
2021 European Conference on Computing in Construction
Ixia, Rhodes, Greece

July 25-27, 2021

VOID-GROWING: A NOVEL SCAN-TO-BIM METHOD FOR MANHATTAN WORLD
BUILDINGS FROM POINT CLOUD

ABSTRACT
The automated generation of 3D models of buildings
from point clouds is still under heavy research. Cur-
rently, this Scan-to-BIM process requires high man-
ual effort, and the previous research focuses on simple
room structure under low occlusion level. We propose
a novel “void-growing” approach that extracts walls,
floors, and ceilings automatically. Different from the
majority of current approaches starting with detect-
ing surfaces of elements in point clouds, our approach
grows the void volume space inside a room first. Our
approach performs well in occluded environments. It
can reconstruct simple cuboid rooms as well as com-
plex rooms like L-shape and U-shape rooms. Differ-
ent ceiling heights caused by suspended ceilings can
also be represented properly.

INTRODUCTION
The popularity of Building Information Modeling
(BIM) is penetrating the construction sector. How-
ever, only few existing buildings have reliable BIM
models. There are mainly two reasons for this situ-
ation. The first one is that many facilities have no
pre-existing digital models from when they were con-
structed. The other one is that the digital design
model was not updated when the asset was modified
through the lifecycle of the asset. Existing captur-
ing technologies such as laser scanning allow us to
automate point cloud acquisition for geometric infor-
mation in the built environment. We can use the
collected point cloud to extract and reconstruct BIM
models for the components like columns, slabs, pipes,
and walls. These generated BIM models can repre-
sent the current condition of facilities.

However, this manual modeling process is quite
time-consuming and labour-intensive. Lu et al.
(2019) state that it takes several weeks to complete a
bridge model on average, while a complicated indus-
trial plant often means over 6 months of work for a
team of 10 or more modelers. Agapaki et al. (2018)
measure the man-hours required for modelling pipes,
and it takes around 5,200 labour hours to model a
facility with 53,834 pipes. That means the cost and
effort to generate 3D models manually exceed its ben-
efits. Therefore, researchers are trying to automate
the Scan-to-BIM process in order to reduce the hu-
man effort.

In this paper, we propose a novel method named
“void-growing” that can automatically reconstruct

structural elements of Manhattan-world buildings
from the point cloud and test and evaluate the per-
formance in our dataset of offices. The Manhattan-
world assumption states that there is a predominance
of three mutually orthogonal directions of building el-
ements Vanegas et al. (2010). This is a valid assump-
tion for most office buildings in Europe and the US.
In our proposed approach, as the name implies, in-
stead of detecting surfaces of elements first, we grow
the void space until getting the full void volume inside
a room.

RESEARCH BACKGROUND
In recent years, several research groups focused their
work on Scan-to-BIM approaches. However, this
topic is still solved only partially or for specific ge-
ometric elements or types of buildings.

Single room reconstruction
Some approaches are proposed to reconstruct individ-
ual rooms. Budroni & Boehm (2010) use plane sweep-
ing to segment horizontal surfaces and vertical struc-
tures. Positions of the floor, ceilings, and walls are
automatically detected. Then the 3D model can be
generated from the detected ground contours. Adan
& Huber (2011) use a histogram to determine surfaces
of ceilings and floors and then use Hough transform
to detect walls surfaces. Xiong et al. (2013) use the
region growing method to form different patches and
implement a stacked learning approach to classify the
detected patches.

