
 

  Short Landing Performance and Scale Effect of a Flapping Wing 

Aircraft 

Si Chen1, Shijun Guo2, Hao Li3, Mingbo Tong 4 and Bing Ji5 

 
1PhD Student, College of Aerospace Engineering, Nanjing University of Aeronautics and 

Astronautics, Nanjing, P.R.China. E-mail: 406922351@qq.com 
2Professor, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, 

UK (corresponding author). E-mail: s.guo@cranfield.ac.uk 
3PhD student, School of Aerospace, Transport and Manufacturing, Cranfield University 

Cranfield, UK. E-mail: H.Li@qub.ac.uk 
4Professor, College of Aerospace Engineering, Nanjing University of Aeronautics and 

Astronautics, Nanjing, P.R.China.  E-mail: tongw@nuaa.edu.cn 
5Associate Professor, School of Control Science and Engineering, Shandong University, Jinan, 

P.R.China. E-mail: b.ji@email.sdu.edu.cn 

 

 
Abstract.  

An investigation has been made into the performance and scale effect of bird-like flapping wing 

aircraft in short landing. A flapping mechanism is proposed to transform a powered shaft rotation 

to an optimal kinematics of wing motion combining up-and-down stroke, pitching, fore-and-

back swing. An unsteady aerodynamic method (UAM) has been developed based on potential 

flow theory including the leading and trailing edge vortices generated by a flapping wing. After 

validation based on CFD results, the method is used to calculate the aerodynamic forces of 

flapping wings. The flight dynamics model of the aircraft is built by employing software 

ADAMS interfacing with the UAM coded in Python. The coupling between the inertia force of 

the body motion and the aerodynamic forces from flapping wing and tail-plane has been taken 

into the numerical simulation of the aircraft landing. Taking a bird-like aircraft model of 0.196kg 

with a prescribed kinematics of flapping wing motion as example, parametric study has been 

carried out in a small range of initial tail-plane angles and subsequent flapping frequencies. 

Optimal parameters have been obtained to reduce the forward and descending velocities of the 

aircraft to a minimum value for safe and short landing performance. The study is then extended 

to aircraft of different geometric scale in a range of 0.5~10 associated with weight scale 

0.1~1000. From the study, a method is developed to determine the required flapping frequency 

for bird-like aircraft of different scale to achieve a short landing target with the descending 

velocity reduced to a specified value. For the above example aircraft (geometric scale 1), the 

flapping frequency is 4Hz to reduce both descending and forward velocities to 50% of the 

landing performance in fixed-wing mode. While a bird-like aircraft of geometric scale 10 and 

landing weight 196kg requires a minimum 1.25Hz flapping frequency to achieve 50% reduction 

of the descending and forward velocities compared with the same aircraft landing in fixed-wing 

mode.  
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For aircraft as well as flying animals, landing is the most tricky and critical process of a safe flight. 

In the past decades, huge effort in aerospace has been made to develop high lift devices such as slat, 

flaps and morphing wing technology to reduce aircraft landing distance, hence the demand for airport 

infrastructure. Research attention has also been paid to developing bird-like flapping wing unmanned 

aerial vehicles (UAV) and manned aircraft capable of Vertical/Short-Take-Off-and-Landing (V/STOL) 

and also high performance in cruise flight. A small or micro UAV with VTOL/STOL capability is 

suitable for carrying out missions such as Intelligence, Surveillance and Reconnaissance (ISR) in 

complex environment or high risky scenario. With adequate power, VTOL can be achieved normally by 

tilt thrust forces as studied by Martin and Tung (Martin and Tung 2004) who designed a 0.254m ducted 

rotor UAV. Wind tunnel test was carried out to evaluate the UAV performance in a range of tilt angles. 

Following the study, Akturk et al (Akturk et al. 2009) employed a planar particle image velocimeter 

(PIV) system to measure the flow field and a computational method to predict the aerodynamics around 

the duct in hover and forward flight condition. The study shown that the mean flow results near the fan 

inlet plane by experimental and computational method were in very good agreement in hover condition. 

Prabu et al (Prabu et al. 2016) and (Patra et al. 2017) have also made effort to achieve VTOL for a delta-

wing quadcopter and tilt-rotor aircraft design. Regarding the STOL capability, Englar et al (Englar et al. 

1981) evaluated the lift increase and STOL capability by tangential blowing over the wing rounded 

trailing edge and designed a Demonstrator Aircraft. Montanya and Marshall(Montanya and Marshall 

2007) also found that STOL can be realized by ejecting a tangential jet from a slot located near the 

airfoil trailing edge to gain effective camber and increase lift. In their research, the shortest landing 

distance was calculated to be 610m for a flap deflection angle of ninety degrees and a blowing coefficient 

of 0.34. Moore et al (Moore et al. 2014) studied a post-stall perching process of a fixed-wing glider, 

which flies at 7m/s before pitching up at large angle of attack by deflecting the tail-plane for short 

landing. 

Apart from the fixed-wing aircraft, flying animals demonstrate extraordinary capability of STOL 

using their flapping wings. During landing, birds will flap their wings with large amplitude and at 

increased frequency for several flapping cycles to create rapid deceleration and maneuvering moments 

to adjust their flight speed and body position relative to the perch. In this process, the angle of attack 

(AoA) of their wings can easily reach above 50° (Paranjape et al. 2013), where the airflow won’t remain 

attached on the wing surface (Ghosh et al. 2012). Instead, flow separation from the leading and trailing 

edges causes a low pressure vortex region on the wing upper surface and create an instantaneous high 

pressure drag. Berg and Biewener (Berg and Biewener 2008) studied the kinematics of ascending and 

descending flight of pigeon by high-speed video and observed that the stroke plane angle became closer 

to horizontal for steeper flight state (ascent or descent). The authors also estimated the power 



3 
 

requirement for level flight, ascent and decent. It was found that for steep descent, greater power was 

required than the sum of power for level flight and the change of potential energy. Roderick et al 

(Roderick et al. 2017) made a survey and research on the bimodal animal locomotion and existing aerial 

robotics’ landing, surface locomotion and take-off, and found that the animals’ pitch-up landing 

maneuvers provide a guidance for a flapping wing design. By flapping wings, birds manipulate the 

unsteady aerodynamic phenomenon to create instantaneous high maneuvering force which can reduce 

the flight speed during the perching process. Inspired by bird flight performance, numerous design of 

flapping wing aerial vehicles have been proposed (Deng et al. 2014; Mishra et al. 2015; Palmer et al. 

