arch.
Math. Log. 52(7-8), 881–907 (2013). DOI 10.1007/s00153-013-0350-y

21. Pimentel, E.: A semantical view of proof systems. In: L.S. Moss, R.J.G.B.
de Queiroz, M. Martinez (eds.) Logic, Language, Information, and Computa-
tion - 25th International Workshop, WoLLIC 2018, Bogota, Colombia, July 24-
27, 2018, Proceedings, Lecture Notes in Computer Science, vol. 10944, pp. 61–76.
Springer (2018). DOI 10.1007/978-3-662-57669-4\ 3. URL https://doi.org/10.
1007/978-3-662-57669-4 3

22. Poggiolesi, F.: A cut-free simple sequent calculus for modal logic s5. The Review
of Symbolic Logic 1(1), 3–15 (2008)

23. Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic.
In: D. Makinson, J. Malinowski, H. Wansing (eds.) Towards Mathematical Phi-
losophy, Trends in logic, vol. 28, pp. 31–51. Springer (2009). DOI 10.1007/
978-1-4020-9084-4\ 3. URL https://doi.org/10.1007/978-1-4020-9084-4 3

24. Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic. Ph.D.
thesis, University of Edinburgh. College of Science and Engineering. School of
Informatics (1994)

http://www.aiml.net/volumes/volume9/Gore-Ramanayake.pdf
http://www.aiml.net/volumes/volume9/Gore-Ramanayake.pdf
http://www.sciencedirect.com/science/article/pii/S0049237X08716859
http://www.sciencedirect.com/science/article/pii/S0049237X08716859
https://doi.org/10.1007/978-3-030-36755-8_12
https://doi.org/10.1007/978-3-030-36755-8_12
https://doi.org/10.4230/LIPIcs.CSL.2020.28
https://doi.org/10.1007/978-3-662-57669-4_3
https://doi.org/10.1007/978-3-662-57669-4_3
https://doi.org/10.1007/978-1-4020-9084-4_3

On the Correspondence between Nested Calculi and Semantic Systems 45

25. Tiu, A., Ianovski, E., Goré, R.: Grammar logics in nested sequent calculus: Proof
theory and decision procedures. In: T. Bolander, T. Braüner, S. Ghilardi, L.S. Moss
(eds.) Advances in Modal Logic 9, papers from the ninth conference on ”Advances
in Modal Logic,” held in Copenhagen, Denmark, 22-25 August 2012, pp. 516–
537. College Publications (2012). URL http://www.aiml.net/volumes/volume9/
Tiu-Ianovski-Gore.pdf

26. Troelstra, A., van Dalen, D.: Constructivism in Mathematics, vol. 1. Elsevier
Science (1988)

27. Viganò, L.: Labelled Non-Classical Logics. Springer Science & Business Media
(2000)

28. Wansing, H.: Sequent calculi for normal modal propositional logics. Journal of
Logic and Computation 4(2), 125–142 (1994)

A Proofs

Theorem 3. Let G3X ∈ {G3IntQ,G3IntQC}. The calculi G3Int, G3IntQ, and
G3IntQC have the following properties:

(i) (a) For all A ∈ L, `G3Int R, w ≤ v, w : A,Γ ⇒ v : A,∆;
(b) For all A ∈ L, `G3Int R, w : A,Γ ⇒ ∆,w : A;
(c) For all A ∈ Q, `G3X R, w ≤ v, #»a ∈ Dw, w : A(#»a), Γ ⇒ v : A(#»a), ∆;
(d) For all A ∈ Q, `G3X R, #»a ∈ Dw, w : A(#»a), Γ ⇒ ∆,w : A(#»a);

(ii) All rules in LR− {(cut)} are hp-admissible;
(iii) All rules are hp-invertible;
(iv) The (cut) rule is admissible;
(v) G3Int, G3IntQ, and G3IntQC are sound and complete for Int, IntQ, and IntQC,

respectively.

Proof. We argue that properties (i)–(v) obtain for G3IntQC; by omitting con-
sideration of the (cd) rule, we obtain proofs of these properties for G3IntQ as
well.

Claim (i). Claims (a) and (b) are shown in [6, Lem. 1], so we focus on proving
(c) and (d). We prove claims (c) and (d) together by mutual induction on the
complexity of A.

Claim (i)-(c). The base case is resolved using the (idq) rule for atomic for-
mulae and the (⊥l) rule for ⊥. We provide the cases for ⊃, ∃, and ∀ for the
inductive step; the ∨ and ∧ cases are simple to verify. Note that for the ⊃ case
the parameters #»a1 and #»a2 are all and only those parameters that occur in #»a ,
with #»a1 and #»a2 potentially intersecting. Also, the ⊃ and ∀ cases rely on claim
(d) (shown below), and we occasionally use primes (e.g. Γ ′ and ∆′) to indicate
that formulae explicitly occurring lower in the proof have been absorbed into
the context in order to save space. Last, we let ~a := a1, . . . , an.

Π1 Π2 (⊃l)R, w ≤ v, v ≤ u,w ≤ u, #»a ∈ Dw,
#»a ∈ Du, w : A(#»a1) ⊃ B(#»a2), u : A(#»a1), Γ ⇒ u : B(#»a2), ∆

(nd)× n
R, w ≤ v, v ≤ u,w ≤ u, #»a ∈ Dw, w : A(#»a1) ⊃ B(#»a2), u : A(#»a1), Γ ⇒ u : B(#»a2), ∆

(tra)
R, w ≤ v, v ≤ u, #»a ∈ Dw, w : A(#»a1) ⊃ B(#»a2), u : A(#»a1), Γ ⇒ u : B(#»a2), ∆

(⊃r)R, w ≤ v, #»a ∈ Dw, w : A(#»a1) ⊃ B(#»a2), Γ ⇒ v : A(#»a1) ⊃ B(#»a2), ∆

http://www.aiml.net/volumes/volume9/Tiu-Ianovski-Gore.pdf
http://www.aiml.net/volumes/volume9/Tiu-Ianovski-Gore.pdf

46 Tim Lyon

Π1 =
{

(d)
R′, #»a ∈ Dw,

#»a ∈ Du, u : A(#»a1), Γ ′ ⇒ u : A(#»a1), ∆′

Π2 =
{

(d)
R′, #»a ∈ Dw,

#»a ∈ Du, u : B(#»a2), Γ ′ ⇒ u : B(#»a2), ∆

IHR, w ≤ v, b ∈ Dw,
#»a ∈ Dw, w : A(#»a)(b/x), Γ ⇒ v : A(#»a)(b/x), ∆′

(∃r)R, w ≤ v, b ∈ Dw,
#»a ∈ Dw, w : A(#»a)(b/x), Γ ⇒ v : ∃xA(#»a), ∆

(∃l)R, w ≤ v, #»a ∈ Dw, w : ∃xA(#»a), Γ ⇒ v : ∃xA(#»a), ∆

IHR′, w ≤ u, #»a ∈ Du, b ∈ Du, u : A(#»a)(b/x), w : ∀xA(#»a), Γ ⇒ u : A(#»a)(b/x), ∆
(∀l)R′, w ≤ u, #»a ∈ Du, b ∈ Du, w : ∀xA(#»a), Γ ⇒ u : A(#»a)(b/x), ∆

(nd)× n
R′, w ≤ u, b ∈ Du, w : ∀xA(#»a), Γ ⇒ u : A(#»a)(b/x), ∆

(tra)
R′, b ∈ Du, w : ∀xA(#»a), Γ ⇒ u : A(#»a)(b/x), ∆

(∀r)R, w ≤ v, #»a ∈ Dw, w : ∀xA(#»a), Γ ⇒ v : ∀xA(#»a), ∆

In the ∀ case above, we let R′ := R, w ≤ v, v ≤ u, #»a ∈ Dw.
Claim (i)-(d). The base case for atomic formulae is shown below; the case

for ⊥ is omitted as it is simple to verify using the (⊥l) rule. We provide the ⊃,
∃, and ∀ cases as the cases for the other connectives are straightforward to prove.