Multiple rooms reconstruction
More approaches aim to reconstruct multiple rooms.
Sanchez & Zakhor (2012) propose an approach that
employs principle component analysis and Random
sample consensus (RANSAC) to detect large-scale ar-
chitectural structures, such as ceilings and floors, as
well as small-scale architectural structures like stair-
cases. In this approach, all points are classified into
doors, ceilings, walls, and remaining points. Monsz-
part et al. (2015) extract planar structures in a point
cloud that follows regularity constraints and then op-
timise the plane arrangement. Authors use this ap-
proach to extract planes in many scenes such as ur-
ban scenes, exterior, and interior of buildings. Oesau
et al. (2013) use horizontal slicing and volumetric-cell
labeling is proposed to reconstruct watertight surface
meshes. The binary labeling of the volumetric cells is
formulated as energy minimization and solved by the



graph-cut method.
Xiao & Furukawa (2014) propose a method

named “inverse constructive solid geometry (CSG)”
that detects planar surfaces and then fits the cuboid
primitives to the point cloud. Mura et al. (2014) use
an approach based on the diffusion process of space
partitioning. They extract patches using a simple re-
gion growing process based on normal deviation and
plane offset. Wang et al. (2017) use Principal Compo-
nent Analysis (PCA) to estimate the normal for each
point, RANSAC to fit linear primitives, and graph-
cut to identify walls. The proposed hierarchical clus-
tering method can identify each room without know-
ing the number of rooms. Murali et al. (2017) use the
RANSAC-based method to detect vertical and hori-
zontal planes. Then they create a wall graph and fit
cuboids to rooms. Ochmann et al. (2016) propose a
method that explicitly represents buildings as inter-
connected volumetric wall elements. They determine
an optimal room and wall layout by graph-cut based
multi-label energy minimization.

Anagnostopoulos et al. (2016) use contextual to
classify the points belonging to floors, walls and ceil-
ings reasoning. Macher et al. (2017) propose a semi-
automatic reconstruction approach for multi-storey
buildings. The automatic part of their work is to
segment the input data into sub-spaces (rooms) and
planes. After segmentation, the 3D geometry of the
elements is translated BIM file manually. Ochmann
et al. (2019) reconstruct volumetric models of walls
and slabs in multi-storey buildings. They detect
planes employing RANSAC first. Then the detected
planes are classified as horizontal slab surfaces and
vertical wall surfaces. A 3D plane arrangement is
constructed by intersecting all planes, yielding a cell
complex. To find an optimal label of all cells, an in-
teger linear programming approach in which binary
variables for each cell are interpreted as room, out-
side, and wall cell is used.

Reconstruction using prior knowledge
Some approaches use prior knowledge explicitly to
reconstruct walls and rooms. Stambler & Huber
(2014) propose the concept of enclosure reasoning
that premises rooms are cycles of walls enclosing free
interior space. They use the region growing method
to segment the point clouds and used simulated an-
nealing to optimize rooms and walls. Tran et al.
(2019) use the shape grammar approach to model
indoor environments. They generate 3D parametric
models by placing cuboids into point clouds, classi-
fying them into elements and spaces. The wall can-
didates are obtained from pairs of adjacent peaks in
the histogram of point coordinates.

Gaps in knowledge
In indoor environments, occlusion caused by furniture
occurs quite often. The majority of methods are sen-

sitive to the occlusion level. They first detect surfaces
of elements in point cloud utilizing Hough transform
(Adan & Huber 2011), RANSAC (Wang et al. 2017),
(Ochmann et al. 2019), (Murali et al. 2017), or re-
gion growing (Xiong et al. 2013), (Mura et al. 2014),
(Stambler & Huber 2014). When occlusions occur in
the environment, the performance of these methods
declines significantly, especially when there are com-
plex rooms (like L-shape rooms and U-shape rooms)
in the point cloud. If starting from detecting surfaces
first, it is hard to distinguish a large surface of fur-
niture like a cupboard from a relatively small wall
surface.

METHODOLOGY
Overview

Figure 1: The workflow of the proposed approach.