2013; Regan et al. 2002; Yang et al. 2018).  Krashanitsa et al (Krashanitsa et al. 2009) built a 74-cm-

wing-span ornithopter equipped with an automatic flight control system and demonstrate the 

ornithopter’s stability in all axes by flight test. Jackowski (Jackowski 2009) developed a large scale 

ornithopter carrying a computer and sensor package (400 gram) with a simple PD controller to realize 

pitch stability. Guo et al (Guo et al. 2012) designed a jumping mechanism for flapping wing driven by shape 

memory alloy and built the corresponding control system. Through this mechanism, they realized the take-

off process of flapping wing by hopping instead of throwing. Paranjape et al (Paranjape et al. 2013) 

designed an aerial robot inspired by birds and employed dihedral-based control to fulfill perch process 

on a human hand. In the last decade, achievement has been made to build smaller scale flapping wings 

capable of STOL/VTOL. Baligidad et al (Baligidad et al. 2017)  designed a four wing flapping wing 

model of 175cm in length and 14g weight including a tail rotor to control yaw movement. Graule et al 

(Graule et al. 2016) designed a robotic insect and make it robustly perch on a range of material by 

implementing switchable electrostatic adhesion. Guo et al (Guo et al. 2018) made a flyable micro 

flapping wing rotor of only 2.6g and achieved VTOL flight test.  

 Despite the above studies on bio-inspired flapping wing UAVs, the dynamics of their perching 

process of flapping wing aircraft has not been fully investigated. In particular, the strategy of performing 

an optimal short landing by flapping wing is yet to be well understood. The current study is focused on 

reducing the forward and descending velocity of different scale aircraft to achieve short landing by 

manipulating the tail-plane deflection, the timing of flapping motion and the flapping frequency. 

 The current study is presented as follow: the 2nd section introduced a flapping wing mechanism and 

an unsteady aerodynamic method (UAM), which was validated by comparing with CFD results 

produced in previous research work (Gopalakrishnan and Tafti 2009; Wang et al. 2013). The geometric 

and mass parameters of the flapping mechanism was presented to obtain the exclusive flapping motion. 

The perching process and assumptions were set before the aerodynamic modelling of the wing and tail-

plane for the landing performance simulation. The short landing performance was measured by the 

descending and forward velocity comparing with the result of a fixed wing gliding mode at the end of 
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perching process.  In the 3rd section, a parametric study of a bird-like small flapping wing aircraft of 

0.196kg with different flapping frequency, tail-plane deflection angles and the timing to start the 

flapping wing motion was carried out to evaluate the short landing performance. Then, the time course 

variation of the pitching angles, the descending and forward velocities of the aircraft and corresponding 

aerodynamic forces during the perching process are presented in detail. In the 4th section, a relationship 

between the aircraft scale and flapping frequency required to achieve a short landing target was 

established. The study result was demonstrated by a flapping wing aircraft of 10 times larger in geometry 

than the above small model. Finally conclusions were drawn in 5th section. 

The Flapping Wing Aircraft and Theoretical Methods 

The aircraft model and flapping mechanism 

 In this study, the configuration of a small flapping wing aircraft model is illustrated in Error! 

Reference source not found.. The wing of airfoil NACA0006 is of semi-span 0.45m and chord 0.11m. 

The dimensions of the model body and an all moveable tail-plane of airfoil NACA0006 are also shown 

in Error! Reference source not found. (similar to a small seagull).  

 

 

Figure 1.  (a) 3D view, (b) side view and (c) front view of the aircraft model and flapping wing 

mechanism  

 The model total mass is 0.196kg with its center of gravity located at ���. The flapping wings are 

connected to the fuselage body forward of ���. The tail-plane surface area is 36% of the flapping wing 

and the aerodynamic center of the tail-plane is located at 30mm forward of the body tail.  The ����� is 

the stroke angle of the mechanism, which is the same as the flapping angle ��� of the wing (positive 
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above the horizontal Y-axis). The ��� and ����� are the pitching angle of the flapping wing (positive 

for leading edge upward) and the rotation angle of the mechanism (wing beam) relative to the model 

body respectively. Wherein, the ��� differs from ����� by a constant value. The equivalent lift (L����� ), 

drag (D����� ) and pitching moment (M����� ) on each single wing in the ground coordinate can be 

converted to the whole lift  (L����) , drag  (D����)  and pitching moment  (M����)  enforced on the 

symmetry plane of the aircraft.  

Further details of the flapping mechanism are shown in Error! Reference source not found.. A 

wheel is mounted on each side of the aircraft model and powered to rotate around the center O1 by a 

motor through the shaft. The wheel is connected to the wing spar at joint P1 and P3 through the flapping 

linkage of length A1, and drive the flapping wing in angle �����  around joint O2. The wing spar is 

connected with the main rib of length A3 at P5, which is also connected to the wheel through the pitching 

linkage of length A2 at point P4 and P2, and a crank of span B3 between joint P1 and P2. The distance 

from O1 to P1 and P2 is r; the distance between O2 and P3 is B1, and between P3 and P5 is B2. There is an 

angle φ between the two linkage joint P1 and P2 that determines the phase difference between the 

flapping and pitching motion of the wing. The origin of the X-Y-Z coordinate system is located at O1. 

The Cx, Cy, Cz represent the coordinates of the joint O2.  

 

Figure 2.  Geometry parameters of the components of the flapping mechanism 

Based on the mechanism, a set of equations to express the flapping motion in relation to the 

parameters can be created as presented below. The equations can be used together with aerodynamic 

calculation to find an optimal kinematics of motion to obtain a specified aerodynamic efficiency or 

performance of a flapping wing. Alternatively, for a specified kinematics of motion, a flapping 

mechanism with a set of geometric parameters can be designed. For this particular case of study, the 

specified flapping angle, pitching angle and phase difference were set as ����� = −50°~50°, ����� =−21° ~ 20°  and 
���  (measured at ����� = −50° ) respectively.  The requirement led to a set of 



6 
 

parameters of the mechanism design as listed in Error! Reference source not found.. The mass and 

moment of inertia for each part of the mechanism relative to their own local center of gravity are also 

calculated as listed in Error! Reference source not found. for the flight dynamics model of the aircraft 

in landing. 