(idq)R, w ≤ w, #»a ∈ Dw, w : p(#»a), Γ ⇒ w : p(#»a), ∆
(ref)

R, #»a ∈ Dw, w : p(#»a), Γ ⇒ w : p(#»a), ∆

Π1 Π2 (⊃l)R, w ≤ v, #»a ∈ Dw,
#»a ∈ Dv, w : A(#»a1) ⊃ B(#»a2), v : A(#»a1), Γ ⇒ v : B(#»a2), ∆

(nd)× n
R, w ≤ v, #»a ∈ Dw, w : A(#»a1) ⊃ B(#»a2), v : A(#»a1), Γ ⇒ v : B(#»a2), ∆

(⊃r)R, #»a ∈ Dw, w : A(#»a1) ⊃ B(#»a2), Γ ⇒ w : A(#»a1) ⊃ B(#»a2), ∆

Π1 =
{

IHR, w ≤ v, #»a ∈ Dw,
#»a ∈ Dv, v : A(#»a1), Γ ′ ⇒ v : A(#»a1), ∆′

Π2 =
{

IHR, w ≤ v, #»a ∈ Dw,
#»a ∈ Dv, v : B(#»a2), Γ ′ ⇒ v : B(#»a2), ∆

IHR, b ∈ Dw,
#»a ∈ Dw, w : A(#»a)(b/x), Γ ⇒ w : A(#»a)(b/x), ∆′

(∃r)R, b ∈ Dw,
#»a ∈ Dw, w : A(#»a)(b/x), Γ ⇒ w : ∃xA(#»a), ∆

(∃l)R, #»a ∈ Dw, w : ∃xA(#»a), Γ ⇒ w : ∃xA(#»a), ∆

IHR, w ≤ v, b ∈ Du,
#»a ∈ Dw,

#»a ∈ Dv, v : A(#»a)(b/x), w : ∀xA(#»a), Γ ⇒ v : A(#»a)(b/x), ∆
(∀l)R, w ≤ v, b ∈ Dv,

#»a ∈ Dw,
#»a ∈ Dv, w : ∀xA(#»a), Γ ⇒ v : A(#»a)(b/x), ∆

(nd)× n
R, w ≤ v, b ∈ Dv,

#»a ∈ Dw, w : ∀xA(#»a), Γ ⇒ v : A(#»a)(b/x), ∆
(∀r)R, #»a ∈ Dw, w : ∀xA(#»a), Γ ⇒ w : ∀xA(#»a), ∆

Claim (ii). We consider two sets of rules from LR in turn.

The {(lsub), (psub)} rules. Hp-admissibility of (lsub) and (psub) are proven
by induction on the height of the given derivation; both are similar to [6, Lem. 3].

On the Correspondence between Nested Calculi and Semantic Systems 47

The only non-trivial cases for the former are the (⊃r) and (∀r) rules of the in-
ductive step, and the non-trivial cases for the latter are the (∃l), (∀r), and (ihd)
rules of the inductive step. In such cases, the side condition must be preserved
if the rule is to be applied. Nevertheless, this can be ensured in the usual way
(cf. [6, Lem. 5.1]) by invoking IH twice: first, IH replaces the eigenvariable of the
(⊃r), (∃l), (∀r), or (ihd) rule with a fresh one, and second, the substitution of
(lsub) or (psub) is performed, after which, the corresponding rule may be applied
to derive the desired conclusion.

The {(wk), (ctrR), (ctrl), (ctrr)} rules. The hp-admissibility of (wk), (ctrR),
(ctrl), and (ctrr) is shown by induction on the height of the given derivation.
Hp-admissibility of (wk) is relatively straightforward; the only non-trivial cases
are the (⊃r), (∃l), (∀r), and (ihd) rules of the inductive step due to the eigen-
variable condition. Such cases are resolved, however, by potentially applying
hp-admissibility of (lsub) or (psub) (argued above), then IH, and last the corre-
sponding rule. Hp-admissibility of (ctrR) is simple; any application of the rule
to an initial sequent yields an initial sequent, and every case in the inductive
step is resolved by applying IH followed by the corresponding rule. The (ctrl)
and (ctrr) cases are also quite straightforward. The only non-trivial cases oc-
cur when a principal occurrence of an (⊃r), (∃l), or (∀r) rule is contracted.
In such cases, the inductive step is solved by invoking the hp-invertibility of
each rule (property (iii) below), followed by a potential application of (lsub) or
(psub), an application of IH, and finally, the hp-admissibility of (ctrR) if needed.

Claim (iii). The cases for the propositional rules are straightforward to check,
so we omit them. By hp-admissibility of (wk), we know that (∃r), (∀l), (ihd),
(nd), and (cd) are hp-invertible (note that the proof of (wk) admissibility does
not depend on the hp-invertibility of rules holding, so we may invoke it). We
therefore only need to check that (∀r) and (∃l) are hp-invertible. We prove the
claim by induction on the height of the given derivation of R, Γ ⇒ w : ∀xA,∆
for the (∀r) rule; the proof for (∃l) is similar.

Base case. If the height of the derivation is 0, then R, w ≤ v, a ∈ Dv, Γ ⇒
v : A(a/x), ∆ is either an instance of (⊥l) or (idq).

Inductive step. If the last rule applied in the derivation is (∧l), (∧r), (∨l),
(∨r), (⊃l), (ref), (tra), (∃r), (∀l), (nd), or (cd), then the conclusion follows by
applying IH followed by an application of the associated rule. If the last rule
applied is (⊃r), (∃l), (∀r), or (ihd) (where the principal formula of (∀r) is in
∆), then we potentially apply hp-admissibility of (lsub) or (psub) (property (ii)
above), followed by IH, and then an application of the corresponding rule. If the
last rule applied is (∀r), with w : ∀xA the principal formula, then the premise
of the inference gives the desired result.