In our proposed approach, we aim to detect furthest
surface in all directions and get the largest void vol-
ume space inside a room. As long as the wall surface
is not fully occluded by furniture, the surface can be
found by the algorithm. Furthermore, although sus-
pended ceilings are quite common in the building in-
dustry, most previous approaches do not consider dif-
ferent ceiling heights for different rooms in the point
cloud. Instead of detecting surfaces in the point cloud
first, the proposed void-growing approach aims to find
the void space volume inside each room. Based on the
void volumes we find, we can reconstruct the struc-
tural elements later.
By considering the void volumes at room level, it is
easier to distinguish the surfaces of building elements
from the surfaces of furniture. Our approach starts



Figure 2: The process of generating seeds: (a) Input point cloud (we removed the ceiling for visualization); (b) project points to X-Y
plane; (c) use RANSAC to extract lines; (d) remove lines that do not fulfil the requirements; (e) select center points as the seeds

.

with finding seed points in the point cloud of mul-
tiple rooms in one storey. Then we start the void
growing to get void volumes from the seed points we
found. After considering the relationship among all
void cuboids, we generate one void volume for one
room. At last, we create 3D models based on all vol-
umes we found. The overall workflow of the proposed
approach is illustrated in Figure 1.

Generating seeds for growing

The process of generating seeds is illustrated in Fig-
ure 2. In this step, our approach is based on sev-
eral assumptions: a) the input point cloud is a
Manhattan-world dataset; b) the room width and
length can not be smaller than a threshold value (in
our case we set the value to 30cm). Initially, given
a Manhattan world point cloud of multiple rooms,
what we want to achieve, is to generate seed points
for growing space in further steps. We aim to find
at least one seed inside a room so that we do not
miss any room space in the process of creating void
volumes.

In our approach, we downsample the input point
cloud by voxelization to get the voxelized point cloud.
Smaller voxel size in voxelization benefits precision of
results as well as burdens the calculation in furthur
steps. In our experiment we use 5cm voxels to com-
promise the precision and computational expense.
Apart from that, we also use the voxels in the vox-
elization process. That means all voxels can be di-
vided into two categories: void voxels and non-void
voxels. Non-void voxels represent the elements in the
point cloud, while void voxels represent the empty
space in the point cloud. Our void growing approach
is mainly working on the void voxels.

In order to find seed points for void growing, we

project the voxelized point cloud after downsampling
to the XY plane. In the XY plane, we get the di-
agram that shows the point density. In Figure 2b),
we remove the points in low ponit density area to
get better visualisation. The remaining points are lo-
cated where point density is high and high-density
areas represent a large number of points at this posi-
tion in Z-direction. They usually occur in the place
where vertical surfaces are present, like the vertical
surfaces of walls, furniture, etc.

In the density diagram, we use RANSAC to ex-
tract lines. As our proposed approach is designed
for Manhattan world, we remove the lines that are
not parallel or perpendicular to X or Y coordinates.
Apart from that, if a set of parallel lines are near to
each other, we only select one line from them. The
reason why we remove those parallel lines is that these
lines with small distances cannot be two boundaries
of one room (see assumption b).

Our next step is to calculate the intersecting
points of these lines to get polygons. These poly-
gons are potential floor plan representations, not real
the real floor plan. The geometry center points of
these polygons are then selected as our potential seed
points in the 2D plane. We need to set a default value
to our seeds to get the seeds in 3D space (we use 1.5m
height in our experiment to make our seed relatively
middle inside a room). As our method is to grow a
void space inside a room, the voxels where our seed
points are located are supposed to be void voxels.
If not, we just select their nearest void voxel as our
seeds.

We only need to select all these seed points
roughly. The accuracy of our approach depends on
further steps.



Growing from each seed
This part is the core of our approach. As we want to
find the largest void space volume inside a room, the
final void volume is supposed to meet two require-
ments: a) it should enclose the points of furniture
inside the room; b) it should not expand to the out-
side through window and door openings.

In our proposed approach, we grow our void space
in a cuboid way. That means the void space is grown
from one seed (void voxel) in six directions (top, bot-
tom, left, right, front, back). Similar to the region
growing approach, our approach checks the neighbors
of the seed whether they belong to the volume space
at each step. In general, the growing process and the
26 neighbors of one voxel in 6 directions are illus-
trated in Figure 3.

Figure 3: The general void growing process.