Table 1. Geometric parameters for the flapping wing mechanism 

Parameter �� �� �� �� �� �� �� �� �� r � 
Dimensions (mm) 135 155 80 40 15  22 0 -30 135 32 60 (deg) 

 
Table 2. Component mass and moment of inertia of the flapping wing aircraft ��������� ���� [��] ��� [�� ∙ ���] ��� [�� ∙ ���] ��� [�� ∙ ���] 

Wing spar 0.03 488.0 0.135 488.0 

Main rib 0.00745 0.0363 7.45 7.45 

Flapping linkage 0.00192 4.36 4.39 0.0389 

Pitching linkage 0.00211 6.22 6.18 0.0390 

Wheel 0.00453 1.81 3.64 1.89 

Shaft 0.0119 6.08 0.0373 6.08 

Body beam 0.137 2.27 2.820 2820 

Other parts 0.00129 0.0278 0.0161 0.0339 

Total landing mass 0.196 2750.0 3580.0 5720.0 

The mechanism transformed the powered rotation into a combination of flapping, pitching and swing 

motion of a flapping wing. To obtain the kinematics of motion of the flapping wing, the position of ��, �� and  �� varies with the rotation of the wheel in the X-Y-Z system and can be determined by: ������⃗ = [0, 0, 0]，������⃗ = [��� , ��� , ���] （1） �����⃗ = [ � ∗ ���(� ∗ � + �) , � ∗ ���(� ∗ � + �) , 0] （2） ������⃗ = [� ∗ ���(� ∗ �) , � ∗ ���(� ∗ �) , ��] （3） 

 where � is angular velocity (rad/s) of the rotating wheel.  

Since the space location of �� can only be revolved about ��, �� and �� share the same coordinate 

in � direction. A set of equations can be derived and used to calculate the position of �� as follows. �������⃗ − ������⃗ � = �� （4） �������⃗ − �����⃗ � = �� （5） ������⃗ = [��� , ���, ���] （6） 

 From the �� coordinate, the �� and �� position can be determined by the following equations: 
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������⃗ = (�� + ��) ∗ ������⃗ − ������⃗�� + ������⃗  （7） 

������⃗ − ������⃗ � = �� （8） �������⃗ − ������⃗ � = �� （9） 

(�����⃗ − ������⃗ ) ∙ (������⃗ − ������⃗ ) = 0 （10） 

 Eq.（10）expresses that the spar between �� and �� is perpendicular to the rib between �� and ��.  

 In this study, the above equations were coded in Python to produce a kinematics of motion of the 

flapping wing for aerodynamic simulation. For this case, the resulting flapping angle (�����) and 

pitching angle (�����) of the wing spar in three flapping cycles are plotted in Error! Reference source 

not found.. The analysis was started at � = 0s with the initial location of �� and �� as shown in Error! 

Reference source not found.(c). The flapping amplitude measured at �� was 0.065m to obtain flapping 

angle �����=−50° ~ 50°. The phase difference between �����  and �����  was 
���  (measured at the 

valley of the curves) and  
�� (measured at the peak of the curves). The maximum pitching angle (20°) in 

one flapping cycle occurred when �̂ = 0.96 while the smallest angle −21.8° at �̂ = 0.37.  

 

Figure 3.  Flapping angle (positive when ���>���) and the twist angle (positive in the nose-up direction) 

of the flapping wing mechanism in three flapping period. �̂ is the non-dimensional time normalized by 

flapping period.  

The unsteady aerodynamic method 

 For a 2D airfoil as illustrated in Error! Reference source not found.(a), the classical Joukowski 

transformation can be applied to uniquely map a circle of radius � in the �-plane into an airfoil in the �-

plane. The transformation can be expressed in the equation as follows: 

� = z +
(1 − �)��� +

���
2�� ,   ε =

(� − ��)�  （11） 
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 where � and � are the complex coordinates in the �-plane and the �-plane respectively; � and � are 

non-dimensional factors governing the thickness and the camber of the airfoil (Ansari et al. 2006a). The 

equation（11）can be also written in �-plane: 

ξ = 2����� + � ����� − 1

2
���2�� − �(���� − 1

2
���2�) （12） 

� = � ����� − 1

2
���2�� + �(���� − 1

2
���2�) （13） 

 where � is the angular displacement about the origin of the �-plane. 

 

(a) 

        

(b)                                                             (c) 

Figure 4. (a) Joukowski Transformation of 2D airfoil (b) 2D airfoil motions in the �-plane (c) Vortex 

shedding model for the 2D airfoil 

 In this model, the flow potential could be divided into two terms (Ansari et al. 2006a): the quasi-

steady term and the unsteady term. The quasi-steady term is relevant to the freestream (���) and airfoil 

motion (���), while the unsteady term is related to the roll-up of the leading and trailing edge vortices. 

By enforcing the zero-through-flow boundary condition on the airfoil surface and Kutta-Joukowski 

condition at both trailing and leading edges of the airfoil, the distribution of total vortex sheet (density 

of circulation) including quasi-steady term and unsteady term can be expressed by equation （14）and
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（15）and the position of these leading edge vortices and trailing edge vortices are calculated based on the 

induced velocity generated by all the other vortices’ in the flow field. �� = ��� + ���
=

1� (−������ − (�� + 0.5��)���2� + ������ + (�� − 0.5�� + 0.5��)���2�− ���������2� + ���������2� − ����������2� + ����������2� − 0.5������4�
+ 0.5������4�) − 2�� ���(� − �) +

��
2�� 

（14） 

�� = − 1

2�� � ℜ(
��� + ������� − ���� 

�� )������� − 1

2�� � ℜ(
��� + ������� − ���� 

�� )������� − ��
2�� （15） 

�� = 2�[2��(� ̇ − ��)���� + ℎ̇����� + �̇(
1

2
�� +

1

2
�� − 2��) + ��̇ + 0.5��̇] （16） 

 where ��is the freestream speed, � ̇is the sweeping velocity and ℎ̇ is plunging velocity as defined in 

Error! Reference source not found.(a). The total quasi-steady bound circulation and the coefficients ��~��� are given by: 

�� = 2�[2��(� ̇ − ��)���� + ℎ̇����� + �̇(
1

2
�� +

1

2
�� − 2��) + ��̇ + 0.5��̇] （17） �� = −����̇��� − ℎ̇����� + (2� − �)���̇��� + ℎ̇�����  �� = ����̇��� − ℎ̇����� + ����̇��� + ℎ̇�����  �� = ����̇��� − ℎ̇����� − ����̇��� + ℎ̇�����  �� = −����̇��� − ℎ̇����� + ����̇��� + ℎ̇�����  �� = −2���̇ − ��̇  �� = 2���̇ − ��̇  �� = 4�(� − �)�̇ + 2��̇  �� = ���̇ + 1.5��̇  �� = −0.5(�� + �� + 2��)�̇ − (��̇ + 0.5��̇)  ��� = 0.5(�� + �� − 4��)�̇ + 0.5��̇  ��� = 1.5��̇ − 2���̇  ��� = −0.5��̇  ��� = −0.5��̇ （18） 

 After obtaining the vortex sheet distribution, the aerodynamic forces in �� frame can be calculated 

according to Kelvin’s impulse theorem (Gordon 1989). 

