
The role of clearance in aggregation kinetics

The role of clearance mechanisms in the kinetics of pathological protein

aggregation involved in neurodegenerative diseases

T.B. Thompson,1, a) G. Meisl,2, b) T. Knowles,3 and A. Goriely1

1)University of Oxford Mathematical Institute
2)University of Cambridge Department of Chemistry
3)University of Cambridge Department of Chemistry and University of Cambridge

Department of Physics

(Dated: 24 February 2021)

The deposition of pathological protein aggregates in the brain plays a central role in

cognitive decline and structural damage associated with neurodegenerative diseases. In

Alzheimer’s disease, the formation of Amyloid-beta plaques and neurofibrillary tangles

of the tau protein is associated with the appearance of symptoms and pathology. Detailed

models for the specific mechanisms of aggregate formation, such as nucleation and elonga-

tion, exist for aggregation in vitro where total protein mass is conserved. However, in vivo,

an additional class of mechanisms that clear pathological species is present and is believed

to play an essential role in limiting the formation of aggregates and preventing or delaying

the emergence of disease. A key unanswered question in the field of neuro-degeneration

is how these clearance mechanisms can be modelled and how alterations in the processes

of clearance or aggregation affect the stability of the system towards aggregation. Here,

we generalize classical models of protein aggregation to take into account both production

of monomers and the clearance of protein aggregates. We show that, depending on the

specifics of the clearance process, a critical clearance value emerges above which accu-

mulation of aggregates does not take place. Our results show that a sudden switch from a

healthy to a disease state can be caused by small variations in the efficiency of the clearance

process and provide a mathematical framework in which to explore the detailed effects of

different mechanisms of clearance on the accumulation of aggregates.
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I. INTRODUCTION

Alzheimer’s disease (AD), and other related neurodegenerative diseases, are associated with

the assembly of specific proteins into pathological fibrillar aggregates. Alzheimer’s disease, in

particular, is characterized by the aggregation of Amyloid-β (Aβ ) into plaques and of the tau

protein into neurofibrillary tangles (NFT). The role of Aβ in Alzheimer’s is thought to be so central

to the disease that it is the basis of the so-called ‘Amyloid-β hypothesis’1–3, stating that that the

accumulation and deposition of oligomeric or fibrillar amyloid beta peptide is the main cause of

the disease. This hypothesis has provided a guide for most of AD research over the last 20 years.

However, recent experimental evidence, and the failure of several drug trials, has lead to renewed

scrutiny of this foundational assumption, and next generation therapeutic intervention strategies

that target more specifically the low molecular weight oligomers are showing more promise4.

The production of Aβ is a natural process related to neuronal activity. Indeed, Aβ is a nor-

mal metabolic waste byproduct5,6 that is typically removed from intracellular and extracellular

compartments by several clearance mechanisms7,8. In healthy subjects waste proteins are broken

down by enzymes, removed by cellular uptake, crossing the blood-brain barrier, or efflux to cere-

brospinal fluid compartments where they eventually reach arachnoid granulations, or lymphatic

vessels. While healthy clearance mechanisms, working in harmony, avert the buildup of toxic

Aβ plaques and tau NFT, their impairment or dysfunction can lead to pathology8. The specifics

of in-vivo clearance mechanisms remain a topic of clinical debate, however, the kinetics enabling

proteins to amass into pathological aggregates can be carefully, and systematically, studied in vitro

and under varied conditions. The production of Aβ , at a high level, is mediated by a membrane

protein, the amyloid precursor protein (APP). APP is typically cleaved by α-secretase and the

resulting products do not aggregate. However, APP can also be cleaved by β -secretase and γ-

secretase, a process which results in soluble monomeric APP fragments of different sizes. The

most common variants are Aβ38, Aβ40, and Aβ42. While monomeric Aβ38 is not prone to

further aggregation, Aβ40 and Aβ42, containing additional amino acids at the C terminus, are the

main isoforms of interest in the study of AD pathology.

Protein aggregation pathways are, in general, complex and involve multiple steps9. In fact, it

has recently been shown10 that the aggregation properties of Aβ40, which is more abundant, dif-

fer from those of the more aggregate-prone Aβ42, even under the same conditions. A theoretical

framework of chemical kinetics and aggregation theory11–13 has been combined with careful, sys-

2



The role of clearance in aggregation kinetics

tematic in vitro experiments performed under differing conditions, such as varied concentration

or pH. This approach based on chemical kinetics has elucidated effective pathways and mecha-

nisms for nucleation, aggregation and fragmentation14, and produced a deep understanding of key

properties, underlying the formation of aggregates under ideal conditions, with the potential for

therapeutic intervention15,16.

Here, we extend this framework and develop a mathematical approach to describe the effects

of clearance and monomer production on the kinetics of aggregation. We apply the framework to

the study of Aβ . To accomplish this objective, we extend the current theory describing Aβ aggre-

gation in vitro, which has been validated against experiment, to include monomer production and

oligomer clearance terms. In particular, we study two different clearance mechanisms: one where

all aggregated species are cleared at the same rate (size-independent clearance); and one where

different aggregated species may be cleared at different speeds (size-dependent clearance). In the

former case we show the full system reduces to three equations amenable to a systematic analy-

sis. We identify a critical value of clearance above which the production of aggregates does not

take place. Our results offer further evidence in support of two main hypotheses, that clearance

mechanisms play a crucial role in neurodegenerative disease initiation and progression and that

therapies enhancing clearance above a prescribed, critical value may serve as a possible interven-

tion strategy. In particular, we will exhibit the existence of critical clearance values; such values

are consistent with the observation of disease onset when natural clearance mechanisms within the

brain have degraded through aging.

II. A MODEL OF PROTEIN AGGREGATION

Our model for protein aggregation-dynamics includes the key molecular steps of: heteroge-

neous primary nucleation; homogeneous primary nucleation; secondary nucleation; linear elonga-

tion; and clearance (c.f. Fig. 1). These mechanisms lead to a general class of mathematical models

that can describe a wide range of aggregating systems in vitro. In particular, by including het-

erogeneous primary nucleation terms, a source term for new nuclei, that can become independent

of monomer concentration, is present;17 we include this here in addition to the usual monomer-

dependent homogeneous primary nucleation. Thus, in such a model, the importance of interfaces

in the initiation of nucleation is sufficiently accounted for. In the model, each aggregate of a given

size is represented by a population. In general, each population, with aggregates of size i, will
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be represented by an indexed concentration. We use the special notation m(t) for the monomer

population i = 1, while all other aggregate concentrations are denoted by pi(t) for i ∈ {2,3, . . .}.

