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A B S T R A C T

Freeze-thaw and dry-wet cycles are common phenomena in temperate regions. Such events may have a sig-
nificant influence on the functioning of the soil microbial community. Using non-targeted metabolomics, we
compared the effects of a single freeze-thaw or dry-wet event on microbial metabolism in an agricultural soil
with and without plants. We showed that a dry-wet cycle had a greater impact on solute and metabolite con-
centrations in the unplanted soil than a freeze-thaw cycle. Drying or freezing caused increases in dissolved
organic C, sugars and polyols, suggesting enhanced microbial production to alleviate temperature or moisture
stress. Increased nucleobase concentration in the unplanted soil after a dry-wet cycle, and increased amino acids
following both stresses, suggested a breakdown of microbial DNA and proteins released from damaged cells. The
impacts of stress on metabolites in the planted soil were less than in the unplanted soil. In conclusion, our
findings indicate that the soil microbial community responds quickly to stress events by accumulating osmotic
solutes (e.g. sugars and polyols) and that a freeze-thaw event causes less disruption than dry-rewetting, and that
plants have a key role in the mitigation of the freezing or drying effects on soil microbial communities.

Soils in many agroecosystems frequently experience temperature
and moisture extremes (e.g. freeze-thaw and dry-wet cycles; Brabson
et al., 2005). These can negatively affect soil biogeochemical cycling,
leading to reduced plant productivity and a decline in the delivery of a
range of ecosystem services (Sanghera et al., 2011; Fahad et al., 2017).
Although plants and soil microbes are sensitive to cold and desiccation
stress, there is strong evidence suggesting that many soil microorgan-
isms can adapt to mild freeze-thaw or dry-wet events (Gusta et al.,
1997; Craine et al., 2012; Schimel et al., 2007). Typically, this response
is underpinned by the synthesis and bioaccumulation of low molecular
weight metabolites (e.g. amino acids, sugars and polyols) (Yancey et al.,
1982; Cushman, 2001; Yancey, 2001). Studies in pure cultures have
shown these mechanisms to be highly effective at reducing cell damage
upon exposure to a range of mild abiotic stresses (Schimel et al., 2007).
However, the response in actual soil microbial communities remains
much less well understood.

In this study, we compared the effects of a single freeze-thaw or dry-
wet event on the soil microbial community's metabolite profile. We
hypothesized that the microbial response to these two common abiotic
stresses would be similar given that both induce osmotic stress and
would be characterized by an accumulation of specific solutes. We
further hypothesized that the response would be exacerbated in the

presence of plant roots due to an increase in soil microbial biomass and
activity in the rhizosphere (Nannipieri et al., 2008), and the release of
solutes from damaged root cells.

An agricultural soil (5–10 cm depth, Ah horizon) was collected from
a sandy clay loam textured Eutric Cambisol located at the Henfaes
Experimental Station, Abergwyngregyn, UK (53°14′22″N, 4°00′60″W).
The mean annual air temperature is 10.6 °C (max 28.6 °C, min −7.6 °C)
and the mean annual rainfall is 1055 mm y−1. A single pre-germinated
Brassica napus L. seedling (radicle 2 mm long) was placed into in-
dividual planted microcosms containing 1 g field-moist Eutric Cambisol
(Table S1; Miura et al., 2019) in 5 cm3 polypropylene tubes (Fig. S1).
Brassica napus was chosen as it represents a typical winter biennial
plant, with high cold tolerance during the vegetative stage (Xin et al.,
2019). The plants were grown in a climate-controlled chamber (light
intensity of 300 μmol m−2 s−1, 12 h photoperiod, 10 °C) for 2 weeks
(shoots 5 cm long). Unplanted microcosms contained only soil. This soil
has been shown to have an active microbial community at the low
temperatures used here (Farrar et al., 2012). For the freeze-thaw
treatment, microcosms were placed at −5 °C for 24 h, and naturally
thawed at 10 °C. Using a thermocouple, we estimated that complete
thawing occurred within 20 min (Fig. S2). For the dry-wet treatment,
air was passed over the samples at a rate of 0.85 m s−1 (10 °C) until
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they had reached an air-dry state (ca. 3 h when ca. 65% of water was
lost) and the plants had begun to wilt within 1 h. After drying (24 h),
deionized water was added back to the soil to reach the pre-drying
water content (10 °C). Plants survived both the freezing and the drying
periods and visually showed no lasting signs of damage. To evaluate
changes in metabolite profile, microcosms from each treatment were
destructively harvested after 24 h exposure to freezing or drying (i.e.
during the stress itself) and the 3 h after thawing or rewetting (i.e. on
removal of the stress). In addition, an untreated (control) set of samples
was taken immediately before thawing or re-wetting commenced.

In total, there were 9 independent replicates for each treatment with
4 used for soil chemical analysis and the remaining 5 used for meta-
bolomic analysis. Dissolved organic carbon (DOC) and total dissolved
nitrogen (TDN) were measured using a Multi N/C 2100/2100 analyzer
(AnalytikJena AG, Jena, Germany) following extraction of soil (1 g) for
10 min with 5 ml deionized water. A one-way ANOVA with Tukey post-
hoc test was used to identify significant differences between soil solu-
tion within treatments using a cutoff value of P < 0.05 R Studio
0.99.486 (R Development Core Team, 2004).