�� = iρ ��� � γ���� 

� �� + iρ ��� � γ���� 

� �� + iρ ��� � γ����� 

� �� + iρ ��� � γ����� 

� �� （19） ��
= −ℑ(���� � γ���� 

� ��) +
�
2

��� � γ������� 

� +
�
2

��� � γ������� 

� − ℑ(���� � γ���� 

� ��)
+

�
2

��� � γ�������� 

� +
�
2

��� � γ�������� 

� − ℑ(���� � γ����� 

� ��) − ℑ(���� � γ����� 

� ��) 

（20） 
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 where �� = �−�� + ��̇ + �ℎ̇, ������ is the vortex strength of the trailing edge vortex and ������ is 

the vortex strength of the leading edge vortex. 

 The UAM method for a 2D wing section can be applied to a 3D wing by integrating the aerodynamic 

forces along the wing span. The method has been verified to ensure the result reliability in this study. 

The initial condition setting is kept the same as the Gopalakrishnan, P., and Tafti D.K.(Gopalakrishnan 

and Tafti 2009) and Wang et al(Wang et al. 2013).  The geometry of the wing for comparison is a flat 

plate with aspect ratio �� = 4 of a single wing and the advance ratio J = 0.5.  Since �� = 4, it is proper 

to set the wing semi-span as 0.4m and the chord of the wing as 0.1m. In order to meet the requirement 

of Reynolds number �� is 10�, the flapping frequency in this comparison case is selected to be 2��. 

The flapping and twisting motion is defined as equation （21）and equation（22）: � = Φ sin(2���) （21） α = Δα sin �2��� +
�
2

� + α� （22） 

 where � is the stroke angle, Φ is the stroke amplitude, � stands for flapping frequency, � is the time, α is the pitching angle, Δα is the pitching angle amplitude and α� is the average pitching angle during 

one flapping cycle.  

 The UAM was also coded in Python to calculate the unsteady aerodynamic forces of the flapping 

wing based on its kinematics of motion. To validate the UAM, the lift and thrust coefficients of a 3D 

flapping wing obtained by CFD method in previous study (Gopalakrishnan and Tafti 2009; Wang et al. 

2013) were compared with that by UAM. As shown in Error! Reference source not found., excellent 

agreement of the results by the UAM and CFD method was obtained. The mean lift coefficient (�����) in 

one flapping cycle is 0.49 by the UAM and also 0.49 by Wang et al, and 0.52 by Gopalakrishnan, P., 

and Tafti, D.K. with a deviation less than 6%.  
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Figure 5. Comparison of the lift and thrust coefficients for validation in a case Φ=30°, Δα = 32.5°, α� = 12.5° and t̂ is the non-dimensional time normalized by flapping period.  

 The mean thrust coefficient (������) are 0.36, 0.40 and 0.37 by the three models with a deviation between 

2.7%~10%. The difference of the aerodynamic coefficients between UAM and CFD method is mainly 

caused by neglecting the spanwise flow effect in the UAM. The validation results indicate that it is 

appropriate to use the UAM in the present study. Additional validation cases can be also found in a 

previous publication (Chen et al. 2018). 

 To mimic the bird perching, the aircraft landing scheme is divided into three stages with the 

numerical simulation process shown in Error! Reference source not found.. The landing simulation 

was started at  �� in level flight near ground in the stage-1. The aerodynamic force to keep the aircraft 

in steady level flight at an approaching flight speed was calculated by steady CFD method. From the 

stage-2 starting at ���, the aircraft motion was varied by an initial deflection of the tail-plane. The flight 

dynamics of the aircraft was modelled by using software ADAMS (Automated Dynamic Analysis of 

Mechanical Systems, developed by MSC Software). The UAM method was used to calculate the 

aerodynamic force of the wing and tail-plane, firstly a fixed wing and tail-plane deflection angle α�� 

(positive in pitching up direction) to simulate the aircraft landing in gliding mode. The ADAMS model 

was coupled with the aerodynamic model by the UAM firstly through a system file by using Python 

code. Then, the aerodynamic lift and moment data were transferred from the system file to ADAMS 

model by using a user-defined “spline_read.dll” (generated by user-written “spline_read.c”) coded by C 

language. The results provided a reference to compare with and evaluate the landing performance by 

flapping wings.  For the flapping wing mode in stage-2, the UAM was also used to calculate the unsteady 

aerodynamic forces produced by the flapping wing and tail-plane coupled with the flight dynamics 

model in an iterative manner. The tail-plane deflection angle was increased from ��� to a negative value 

(leading edge down)  ��� for a short period ���� that produced a positive pitching moment, pitching 

angle and short upward motion of the aircraft. This was followed by the flapping wing motion in the 

stage-3 starting from ��. The lift L���� and drag D���� produced by flapping wing together with the tail-

plane L���� reduced the downward and forward velocities of the aircraft motion to achieve a short landing 

performance at the end ����.  
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Figure 6.  Flow chart of the numerical calculation process 

 

Results and Discussion 

Aerodynamics of the wing and tail during level flight (landing stage-1) 

 In the landing stage-1, the aerodynamic forces acting on the wings and tail-plane of the aircraft in 

steady level flight were calculated using CFD method (k-omega SST model in Fluent 14.5). The analysis 

is to determine the necessary approaching speed with an angle of attack (AoA) of the wing below 10 

degree and ensure the aircraft in steady level flight condition for landing. The wing model was embedded 

inside a CFD model of nonstructural mesh generated by using T-grid as shown in Error! Reference 

source not found. to simulate the fluid field. The wing root was set in the center of the CFD model with 

a radius of 10 times of the wing semi-span.  