The master equations are then:

dm
dt

= γ−λ1m−nckhρ(m)−ncknmnc−2k+mP−n2k2σ(m)M+2koff P (1)

dpi

dt
=−λi pi +δi,nc(knmnc + khρ(m))+2k+m(pi−1− pi)+2koff(pi+1− pi)+δi,n2k2σ(m)M,

(2)

where we require i≥ nc > 1 and δi, j is Kronecker’s delta (δi, j = 1 if i = j and 0 otherwise) and

σ(m) =
mn2KM

KM +mn2
, ρ(m) =

mncKP

KP +mnc
, P =

∞

∑
i=nc

pi, M =
∞

∑
i=nc

ipi. (3)

Here, P and M are the first two moments of the population distribution. They represent the total

number and total mass concentrations of aggregates, respectively. The functions σ(m) and ρ(m)

account for the ability of both secondary and heterogeneous primary nucleation to saturate. As

fibrils can generally grow from both ends, the conventional definition of the rates is with respect to

the concentration of fibril ends, which is twice the number concentration of aggregates, giving rise

to the factors of 2, in (1) and (2), above. In these equations, the parameters represent the follow-

ing effects, sketched in Fig. 1: γ: (constant) monomer production such as by secretase mitigated

cleavage of APP, driving mass influx; λi: clearance of aggregates of size i via e.g. cerebrospinal-

fluid mediated, blood-brain barrier mediated, or cellular degradation processes; kh: heterogeneous

primary nucleation rate constant; kn: homogeneous primary nucleation of aggregates; nc: size of

the smallest stable fibril (the nucleus) formed by either process of primary nucleation (nc > 1);

k+: linear elongation transforming aggregate from size i to i+ 1; k2: secondary nucleation of

aggregates of size n2 ≥ nc; KM: saturation constant of the secondary nucleation; KP: saturation

constant of the heterogeneous primary nucleation; koff: depolymerization by loss of one monomer

from the fibril end. When fitting experimental data it is often the case that only one of heteroge-

neous primary nucleation or homogeneous primary nucleation is required to explain the data. We

include both here for completeness. Finally, a general note on the choice of model: the aim here

is to provide a tractable model with a focus on the kind of behavior that emerges when aggregate

removal processes are active. We have therefore chosen a level of coarse-graining that is suffi-

cient to describe the majority of currently available experimental data. In particular, we use one

4



The role of clearance in aggregation kinetics

rate constant per process to describe elongation, de-polymerisation and nucleation. In reality, an

aggregated system is likely to be heterogeneous and there may be slight variations of the rate con-

stants, for example with fibril length18. Nevertheless, our model of aggregation in vitro captures

the key physics as evidenced by the its successful application to modeling numerous experimen-

tal systems well to within the measurement accuracy14,19 However, one should keep in mind that

the rate constants extracted from experimental analysis necessarily constitute ensemble-averaged

quantities, into which such small heterogeneities are subsumed.

FIG. 1: Mechanisms included in the master equations (1)-(2). We consider multiple effects for

the formation of aggregates into our systems with rates constants ki. The constants corresponding

to transfer of mass to and from the external system are represented by Greek letters (γ and λi).

The aggregation model (1)-(2), and its many variations, have been used to describe the results

of many in vitro experiments10,15,20. The analyses of multiple experimental datasets have shown

that the exponents nc = n2 = 2 for Aβ40 and for Aβ42, and that these processes show little

sign of saturation at low µM concentrations of protein when aggregating in phosphate-buffered
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saline (PBS) solution10,20. In contrast, for Aβ42 aggregating in HEPES buffer, primary nucleation

appears to be fully saturated and its rate shows no monomer dependence15. While n2 = 2 still holds

under those conditions, primary nucleation appears to proceed purely via heterogeneous primary

nucleation that is fully saturated, i.e. KP� m. In this limit khρ(m)→ khKP. For the discussions

and derivations in this manuscript we take the view of Aβ experiments10,20 so that nc = n2 =

2 and that heterogeneous primary nucleation, if it is present, is fully saturated i.e. khρ(m)→

khKP = k0, where we have defined k0, the rate of heterogeneous primary nucleation in the fully

saturated regime, for simplicity. Adaptation to other aggregating systems is straightforward and

all numerical results are qualitatively similar.

The primary purpose of this manuscript is to describe the qualitative impact of clearance mech-

anisms on the dynamics of protein aggregation. Because primary nucleation is generally not a

dominant process in the aggregation of disease associated proteins, the particular choice of nu-

cleation mechanism, such as heterogeneous versus homogeneous, does not affect the results. Ex-

amples of fitted Aβ model parameters are listed in Table I. PBS and HEPES refer to the buffers

used in the corresponding experiments. In these experiments, aggregation proceeds much faster

than depolymerization and koff = 0 is found to be a good fit to describe the dynamics. However,

from a theoretical point of view, we note that koff = 0 violates detailed balance and implies that

there is no non-vanishing stationary distribution in the absence of clearance and production terms.

Here, we will first follow experimental data and take koff = 0. Then, we will show that the addi-

tion of this small term does not change our results. Therefore, we will use the fitted experimental

parameters given in Table I. Clearance and production have not been investigated experimentally,

thus we leave them as free parameters. Notably, a primary contribution of the current work is

in determining particular values of these parameters when a qualitative change of the dynamics

occurs.

One key fact to consider before we embark on solving the dynamics is what boundary condi-

tions, in the form of protein homeostasis, we impose on the system. In the aggregation of purified

protein in vitro there are no sources or sinks for protein mass so the total mass of protein is con-

served. In the present case, a living system, both sources and sinks exist and different possibilities

arise. Generally, organisms will strive to maintain stable conditions and balance these sources and

sinks. We consider two extreme cases and show that our conclusions hold in both regimes and are

thus likely to apply in a range of biological systems. First, we will consider a system in which

the monomer production rate is constant over time (see III and IV). Second, we will consider a
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system where instead the monomer concentration is constant in time, so the monomer production

rate may vary (see V). Most biological systems are likely to lie somewhere between these two

extremes.

TABLE I: Typical best-fit parameters for the Aβ model, PBS and HEPES refer to the buffer used in the

experiments.

param. mechanism Aβ40 PBS20 Aβ42 PBS10 Aβ42 HEPES21 units

k0 heterogeneous nucleation 0 0 1.6×10−11 M h−1

kn homogeneous nucleation 5.8×10−3 1.2×10−1 0 M1−nch−1

nc homogeneous nucleation 2 2 2 unitless

k2 secondary nucleation 1.1×107 3.6×107 2.1×1014 M−2h−1

n2 secondary nucleation 2 2 2 unitless

KM saturation 3.6×10−11 3.6×10−12 2.3×10−17 M2

k+ elongation 1.1×109 1.1×1010 1×1010 M−1h−1

koff depolymerization 0 0 0 h−1

m0 Initial monomer c. 3×10−6 3×10−6 3×10−6 M

λcrit critical clearance 0.72 2.45 17.0 h−1

λ̃crit perfect bifurcation 0.72 2.47 17.0 h−1

α nonlinear coefficient 312,042 647,390 2.83726×106 M−1 h−1

τ1 exponential time scale 1.4 0.4 0.06 h

τ2 amplification time scale 12.6 2.5 0.4 h

λ
(1)
crit critical clearance ν = 1 7.8×10−5 9.2×10−5 4.8×10−3 h−1

λ
(0)
crit critical clearance ν = 0 0.72 2.47 17.0 h−1

λ
(−1)
crit critical clearance ν =−1 13.2×103 13.2×104 12×104 h−1
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III. CONSTANT MONOMER PRODUCTION RATE WITH SIZE-INDEPENDENT

CLEARANCE

In the case of size-independent clearance, we have λi = λ > 0 for all i. Our main question

is to understand the role of the clearance term. In particular, we will establish that if clearance

is sufficiently large, the formation of aggregates does not take place. We will then estimate this

critical clearance value, denoted λcrit, under the different experimental conditions considered.