It is vital to determine when to stop the growing
process. One reason why we grow the void space in a
cuboid way is that we can store and check the fron-
tiers in six directions and use the information on fron-
tiers to determine whether we should stop growing
in each direction. In our approach, we use two-level
stopping conditions: a) the first level is used to check
whether we should stop growing in one direction in
first-level growth; b) if the first stopping condition
is fulfilled in all six directions, the algorithm would
check whether the second level stopping condition is
fulfilled in all six directions. If it is not fulfilled in
any direction, it continues growing in this direction
until the condition is fulfilled. How the two stopping
conditions are defined and checked will be introduced
later in this section.

In the previous step, we have downsampled the
input point cloud and store all the void and non-void
voxels. Until there are no non-used seeds, the algo-
rithm picks up a seed we have found and starts the
growth of the volume space. We use S to denote the
set that contains all seeds we found. This process is
as follows:

1) the algorithm checks whether the selected seed
is used before. If so, it would delete this seed and
pick another seed.

2) the picked seed voxel is added to another set
which is denoted by Nt. It represents the seed set at
step t. N0 denotes the initial set that contains only
one seed from S.

3) for every seed voxel in Nt at step t, the algo-
rithm finds its 26 neighbors. The set that contains

Algorithm 1 The void growing algorithm.
Input:
void voxels and non-void voxels of the point cloud;
initial seed, S;
first-level stopping condition, F();
second-level stopping condition, G();
functions to find all neighbors, α();
functions to get voxles on the frontier of any direction,
β ();
functions to find neighbors in specific directions, γ();
Initialize:
voxel list of void volume space in point cloud, O←∅
Algorithm:
while S is not empty do

select one initial seed N0 from S
if N0 ∈ O then

while F(Nt) is not fulfilled in six directions do
find seeds’ 26 neighbours P← α(Nt)
P← P\ (P∩O)
if F(P) is fulfilled in any direction then

find voxels in that direction E← β (Nt)
get seeds for next round Nt+1← P\E
Nt+1← Nt+1∪β (Nt−1)
O← O∪Nt

end if
end while
seeds for second-level growth M← Nt
if G(Mt) is not fulfilled in any direction then

find voxels in that direction Lt← β (Mt)
while G(Lt) is not fulfilled do

growing in that direction Lt+1← γ(Mt)
end while

end if
end if

end while

all neighbor voxels is denoted by P. It represents the
potential seeds for the next step. And we use N to
represent the union of all previous seed sets, from
time step 0 to time step t.

4) we remove voxels in P which are already shown
in N.

5) the algorithm checks whether it fulfills the first-
level stopping condition (stopping conditions will be
introduced later in this section). If it should stop in
any direction, we select all voxels in the frontiers of
these directions. The set of these voxels on the fron-
tier is denoted by E. If it stops in all six directions,
go to step 7.

6) we remove the voxels in E from potential seed
set P as it would not grow in the corresponding direc-
tions. Moreover, we also need to add the seed points
from the previous step in this direction to the new
seed set of the next step. Otherwise, it cannot grow in
this direction without the corresponding seeds. The
newly generated seed set is denoted by Nt+1. Then
go back to step 2).



7) it checks the second-level stopping conditions
for each direction. If it stops in any direction, the
voxel set in the corresponding directions, denoted by
M, is taken out from seed set Nt. This set is consid-
ered as our new seed set for the second-level growth.
Then by using the similar method described in step
2) to step 5), it continues growing only in the specific
directions. It continues growing until it fulfills the
second-level stopping conditions in all six directions.
The only difference is that we only use neighbors in
the corresponding directions of a voxel, instead of us-
ing 26 neighbors in the first-level growth.

The pseudocode for the algorithm is shown in
Algorithm 1.

The two-level stopping conditions
In our approach, we define two-level stopping con-
ditions to determine when to stop the growth. The
goal of applying these conditions is to grow the void
space until wall surfaces but ignore furniture surfaces.
Both stopping conditions consider the stopping in six
directions separately and they both use the informa-
tion on the frontier during the growing process. If
there is large furniture in office rooms and a large
part of a wall is occluded, we don’t want the growing
process stops at these furniture surfaces. The algo-
rithm will check all small surfaces which could be a
small part of a wall.