 

Figure 7.  CFD model for the aerodynamic simulation of the flapping wing 

  

 The resulting lift coefficient CL and drag coefficient CD results in the range of AoA=0 ~ 15 degree 

are plotted in Error! Reference source not found.. The coefficients obtained by thin airfoil theory and 

lift line theory(Anderson 2001) (LLT) are also plotted for comparison purpose. The results shown in 
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Error! Reference source not found. indicate that the CL by CFD become smaller than that by the LLT 

when AoA>9°. The tail-plane was modelled in the same CFD method as the wing.  

   

         Figure 8. (a) Lift coefficient and (b) drag coefficients of the wing by CFD and LLT 

 Both wings were set in the mid of down-stroke position with an incidence angle 0°. The tail-plane 

was install in an angle ��� = ��� = −2° (trailing edge upward) relative to the body axis. Based on the 

above models and analysis, a level flight condition near ground was determined with aircraft pitching 

angle � = 7� , tail-plane deflection angle ��� = −2°  and flight speed V=8.35m/s. These resulting 

parameters were set in the flight dynamics model of the aircraft to simulate the stage-1 landing.  

Flight dynamic simulation of the aircraft short landing (stage 2 and 3) 

 A flight dynamics model has been created by employing ADAMS to simulate the aircraft motion 

interfacing with the UAM for unsteady aerodynamic force calculation. The parameters during the 

landing include the tail-plane deflection angle ��� starting from time ��� for a short period ���� and the 

kinematics of motion, flapping frequency f and start time �� of flapping wing. For all cases in the study, 

the kinematic of motion of the flapping wing is presented in Error! Reference source not found. where �̂ is the non-dimensional time normalized by flapping period and �̂ = �̂� when the flapping motion starts. 

 In this specified kinematics of flapping motion, the aircraft motion during landing was simulated 

with the parameters including tail-plane deflect angles varying in a range (��� = −10°, −20°, −30°, −50°), flapping frequencies (� = 0Hz, 3Hz, 4Hz) and starting time (�� =40.5s, 41s  or 41.5s) of the 

flapping wing motion. The simulation was started from the stage-1 steady level flight at � = 8.35m/s 

near the ground for 40� and followed by stage-2 landing with a transient ��� for a short period ����� =

0.5s. The stage-3 landing was simulated in fixed wing mode (� = 0Hz) and flapping mode (� =
3Hz, 4Hz) starting from �� =40.5s, 41s or 41.5s respectively until an ending time ����. The safe landing 
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condition was set as that the forward velocity was reduced from 8.35m/s to �� < 1m/s  and the 

descending velocity �� < 2m/s in vertical direction within 2s.  

 
Figure 9.  Flapping angle (���) and twist angle (���) of the flapping wing relative to the body.  

 Error! Reference source not found. shows the results of the pitching angle of the aircraft (positive 

nose up), lifting force (positive upward) and drag (positive backward) produced by the wings during 

landing in three cases. After the level flight for 40s in stage-1 to approach landing, the tail-plane 

deflected at ��� = 40� to reach ��� = −10° within 0.5s in the stage-2 landing. The deflection caused 

an increase of the pitching angle � and drag as shown in Error! Reference source not found.(a) and 

(c). In the same time, the lifting force was reduced for the first 0.15s and then increased to a greater 

value than the level flight condition at the end of stage-1 as shown in Error! Reference source not 

found.(b). After 40.5s in the stage-3 landing, if the wings remain fixed (fixed-wing mode � = 0Hz), the 

lifting force reduced as a result of continuing increase of the � to maximum 28° and drag for a short 

time and then reduced too. In this case, the aircraft landed like a glider without flapping and propulsion. 

This particular case (case 1-1) study results were taken as the reference to compare with the flapping 

wing performance. For the aircraft landing in flapping wing mode starting from �� =40.5s, two flapping 

cases were considered (� = 3Hz in case 1-2, � = 4Hz in case 1-3). The resulting �  oscillated and 

reached a peak value (� = 39.6° for � = 3Hz, � = 47.8° for � = 4Hz) as shown in Error! Reference 

source not found. (stage 3). The unsteady aerodynamic lift and drag forces also varied. When the wing 

was in down-stroke, the lifting and drag forces increased as the flapping frequency increased; in up-

stroke, the lifting and drag forces decreased to small or negative values.  
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Figure 10. (a) Pitching angle of the aircraft (b) aerodynamic lifting force of both wings and (c) drag in 

response to ��� = −10° in fixed wing and flapping wing modes during landing 

 Corresponding to the above aerodynamic force and the inertia force of the aircraft, the resulting 

vertical and horizontal velocities of the aircraft during the landing are shown in Error! Reference 

source not found.. As shown in Error! Reference source not found.(a), the vertical velocity �� 

(downward negative) of the aircraft increased from ��� = 40s for a short period and reached a maximum �� = −0.75m/s in response to ��� = −10°, and then reduced back to zero at 41s in the fixed wing 

mode (case 1-1). The results indicate that the aircraft descended from level flight position due to gravity 

and reduced lifting force, and then moved up again due to increased lift as shown in Error! Reference 

source not found.(b). Due to the increasing drag as shown in Error! Reference source not found.(c), 

the forward velocity �� of the aircraft started decreasing from stage-2 as shown in Error! Reference 

source not found.(b) and eventually reached minimum value �� = 2.2m/s at � = 42.5s. In the same 
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time, the aircraft moved downward again after 41s and eventually reached �� = −3.12m/s at � = 42.5s 

and approached a nearly stabilized status close to the maximum value. It is noted that the resulting 

velocities could not satisfy the short landing condition.  

 

 

Figure 11. (a) vertical velocity (positive upward) (b) horizontal velocity (forward positive) of the 

aircraft in the ground coordinate system  

 When the flapping motion started from �� = 40.5s in stage-3 (case 1-2 � = 3Hz, case 1-3 � = 4Hz), 

the �� and ��  of the aircraft oscillated corresponding to the aerodynamic forces as shown in Error! 