A. Moment analysis

In the size-independent case, a previously-established11 but remarkable feature of the system

(1)-(2) is that a closed system of equations for the first two moments P and M and the monomer

concentration m can be obtained as:

dP
dt

= −λP+ k0 + knm2 + k2 σ(m)M, (4)

dM
dt

= −λM+2k0 +2(k+m− koff)P+2knm2 +2k2 σ(m)M, (5)

dm
dt

= γ−λm − 2k0−2(k+m− koff)P−2knm2−2k2 σ(m)M, (6)

where σ(m) = m2KM/(KM +m2) and we have chosen n2 = 2. The total mass of the system Mtot =

M+m satisfies, by summing (5)-(6), the evolution equation

dMtot

dt
=−λMtot + γ. (7)

This equation implies that the total mass in the system evolves to a stable steady state Mtot = γ/λ

with a typical time-scale 1/λ . To simplify the analysis, we will further assume that, initially, the

system has already reached this state before the dynamics of aggregation starts. To do so, we chose

the following unseeded initial conditions

M(0) = P(0) = 0, m(0) = m0 = γ/λ , (8)

and thus the total mass of the system is conserved for all time Mtot(t) = m0. The term ‘unseeded’

refers to the fact that, initially, there is no aggregated protein in the system (hence, no seed). This

condition assumes a lack of aggregated species in a healthy in vivo state. Indeed, it is observed

that soluble Aβ monomers are found in healthy individuals of all ages while aggregates larger than
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monomers are generally correlated with Alzheimer’s disease progression22. An extra advantage

of this approach is that it fixes the constant γ = m0λ .

Before we study the system in full generality, it is useful to consider the overall dynamics of

the system for a typical set of parameters for the aggregation of Aβ40 given in the first column

of Table 1. We will use this set of parameters for all our examples. The other data sets are

qualitatively equivalent and the values of various derived quantities are given in Table 1. As

shown in Fig. 2, the typical behavior of the system from an unseeded initial condition is for the

aggregate mass to increase up to a finite value M∞, while the monomer concentration decreases to

m∞, in a typical sigmoid-like behavior. We observe that, in the absence of clearance, the monomer

FIG. 2: Typical dynamics of the monomer (blue) and aggregate (red) concentration (in units of

micromolar) for different values of the clearance (λ in h−1), evaluated using the parameters for

Aβ40 from Table 1 and λ = 0 (large dashed), λ = 0.2 (solid) and λ = 1 (small dashed).

Asymptotic values for λ = 0.2 are shown with dotted lines.

population is completely converted to aggregates (λ = 0, dashed curves in Fig. 2). Conversely,

for large clearance almost no conversion takes place (λ = 1, dotted curves in Fig. 2). Some of the

monomers are converted (solid curves for λ = 0.2 in Fig. 2) for the case of moderate clearance.

Of particular interest for our discussion is the change of behavior at some critical value λcrit of the

clearance λ where aggregation becomes negligible.
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To derive a value for λcrit, we determine the dependence of the asymptotic states m∞ on λ .

Considering steady state m=m∞, P= P∞ and M =M∞ in (4)-(5) one expresses the latter two states

as a function of the parameters, λ and m∞. These relations are substituted into (6) to produce the

implicit equation H(m∞,λ ) = 0 with

H(m∞,λ ) = 2k+knm5
∞ − m4

∞ (2k+k2KM − 2λkn + 2knkoff)

− m3
∞

(
−λ

2 − 2k+k2m0KM + 2k2λKM − 2k+knKM − 2k2koffKM − 2k+k0
)

−m2
∞

(
−2k0λ−2k2λm0KM+2k2m0koffKM−2λknKM+2knkoffKM+2k0koff+λ

2m0
)

+ m∞

(
λ

2KM + 2k+k0KM
)
+ 2λk0KM − 2k0koffKM − λ

2m0KM

(9)

For instance, for the same parameter values as in Fig. 2, we show in Fig. 3 the values of m∞

as a function of λ . We observe a sharp transition for a critical value of the clearance parameter

λ . There are three necessary conditions for λcrit: first that λcrit is non-negative; second that m∞ is

maximal; and third that the value of m∞ coincides with m0. The last two conditions can be realized

by computing the derivative of the expression H(λ ,m∞) = 0 evaluated at m = m∞. Therefore, λcrit

is given by the positive root of L(λ ) = 0 where

L(λ ) =
∂H

∂m∞

∣∣∣∣
m∞=m0

= −4koffKMm∞ (k2m0 + kn) + 6k+knKMm2
∞ + 6k2koffKMm2

∞ − 8k+k2KMm3
∞

+ 6k+k2m0KMm2
∞ + 2k+k0KM − 8knkoffm3

∞ + 10k+knm4
∞ − 4k0koffm∞ + 6k+k0m2

∞

+ λ
(
4KMm∞ (k2m0 + kn)− 6k2KMm2

∞ + 8knm3
∞ + 4k0m∞

)
+ λ

2 (KM + 3m2
∞ − 2m0m∞

)
(10)

For Aβ -40 the critical clearance, as shown in Fig. 3, is λcrit = 0.72 h−1. Critical clearance rates

for the other experimental data sets are given in Table I for comparison.

B. Bifurcation and normal form analysis

In a neighborhood of λcrit, m∞, as a function of λ , undergoes a sharp transition. This transition

is not a bifurcation in the strict sense but, in the parlance of dynamical systems, it can be described

as an imperfect transcritical bifurcation when heterogeneous nucleation and homogeneous nucle-

ation terms can be understood as an imperfection and are sufficiently small with respect to the

elongation. More specifically, when k0/(k+m2
0)� 1 and kn/k+ � 1 the system is well approx-

imated by k0 = 0 and kn = 0. In this limiting case, the fixed point (P,M,m) = (0,0,m0) for the
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system (4)-(6) undergoes a (perfect) transcritical bifurcation at λ̃crit ≈ λcrit that can be obtained by

locally expanding m∞ in λ to find

FIG. 3: Perfect (red) and imperfect (blue) transcritical bifurcation, shown for the parameters for

Aβ40. Unstable (dashed) and stable (solid) equilibrium solutions. For clearance faster than the

critical value, λ > λcrit, essentially all protein is present in monomeric form, whereas for lower

clearance rates, λ < λcrit, a significant fraction of the total protein is aggregated. In this case, we

have for the perfect bifurcation λ̃crit ≈ 0.72 and m̃∞ ≈ 0.7+3.2λ̃ . Dashed curves indicate

unstable equilibria solutions and solid curves denote stable equilibria.

m̃∞ = m0 +
1
α
(λ − λ̃crit)+O

(
(λ − λ̃crit)

2
)
, (11)

where λ̃crit is specified by the formula

λ̃crit =
m0

(√
k2KM

(
m0 (k2m0 +2k+)KM−2koffKM +2m2

0 (k+m0− koff)
)
+ k2m0KM

)
KM +m2

0
, (12)

and α is defined by the expression

α =
m0

(
k2KM

(
2λ̃crit +3k+m0−2koff

)
− λ̃ 2

crit

)
λ̃crit

(
KM +m2

0
)
− k2m2

0KM
. (13)

When the clearance is close to the critical value the linear approximation to the perfect bifurcation

is a reasonable approximation for the imperfect bifurcation as can be appreciated in Fig. 3 where

λ̃crit ≈ 0.72 and m̃∞ ≈ 0.7 + 3.2λ̃ . By analogy with epidemiology we define a dimensionless

neurodegenerative reproduction number

R0 =
λ̃crit

λ
, (14)
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such that for R0 < 1 the aggregate level is negligible and grows to a finite value for R0 > 1.