(a) (b) (c)
Figure 4: The first-level stopping condition: (a) it stops

growing in bottom direction because it fulfils the stopping
condition; (b) it continues growing in other directions except
the bottom direction; (c) it keeps growing in other direction,

enlarging the bottom surface, and continue growing in bottom
direction when the stopping condition is not fulfilled.

We define a ratio that is used in the first-level
stopping condition as follows:

r = P/Q, (1)

where P denotes the number of non-void voxels in
one direction, and Q is the number of void voxels in
the same direction, r is the ratio used to determine
whether it should stop growing in this direction. If
r≥ r0, it would stop growing in this direction; if r < r0,
it would growing in this direction. In Figure 4a), be-
cause the bottom surface of void space is fully cov-
ered by the non-void voxels at this step, the value of
P is identical to the value of Q. In contrast, in Fig-
ure 4c), P is the number of red voxels and Q is the

voxel number on bottom surface of the blue cuboid.
The basic idea is that the algorithm compares r val-
ues of all directions at every step with a predefined
threshold value (after testing different values we set
it to 0.1 in our experiment). The reason to choose
a small value is that we want to make sure that our
algorithm would not overlook surfaces in the growing
process. If r is larger than the threshold, as there
is a relatively large number of non-void voxels and
the algorithm would stop growing in this direction in
this step. Whether it stops growing in this direction
does not influence the growth of other directions. If it
stops growing in one direction and continues growing
in other directions, the frontier of the stopped direc-
tion is also enlarged. That means in further steps, if
r is smaller than the threshold again, it can continue
growing in this direction.

This process is illustrated in Figure 4. The red
voxels here represent the non-void voxels, while the
blue voxels are the void voxels. We show one simple
example here to explain how the first-level stopping
condition works. In Figure 4a), when it grows to a
relatively large surface in the bottom direction (like
the top surface of a desk), at this step the algorithm
is not expected to decide whether it grows to a desk
surface or to a floor surface. So, it pauses the growth
in the bottom direction and continues growing in the
other five directions as r ≥ r0. It will stop growing in
the bottom direction until it does not meet the stop-
ping condition in this direction (for example in Figure
4c). That means, there is only a relatively small num-
ber of non-void voxels here so that this surface cannot
be a floor surface.

If we only apply the first stopping condition, our
proposed algorithm could stop at walls, ceilings, and
floors as well as some large furniture surfaces. But
we want to make it be able to identify surfaces of fur-
niture from structural elements. So, we propose the
second-level stopping condition to check the frontiers
in all directions after the first-level stopping condi-
tion.

(a) (b) (c)
Figure 5: The pattern on growing frontier in second-level

stopping condition: (a) a door opening; (b) a window opening;
(c) a furniture pattern (a bookshelf)

The second-level stopping condition is based on
prior knowledge. We check the patterns of void and
non-void voxels on the frontier. We use the following
prior knowledge to define the condition:



a) if it grows to a place in one direction where al-
most all voxels are non-void, it should stop the growth
in this direction. We consider the surface here is the
surface of floors, ceilings, or walls without openings.

b) we predefine door modules to find wall sur-
faces with door and window openings. Because win-
dows are transparent, the laser scanner cannot col-
lect any data on its surface. In our experiment, we
define the door openings should have 1m-3m width
and 2m-4m height. The predefined dimension of win-
dow openings we use is 0.5m-3m width and 0.5m-3m
height. Apart from different dimensions of doors and
windows, in our dataset window openings are usually
not connected to floors. The pattern of predefined
openings in vertical surfaces is shown in Figure 5. In
Figure 5, each white point represents the center point
of non-void voxel. If the algorithm can fit a rectangu-
lar pattern that consists of void voxels when growing
in one direction, it stops and considers it as the wall
surface with a door or window opening.

c) if it stops at a surface and its frontier has a
rectangular pattern that consists of non-void voxels,
this kind of surface is considered as the surface of
furniture (as shown in Figure 5c). This pattern does
not fulfill the second-level stopping condition. So, it
continues growing in this direction until fulfilling it.