Reference source not found..  When the flapping wing was in down-stroke in the period  � =
40.5s ~ 42.5s , the aircraft reached �� = −2.09m/s  and −1.59m/s  at ����  for the two cases 

respectively. When the flapping wing was in up-stroke, the resulting �� < 2m/s was in the same level 

as the fixed-wing mode (case 1-1) as shown in Error! Reference source not found.(b). In the same 

time, the ��  was reduced to less than 2m/s at � = 42.3s and zero at � = 41.9s as shown in Error! 

Reference source not found.(b). It is noted that the resulting velocities by flapping wing mode are 

smaller than the fixed-wing and satisfy the short landing condition. 

 Consequently, the aircraft landing trajectory in terms of downward and forward displacement in the 

ground X-Z coordinate system is shown in Error! Reference source not found.. As shown in Error! 

Reference source not found.(a), the aircraft approached landing in stage-1 at attitude �� = 2� and 

eventually descended to  �� = −0.4m, 1.2m and 1.17m measured from the ground level at ���� in the 
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case 1-1 (� = 0Hz), case 1-2 (� = 3Hz) and case 1-3 (� = 4��) respectively. Error! Reference 

source not found.(b) shows that the aircraft in fixed wing (case 1-1, � = 0Hz) moved from �� = 8.4m 

at � = 40s further forward to �� = 19.6m to land at ���� = 42.5s. While for the flapping wing mode, 

the aircraft moved forward to �� = 16.5m in case 1-2 (� = 3Hz) and slightly further to �� = 16.9m 

in case 1-3 (� = 4Hz) at ���� when �� = 0�/�, which is 3m shorter than the fixed wing (case 1-1).  

 

 

Figure 12. (a) Vertical movement of the aircraft in Z direction (positive for upward) (b) Horizontal 

movement in X direction (positive for forward) for ��� = −10° 
 

Parametric study of the aircraft in short landing  

 Based on the flight dynamics model, a parametric study has been carried out to evaluate the landing 

performance of the aircraft in an extended range of parameters ���  (−10° ,  −20° , −30° , −50°) , � (3Hz, 4Hz ) and �� (40.5s, 41s, 41.5s) including the above case-1. The resulting ��  and �� 

corresponding to those operating parameters are listed in Error! Reference source not found.. For each 

of the tail-plane ���, the results of the fixed-wing mode (� = 0Hz) provide reference for comparison 

with the landing results of the flapping wing mode. For the fixed-wing mode, the resulting �� and �� 

normally do not satisfy the specified safe landing condition. In the flapping wing mode, the �� was 

reduced quickly in response to the increasing pitching angle and drag in landing as shown in Error! 
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Reference source not found.. It is also noted that the flapping wing at higher frequency results in 

slightly larger forward velocity at the ���� due to the associated thrust.  

Table 3. The input parameters and landing analysis results until an ending ����  

when forward velocity is reduced to zero or the vertical velocity below ��/� 

Case No. ��� (°) ���� (�) �� (�) � (��) ���� (�) �� (�/�) �� (�/�) 

1-1 -10 0.5 40.5 0 42.40 2.23 -3.06 

1-2 -10 0.5 40.5 3 41.92 0.00 -2.09 

1-3 -10 0.5 40.5 4 42.30 0.27 -1.59 

2-1 -20 0.5 40.5 0 42.3 1.33 -3.21 

2-2 -20 0.5 40.5 3 41.5 0.00 -2.4 

2-3 -20 0.5 40.5 4 41.5 0.2 -1.62 

3-1 -30 0.5 40.5 0 41.64 0.00 -3.4 

3-2 -30 0.5 40.5 3 41.48 0.00 -2.9 

3-3 -30 0.5 40.5 4 41.50 0.22 -1.67 

4-1 -50 0.5 40.5 0 41.25 0.00 -4.1 

4-2 -50 0.5 40.5 3 41.16 0.00 -2.96 

4-3 -50 0.5 40.5 4 41.26 0.00 -1.92 

5-1 -10 0.5 41.0 0 42.40 2.23 -3.06 

5-2 -10 0.5 41.0 3 42.14 0.00 -2.32 

5-3 -10 0.5 41.0 4 42.08 0.68 -1.68 

6-1 -20 0.5 41.0 0 42.3 1.33 -3.21 

6-2 -20 0.5 41.0 3 42.4 0.07 -2.68 

6-3 -20 0.5 41.0 4 42.1 0.42 -1.85 

7-1 -30 0.5 41.0 0 41.64 0.00 -3.4 

7-2 -30 0.5 41.0 3 41.60 0.00 -3.07 

7-3 -30 0.5 41.0 4 41.82 0.00 -2.05 

8-1 -50 0.5 41.0 0 41.25 0.00 -4.1 

8-2 -50 0.5 41.0 3 41.32 0.00 -3.38 

8-3 -50 0.5 41.0 4 41.28 0.00 -2.74 

9-1 -10 0.5 41.5 0 42.40 2.23 -3.06 

9-2 -10 0.5 41.5 3 42.53 0.67 -2.64 

9-3 -10 0.5 41.5 4 42.54 1.06 -1.77 

10-1 -20 0.5 41.5 0 42.3 1.33 -3.21 

10-2 -20 0.5 41.5 3 42.3 0.30 -2.92 

10-3 -20 0.5 41.5 4 42.1 0.74 -2.31 

11-1 -30 0.5 41.5 0 41.64 0.00 -3.4 

11-2 -30 0.5 41.5 3 41.54 0.00 -3.09 

11-3 -30 0.5 41.5 4 41.54 0.00 -2.85 

Further details of the landing results for all the cases listed in Error! Reference source not found. 

are presented in Error! Reference source not found.-15. Error! Reference source not found. shows 

the resulting pitching angle � of the aircraft body (positive for nose-up) due to tail-plane deflection ��� 

started at 40s and followed by fixed wing and flapping wing motion started at �� =40.5�, 41.0� and 41.5�  respectively as listed in Table 3. For the cases 1~4 when flapping motion 

starting at �� = 40.5�  with different ��� , Error! Reference source not found.(a) shows that the 



19 
 

resulting � increases with ���  and flapping frequency except the case ��� = −50°. This is because 

such a large ��� results in a maximum � exceeded 70° as shown in Error! Reference source not 

found.(a). In addition, the average pitching angle of the wing relative to the aircraft body is about 20° 

based on the specified kinematics of motion of the flapping wing. This leads to the pitching angle of the 

wing approaching a maximum 90° that makes the wing effectively stroke in a horizontal plane. Hence 

the � is not sensitive to the flapping frequency anymore. When the flapping motion started later at �� =

41s and 41.5s (cases 5~11), smaller deflection ��� ≤ −20° would make the aircraft � no sensitive to 

flapping frequency as shown in Error! Reference source not found.(b) and Error! Reference source 

not found.(c). It is because the � reached the maximum value after 41s in similar way to case 1~4 as 

shown in Error! Reference source not found.(a). The flapping motion starting afterward can make the 

wing pitching angle reach maximum value more effectively than the case 1~4. 