48 Tim Lyon

Claim (iv). We prove the admissibility of (cut) by induction on the lexico-
graphic ordering of tuples (|A|, h1, h2), where |A| is the complexity of the cut
formula A, h1 is the height of the left premise of (cut), and h2 is the height of
the right premise of (cut). We only consider the cases where the cut formula is
principal in both premises of (cut); the other cases where the cut formula is not
principal in one premise, or in both premises, are relatively straightforward to
verify, though the large number of cases makes the proof tedious. By the cut ad-
missibility theorem for G3Int [6, Thm. 5.6], we need only verify the cases where
the cut formula is of the form ∀xB or ∃xB. We show each case in turn below:

Π1 Π2 (cut)R, w ≤ v, a ∈ Dv, Γ ⇒ ∆

Π1 =

{
R, w ≤ v, w ≤ u, a ∈ Dv, b ∈ Du, Γ ⇒ ∆,u : B(b/x)

(∀r)R, w ≤ v, a ∈ Dv, Γ ⇒ ∆,w : ∀xB

Π2 =

{
R, w ≤ v, a ∈ Dv, v : B(a/x), w : ∀xB, Γ ⇒ ∆

(∀l)R, w ≤ v, a ∈ Dv, w : ∀xB, Γ ⇒ ∆

The case is resolved as follows:

Π ′1 Π ′2 (cut)R, w ≤ v, a ∈ Dv, Γ ⇒ ∆

Π ′1 =

{ R, w ≤ u, b ∈ Du, Γ ⇒ ∆,u : B(b/x)
(lsub)

R, w ≤ v, b ∈ Dv, Γ ⇒ ∆, v : B(b/x)
(psub)

R, w ≤ v, a ∈ Dv, Γ ⇒ ∆, v : B(a/x)

Π ′2 =

{ R, w ≤ v, w ≤ u, a ∈ Dv, b ∈ Du, Γ ⇒ ∆,u : B(b/x)
(wk)

R, w ≤ v, w ≤ u, a ∈ Dv, b ∈ Du, v : B(a/x), Γ ⇒ ∆,u : B(b/x)
(∀r)R, w ≤ v, a ∈ Dv, v : B(a/x), Γ ⇒ ∆,w : ∀xB Λ

(cut)
R, w ≤ v, a ∈ Dv, v : B(a/x), Γ ⇒ ∆

Λ = R, w ≤ v, a ∈ Dv, v : B(a/x), w : ∀xB, Γ ⇒ ∆

Observe that the (cut) in Π ′2 has a height h2 that is one less than the original
(cut), and the second (cut) is on a formula B(a/x) that is of less complexity
than the original (cut). Let us examine the ∃xB case.

R, a ∈ Dw, Γ ⇒ ∆,w : B(a/x), w : ∃xB
(∃r)R, a ∈ Dw, Γ ⇒ ∆,w : ∃xB

R, a ∈ Dw, b ∈ Dw, w : B(b/x), Γ ⇒ ∆
(∃l)R, a ∈ Dw, w : ∃xB, Γ ⇒ ∆

(cut)R, a ∈ Dw, Γ ⇒ ∆

The case is resolved as follows:

Π ′1 Π ′2 (cut)R, a ∈ Dw, Γ ⇒ ∆

On the Correspondence between Nested Calculi and Semantic Systems 49

Π ′1 =

{
Λ

R, a ∈ Dw, b ∈ Dw, w : B(b/x), Γ ⇒ ∆
(wk)

R, a ∈ Dw, b ∈ Dw, w : B(b/x), Γ ⇒ w : B(a/x), ∆
(∃l)R, a ∈ Dw, w : ∃xB, Γ ⇒ w : B(a/x), ∆

(cut)
R, a ∈ Dw, Γ ⇒ w : B(a/x), ∆

Λ = R, a ∈ Dw, Γ ⇒ ∆,w : B(a/x), w : ∃xB

Π ′2 =

{ R, a ∈ Dw, b ∈ Dw, w : B(b/x), Γ ⇒ ∆
(psub)

R, a ∈ Dw, a ∈ Dw, w : B(a/x), Γ ⇒ ∆
(ctrR)

R, a ∈ Dw, w : B(a/x), Γ ⇒ ∆

Observe that the (cut) in the Π ′1 inference has a height h1 that is one less than
the original (cut), and the second (cut) is on a formula of smaller complexity.

Claim (v). Soundness is straightforward and is shown by interpreting labelled
sequents on IntQC-models (or IntQ- models in the case of G3IntQ) and proving
that validity is preserved from premise to conclusion. By [6], we know that
G3Int is complete relative to Int, so we need only show that G3IntQC can derive
quantifier axioms and simulate the inference rules of the axiomatization for IntQC
(see [10, Ch. 2.6]); we assume that none of the quantifiers occurring in formulae
are vacuous, and note that the vacuous cases can be derived in a similar fashion.
We say that a formula A(#»a) is derivable in G3IntQC if and only if #»a ∈ Dw ⇒
w : A(#»a) is derivable in G3IntQC. Also, we use the notation (nd)×n to indicate
that the rule (nd) was applied some number of times to shift a group of domain
atoms forward (which will be made clear by the context).

Prop. (i)
w ≤ u, u ≤ u, #»a ∈ Dw, a ∈ Dw, a ∈ Du,

#»a ∈ Du, u : ∀xA(#»a , x), u : A(#»a , a)⇒ u : A(#»a , a)
(∀l)

w ≤ u, u ≤ u, #»a ∈ Dw, a ∈ Dw, a ∈ Du,
#»a ∈ Du, u : ∀xA(#»a , x)⇒ u : A(#»a , a)

(nd)× n
w ≤ u, u ≤ u, #»a ∈ Dw, a ∈ Dw, u : ∀xA(#»a , x)⇒ u : A(#»a , a)

(ref)
w ≤ u, #»a ∈ Dw, a ∈ Dw, u : ∀xA(#»a , x)⇒ u : A(#»a , a)

(⊃r)#»a ∈ Dw, a ∈ Dw ⇒ w : ∀xA(#»a , x) ⊃ A(#»a , a)

Prop. (i)
w ≤ u, #»a ∈ Dw, a ∈ Dw,

#»a ∈ Du, a ∈ Du, u : A(#»a , a)⇒ u : A(#»a , a), u : ∃xA(#»a , x)
(∃r)

w ≤ u, #»a ∈ Dw, a ∈ Dw,
#»a ∈ Du, a ∈ Du, u : A(#»a , a)⇒ u : ∃xA(#»a , x)

(nd)× n
w ≤ u, #»a ∈ Dw, a ∈ Dw, u : A(#»a , a)⇒ u : ∃xA(#»a , x)

(⊃r)#»a ∈ Dw, a ∈ Dw ⇒ w : A(#»a , a) ⊃ ∃xA(#»a , x)

Π1 Π2 (⊃l)
R, v ≤ z, z ≤ z, z : B(

#»

b) ⊃ A(#»a , a), v : ∀x(B(
#»

b) ⊃ A(#»a , x)), u : B(
#»

b)⇒ z : A(#»a , a)
(ref)

R, v ≤ z, z : B(
#»

b) ⊃ A(#»a , a), v : ∀x(B(
#»

b) ⊃ A(#»a , x)), u : B(
#»

b)⇒ z : A(#»a , a)
(∀l)

R, v ≤ z, v : ∀x(B(
#»

b) ⊃ A(#»a , x)), u : B(
#»

b)⇒ z : A(#»a , a)
(tra)

R, v : ∀x(B(
#»

b) ⊃ A(#»a , x)), u : B(
#»

b)⇒ z : A(#»a , a)
(∀r)

w ≤ v, v ≤ u, #»a ∈ Dw,
#»

b ∈ Dw, v : ∀x(B(
#»

b) ⊃ A(#»a , x)), u : B(
#»

b)⇒ u : ∀xA(#»a , x)
(⊃r)

w ≤ v, #»a ∈ Dw,
#»

b ∈ Dw, v : ∀x(B(
#»

b) ⊃ A(#»a , x))⇒ v : B(
#»

b) ⊃ ∀xA(#»a , x)
(⊃r)