By applying the two-level stopping conditions,
our proposed approach is expected to find void vol-
ume inside rooms with high performance, especially
when there is high occlusion caused by furniture.
Then we only use the points on each frontier to ex-
tract planes and consider these planes as the faces of
room cuboids..

Store and project pattern on frontiers
In point clouds of the indoor environment, if part of
a wall surface is occluded by furniture, only the fur-
niture surface and the other part of the wall surface
that is not covered by furniture can be scanned. That
means there would be no points at the wall surface
behind the furniture. If we find large amount of non-
void voxels caused by furniture on the frontier, the
algorithm would continue growing as it does not find
any pattern of door or window opening. But in fur-
ther steps, if it grows to a wall surface, it cannot stop
because of the “hole” on this surface.

In order to solve this problem, we combine the
patterns we found in previous steps with that of cur-
rent step together. In the growing process, the fur-
niture pattern we found would be stored. And in
further steps, we project the non-void voxels of the
furniture surface to the frontier of the current step.
After filling the “hole”, the algorithm then checks the
second stopping condition on the surface. This pro-
cess is illustrated in Figure 6. It grows to the furni-
ture surface first and then stores the found pattern
of non-void voxels. After that in further growth, we
project the found pattern to the new frontier to get a

Figure 6: Project furniture pattern to the frontier of further
steps.

new pattern on the surface. The algorithm continues
growing until the stopping condition is fulfilled.

Merge the connected cuboids
From the previous steps, we have gotten cuboids for
void volume inside rooms. As we have at least one
seed inside one room, one room could have multi-
ple cuboids from different seeds. This happens usu-
ally in some complex rooms, like U-shape rooms, L-
shape rooms, rooms with different ceiling heights,
etc. There are two circumstances when two cuboids
should be merged in one: a) one surface of a cuboid
touches a surface of another cuboid: b) two cuboids
have overlapping space.

Extract walls, floors, and ceilings
In this step, we extract elements we want to re-

construct from the cuboids generated from the last
step.

We use different strategies for different kinds of
structural elements. For ceilings, floors, and outer
walls, we usually only collect data inside the room.
As a result, we do not have data from the other side.
For these elements, we use the surface where void
volumes stop growing as the inner surfaces of these
elements. We can leave it as a plane or set a default
value.

In contrast, both sides of the inner walls can be
scanned when collecting data inside a building. That
means we grow void volume space inside adjacent
rooms. The space between to void cuboid is con-
sidered as the inner wall (as shown in Figure 7). The
thickness of the inner wall is the distance between
these two surfaces.



Figure 7: One inner wall separates two adjacent volume spaces.

Experiment and result
The code of void-growing approach is written in C++
by using Point Cloud Library (PCL) 1.9.1 (Rusu &
Cousins 2011) and the Computational Geometry Al-
gorithms Library (CGAL) 5.1 (The CGAL Project
2020). The input dataset was collected in the of-
fice area of the Chair of Computational Modeling and
Simulation at the Technical University of Munich.

The input point cloud and the cuboids we get
inside each room are shown in Figure 8. Each color
represents a void volume inside a room. As we can
see, not only typical cuboid rooms but also complex
rooms can be detected. The hallway can be seen as
an L-Shape room. Furthermore, if we focus on the
ceiling of the input cloud, the ceiling heights of some
rooms and the hallway are not identical because of
suspended ceilings which are quite common in the
building industry nowadays. The information of dif-
ferent ceiling heights in the input point cloud can be
identified clearly in our grown void volumes.

In Figure 9, we remove the points representing the
ceiling to depict rooms of the input point cloud more
clearly. It is evident to see that a gap separates two
adjacent room volumes. Moreover, the gaps between
two adjacent rooms are supposed to be the wall that
separates these rooms.