 

 

Figure 13. (a) Maximum pitching angle � for �� = 40.5�, (b) �� = 41� an (c)  �� = 41.5� in all cases 

 

 As the results of the above cases, the descending velocity �� (negative for downward) of the aircraft 

in vertical direction at the ending time ���� are shown in Error! Reference source not found.. For the 

fixed wing mode (� = 0Hz), the resulting �� of the aircraft increased with the ���. It is because the 

fixed-wing would stall when the ��� was beyond −20°, hence the aircraft descended faster at the end 
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of landing process. For the case ��� = −10°  as example, the aircraft moved downward at �� =−3.06 m/s  in 1.8s ; for the case of increased ��� = −50° , the aircraft descended faster at �� =−4.2 m/s . When the flapping motion started at �� = 40.5s (� = 3Hz , case 1-2) for example, the 

descending velocity was reduced to �� = −2.09 �/� associated with �� = 0m/s at ���� = 1.42s; for 

the higher � = 4Hz (case 1-3), the �� was further reduced to −1.59m/s within 1.8s. It is noted that the 

time taken to reach the minimum �� in this case is the same as the fixed-wing mode. In the same range 

of ��� and � but a postponed flapping time at �� = 41s and �� = 41.5s, the resulting �� is shown in 

Error! Reference source not found. (b) and Error! Reference source not found.(c). It is noted that 

the aircraft descended faster for larger ��� especially for ��� = −50°, and the variation trend is similar 

to the fixed wing case.  

  

 

 

Figure 14. (a) Descending velocity �� (positive upward) at ���� for �� = 40.5s, (b) �� = 41s and (c) �� = 41.5s. 

 Corresponding to the velocities in the landing process, the aircraft movement can be also measured 

in terms of displacement of the center of gravity (c.g.) in the X-Z plane of the ground coordinate system. 

In the fixed-wing case ( � = 0Hz ), the aircraft landing at larger ����  results in larger forward 

displacement �� at ���� as shown in Error! Reference source not found.(d). In the fixed-wing case 1-
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1 with a small ��� = −10°, the aircraft landing behaves like a gliding process lasting for 1.9� and 

results in a downward displacement �� = −0.4m and longest forward movement distance �� = 19.6m 

at ���� = 42.4s. When the deflect angle is increased to ��� = −30° ��� − 50°, the forward movement 

distance is reduced to �� = 14.9m  within 1.1s and �� = 13.49m   within 0.7s respectively. In the 

flapping wing cases 1~4, both the �� and ��  are reduced significantly as the flapping frequency is 

increased. Taking the flapping wing case 3-3 (� = 4Hz and ��� = −30°) as example, the forward 

movement distance is reduced to �� = 14.33m and downward displacement �� = 1.6m. The results 

provide a reference for setting the aircraft altitude as a landing condition. 

 

  

  

 

     Figure 15. (a)(b)(c) Vertical displacements of the aircraft in landing (negative for downward 

movement), (d)(e)(f) Horizontal displacements in landing (positive for forward movement). 
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 The results provide a reference to set the aircraft altitude and flapping motion for short landing 

condition. Based on the above parametric study, the landing cases 1-3, 2-3 or case 3-3 are preferable to 

meet the landing condition of descending velocity below 2m/s. The case 1-2 is potentially an optimum 

landing scheme with smaller ��� = −10° and � = 3Hz although the resulting descending velocity is 

slightly above 2m/s.  

Scale effect on flapping wing aircraft short landing 

 Since the flapping frequency is proportional to the mean lift (Guo et al. 2018; Zhou et al. 2014), 

which is related to the aircraft descending velocity in landing, a relationship between the flapping 

frequency and lift to weight ratio as a measure of the aircraft scale can be established. The lift to weight 

ratio can be expressed in equation （23）, in which a quasi-steady aerodynamic force is adopted to 

represent the mean lift in a flapping cycle. Since the forward velocity �� will be reduced to a negligible 

small value at the end of landing process, only the flapping velocity (2 × Φ × ���  × ��) due to the 

wing flapping motion is counted in the air velocity. According to the previous study (Chen et al. 2018; 

Gopalakrishnan and Tafti 2009; Wang et al. 2013) and the results shown in Error! Reference source 

not found., the mean lift coefficient of the flapping wing in such kinematic of motion in the �� = 0 

condition is about �� = 0.5. Rearrange the equation（23）, a required flapping frequency ��� to meet 

a specified descending velocity target can be determined from equation（24）. The equation should be 

applicable to different geometric scale of aircraft and the required flapping frequency is normally 

inversely proportional to the scale. 

��� =
1

2
× 1.225 × �� × (2 × Φ × ���  × ��)� × ������/(�������) （23） 

��� = ���� ×
2 × �������

1.225 × �� × ������ /(2 × Φ × ��) （24） 

 where ��  and ������  is the wing semi-span and total wing area respectively; ���  is the flapping 

frequency required to meet the specified descending velocity target in short landing. 

 The design target is to reduce the descending velocity ����� in flapping wing mode to a specified 

reduction factor relative to the descending velocity ����  at ����  in fixed-wing (gliding) mode as 

reference case. The reduction factor can be defined as �� = 1 − �����/���� to specify the target. For 

example, to achieve a target of reducing the ����� in flapping wing mode by 40% of the ���� in landing, 

the �� = 0.4. The �� is increasing linearly with the specified reduction target, and also proportional to 

the lift to weight ratio ��� expressed in equation（23）. 
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 To verify the relationship and demonstrate the application of the equation（24）, extended study is 

carried out for aircraft models of different total weight 0.0196kg, 0.196kg, 19.6kg, 196kg in a range 

weight scale 0.1, 1, 100, 1000 respectively. The weight scale is relative to the aircraft model studied in 

the 3rd section as a baseline case (0.196kg, weight scale 1). Corresponding to the weight scales, the 

aircraft dimensions are also scaled in a set of geometric scale 0.5, 1, 5, 10 that lead to the aircraft design 

parameters. To achieve a target of �� = 0.5 (reduce the descending velocity by 50% in flapping wing 

mode) as example, flight dynamics simulation for these scaled aircraft models in landing is performed. 