#»a ∈ Dw,
#»

b ∈ Dw ⇒ w : ∀x(B(
#»

b) ⊃ A(#»a , x)) ⊃ (B(
#»

b) ⊃ ∀xA(#»a , x))

50 Tim Lyon

To save space, we let R := w ≤ v, v ≤ u, u ≤ z, #»a ∈ Dw,
#»

b ∈ Dw, a ∈ Dz and
Γ := z : B(

#»

b) ⊃ A(#»a , a), v : ∀x(B(
#»

b) ⊃ A(#»a , x)). The proofs Π1 and Π2 are
as follows:

Π1 =

{ Prop. (i)
R, v ≤ z, z ≤ z, #»

b ∈ Dv,
#»

b ∈ Du, Γ, u : B(
#»

b)⇒ z : B(
#»

b), z : A(#»a , a)
(nd)× k1

R, v ≤ z, z ≤ z, Γ, u : B(
#»

b)⇒ z : B(
#»

b), z : A(#»a , a)

Π2 =

{ Prop. (i)
R, v ≤ z, z ≤ z, #»a ∈ Dv,

#»a ∈ Dz, Γ, u : B(
#»

b), z : A(#»a , a)⇒ z : A(#»a , a)
(nd)× k2

R, v ≤ z, z ≤ z, Γ, u : B(
#»

b), z : A(#»a , a)⇒ z : A(#»a , a)

The proof of the axiom ∀x(A(x) ⊃ B) ⊃ (∃xA(x) ⊃ B) is similar to the
previous proof. The generalization rule is simulated as shown below:

#»a ∈ Dw, a ∈ Dw ⇒ w : A(#»a , a)
(wk)

u ≤ w, #»a ∈ Du,
#»a ∈ Dw, a ∈ Dw ⇒ w : A(#»a , a)

(nd)× n
u ≤ w, #»a ∈ Du, a ∈ Dw ⇒ w : A(#»a , a)

(∀r)#»a ∈ Du ⇒ u : ∀xA(#»a , x)
(lsub)

#»a ∈ Dw ⇒ w : ∀xA(#»a , x)

Π1 Π2 (∨l)
R, v ≤ v, a ∈ Dv, v : A(#»a , a) ∨B(

#»

b), v : ∀x(A(#»a , x) ∨B(
#»

b))⇒ u : A(#»a , a), v : B(
#»

b)
(∀l)

R, v ≤ v, a ∈ Dv, v : ∀x(A(#»a , x) ∨B(
#»

b))⇒ u : A(#»a , a), v : B(
#»

b)
(cd)

R, v ≤ v, v : ∀x(A(#»a , x) ∨B(
#»

b))⇒ u : A(#»a , a), v : B(
#»

b)
(ref)

R, v : ∀x(A(#»a , x) ∨B(
#»

b))⇒ u : A(#»a , a), v : B(
#»

b)
(∀r)

w ≤ v, #»a ∈ Dw,
#»

b ∈ Dw, v : ∀x(A(#»a , x) ∨B(
#»

b))⇒ v : ∀xA(#»a , x), v : B(
#»

b)
(∨r)

w ≤ v, #»a ∈ Dw,
#»

b ∈ Dw, v : ∀x(A(#»a , x) ∨B(
#»

b))⇒ v : ∀xA(#»a , x) ∨B(
#»

b)
(⊃r)

#»a ∈ Dw,
#»

b ∈ Dw ⇒ w : ∀x(A(#»a , x) ∨B(
#»

b)) ⊃ ∀xA(#»a , x) ∨B(
#»

b)

to save space, we let R := w ≤ v, v ≤ u, #»a ∈ Dw,
#»

b ∈ Dw, a ∈ Du. The proofs
Π1 and Π2 are as follows (resp.).

Prop. (i)
R, v ≤ v, #»a ∈ Dv, a ∈ Dv, v : A(#»a , a), v : ∀x(A(#»a , x) ∨B(

#»

b))⇒ u : A(#»a , a), v : B(
#»

b)
(nd)× k1

R, v ≤ v, a ∈ Dv, v : A(#»a , a), v : ∀x(A(#»a , x) ∨B(
#»

b))⇒ u : A(#»a , a), v : B(
#»

b)

Prop. (i)
R, v ≤ v, a ∈ Dv,

#»

b ∈ Dv, v : B(
#»

b), v : ∀x(A(#»a , x) ∨B(
#»

b))⇒ u : A(#»a , a), v : B(
#»

b)
(nd)× k2

R, v ≤ v, a ∈ Dv, v : B(
#»

b), v : ∀x(A(#»a , x) ∨B(
#»

b))⇒ u : A(#»a , a), v : B(
#»

b)

To show that modus ponens can be simulated, we let #»a be all parameters
occurring in A,

#»

b be all parameters occurring in B, and let #»c consist of all
parameters occurring in B, but not A. The last inference consists of a sequence
of k (ihd) applications that delete all domains atoms containing parameters from
A, but not B.

On the Correspondence between Nested Calculi and Semantic Systems 51

#»a ∈ Dw ⇒ w : A(#»a)
(wk)

#»a ∈ Dw,
#»c ∈ Dw ⇒ w : A(#»a)

#»a ∈ Dw,
#»c ∈ Dw ⇒ w : A(#»a) ⊃ B(

#»

b)
Prop. (iii)

w ≤ u, #»a ∈ Dw,
#»c ∈ Dw, u : A(#»a)⇒ u : B(

#»

b)
(lsub)

w ≤ w, #»a ∈ Dw,
#»c ∈ Dw, w : A(#»a)⇒ w : B(

#»

b)
(ref)

#»a ∈ Dw,
#»c ∈ Dw, w : A(#»a)⇒ w : B(

#»

b)
(cut)

#»a ∈ Dw,
#»c ∈ Dw ⇒ w : B(

#»

b)
(ihd)× k

#»

b ∈ Dw ⇒ w : B(
#»

b)
ut

Lemma 4. Let G3X∗ ∈ {G3IntQ∗,G3IntQC∗}. The calculi G3Int∗, G3IntQ∗, and
G3IntQC∗ have the following properties:

(i) (a) For all A ∈ L, `G3Int∗ R, w ≤ v, w : A,Γ ⇒ v : A,∆;
(b) For all A ∈ L, `G3Int∗ R, w : A,Γ ⇒ ∆,w : A;
(c) For all A ∈ Q, `G3X∗ R, w ≤ v, #»a ∈ Dw, w : A(#»a), Γ ⇒ v : A(#»a), ∆;
(d) For all A ∈ Q, `G3X∗ R, #»a ∈ Dw, w : A(#»a), Γ ⇒ ∆,w : A(#»a);

(ii) The rules {(lsub), (psub), (wk), (ctrR), (ctrr)} are hp-admissible;
(iii) With the exception of {(∧l), (∃l)}, all rules are hp-invertible;
(iv) The rules {(∧l), (∃l)} are invertible;
(v) The rule (ctrl) is admissible.

Proof. We show that the results hold when all rules from G3Int∗, G3IntQ∗, and
G3IntQC∗ are considered.

Claim (i). Similar to Thm. 3-(i).
Claim (ii). By induction on the height of the given derivation—similar to

the proofs given for Thm. 3-(ii). Note that the hp-admissibility of (ctrr) invokes
property (iii) below.