The existence of a critical clearance rate shows that in the healthy regime, i.e. for sufficiently

large values of clearance, the system (1)-(2) with size-independent clearance can support a small,

endemic, population of aggregates. The formation of a significant aggregate population, in this

case, occurs only when the system’s clearance rate, λ , drops sufficiently below the critical clear-

ance rate λcrit. We can explore the dynamics close to the bifurcation by considering the normal

form of the system for the perfect system ((4)-(6) with k0 = kn = 0) near λ = λ̃crit. The general

method to obtain the normal form of a transcritical bifurcation for an arbitrary smooth vector field

is given in Appendix A. Applying these ideas, we can approximate the full system by

Ṗ =−(λ − λ̃crit)P+
α

vP
P2, (15)

Ṁ =−(λ − λ̃crit)M−αM2, (16)

ṁ =−(λ −λcrit)(m−m0)+α(m−m0)
2, (17)

where α is given by (13) and

vP =− λ̃crit

2
(

k+m0− koff + λ̃crit

) . (18)

Fig. 4 shows a comparison of the total aggregate mass evolution, versus time, obtained for the

imperfect unseeded system, the perfect seeded system, and the normal form. As expected, the

agreement is excellent as long as the system is close enough to the bifurcation point.

C. Size distribution

Next, we consider the effect of clearance on size distribution. First, we take koff = 0, which

the data suggest is a good approximation to the system unless m∞ approaches 0. Since, we are

interested in the asymptotic size distribution, we can assume that m = m∞ in Eqs. (1–2), in which

case, we have simply that

pi =
2k+m∞

λ +2k+m∞

pi−1 = δ0 pi−1, ⇒ pi = δ
i−2
0 p2, i > 2. (19)

Using the definition of M = ∑i>1 ipi, we obtain:

p2 = M∞

(1−δ0)
2

2−δ
, ⇒ pi = M∞

δ
i−2
0 (1−δ0)

2

2−δ0
i > 2. (20)
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FIG. 4: Aggregate mass concentration M(t) as a function of time for the unseeded (black

dashed) system (4)-(6), for the perfect seeded system (neglecting homogeneous and

heterogeneous primary nucleation) (red) and the normal form approximation of M(t) (dotted

blue). The initial conditions were selected so that the initial growth rates matched the initial

growth rate of the unseeded system. The red curve was generated with unseeded initial

conditions; the black dashed curve was computed using seeded compatible initial conditions

given by (P(0),M(0),m(0)) = (S,S/2,m0−S) with S = 2.4×10−13; and, the blue dashed curve

was generated by solving (16) with M(0) = S/2. Parameters are for the Aβ40 values of Table I

and λ = 1/2.

This analysis is not valid for λ → 0. In that case, the total mass of the system is systematically

transferred to larger and larger particles and in the long-time limit all finite aggregate concentra-

tions tend to vanish and the trivial distribution is pi = pi−1 = p2 = 0. However, in that limit, the

assumption koff = 0 is not justified anymore as even a small value of koff allows for a non-trivial

size distribution. Indeed, with koff 6= 0 , we have the following recurrence relation for ci

0 =−λi pi +2k+m∞(pi−1− pi)+2koff(pi+1− pi), i > 2, (21)

with a single bounded solution of the form

pi = δ
i−2 p2, i > 2. (22)

with

δ =
k+m∞

2koff
+

1
2
+

λ

4koff
− 1

2

√
(2koff +2k+m∞ +λ )2

4k2
off

− 4k+m∞

koff
. (23)
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FIG. 5: The effect of the parameter koff on the size distribution can be appreciated by computing

δ/δ0 as a function of koff. We see that for koff < m∞k+, the role of koff is negligible. The dashed

curves are given by the asymptotic approximation (24). Parameters are for the Aβ40 values of

Table I and λ = 1/2.

An asymptotic expression of δ for small and large values of koff gives:

δ =

 δ0(1−
2λkoff

(2m∞k++λ )2 )+O
(
k2

off
)
, for koff < m∞k+,

δ0
2m∞k++λ

2koff
+O

(
k−2

off

)
, for koff > m∞k+.

(24)

We see that unless λ = 0, the role of koff, when sufficiently small, is negligible. We conclude that

clearance (or depolymerization) is sufficient to obtain a non-degenerate size distribution.

IV. CONSTANT MONOMER PRODUCTION RATE WITH SIZE-DEPENDENT

CLEARANCE

Next, we generalise the above treatment and allow the clearance rate of an aggregate to depend

on its size. In this case, there is no simple, closed equation for the moments, as in Sec. III, and

we must study the full system. Here, we make a key assumption about the dependence of the

clearance on the aggregate size. We assume that there exists a critical aggregate size, N, such that

all aggregates of size N, or greater, are too large to be cleared. Explicitly, this assumption implies
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that λi = 0, ∀i≥ N. We also assume that koff = 0 and nc = n2 = 2 then (1)-(2) can be written

dM̃
dt

=−
N−1

∑
i=2

λiipi +2k0 +2knm2 +2k+mP+2k2 σ(m)M̃, (25)

dm
dt

= λ1(m0−m)−2k0−2knm2−2k+mP−2k2σ(m)M̃, (26)

dp2

dt
=−λ2 p2 + k0 + knm2−2k+mp2 + k2σ(m)M̃, (27)

dpi

dt
=−λi pi +2k+m(pi−1− pi). i > 2, (28)

where P = ∑
∞
i=2 pi and M̃ = ∑

∞
i=2 ipi. The unseeded initial conditions for this system are

m(0) = m0, pi(0) = 0 for 2≤ i, M̃(0) = 0. (29)

In general, under the assumption of a constant monomer production rate, there is no guarantee of

mass conservation. For instance, if λi ≤ λ1 ∀i > 2 and there is at least one i≥ 2 such that λi < λ1,

then the overall mass of proteins will increase in time as shown in Appendix B.

A. A finite super-particle system

To study the dynamics of (25)-(28), we introduce a finite system with equivalent dynamics.