As shown in Figure 8 and Figure 9, the void
growing algorithm performs qualitatively will in our
dataset, a typical indoor environment of Manhattan-
world offices with strong occlusion. We state that
our algorithm could apply in other Manhattan-world
point clouds without modifications or with small
modifications. In most cases, if the buildings have
similar door and window openings, we can apply our
approach directly to new datasets. If the door and
window openings have different shapes (like circles),
it would give us different patterns on frontiers during
the growing process. The current second-level stop-

ping conditions would not work. To fit these patterns
and make the algorithm stop at the opening surface,
we could add other predefined opening shapes and
consider those patterns as our new stopping condi-
tions.

Based on the volume spaces we have found in pre-
vious steps, we can extract walls, floors, and ceilings.
In our experiment, if only one surface of elements is
scanned, we set the default thickness of the element
to 30cm. The reconstructed 3D model created by our
proposed approach and the BIM model created man-
ually are shown in Figure 10. We evaluate the two
models quantitatively by comparing the areas of of-
fices in Table 1 and the thicknesses of walls in Table
2.
Table 1: Area comparison between the void-growing model and

BIM model: (m2)

office
No.

void-
growing

BIM deviation
(abs.)

deviation
(rel.%)

1 46.62 49.22 2.60 5.28

2 26.15 26.82 0.67 2.50

3 23.31 24.11 0.80 3.32

Table 2: Wall thickness comparison between the void-growing
model and BIM model: (m)

wall
No.

void-
growing

BIM deviation
(abs.)

deviation
(rel.%)

1 0.200 0.173 0.027 15.6

2 0.200 0.164 0.036 22.0

3 0.150 0.144 0.006 4.2

As shown in Table 2, the thickness of the detected
wall is almost identical. The reason is that we use a
very simple downsampling strategy: the voxel center
points are picked as the new points in point cloud.
The voxel size limits the performance of our approach.
When detecting objects with large dimensions, the
impact is insignificant. However, it becomes very im-
portant to find the thickness of elements. The results
can be improved by reducing the voxel size, but the
computational effort would be increased as well. We
need to make a compromise between precision and
computational burden.

CONCLUSIONS
This paper presents a void growing approach for the
Scan-to-BIM process for buildings with a Manhattan
world structure. Instead of starting with detecting
surfaces in the point cloud, the void growing approach
detects void space inside rooms first. It can handle
both, simple cuboid rooms, and rooms with complex
structures, like L-shape rooms. Room volumes with



Figure 8: Input point cloud and void volumes inside rooms with different ceiling heights.

Figure 9: Input point cloud and void volumes inside rooms after
removing ceilings

different suspended ceiling heights can also be rep-
resented. As it aims to detect the furthest surface
inside a room in all directions, it can find surfaces of
structural elements even when the occlusion level is
relatively high. However, if a surface of a wall is fully
occluded by large furniture, the void growing would
stop at the surface of the large furniture.

In the future, we plan to use deep learning tech-
niques to train neural networks to segment point
clouds by various categories. By using semantic, as
well as geometric information, we can define new
stopping conditions for the void-growing approach.
Furthermore, apart from ceilings, floors, and walls,
we also want to extend our current approach to de-
tect more elements like columns, beams, staircases,
etc.

Figure 10: The model generated by void-growing approach and
the BIM model: a) reconstructed model b) BIM model

ACKNOWLEDGMENTS
The work in this paper is funded by the Institute for
Advanced Study (IAS) at the Technical University of
Munich under Hans Fischer Senior Fellowship. The
dataset we use in this paper is collected on the main
campus of the Technical University of Munich with
the help from NavVis (https://www.navvis.com/).



REFERENCES
References
Adan, A. & Huber, D. (2011), 3d reconstruction of

interior wall surfaces under occlusion and clutter,
in ‘2011 International Conference on 3D Imaging,
Modeling, Processing, Visualization and Transmis-
sion’, IEEE, pp. 275–281.

Agapaki, E., Miatt, G. & Brilakis, I. (2018), ‘Priori-
tizing object types for modelling existing industrial
facilities’, Automation in Construction 96, 211–
223.

Anagnostopoulos, I., Pătrăucean, V., Brilakis, I. &
Vela, P. (2016), Detection of walls, floors, and ceil-
ings in point cloud data, in ‘Construction Research
Congress 2016’, pp. 2302–2311.