Samples for metabolite analysis were immediately frozen in liquid
N2, freeze-dried and extracted in 3:3:2 (v/v/v) isopropanol/acetoni-
trile/water according to Fiehn et al. (2008). Non-targeted primary
metabolism analysis was performed using an Automated Linear EX-
change-Cold Injection System (ALEX-CIS) GC Time of Flight (TOF) MS
according to Fiehn et al. (2008). Metabolomics data were pre-processed
using ChromaTOF (v2.34; Leco Corp., St Joseph, MI). Subsequent
analyses were completed using MetaboAnalyst v4.0 (Chong et al.,
2018).

With the exception of unplanted soils subjected to freeze-thaw
where TDN decreased, DOC and TDN concentrations in planted and
unplanted soils after freeze-thaw or dry-wet events were greater than
controls (Fig. 1). The dry-wet cycle increased DOC in unplanted soil
more than freeze-thaw, but the relationship was reversed in the planted
soil. Metabolite analysis detected 352 individual compounds, of which
ca. 44% were positively identified and included a range of sugars,
polyols, amino acids and nucleosides (Table S2). Concentrations of
sugars and polyols (maltotriitol maltotriose, myo-inositol and

sophorose) and fatty acids (isoheptadecanoic acid, linolenic acid and
palmitoleic acid) were increased by drying and re-wetting in the un-
planted soil (Fig. 2). Various amino acids in the unplanted soil also
increased after the freeze-thaw or dry-wet events. All nucleosides de-
tected in the dried and re-wetted unplanted soil were higher than in
controls and other treatments, but were not affected by either stress
event in the planted soil. Following drying and re-wetting, a greater
number of metabolites were found to increase in the unplanted soil than
in the planted soil. However, some sugars and polyols in the planted soil
increased in response to drying and re-wetting, including some which
were not increased where plants were absent (tagatose, lyxitol, keto-
hexose, fructose and erythrose). In contrast to the dry-wet event, fol-
lowing freeze-thaw a greater increase in sugars (fructose, erythrose,
ketohexose, sophorose, and tagatose) was observed in the planted soil
than in the unplanted soil treatments.

The increase in fatty acids in unplanted soil in response to drying
stress is consistent with previous stress response studies in microbial
cultures and contrasting soil types (Pádrová et al., 2016; Ding et al.,
2019). These changes in microbial cell membrane composition have
been implicated in promoting greater membrane fluidity, maintaining
transport processes, enhancing protection against reactive oxygen spe-
cies and facilitating energy production (Welte and Gould, 2017;
Pádrová et al., 2016; Králová, 2017). The changes in solutes are also
consistent with active metabolism even at low temperatures in this soil
(Farrar et al., 2012) and plant species (Rapacz and Janowiak, 1998; Xin
et al., 2019).

In this study, we found that drying strongly affected cell membrane
structure, however, we found no evidence of the same response to
freezing stress. We found that free nucleobases increased in con-
centration after a dry-wet event, suggesting depolymerisation/de-
gradation of RNA and DNA (Rubbi and Milner, 2003) and/or tran-
scriptional inhibition resulting in major changes in nuclear structures
(Boulon et al., 2010; Bensaude, 2011). We also found that free amino
acids (and soluble N) increased in concentration following both dry-wet
and freeze-thaw events, suggesting an increase in proteolysis. Increases
in solutes and metabolites following removal of stresses may indicate
that some accumulated osmotic compounds were released into the soil

Fig. 1. Dissolved organic C (DOC) and total dissolved N (TDN) concentrations in the planted and non-planted soil (water extract) exposed to either a single freeze-
thaw or wet-dry cycle. Values represent means± SEM (n = 4). C = Control; DW = Dry-wet; FT = Freeze-thaw. Different letters indicate significant differences
between treatments at the p ≤ 0.05 level.
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by microbes to prevent cell rupture (Schimel et al., 2007). However, the
lack of an effect due to drying or freezing alone, suggests that amino
acids were not accumulated as osmolytes. It may also indicate that re-
wetting and thawing gave rise to a rise in enzymatic cleavage of pro-
teins and nucleic acids, which cannot occur during the drying event,
perhaps due to a lack of liquid water. The smaller effect of freeze-thaw
than drying and re-wetting may suggest that soil microbes can remain
active at −5 °C (Clein and Schimel, 1995) and that significant unfrozen
liquid water is available in the soil at this temperature (Brooks et al.,
1997; Foster, 2015).

Compared with soil without plants, drying and re-wetting of planted
soil had a smaller impact on DOC, soluble N and most of the measured
metabolites, indicating that soil microbes adapted better to extreme
drought when roots were present. Similarly, there was no evidence of
increased proteolysis or nucleic acid damage due to stresses where
plants were present. The increase in some polyols and sugars only
where plants were present suggests a plant response to stress, or mi-
crobial accumulation of sugars where C availability is increased due to
the presence of living roots. We observed increased DOC and various
sugars in planted soil after thawing. We speculate that these sugars are
not stress-specific osmolytes present in either plants or soil microbes as
we saw little or no change in their concentrations during freezing. It
seems more likely that these increases in sugars resulted from damage
to plant membranes. However, the lack of increase in other metabolites,
especially those indicative of cellular damage (e.g. organic acids, amino
acids), may indicate that sugar and polyol provided effective protection
to microbes. Thus, it seems likely that, although soil microbes appear to
respond rapidly to freezing, and especially to drying, the presence of
roots has an important role in the mitigation of the most severe effects
on soil microbial communities.
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