Claim (iii). Hp-invertibility of (⊃l), (⊃∗l), (¬l), (ref), (tra), (lift), (ihd),
(∃r), (∃nr), (∃inr), (∃cr), (∃icr), (∀l), (∀nl), (∀inl), (∀cl), (∀icl), (nd), (cd) follow from
hp-admissibility of (wk) (property (ii) above). Hence, we need only prove invert-
ibility of the (⊃r), (∧r), (∨l), (∨r), (¬r), (∀r), and (∀cr) rules. The result is shown
by induction on the height of the given derivation and is similar to Thm. 3-(iii).

Claim (iv). The addition of (lift) and (nd) to our calculus breaks the height
preserving invertibility of (∧l) and (∃l). Nevertheless, it is worthwhile to note
that the rule (lift′) (shown below) ought to allow for hp-invertibility of (∧l) in
the propositional calculus, and (nd′) (shown below) ought to allow for the hp-
invertibility of (∧l) and (∃l) in the first-order calculi (which would have the effect
that (ctrl) is hp-admissible in both calculi) while retaining the soundness and
cut-free completeness of each system. The notation v : Γ ′ is used to represent
multisets of formulae labelled with v.

R, w ≤ u, Γ,w : Γ ′, u : Γ ′ ⇒ ∆
(lift′)

R, w ≤ u, Γ,w : Γ ′ ⇒ ∆

R, w ≤ u, #»a ∈ Dw,
#»a ∈ Du, Γ, w : Γ ′, u : Γ ′ ⇒ ∆

(nd′)
R, w ≤ u, #»a ∈ Dw, Γ, w : Γ ′ ⇒ ∆

Despite this shortcoming, the rules are still invertible. To show this, we prove
the following two claims by induction on the height of the given derivation.

52 Tim Lyon

(a) If R, w1 : A ∧ B, . . . , wn : A ∧ B,Γ ⇒ ∆ is provable, then so is the sequent
R, w1 : A,w1 : B, . . . , wn : A,wn : B,Γ ⇒ ∆.

(b) If R, w1 : ∃xA, . . . , wn : ∃xA, Γ ⇒ ∆ is provable, then so is the sequent
R, a1 ∈ Dw1

, . . . , an ∈ Dwn
, w1 : A(a1/x), . . . , wn : A(an/x), Γ ⇒ ∆.

Claim (a). The base case is trivial, so we move on to the inductive step.

Inductive step. Excluding the case of (lift), the result follows by applying IH
followed by the relevant rule, or in the case where one of the conjunction formulae
is principal in a (∧r) inference, apply IH to the premise (if needed) to obtain
the desired result. If none of the conjunctions are active in a (lift) inference,
then apply IH followed by an application of (lift). If one of the conjunctions
is principal in an application of (lift) (as shown below top), then resolve the
case as shown below bottom; we assume w.l.o.g. that the label of the principal
formula is w1.

R, u ≤ w1, u : A ∧B,w1 : A ∧B, . . . , wn : A ∧B,Γ ⇒ ∆
(lift)R, u ≤ w1, u : A ∧B, . . . , wn : A ∧B,Γ ⇒ ∆

IHR, u ≤ w1, u : A, u : B,w1 : A,w1 : B, . . . , wn : A,wn : B,Γ ⇒ ∆
(lift)R, u ≤ w1, u : A, u : B,w1 : B, . . . , wn : A,wn : B,Γ ⇒ ∆

(lift)R, u ≤ w1, u : A, u : B, . . . , wn : A,wn : B,Γ ⇒ ∆

Notice that the two applications of (lift) needed to derive the desired conclusion
break the hp-invertibility of the (∧l) rule.

Claim (b). The base case is trivial, so we move on to the inductive step.

Inductive step. All cases, with the exception of the one given below top (where
one of our existential formulae is principal in an application of (lift)), are either
resolved by applying IH followed by the corresponding rule, or if one of the
existential formulae is principal in an (∃r) inference, then apply IH to the premise
(if needed) to obtain the desired result. The non-trivial case given below top is
resolved as shown below bottom; we assume w.l.o.g. that the label of the principal
formula is w1.

R, u ≤ w1, u : ∃xA,w1 : ∃xA, . . . , wn : ∃xA, Γ ⇒ ∆
(lift)R, u ≤ w1, u : ∃xA, . . . , wn : ∃xA, Γ ⇒ ∆

IHR, u ≤ w1, a ∈ Du, a1 ∈ Dw1
, . . . , an ∈ Dwn

, u : A(a/x), w1 : A(a1/x), . . . , wn : A(an/x), Γ ⇒ ∆
(psub)

R, u ≤ w1, a ∈ Du, a ∈ Dw1 , . . . , an ∈ Dwn , u : A(a/x), w1 : A(a/x), . . . , wn : A(an/x), Γ ⇒ ∆
(lift)

R, u ≤ w1, a ∈ Du, a ∈ Dw1 , . . . , an ∈ Dwn , u : A(a/x), . . . , wn : A(an/x), Γ ⇒ ∆
(nd)

R, u ≤ w1, a ∈ Du, . . . , an ∈ Dwn
, u : A(a/x), . . . , wn : A(an/x), Γ ⇒ ∆

Observe that the use of (lift) and (nd) breaks height-preserving invertibility of
the rule.

Propositions (a) and (b) imply the invertibility of (∧l) and (∃l).

On the Correspondence between Nested Calculi and Semantic Systems 53

Claim (v). By induction on pairs of the form (|A|, h) where |A| is the com-
plexity of the contraction formula A and h is the height of the derivation. The
proof makes use of properties (ii)– (iv). ut

Lemma 10. The (ref) and (tra) rules are admissible in the calculus G3IntQ∗.

Proof. The (tra) elimination cases are given below with each non-trivial case
being followed by a proof of how it is resolved. In the (idnq) case, We let R′ :=
R, a1 ∈ Dv1 , . . . , an ∈ Dvn .

(idnq)
R′, u ≤ z, z ≤ z′, u ≤ z′, Γ, w : p(#»a)⇒ w : p(#»a), ∆

(tra)
R′, u ≤ z, z ≤ z′, Γ, w : p(#»a)⇒ w : p(#»a), ∆

(idnq)
R′, u ≤ z, z ≤ z′, Γ, w : p(#»a)⇒ w : p(#»a), ∆

R, u ≤ z, z ≤ z′, u ≤ z′, a ∈ Dv, Γ, w : A(a/x), w : ∀xA⇒ ∆
(∀nl)

R, u ≤ z, z ≤ z′, u ≤ z′, a ∈ Dv, Γ, w : ∀xA⇒ ∆
(tra)

R, u ≤ z, z ≤ z′, a ∈ Dv, Γ, w : ∀xA⇒ ∆

IHR, u ≤ z, z ≤ z′, a ∈ Dv, w : A(a/x), w : ∀xA, Γ ⇒ ∆
(∀nl)

R, u ≤ z, z ≤ z′, a ∈ Dv, w : ∀xA, Γ ⇒ ∆

R, u ≤ z, z ≤ z′, u ≤ z′, a ∈ Dv, Γ, w : A(a/x), w : ∀xA⇒ ∆
(∀inl)

R, u ≤ z, z ≤ z′, u ≤ z′, Γ, w : ∀xA⇒ ∆
(tra)

R, u ≤ z, z ≤ z′, Γ, w : ∀xA⇒ ∆

IHR, u ≤ z, z ≤ z′, a ∈ Dv, w : A(a/x), w : ∀xA, Γ ⇒ ∆
(∀inl)