Here, we follow23 (see also24) and introduce a super-particle, denoted qN , which represents the

concentration of all aggregates of size greater than or equal to N:

qN =
∞

∑
i=N

pi, (30)

Since λi = 0 for all i≥ N; we can take the limit of the partial sums of (28) to obtain

dqN

dt
=

∞

∑
i=N

2k+m(pi−1− pi) = lim
j→∞

j

∑
i=N

2k+m(pi−1− pi) = 2k+mpN−1−2k+ lim
j→∞

mp j. (31)

Since the monomer concentration m, remains bounded, for any fixed time, the last term of (31)

tends to zero as j→ ∞ and the super particle concentration satisfies the equation

dqN

dt
= 2k+mpN−1. (32)

We will distinguish the finite system with a super-particle from the infinite system (25)-(28) by

introducing the notation qi = pi for i < N. Defining Q = ∑
N
i=2 qi, and using (32), the corresponding
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super-particle system is defined by

dM
dt

=−
N−1

∑
i=2

λiiqi +2k0 +2knm2 +2k+mQ+2k2 σ(m)M, (33)

dm
dt

= λ1(m0−m)−2k0−2knm2−2k+mQ−2k2σ(m)M, (34)

dq2

dt
=−λ2 q2 + k0 + knm2−2k+mq2 + k2σ(m)M, (35)

dqi

dt
=−λi qi +2k+m(qi−1−qi), i = 2, . . . ,N−1, (36)

dqN

dt
= 2k+mqN−1. (37)

The unseeded conditions for (33)-(37) are

m(0) = m0, qi(0) = 0, for 2≤ i≤ N, M(0) = 0. (38)

For unseeded initial conditions, the dynamics of the finite system is equivalent to the infinite one

in the following sense: First note that Q̇ = Ṗ; this follows directly from the definition of Q, P and

(30). Thus, Q and P will agree, for all time. In turn, (25) and (33) coincide when the initial data

(29) and (38), respectively, are used; thus M̃(t) = M(t) in this case. Finally, by definition, pi = qi

for 2≤ i < N and (30)-(31) has already established that solving (37) produces qN(t) = ∑
∞
i=N pi(t)

provided the initial conditions agree. The above establishes an important fact that we rely on for

the rest of the section; solving (25)-(28) with initial conditions (29) and solving (33)-(37) with

initial conditions (38) yields

Q(t) = P(t), M(t) = M̃(t), (39)

pi(t) = qi(t) for 2≤ i < N and qN(t) =
∞

∑
i=1

pi(t).

We remark, however, that M(t), defined as the solution of (33), is the total aggregate mass of both

(25)-(28) and (33)-(37), due to (39), for the unseeded initial conditions (38); however, M(t) cannot

be constructed a posteriori from the knowledge of qi(t) where i = 2,3, . . . ,N in the same manner

that M̃(t) can be retrieved from the knowledge of the pi(t). That is, we have M(t) 6= ∑
N
i=2 iqi(t).

Indeed, in the closure process of reducing the full system to a finite one, we lost information

regarding the mass of individual particles making up the superparticle. Nevertheless, both the

evolution of aggregate mass of the full system, as well as the size distribution (up to size N) can

be obtained by studying the finite system (33)-(37).
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B. Time evolution of aggregate mass

Given a constant monomer production rate, systems such as (25)-(28) or (33)-(37), with size-

dependent clearances, do not conserve mass in general (see Appendix B) and the aggregate mass

may increase with time. We study in more details the particular choice

λi = λ/i, for i = 1,2, . . . ,N−1, (40)

which expresses the modeling assumption that aggregates become increasingly difficult to clear

as their size increases. An example of the dynamics of the system (33)-(37) is shown in Fig. 6.

We observe two different behaviors. Initially, up to a time τ2, the system mostly behaves like

the conservative no-clearance model (λ = 0) even for large values of clearance. This behavior is

markedly different than the one observed in Fig. 2. Second, for larger times, t > τ2, the monomer

mass always decreases and the aggregate mass always increases as predicted from our general

analysis. We observe that larger clearance leads to faster aggregate mass creation. This is due to

the fact that we balance monomer clearance by monomer production, so an increase in clearance

automatically implies an increase in production. The question is then to understand the transition

between the two regimes as well as the small and large time behaviors of all species. The situation

where the clearance rate is higher relative to the production rate, is shown in Fig. 7. Biologically,

this corresponds for example to two individuals in which production proceeds at the same rate but

clearance is more efficient in one than in the other. While there is no qualitative change in behavior,

i.e. the total concentration is still unbounded, both the speed at which aggregates accumulate and

the steady state monomer concentration are lower in the system with a higher clearance rate. Thus,

in a system with constant (i.e. time-invariant) monomer production rate and a clearance rate that

decreases with size, whether increasing clearance will be beneficial or not will depend on whether

it causes a simultaneous increase in the rate of monomer production or not. In either case the

aggregate mass is not bounded and only its rate of increase can be affected by changes in the

clearance rate.

C. Long-time dynamics

On long time scales, i.e. long enough so that the monomer concentration begins to decrease,

the monomer production, aggregation, and nucleation processes result in an increase to subsequent

aggregated species and, therefore, to the overall aggregate mass M. The asymptotic behavior of

17



The role of clearance in aggregation kinetics

FIG. 6: Aggregate mass dynamics for the size-dependent clearance λi = λ/i; the monomer

concentration (m(t), blue lines) and total aggregate mass (M(t), red lines) are shown in (A) for

clearance rates (in h−1): λ = 0 (dashed), λ = 0.2 (solid), and λ = 1 (dotted) and monomer

production rates (γ = m0λ ) and in (B) for clearance rates (in h−1): λ = 0.2 (solid) and λ = 1

(dotted) and a monomer production rate that’s the same for both curves (γ = 0.2m0). Parameters

are for the Aβ40 values of Table I, λ = 1/2 and N = 20.

the system aggregate mass M is observed to depend entirely on the production rate, γ = λm0, as

M(t) ∼
t→∞

γ t. (41)

This behavior is illustrated in a log-plot in Fig. 8; the characteristic time scale, τ2, indicates the

time at which the monomer mass begins to decay. Once the asymptotic behavior of M has been

established, the equations can be balanced asymptotically by the following dynamics:

m∼ αmt−2/3, qN ∼ αNt2/3, qi ∼ αit1/3, i = 1, . . . ,N−1, (42)

where the symbol “∼” is understood as the long-time asymptotic behavior and the αi are constants.

This asymptotic behavior shows that the super-particle dominates the long-term dynamics; thus

P ∼ qN for large times. Physically, in the long-time limit, the monomer population, renewed by

the continuous production, is quickly promoted to the super-particle through linear aggregation.
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FIG. 7: Aggregate mass dynamics for the size-dependent clearance λi = λ/i for various

clearance efficiencies, λ . The monomer concentration (m(t), blue dashed lines) and total

aggregate mass (M(t), red dashed lines) are shown for various values of λ under a constant

production, γ = 0.6, assumption (whereby γ/λ1 = γ/λ = m(0)).

D. Early-time dynamics

We observe in Fig. 6 that the early-time behavior is not greatly perturbed by altering the clear-

ance rate. Hence, we can obtain characteristic time scales for the amplification of the aggregate

mass by considering the limit λ → 0+. In this case, the early evolution of the aggregate mass

is governed by the dynamics of (4)-(6) with λ = 0. There are two characteristic time scales of

importance. First, the time scale τ1 associated with the exponential growth of the aggregate mass

in early time via the inverse of the positive linear eigenvalue, µ = 1/τ1, corresponding to the lin-

earization of (4)-(6) around the healthy state m = m0, M = P = 0. The linear eigenvalue is given

by the positive root of

µ
2 +µ

(
4m0kn−

2k2m2
0KM

KM +m2
0

)
−

2k+k2m3
0KM

KM +m2
0

+4k+m2
0kn = 0. (43)
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FIG. 8: Long time (in h) concentration (in moles) dynamics of (33)-(37) (λi = λ/i, in h−1) with

N = 20 and Aβ40 parameters (Table I, third column); curves for λ = 0.2 (solid) with asymptotic

slopes (dotted). Time runs from 0 to 5000 hours. Parameters are for the Aβ40 values of Table I

and N = 20.