The same method as presented in the 3rd section is adapted in the simulation without taking the Reynolds 

number into account. To maintain the aircraft stability and determine the flight speed in the stage-1 level 

flight, the tail-plane is set in a deflection angle ��� = −2°. To initiate the stage-2 landing process, the 

tail-plane angle is increased to ��� = −10° in a short period of 0.5� (baseline model case 1). For each 

of the models, a flapping frequency ��� that meet the descending velocity target can be determined in 

the stage-3 simulation. Bring the resulting ��� value into equation（23）, a ��� can be calculated for 

each of the aircraft models. The obtained ���   and ��� against the geometrical scale of the aircraft 

models is shown in Error! Reference source not found.. From the results, it is found that the ��� 

keeps nearly constant with an average value of ��� = 0.51 for the wide range of different scale aircraft. 

It is more important to note that the ��� = 0.51 approximately equals to the specified descending 

velocity target �� = 0.5. Given a scaled aircraft and a target �� to replace the ��� in equation（24）, 

a required flapping frequency ��� can be determined as the key parameter for the flapping wing design 

and power estimation.  

 

Figure 16. The relationship between ���% and the scale ratio of the flapping wing mechanism. 

 A flapping wing aircraft of scale ratio 10 of the same density as the original model (196kg in weight 

scale 1000) is selected to simulate the landing performance. A flight speed �� = 30m/s with a tail-plane 

angle ��� = −2° was obtained to satisfy the level flight condition in the stage-1 landing process. Since 

the large scale aircraft is of a greater mass moment of inertia than the small scale, a larger tail-plane 
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deflection ��� = −20° was set to initiate the stage-2 landing process at ��� = 40s for 0.5s. For the 

fixed-wing mode, the aircraft descended at �� = −2.5m/s  at the end of stage-2 as shown in Error! 

Reference source not found.(b). As a result of increasing � in stage-3 from � = 40.5s as shown in 

Error! Reference source not found.(a), the ��  was reduced back to zero and kept increasing to a 

positive value before reduced again. In the same time, the forward velocity of the aircraft was reduced 

continuously from �� = 30m/s to a minimum �� = 12m/s associated with �� = −8.5m/s at ���� =

44s as shown in Error! Reference source not found.(b) and (c). To achieve a short landing target �� =
0.5 by flapping wing, the minimum flapping frequency needs to be determined to reduce the descending 

velocity to |��| < 4.25m/s within a time period of the fixed-wing mode. Thus a small range of flapping 

frequencies were attempted and the resulting �, �� and �� of the aircraft corresponding to � = 0.5Hz 

and 1.25Hz is presented in Error! Reference source not found.. It is noted that the aircraft motion is 

of similar trend to the small aircraft model (scale 1). For the lower � = 0.5Hz, the descending (vertical) 

velocity was increased to �� = −8.0m/s at ���� = 44s. The results show little difference from the 

fixed-wing mode although the forward (horizontal) velocity was reduced to �� = 8.5m/s, which is 

smaller than the fixed-wing mode. The results indicate that � = 0.5�� won’t meet the specified landing 

target. For the � = 1.25Hz, the aircraft descending velocity is �� = −4.26m/s at ���� = 43.45s as 

shown in Error! Reference source not found.(b), which has met the specified landing target. In the 

same time, the associated forward velocity was reduced to a minimum value �� = 2.7m/s for a safe 

short landing.  
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Figure 17. (a) Pitching angle of the aircraft (positive for nose-up) in response to ��� = −20° for ���� = 0.5� (b) Vertical velocity (positive for upward) of the aircraft (c) Horizontal velocity (positive 

forward) of the aircraft in ground coordinate system (the dot marks indicate the ����). 

 

Conclusion 

 The present study has evaluated the effectiveness of flapping wing and scale effect on aircraft short 

landing. A flapping mechanism to transform a shaft rotation into a combined motion of flapping, twist 

and swing is designed to obtain an optimal kinematics of motion for a flapping wing. The effects of the 

vortex convection and shedding from the flapping wing leading edge and trailing edge are both taken 

into consideration in the aerodynamic analysis(Ansari et al. 2006b). The flight dynamics model of the 

aircraft takes into account the coupling between the inertia force and aerodynamic forces associated with 

the aircraft motion and flapping wing and tail-plane. To mimic the bird perching, the aircraft landing 

can be divided into three stages starting from a fixed wing mode at a velocity in level flight near ground. 

In stage 2, the short landing is then initiated by a transient deflection of the tail-plane to generate a quick 

increase of pitching angle of the aircraft. As a result, the forward velocity is reduced significantly. In 

the same time, the lifting force on the wing is increased for a short period before the wing stalls. After 

stall, the aircraft will descend with increasing velocity due to gravity. In the stage 3, if the fixed wing 

mode is maintained, the aircraft will descend like a glider with both the forward and descending velocity 
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reduced until landing. In the case of flapping wing mode, the aircraft forward and descending velocities 

vary in an oscillation manner. The reduction of descending velocity by flapping wing is proportional to 

the flapping frequency. Although the tail-plane deflection angle also affects the result, it does not play 

a dominant role.  

 Different scale of aircraft models has been studied in a rage of geometric scale 0.5, 1, 5 and 10 

corresponding to weight scale 0.1, 1, 100 and 1000 respectively. A relationship is established between 

the lift to weight ratio and the flapping frequency required to reduce the aircraft descending velocity to 

a value relative to the fixed wing landing. In a range of the tail-plane deflection angle −10° ~ −20°, a 

minimum flapping frequency can be determined to achieve a specified target of descending velocity 

within a limited time. For example, a flapping frequency of 4Hz is required for the aircraft of scale 1 to 

reduce the descending velocity by 50% of the same aircraft in fixed-wing mode. In the same time, the 

forward velocity is reduced to zero at ����. For the large aircraft of scale 10, the required flapping 

frequency is 1.25Hz to reduce the descending velocity by 50% of the fixed-wing mode. The method 

developed in the study can be used to determine the key design parameters for a flapping wing aircraft 

to achieve a specified short landing target. 
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