R, u ≤ z, z ≤ z′, w : ∀xA, Γ ⇒ ∆

R, u ≤ z, z ≤ z′, u ≤ z′, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃nr)

R, u ≤ z, z ≤ z′, u ≤ z′, a ∈ Dv, Γ ⇒ w : ∃xA,∆
(tra)

R, u ≤ z, z ≤ z′, a ∈ Dv, Γ ⇒ w : ∃xA,∆

IHR, u ≤ z, z ≤ z′, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃nr)

R, u ≤ z, z ≤ z′, a ∈ Dv, Γ ⇒ w : ∃xA,∆

R, u ≤ z, z ≤ z′, u ≤ z′, Γ, a ∈ Dv ⇒ w : A(a/x), w : ∃xA,∆
(∃inr)

R, u ≤ z, z ≤ z′, u ≤ z′, Γ ⇒ w : ∃xA,∆
(tra)

R, u ≤ z, z ≤ z′, Γ ⇒ w : ∃xA,∆

IHR, u ≤ z, z ≤ z′, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃inr)

R, u ≤ z, z ≤ z′, Γ ⇒ w : ∃xA,∆

R, w ≤ u, u ≤ v, w ≤ v, a ∈ Dw, a ∈ Dv, Γ ⇒ ∆
(nd)R, w ≤ u, u ≤ v, w ≤ v, a ∈ Dw, Γ ⇒ ∆

(tra)R, w ≤ u, u ≤ v, a ∈ Dw, Γ ⇒ ∆

54 Tim Lyon

R, w ≤ u, u ≤ v, w ≤ v, a ∈ Dw, a ∈ Dv, Γ ⇒ ∆
(wk)R, w ≤ u, u ≤ v, w ≤ v, a ∈ Dw, a ∈ Du, a ∈ Dv, Γ ⇒ ∆
IHR, w ≤ u, u ≤ v, a ∈ Dw, a ∈ Du, a ∈ Dv, Γ ⇒ ∆

(nd)R, w ≤ u, u ≤ v, a ∈ Dw, a ∈ Du, Γ ⇒ ∆
(nd)R, w ≤ u, u ≤ v, a ∈ Dw, Γ ⇒ ∆

As with the admissibility proof for (ref), the side condition of the (idnq) rule

still holds after u ≤ z′ is deleted, and the side condition of the (∃nr), (∃inr), (∀nl),
and (∀inl) cases continues to hold after the invocation of IH. If a directed path
traverses the relational atom u ≤ z′ in the (idnq) case, a directed path still exists
by replacing u ≤ z′ with u ≤ z, z ≤ z′ in the given path. In the other cases, if
the directed path traverses the u ≤ z′ relational atom, then the relational atoms
u ≤ z, z ≤ z′ are still present in the sequent after invoking IH, ensuring that a
path between v and w continues to exist. ut

Lemma 15. The (ref) and (tra) rules are admissible in the calculus G3IntQC∗.

Proof. We prove the result by induction on the height of the given derivation.
We assume w.l.o.g. that the last inference in the given derivation is an instance
of (ref) or (tra), and that this is the only instance of the rule in the given deriva-
tion. The general result follows by successively eliminating topmost occurrences
of (ref) or (tra) from a given derivation until it is free of such inferences. By
Lem. 5 and Lem. 16, we need only consider the non-trivial (idcq), (∃cr), (∃icr), (∀cl),
(∀icl), (nd), and (cd) cases.

Base case. We let R′ := R, a1 ∈ Dv1 , . . . , an ∈ Dvn in the (idnq) cases below.
In both the (ref) and (tra) cases, the side condition that there is an undirected
path from vi to w, for each i ∈ {1, . . . , n}, holds in the end sequent. If none of
the undirected paths from vi to w contain u ≤ u (u ≤ z′), then the paths are
present in R′ (R′, u ≤ z, z ≤ z′, resp.), and if an undirected path from vi to w
contains u ≤ u (u ≤ z′, resp.), then deleting each occurrence of u ≤ u from the
undirected path (replacing each occurrence of u ≤ z′ with u ≤ z, z ≤ z′, resp.)
gives a new path from vi to w.

(idnq)
R′, u ≤ u, Γ,w : p(#»a)⇒ w : p(#»a), ∆

(ref)
R′, Γ, w : p(#»a)⇒ w : p(#»a), ∆

(idcq)R′, Γ, w : p(#»a)⇒ w : p(#»a), ∆

(idcq)R′, u ≤ z, z ≤ z′, u ≤ z′, Γ, w : p(#»a)⇒ w : p(#»a), ∆
(tra)

R′, u ≤ z, z ≤ z′, Γ, w : p(#»a)⇒ w : p(#»a), ∆

(idcq)R′, u ≤ z, z ≤ z′, Γ, w : p(#»a)⇒ w : p(#»a), ∆

Inductive step. For the inductive step, we consider the non-trivial (∃cr), (∃icr),
(∀cl), (∀icl), (nd), and (cd) cases. We first show how to permute (ref) above each
of these rules, and then focus on the permutation of (tra) above each considered
rule.

On the Correspondence between Nested Calculi and Semantic Systems 55

R, u ≤ u, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃cr)R, u ≤ u, a ∈ Dv, Γ ⇒ w : ∃xA,∆

(ref)R, a ∈ Dv, Γ ⇒ w : ∃xA,∆
IHR, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃cr)R, a ∈ Dv, Γ ⇒ w : ∃xA,∆

R, u ≤ u, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃icr)R, u ≤ u, Γ ⇒ w : ∃xA,∆

(ref)R, Γ ⇒ w : ∃xA,∆
IHR, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃icr)R, Γ ⇒ w : ∃xA,∆

R, u ≤ u, a ∈ Dv, w : A(a/x), w : ∀xA, Γ ⇒ ∆
(∀cl)R, u ≤ u, a ∈ Dv, w : ∀xA, Γ ⇒ ∆

(ref)R, a ∈ Dv, w : ∀xA, Γ ⇒ ∆

IHR, a ∈ Dv, w : A(a/x), w : ∀xA, Γ ⇒ ∆
(∀cl)R, a ∈ Dv, w : ∀xA, Γ ⇒ ∆

R, u ≤ u, a ∈ Dv, Γ, w : A(a/x), w : ∀xA⇒ ∆
(∀icl)R, u ≤ u, Γ,w : ∀xA⇒ ∆

(ref)R, w : ∀xA, Γ ⇒ ∆

IHR, a ∈ Dv, Γ, w : A(a/x), w : ∀xA, Γ ⇒ ∆
(∀icl)R, w : ∀xA, Γ ⇒ ∆

R, w ≤ w, a ∈ Dw, a ∈ Dw, Γ ⇒ ∆
(nd)R, w ≤ w, a ∈ Dw, Γ ⇒ ∆

(ref)R, a ∈ Dw, Γ ⇒ ∆

R, w ≤ w, a ∈ Dw, a ∈ Dw, Γ ⇒ ∆
(ctrR)R, w ≤ w, a ∈ Dw, Γ ⇒ ∆

IHR, a ∈ Dw, Γ ⇒ ∆

R, w ≤ w, a ∈ Dw, a ∈ Dw, Γ ⇒ ∆
(cd)R, w ≤ w, a ∈ Dw, Γ ⇒ ∆

(ref)R, a ∈ Dw, Γ ⇒ ∆

R, w ≤ w, a ∈ Dw, a ∈ Dw, Γ ⇒ ∆
(ctrR)R, w ≤ w, a ∈ Dw, Γ ⇒ ∆

IHR, a ∈ Dw, Γ ⇒ ∆

In the (∃cr), (∃icr), (∀cl), and (∀icl) cases above, observe that each rule can be
applied after invoking IH for the following reason: if the undirected path from v
to w does not go through u, then the path is still present after applying IH, and
if the undirected path contains u ≤ u, then deleting all occurrences of u ≤ u
from the undirected path yields another undirected path between v and w. The
(tra) cases are considered below:

56 Tim Lyon

R, u ≤ z, z ≤ z′, u ≤ z′, a ∈ Dv, Γ, w : A(a/x), w : ∀xA⇒ ∆
(∀cl)R, u ≤ z, z ≤ z′, u ≤ z′, a ∈ Dv, Γ, w : ∀xA⇒ ∆

(tra)
R, u ≤ z, z ≤ z′, a ∈ Dv, Γ, w : ∀xA⇒ ∆

IHR, u ≤ z, z ≤ z′, a ∈ Dv, w : A(a/x), w : ∀xA, Γ ⇒ ∆
(∀cl)R, u ≤ z, z ≤ z′, a ∈ Dv, w : ∀xA, Γ ⇒ ∆

R, u ≤ z, z ≤ z′, u ≤ z′, a ∈ Dv, Γ, w : A(a/x), w : ∀xA⇒ ∆
(∀icl)

R, u ≤ z, z ≤ z′, u ≤ z′, Γ, w : ∀xA⇒ ∆
(tra)

R, u ≤ z, z ≤ z′, Γ, w : ∀xA⇒ ∆

IHR, u ≤ z, z ≤ z′, a ∈ Dv, w : A(a/x), w : ∀xA, Γ ⇒ ∆
(∀icl)

R, u ≤ z, z ≤ z′, w : ∀xA, Γ ⇒ ∆

R, u ≤ z, z ≤ z′, u ≤ z′, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃cr)R, u ≤ z, z ≤ z′, u ≤ z′, a ∈ Dv, Γ ⇒ w : ∃xA,∆

(tra)
R, u ≤ z, z ≤ z′, a ∈ Dv, Γ ⇒ w : ∃xA,∆

IHR, u ≤ z, z ≤ z′, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃cr)R, u ≤ z, z ≤ z′, a ∈ Dv, Γ ⇒ w : ∃xA,∆

R, u ≤ z, z ≤ z′, u ≤ z′, Γ, a ∈ Dv ⇒ w : A(a/x), w : ∃xA,∆
(∃icr)

R, u ≤ z, z ≤ z′, u ≤ z′, Γ ⇒ w : ∃xA,∆
(tra)

R, u ≤ z, z ≤ z′, Γ ⇒ w : ∃xA,∆
IHR, u ≤ z, z ≤ z′, a ∈ Dv, Γ ⇒ w : A(a/x), w : ∃xA,∆
(∃icr)

R, u ≤ z, z ≤ z′, Γ ⇒ w : ∃xA,∆

R, w ≤ u, u ≤ v, w ≤ v, a ∈ Dw, a ∈ Dv, Γ ⇒ ∆
(nd)R, w ≤ u, u ≤ v, w ≤ v, a ∈ Dw, Γ ⇒ ∆

(tra)R, w ≤ u, u ≤ v, a ∈ Dw, Γ ⇒ ∆

R, w ≤ u, u ≤ v, w ≤ v, a ∈ Dw, a ∈ Dv, Γ ⇒ ∆
(wk)R, w ≤ u, u ≤ v, w ≤ v, a ∈ Dw, a ∈ Du, a ∈ Dv, Γ ⇒ ∆
IHR, w ≤ u, u ≤ v, a ∈ Dw, a ∈ Du, a ∈ Dv, Γ ⇒ ∆

(nd)R, w ≤ u, u ≤ v, a ∈ Dw, a ∈ Du, Γ ⇒ ∆
(nd)R, w ≤ u, u ≤ v, a ∈ Dw, Γ ⇒ ∆

R, w ≤ u, u ≤ v, w ≤ v, a ∈ Dw, a ∈ Dv, Γ ⇒ ∆
(cd)R, w ≤ u, u ≤ v, w ≤ v, a ∈ Dv, Γ ⇒ ∆

(tra)R, w ≤ u, u ≤ v, a ∈ Dv, Γ ⇒ ∆

R, w ≤ u, u ≤ v, w ≤ v, a ∈ Dw, a ∈ Dv, Γ ⇒ ∆
(wk)R, w ≤ u, u ≤ v, w ≤ v, a ∈ Dw, a ∈ Du, a ∈ Dv, Γ ⇒ ∆
IHR, w ≤ u, u ≤ v, a ∈ Dw, a ∈ Du, a ∈ Dv, Γ ⇒ ∆

(cd)R, w ≤ u, u ≤ v, a ∈ Du, a ∈ Dv, Γ ⇒ ∆
(cd)R, w ≤ u, u ≤ v, a ∈ Dv, Γ ⇒ ∆

On the Correspondence between Nested Calculi and Semantic Systems 57

We now argue that the side condition v ∼R w of (∃cr), (∃icr), (∀cl), and (∀icl)
continues to hold after applying IH. If the undirected path from v to w does not
contain u ≤ z′, then the side condition trivially holds. If, on the other hand, the
undirected path from v to w contains u ≤ z′, then another undirected path from
v to w is found by replacing all occurrences of u ≤ z′ with u ≤ z, z ≤ z′, which
continues to be present after the invocation of IH. ut

Corollary 2. All rules in NR are admissible in NInt, NIntQ and NIntQC.

Proof. We prove the admissibility of each rule of NR in turn. The first three
cases we consider are the (wkl), (wkr), and (psub) cases, though we omit the
(wkr) case since it is similar to the (wkl) case.

Σ{X → Y }
Thm. 17

L(Σ{X → Y })
. =
R, Γ, w : X ⇒ w : Y,∆

(wk)
R′, Γ, w : X,w : Z ⇒ w : Y,∆

Thm. 17
N(R, Γ, w : X,w : Z ⇒ w : Y,∆)

. =
Σ{X,Z → Y }

Σ
Thm. 17

L(Σ)
. =
Λ (psub)

Λ(a/b)
Thm. 17

N(Λ(a/b))
. =
Σ(a/b)

We assume that R′ := R, #»a ∈ Dw where #»a are all parameters occurring in
the labelled formulae of w : Z. This ensures that the labelled sequent R′, Γ, w :
X,w : Z ⇒ w : Y,∆ is nestedlike (cf. Def. 12 and 13). Also, the labelled sequent
Λ(a/b) in the (psub) derivation is trivially nestedlike since L(Σ(a/b)) = Λ(a/b)
(up to a change of labels). This implies that the second invocation of Thm. 17
in both cases is valid.

We next consider the (ctrl), (ctrr), (nr), and (mrg1) cases, but omit the proof
of (ctrr) since it is similar to (ctrl). In the top right (i.e. (nr)) derivation, we
assume that v is the root of G(L(Σ)) and that w is fresh, meaning we effectively
change the root from v to w after applying (wk).