Second, there is a time scale τ2 where both nucleation and amplification are balanced. It is given

by the time for the linearized solution for M(t) to reach m0. Hence τ2 is the solution of

m2
0 =

(
m2

0kn + k0
)(

KM +m2
0
)

2knKM +2m2
0kn− k2m0KM

(
1− eτ2/τ1

2

)
. (44)

For example, for the first parameter set (Aβ40) used for the figures, these times are τ1 ≈ 1.4 h and

τ2 ≈ 12.6 h. The value of τ2 is a rudimentary estimate for the time of amplification; it is a lower

bound for the typical time scale of growth (see Fig. 6). Nevertheless, in Fig. 8, we see that τ2 can

indeed act as an indicator for the onset of decay for the monomer mass. A more refined estimate

can be obtained by using the approximate solution for the full dynamics given in14.

V. THE CASE OF A CONSTANT FREE MONOMER CONCENTRATION

In the previous two sections we investigated a system in which the monomer production rate

was constant, i.e. invariant with time. The other biologically reasonable assumption is that the

monomer concentration instead remains at a constant level m0. In this case, the system adjusts
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the monomer production rate to compensate for any loss of monomer, through degradation but

also through aggregation. Experimental observations for example of the concentration of PrP, the

main protein that aggregates in prion disease, in mice with prion disease support such a constant

monomer25. We assume that, regardless of other parameters, (1) is instead specified by

dm
dt

= 0, (45)

so that, with unseeded initial conditions, we have m(t) = m0 for all time. Assuming again no

depolymerization, no fragmentation, and dimer nucleation, the master equations now read

dp2

dt
=−λ2 p2 + k0 + knm2

0−2k+m0 p2 + k2σ0M, (46)

dpi

dt
=−λi pi +2k+m0(pi−1− pi), i > 2, (47)

where σ0 = σ(m0) and M = ∑
∞
i=2 ipi is the total aggregate mass. This is an infinite system of

linear ordinary differential equations. For this system, we consider three types of clearance; the

size-independent case in addition to two different size-dependent paradigms. All three clearance

relations can be summarily presented by a power-law of the form

λi = λ iν . (48)

When ν = 0 we recover the size-independent case; when ν = −1 we recover the size-dependent

diminishing clearance formulation used in Sec. IV; and, finally, the case of ν = 1 corresponds to

improved clearance, with increasing size, which could arise due to, for instance, antibody binding.

Depending on the two parameters λ and ν , the solution to this system may have a steady state or

increase indefinitely. The question is then to identify the critical values at which this transition

happens.

A. A constant free monomer population with size-independent clearance

We start with the simple case of size-independent clearance ν = 0; this is the analogue to

Sec. III for a constant free monomer assumption (c.f. (45)) The moments (c.f. Sec III) are specified

by a simple pair of linear equations given by

dP
dt

= −λP+ k0 + knm2
0 + k2 σ0M, (49)

dM
dt

= −λM+2k0 +2k+m0P+2knm2
0 +2k2 σ0M, (50)
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which can be written as

q̇ = Aq+b, (51)

where q = (P,M)T, b = (k0 + knm2
0,2k0 +2knm2

0)
T and

A =

 −λ a

b 2a−λ

=

 −λ k2σ0

2k+m0 2k2σ0−λ

 . (52)

The constant solution sole steady state for this system is q∞ =−A−1b; q∞ is positive and finite if

λ > a+
√

a2 +ab = k2σ0 +
√

k2
2σ2

0 +2k2σ0k+m0 = λ
(0)
crit . (53)

This condition naturally provides a value for the critical clearance. Specifically, the largest linear

eigenvalue for the system is κ = λ
(0)
crit −λ ; solutions converge to q∞ exponentially in time (as eκt)

for λ > λ
(0)
crit and grow unbounded for λ ≤ λ

(0)
crit , see Fig. 9.

The values given in Table 1 for the different parameters show that this estimate is indistin-

guishable from the case studied in Section III, which is explained by the fact that at the bifurcation

point, the monomer population is constant in both cases.

B. A constant free monomer population with size-dependent clearance

We now turn our attention to the general case where the clearance terms are no longer size-

independent. Then, the master equations do not yield a closed system for the moments. Never-

theless, due to the simplicity introduced by m(t) = m0 being constant, we can find conditions for

the existence of a fixed-point solution, (p∗2, p∗3, . . .) to (46)-(47). If such a steady state p∗i for i > 2,

exists, it must satisfy the recurrence relation

p∗i = δi p∗i−1, δi =
b

b+λi
=

2k+m0

2k+m0 +λi
. (54)

we note that each of the recursion coefficients, δi, is now dependent on i via λi. Define a sequence

of real numbers, indexed by i, as

∆i =
i

∏
j=3

δ j, i > 2. (55)

We define ∆2 = 1 and the ith steady state is expressible, for all i≥ 2, through its recurrence relation

as

p∗i = ∆i p∗2, i≥ 2. (56)
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FIG. 9: The accumulation of aggregate mass in the case of a constant monomer concentration

and a constant clearance rate. To illustrate the stability of this system to introduction of

aggregates, the curves are shown for a reaction with 10% seed, i.e. M(0) = 0.1m0 and

P(0) = M(0)/1000. The same qualitative behaviour emerges also in the absence of seeds, but

differences appear over longer time-scales. Curves are shown for the system without clearance

(large dashed) and for values of the clearance rate just above (small dashed) and just below

(solid) its critical value. Parameters are for the Aβ40 values of Table I.

Defining

∆ =
∞

∑
j=3

∆ j, (57)

the steady state for the total aggregate mass solution M∗ is then given by

M∗ =
∞

∑
i=2

i∆i p∗2 = ∆p∗2, (58)

and an application of (46), at steady state, gives the value of p∗2 as

p∗2 =
k0 + knm2

0
λ2 +2k+m0− k2σ0∆

. (59)
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Therefore, for a fixed point to exist we need the three following conditions to be satisfied

C1: lim
i→∞

∆i = 0, (60)

C2: ∆ =
∞

∑
i=2

i∆i converges, (61)

C3: k2σ0∆−λ2−2k+m0 > 0. (62)

An analysis of the case ν = 0 recovers the previous condition and it can then be verified directly

that conditions C1-C3 are satisfied, as expected, for λ > λ
(0)
crit .

1. Enhanced clearance: ν = 1

For ν = 1, we have (see Appendix C), ∆(1) = 2+ b/λ and the steady population of dimers,

whenever it exists, is given by

p∗2 =
λ (k0− knm2

0)

2(k+m0 +λ )(λ − k2σ0)
. (63)

Hence, condition C3 leads to λ > λ
(1)
crit with

λ
(1)
crit = k2σ0. (64)

We note that the above implies that the critical clearance depends only on the secondary nucleation

process and, in particular, not the process of elongation (c.f. λ
(0)
crit in (53)).