Budroni, A. & Boehm, J. (2010), ‘Automated 3d
reconstruction of interiors from point clouds’, In-
ternational Journal of Architectural Computing
8(1), 55–73.

Lu, R., Brilakis, I. & Middleton, C. R. (2019), ‘De-
tection of structural components in point clouds of
existing rc bridges’, Computer-Aided Civil and In-
frastructure Engineering 34(3), 191–212.

Macher, H., Landes, T. & Grussenmeyer, P. (2017),
‘From point clouds to building information mod-
els: 3d semi-automatic reconstruction of indoors of
existing buildings’, Applied Sciences 7(10), 1030.

Monszpart, A., Mellado, N., Brostow, G. J. & Mitra,
N. J. (2015), ‘Rapter: rebuilding man-made scenes
with regular arrangements of planes.’, ACM Trans.
Graph. 34(4), 103–1.

Mura, C., Mattausch, O., Villanueva, A. J., Gobbetti,
E. & Pajarola, R. (2014), ‘Automatic room detec-
tion and reconstruction in cluttered indoor envi-
ronments with complex room layouts’, Computers
& Graphics 44, 20–32.

Murali, S., Speciale, P., Oswald, M. R. & Pollefeys,
M. (2017), Indoor scan2bim: Building information
models of house interiors, in ‘2017 IEEE/RSJ In-
ternational Conference on Intelligent Robots and
Systems (IROS)’, IEEE, pp. 6126–6133.

Ochmann, S., Vock, R. & Klein, R. (2019), ‘Auto-
matic reconstruction of fully volumetric 3d building
models from oriented point clouds’, ISPRS journal
of photogrammetry and remote sensing 151, 251–
262.

Ochmann, S., Vock, R., Wessel, R. & Klein, R.
(2016), ‘Automatic reconstruction of parametric
building models from indoor point clouds’, Com-
puters & Graphics 54, 94–103.

Oesau, S., Lafarge, F. & Alliez, P. (2013), Indoor
scene reconstruction using primitive-driven space
partitioning and graph-cut.

Rusu, R. B. & Cousins, S. (2011), 3D is here:
Point Cloud Library (PCL), in ‘IEEE International
Conference on Robotics and Automation (ICRA)’,
Shanghai, China.

Sanchez, V. & Zakhor, A. (2012), Planar 3d model-
ing of building interiors from point cloud data, in
‘2012 19th IEEE International Conference on Im-
age Processing’, IEEE, pp. 1777–1780.

Stambler, A. & Huber, D. (2014), Building modeling
through enclosure reasoning, in ‘2014 2nd Inter-
national Conference on 3D Vision’, Vol. 2, IEEE,
pp. 118–125.

The CGAL Project (2020), CGAL User and Refer-
ence Manual, 5.1.1 edn, CGAL Editorial Board.
URL: https://doc.cgal.org/5.1.1/Manual/packages.html

Tran, H., Khoshelham, K., Kealy, A. & Díaz-
Vilariño, L. (2019), ‘Shape grammar approach to
3d modeling of indoor environments using point
clouds’, Journal of Computing in Civil Engineer-
ing 33(1), 04018055.

Vanegas, C. A., Aliaga, D. G. & Benes, B. (2010),
Building reconstruction using manhattan-world
grammars, in ‘2010 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recogni-
tion’, IEEE, pp. 358–365.

Wang, R., Xie, L. & Chen, D. (2017), ‘Modeling in-
door spaces using decomposition and reconstruc-
tion of structural elements’, Photogrammetric En-
gineering & Remote Sensing 83(12), 827–841.

Xiao, J. & Furukawa, Y. (2014), ‘Reconstructing the
world’s museums’, International journal of com-
puter vision 110(3), 243–258.

Xiong, X., Adan, A., Akinci, B. & Huber, D. (2013),
‘Automatic creation of semantically rich 3d build-
ing models from laser scanner data’, Automation
in construction 31, 325–337.