Σ{X,Z,Z → Y }
Thm. 17

L(Σ{X,Z,Z → Y })
. =
R, Γ, w : X,w : Z,w : Z ⇒ w : Y,∆

(ctrl) + (ctrR)R, Γ, w : X,w : Z ⇒ w : Y,∆
Thm. 17

N(R, Γ, w : X,w : Z ⇒ w : Y,∆)
. =

Σ{X,Z → Y }

Σ
Thm. 17

L(Σ)
. =
R, Γ ⇒ ∆

(wk)R, w ≤ v, Γ ⇒ ∆
Thm. 17

N(R, w ≤ v, Γ ⇒ ∆)
. =

→ [Σ]

Σ{X → Y, [Σ′], [Σ′]}
Thm. 17

L(Σ{X → Y, [Σ′], [Σ′]})
. =
R,R′,R′′, Γ, Γ ′, Γ ′′ ⇒ ∆′, ∆′′, ∆

(lsub)× n
R,R′,R′, Γ, Γ ′, Γ ′ ⇒ ∆′, ∆′, ∆

(ctrR) + (ctrl) + (ctrr)R,R′, Γ, Γ ′ ⇒ ∆′, ∆
Thm. 17

N(R,R′, Γ, Γ ′ ⇒ ∆′, ∆)
. =

Σ{X → Y, [Σ′]}

58 Tim Lyon

The labelled sequents R, Γ, w : X,w : Z ⇒ w : Y,∆, R, w ≤ v, Γ ⇒ ∆,
and R,R′, Γ, Γ ′ ⇒ ∆′, ∆ are nestedlike, as the conclusion of each derivation is
the nested sequent that when input into L outputs each such labelled sequent
(up to a change of labels). In the bottom (i.e. (mrg1)) derivation, we assume
that the first copy of Σ′ is translated to R′, Γ ′ ⇒ ∆′ under L and that the
second copy of Σ′ is translated to R′′, Γ ′′ ⇒ ∆′′ under L. Therefore, the graphs
G(R′, Γ ′ ⇒ ∆′) and G(R′′, Γ ′′ ⇒ ∆′′) are isomorphic, and so, the n applications
of (lsub) correspond to the replacement of labels in R′′, Γ ′′ ⇒ ∆′′ with labels in
R′, Γ ′ ⇒ ∆′ to make these two identical. Then, using (ctrR), (ctrl), and (ctrr),
we contract all duplicate copies of relational atoms and labelled formulae to
obtain R,R′, Γ, Γ ′ ⇒ ∆′, ∆.

We prove the admissibility of the (mrg2) rule below. We assume that the
label w is associated with the component X1 → Y1 and the label v is associated
with the component X2 → Y2. As before, the conclusion of the derivation serves
as the nested sequent that when input into L yields R(w/v), Γ (w/v), w : X1, w :
X2 ⇒ w : Y1, w : Y2, ∆(w/v) (up to a change of labels), thus showing the validity
of our second use of Thm. 17.

Σ{X1 → Y1, [X2 → Y2, [Σ1], . . . , [Σn]]}
Thm. 17

L(Σ{X1 → Y1, [X2 → Y2, [Σ1], . . . , [Σn]]})
. =
R, w ≤ v, Γ, w : X1, v : X2 ⇒ w : Y1, v : Y2, ∆

(lsub)
R(w/v), w ≤ w, Γ (w/v), w : X1, w : X2 ⇒ w : Y1, w : Y2, ∆(w/v)

(ref)
R(w/v), Γ (w/v), w : X1, w : X2 ⇒ w : Y1, w : Y2, ∆(w/v)

Thm. 17
N(R(w/v), Γ (w/v), w : X1, w : X2 ⇒ w : Y1, w : Y2, ∆(w/v))

. =
Σ{X1, X2 → Y1, Y2, [Σ1], . . . , [Σn]}

Next we consider the (ew1) case. We assume that L(Σ′) = R′, Γ ′ ⇒ ∆′, which
shows that the conclusion of the derivation serves as the nested sequent, which
when input into L outputs R,R′, Γ, Γ ′ ⇒ ∆′, ∆ (up to a change of labels).
Therefore, the second use of Thm. 17 is valid.

Σ{X → Y }
Thm. 17

L(Σ{X → Y })
. =
R, Γ ⇒ ∆

(wk)
R,R′, Γ, Γ ′ ⇒ ∆′, ∆

Thm. 17
N(R,R′, Γ, Γ ′ ⇒ ∆′, ∆)

. =
Σ{X → Y, [Σ′]}

In the proof of the admissibility of (ew2) below, we assume that the label w
is associated with the component X1 → Y1, the label v is associated with the
component X2 → Y2, and that the label u is fresh. Up to a change of labels, the
conclusion of the derivation is the nested sequent that when input into L outputs
the labelled sequent R, w ≤ u, u ≤ v, Γ, w : X1, v : X2 ⇒ w : Y1, v : Y2, ∆,
justifying our second use of Thm. 17.

On the Correspondence between Nested Calculi and Semantic Systems 59

Σ{X1 → Y1, [X2 → Y2, [Σ1], . . . , [Σn]]}
Thm. 17

L(Σ{X1 → Y1, [X2 → Y2, [Σ1], . . . , [Σn]]})
. =
R, w ≤ v, Γ, w : X1, v : X2 ⇒ w : Y1, v : Y2, ∆

(wk)R, w ≤ u, u ≤ v, w ≤ v, Γ, w : X1, v : X2 ⇒ w : Y1, v : Y2, ∆
(tra)R, w ≤ u, u ≤ v, Γ, w : X1, v : X2 ⇒ w : Y1, v : Y2, ∆

Thm. 17
N(R, w ≤ u, u ≤ v, Γ, w : X1, v : X2 ⇒ w : Y1, v : Y2, ∆)

. =
Σ{X1 → Y1, [→ [X2 → Y2, [Σ1], . . . , [Σn]]]}

Last, we show the admissibility of (lwr) and (cut). In the proof of the admissibil-
ity of (lwr) below, we assume that the label w is associated with the component
X1 → A, Y1 and that the label v is associated with the component X2 → A, Y2.
In the proof of the admissibility of (cut), we assume that the label w is associ-
ated with X → A, Y and X,A → Y . As in all previous cases, the end sequent
of each derivation serves as the nested sequent (up to a change of labels) that
when input into L yields the labelled sequent before the (second) invocation of
Thm. 17, thus showing that our use of the theorem is valid.

Σ{X1 → A, Y1, [X2 → A, Y2]}
Thm. 17

L(Σ{X1 → A, Y1, [X2 → A, Y2]})
. =
R, w ≤ v, Γ ⇒ w : A, v : A,∆

Thm. 3-(i)-(c)R, w ≤ v, Γ, w : A⇒ v : A,∆
(cut)R, w ≤ v, Γ ⇒ v : A⇒ ∆

Thm. 17
N(R, w ≤ v, Γ ⇒ v : A,∆)

. =
Σ{X1 → Y1, [X2 → A, Y2]}

Σ{X → A, Y }
Thm. 17

L(Σ{X → A, Y })
. =
R, Γ ⇒ w : A,∆

Σ{X,A→ Y }
Thm. 17

L(Σ{X,A→ Y })
. =
R, Γ, w : A⇒ ∆

(cut)R, Γ ⇒ ∆
Thm. 17

N(R, Γ ⇒ ∆)
. =
Σ{X → Y }

ut

	On the Correspondence between Nested Calculi and Semantic Systems for Intuitionistic Logics