2. Reduced clearance: ν =−1

For ν =−1, the situation is not as simple. The condition C1 is verified but C2 leads to λ > 2b

for which

∆
(−1) =

(λ +2b)
(

Γ

(
λ

b −2
)

Γ

(
λ

b +2
)
−Γ

(
λ

b

)2
)

2bΓ

(
λ

b

)2 , (65)

where Γ(·) is the usual Gamma function. Condition C3 is satisfied if λ > λ
(−1)
crit where λ

(−1)
crit is the

positive solution of

f (
λ

b
) = 1+

2k+m0

k2σ0
, with f (

λ

b
) =

Γ

(
λ

b −2
)

Γ

(
λ

b +2
)

Γ

(
λ

b

)2 . (66)
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This equation always has a solution as f : z ∈ [2,∞]→ f (z) is such that f ′(z) < 0, f (z)→z→2 ∞

and f (z)→z→∞ 1. For the parameters listed in Table 1, 2k+m0/k2σ0� 1, in which case, we can

approximate the function f (z) close to z = 2 by f (z)≈ 6/(z−2), which leads to the critical value

λ
(−1)
crit =

8k+m0(2k2σ0 + k+m0)

k2σ0 +2k+m0
(67)

This last relation can be further simplified by realizing that k+m0� k2σ0, which leads to

λ
(−1)
crit = 4k+m0. (68)

For the parameters given in Table 1, this last approximation of the critical clearance gives the

correct value (compared to (66)) to 6 digits. Note that, in contrast to the critical clearance rate

for enhanced clearance (c.f. (64)), (67) depends only on the elongation rate k+. In particular, in

a reduced clearance regime, a change in the rate of secondary nucleation has no effect on the

clearance rate required to keep the system stable. The general trend that can be observed from

Table 1 is that λ
(−1)
crit > λ

(0)
crit > λ

(1)
crit , as expected.

3. Further reduced clearance: ν =−2

Finally, for ν =−2, skipping computational details, we find that

lim
n→∞

∆
(−2)
n =

1
4

π

√
λ

b

((
λ

b

)2

+5
λ

b
+4

)
csch

(
π

√
λ

b

)
, (69)

which is positive for all finite positive value of λ . Hence, condition C1 is not satisfied and there

is no constant solution or critical value of the clearance that would limit unbounded growth of the

aggregate mass. We note that we have neglected the effect of fragmentation. For ν < 0, the effect

of fragmentation is the creation of smaller aggregates that increase the overall expansion of the

protein population but also boosts clearance. Indeed since smaller aggregates are more likely to

be cleared and we expect a reduction of the critical value of clearance as well as the possibility of

a finite value of clearance for ν = −2 or smaller as shown in Meisl26. Comparing the different

critical clearance values given in Table 1 for the three values of ν , it is clear that that the choice

of clearance law has a significant impact on the clearance values as they differ, from the smallest

to the largest, by 9 orders of magnitude. Hence, enhancing or inhibiting the clearance mechanism

may be extremely important to the overall increase of aggregate mass.
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VI. CONCLUSION

We have assessed the impacts of monomer production and aggregate clearance on the kinetics

of protein aggregation using a theoretical model, c.f. (1)-(2), based on previous work that has

been very successful in describing experimental data10,20,21. Our findings suggest that clearance,

regardless of the specific assumptions of the system, may fundamentally modulate aggregation

kinetics, see Table 2. We consider the two extreme regimes of constant monomer production

and constant monomer concentration, which are both biologically reasonable and mathematically

tractable. In most real biological systems the situation is likely to be somewhere between these

two extremes, with some feedback mechanisms adjusting the protein expression rate, but monomer

concentrations not staying completely constant either. Which regime is more representative of the

real system will also depend on the protein under consideration: For proteins that fulfil a functional

role, such as the tau protein, the situation of a constant monomer concentration may be a more

biologically relevant one, whereas for peptides that are essentially waste products, such as Aβ , the

assumption of a constant production rate may be closer to reality.

In the case of a size-independent clearance rate, we showed that aggregation is controlled, di-

rectly, by a critical clearance threshold, regardless of the assumptions about monomer production.

Clearance above this level provides for a robust environment which is, essentially, free of protein

aggregates; clearance below this level triggers and instability and a propensity towards aggregate

mass accumulation. When monomer production is constant, once aggregation is triggered, the

soluble monomer population is diminished as further aggregates form and the maximal level of

aggregate formation is, mediated by the clearance level.

We then generalised this treatment by considering the reasonable in vivo hypothesis that the

clearance can depend on the aggregate size i. First we explored this clearance paradigm using

a simple inverse proportionality law λi = λ/i, whose biological interpretation is that aggregates

become more difficult to clear as they increase in size. The resulting set of equations for this

type of clearance does not yield a finite system for the moments. Thus, a super-particle system,

with identical trajectories in the presence of unseeded initial conditions, has been advanced as

a means of study. In the presence of any aggregation effects, the system immediately begins

accumulating aggregates, even from unseeded initial conditions. Moreover, when the monomer

production rate is constant, mass is not conserved and the aggregate mass grows in time, without

bound. The clearance, however, determines the asymptotic rate of increase of the aggregate mass
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TABLE II: Summary of the behaviour and dependence of the critical rate on the system

parameters for the different regimes.

monomer size-dependence critical rate long time

constant production λi = λ equation 12 always bounded

λi = λ/i does not exist not bounded

constant concentration λi = λ equation 53 bounded if λ < λcrit

λi = λ/i equation 67 bounded if λ < λcrit

λi = iλ equation 64 bounded if λ < λcrit

λi = λ/i2 only for fragmenting system not bounded

as a function of time with M(t)∼ λm0t. Thus the implications of such a size-dependent clearance

are quite different than the size-independent case as aggregate accumulation can only be delayed,

not entirely prevented, even in an unseeded system. By contrast, when the monomer concentration

is constant, a critical rate also exists for clearance of the form λi = λ/i, although the dependence

of its value on the other parameters of the system differs from that of size-independent clearance.

Finally, we also considered the case when the clearance rate increases with aggregate size,

λi = iλ , as one might encounter when the process is mediated by antibodies and the clearance

rate of each aggregate size is dependent on the probability of at least one antibody recognising

the aggregate. A critical clearance rate can be determined, although again the dependence of

its value on the other parameters of the system differs from that of other clearance mechanisms.

Remarkably, these results therefore suggest that, depending on the specific size-dependence of

clearance, the processes of elongation and secondary nucleation contribute to the value of the

critical clearance to different degrees. In turn this implies that a more detailed understanding of

what clearance processes dominate is crucial in order to predict which aggregation process should

be targeted for inhibition in order to reduce the critical clearance rate.

Overall, the role of clearance in aggregation kinetics is highly non-trivial. However, we show

that clearance may play an important role in the aggregation kinetics of Amyloid-β , determining

whether the system is stable or enters a run-away aggregation state. Our work provides the the-

oretical and mathematical foundations for the study of clearance of protein aggregates in living

systems. We envision that the extension of this approach and its application to the analysis of

experimental data will help shed light on the complexities of protein aggregation in vivo and the
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factors that determine the resilience of a system towards aggregation.
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Appendix A: Normal form for a transcritical bifurcation

Here we derive the normal form of a transcritical for a general dynamical system. We consider

an autonomous n-dimensional C 2 vector field of the form

ẋ = f(x,λ ), x ∈ Rn, (A1)

and assume that there exists a constant solution x0 such that f(x0,λ ) = 0 and a different equilib-

rium solution in a neighborhood of the critical value λ0. The conditions for the existence of a

transcritical bifurcation at the critical value λ0 are given by Sotomayor’s theorem27 and the re-

duced form the system takes close to that value can be captured by normal form theory28–31. Here,

we use multiple scale analysis to obtain a convenient form of the reduced equations. The result in

itself is not original but it may not be obvious to find a direct reference for either the statement or

the proof. Therefore, its inclusion may be helpful to the reader.

Using multiple-scale expansion, we expand the solution as

x = x0 + ε x1 + ε
2 x2 + . . . , λ = λ0 + ελ1. (A2)
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where x0 is constant and xi = xi(t,τ), i>1 and τ = εt is a slow time32. The expansion of the vector

field close to second order is

f = f0 (A3)

+ ε
[
Df0 ·x1 + fλ ,0λ1

]
(A4)

+ ε
2
[

Df0 ·x2 +
1
2

Hf0(x1,x1)+λ1Dfλ ,0 · · ·x1

]
(A5)

+ . . . , (A6)

where f0 = f(x0,λ0) indicates that f is evaluated at the point (x0,λ0) and

(Df)i j =
∂ fi

∂x j
, Df0 = Df(x0,λ0), (A7)

fλ =
∂ f
∂λ

, fλ ,0 = fλ (x0,λ0), (A8)

(Hf)i jk =
∂ 2 fi

∂x j∂xk
, Hf0 = Hf(x0,λ0), (A9)

(Dfλ )i j =
∂ 2 fi

∂x j∂λ
, Dfλ ,0 = Dfλ (x0,λ0). (A10)

If the system has a bifurcation of co-dimension one at λ0 then Df0 has rank n−1 and the following

vectors w and v given by

w ·Df0 = 0, Df0 ·v = 0, (A11)

define the left and right null spaces of Df0. The generic condition for a transcritical bifurcation to

occur is

w · fλ ,0 = 0. (A12)

To order O(ε), the differential equation reads

ẋ1 = Df0 ·x1 +λ1fλ ,0. (A13)

and we are interested in the solution

x1 = c(τ)v, (A14)

whose existence is guaranteed by the condition w · fλ ,0 = 0. To second order O(ε2), we have

ẋ2 + c′(τ)v = Df0 ·x2 + c2 1
2

Hf0(v,v)+ cλ1Dfλ ,0 ·v. (A15)

The Fredholm alternative gives a condition for the existence of a solution of this inhomogeneous

system:

w · (c′(τ)v) = w ·
(

c2 1
2

Hf0(v,v)+ cλ1Dfλ ,0 ·v
)
, (A16)
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which gives the equation

c′(τ) = βλ1c+αc2, (A17)

where

α =
1
2

1
v ·w

w ·Hf0(v,v) (A18)

β =
1

v ·w
w ·Dfλ ,0 ·v. (A19)

Taking into account that ελ1 = λ −λ0 and defining y = εc, the local solution is x = x0+yv where

ẏ = β (λ −λ0)y+αy2, (A20)

is the normal form of a transcritical bifurcation at λ = λ0. The local evolution of the variables for

which vi 6= 0 is given by

ẋi = β (λ −λ0)(xi− x0,i)+
α

vi
(xi− x0,i)

2. (A21)

Appendix B: Mass balance in the size-dependent clearance case

For unseeded initial conditions, we can show that the total mass of the system is not conserved.

Assume that, for all 2≤ i we have λi ≤ λ1 and assume that there exists some index j, with 2≤ j,

such that the inequality is strict (i.e. λ j < λ1). In this case we have

dM̃
dt

>−λ1

N−1

∑
i=2

ipi +2k0 +2knm2 +2k+mP+2k2 σ(m)M̃

>−λ1

∞

∑
i=2

ipi +2k0 +2knm2 +2k+mP+2k2 σ(m)M̃

=−λ1M̃+2k0 +2knm2 +2k+mP+2k2 σ(m)M̃. (B1)

Likewise for i = 2 we have a similar inequality

dp2

dt
=−λ2 p2 + k0 + knm2−2k+mp2 + k2σ(m)M̃,

>−λ1 p2 + k0 + knm2−2k+mp2 + k2σ(m)M̃, (B2)

and likewise for i> 2. The above observation shows that the system (25)-(28) grows faster than the

constant-clearance case system where λi = λ1 for every i ∈ {1,2, . . .}. We note that, as in Sec. III,
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the total system mass for (25)-(28) is M̃tot = M̃ +m; this follows from the common definition of

M̃, here, and M (see (3)). Adding (25) to (26) and using (B1) gives

dM̃tot

dt
> λ1

(
m0− M̃tot

)
. (B3)

In the presence of the unseeded initial conditions (29) we have that M̃tot(0) = m0 so that the left-

hand side of (B3) is strictly positive and mass conservation is violated at the outset. Now let Mλ1
tot

denote the total mass of the constant clearance case λi = λ1 for all i. We know that, in the presence

of unseeded initial conditions, a system with constant clearance conserves mass so that

dMλ1
tot

dt
= 0.

From (B1) and (B2), which holds analogously for i > 2 and for i = 1 we have equality, we can

conclude that
dM̃tot

dt
≥ dMλ1

tot
dt

= 0, (B4)

for unseeded initial conditions. Take together, (B3) implies that the system (25)-(28), with un-

seeded initial conditions, initially gains mass while (B4) shows that it can never lose mass. There-

fore, not only does (25)-(28) not conserve mass but it can never return to the state of initial un-

seeded mass.

Appendix C: Critical value for enhanced clearance

For ν = 1, the case (55) takes the form

∆i =
i

∏
m=3

(
b

b+mλ

)
=

(b+λ )(b+2λ )

b2

(
b
λ

)i((b+λ

λ

)
i

)−1

, i≥ 3, (C1)

where the subscript (x)i = x(x + 1)(x + 2) · · ·(x + i− 1) denotes ascending factorial (i.e. the

Pochhammer symbol). Defining ξ = bλ−1 then (C1) is satisfied provided

lim
i→∞

ξ i

(ξ +1)i
= 0. (C2)
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The function ξ i((ξ + 1)i)
−1 is monotonically decreasing in both ξ and i and condition C1 is

satisfied for any ξ > 0.Using ξ = bλ−1 the expression (C1) implies

∆
(1) = 2+

(λ +λξ )(2λ +λξ )

λ 2ξ 2

∞

∑
i=3

i
ξ i

(ξ +1)i

= 2+
(λ +λξ )(2λ +λξ )

λ 2ξ 2

(
ξ 3

2+3ξ +ξ 2

)
= 2+ξ .

Thus we have

∆
(1) = 2+

b
λ
, (3)

and it follows that p∗2, for ν = 1, is determined by the formula

p∗2 =
λ (k0− knm2

0)

2(k+m0 +λ )(λ − k2σ0)
. (4)
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