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Abstract

Context-aware surgical system is a system that can collect sur-

gical data and analyze the operating environment to guide re-

sponses for surgeons at any given time, which improves the effi-

ciency, augment the performance and lowers the risk of minimally

invasive surgery (MIS). It allows various applications through the

whole patient care pathway, such as medical resources scheduling

and report generation. Automatic surgical activities understand-

ing is an essential component for building context-aware surgical

system. However, analyzing surgical activities is a challenging

task, because the operating environment is considerably compli-

cated. Previous methods either require the additional devices

or have limited ability to capture discriminating features from

surgical data.

This thesis aims to solve the challenges of surgical activities anal-

ysis and provide context-aware assistance for MIS. In our study,

we consider the surgical visual data as the only input. Because

videos and images own high-dimensional and representative fea-

tures, and it is much easier to access than other data format, for

example, kinematic information or motion trajectory.

Following the granularity of surgical activity in a top-down man-

ner, we first propose an attention-based multi-task framework to

assess the expertise level and evaluate six standards for surgeons

with different skill level in three fundamental surgical robotic

tasks, namely suturing, knot tying and needle passing. Sec-

ond, we present a symmetric dilated convolution structure em-

bedded with self-attention kernel to jointly detect and segment



fine-grained surgical gestures for surgical videos. In addition, we

use the transformer encoder-decoder architecture with reinforce-

ment learning to generate surgical instructions based on images.

Overall, this thesis develops a series of novel deep learning frame-

works to extract high-level semantic information from surgical

video and image content to assist MIS, pushing the boundaries

towards integrated context-aware system through the patient care

pathway.
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Chapter 1

Introduction

1.1 Motivation

Minimally invasive surgery (MIS) is a surgical procedure where operations

can be performed through small incisions (usually 0.5 - 1.5 cm) with the as-

sistance of a 2D video camera and several instruments. Comparing with the

traditional open surgery, MIS has few post-operative complications, small in-

cisions on the skin, and a relative shorter recovery period. However, the revo-

lution of the technology has also altered the operation routines. For example,

the limited field of view (FOV) and the restricted operating space during the

MIS often cause undesirable complications. Therefore, it is indispensable to

provide efficient assistances to improve operation quality, performance and

safety for whole surgical-care pathway.

There has been a growing interest of building context-aware system (CAS)

utilizing available information inside the operation room (OR) to provide

clinicians with contextual support at appropriate time (Bardram and Nørskov

2008, Nakawala et al. 2017, van Amsterdam et al. 2020). Applications in-

clude remaining time estimation, resource scheduling, decision support, etc.

In order to achieve this goal, understanding OR content by analyzing sur-

gical activities in different granularity is the prerequisite. The definition of

surgical activity depends on the level of abstractions is kind of vague due

to the difference of the subjective cognition. We adopt the notion of activ-

ity granularity presented in (Lalys and Jannin 2014) as shown in Fig. 1.1.
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Surgical procedure (types of surgery such as cholecystectomy and adrenalec-

tomy) is the coarsest level. Each surgery contains a list of phases, which

are the major events occurring during surgery. Taking cholecystectomy as

an example, it contains seven phases: preparation, calot triangle dissection,

clipping and cutting, gallbladder dissection, gallbladder packaging, cleaning

and coagulation and gallbladder retraction. A phase can be divided into a

sequence of steps to achieve a certain task, for instance, suturing and needle

passing. Taking one step further, a surgical step consists of several basic

actions, for example, pushing needle through tissue. Then we have motion

trajectory with no semantic information, and the finest level is the presence

of the person or object.

Figure 1.1: Axis shows the granularity of surgical activity from the finest
level (left) to the coarsest level (right)

Early methods analyze surgical activities using motion data (Judkins

et al. 2009, Bodner et al. 2004) (e.g. instrument usage, trajectory, and to-

tal distance traveled), however, additional sensors(Bardram et al. 2011) and

human defined motion metrics are always required. Other approaches apply

handcrafted visual cues, including pixel values, color, shape, etc., and model

the data with statistic models (Hidden Markov and its variants) (Tao et al.

2013, Reiley and Hager 2009, Tao et al. 2012). Results from these methods

are plausible and interpretable. Nonetheless, handcrafted features are empir-

ically, and HMM models need manually decompose the surgical action and

tune the hard parameters.

In recent years, deep learning algorithms have achieved the great perfor-

mance in various computer vision tasks, including action recognition (Wang

et al. 2016), image classification (Krizhevsky et al. 2012), image segmen-

tation (Ronneberger et al. 2015), etc. Higher level representations can be

progressively extracted from the raw input. There has been a growing inter-

est in utilizing deep learning techniques for surgical activities understanding.
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For example, in (Wang and Fey 2018), the authors design an end-to-end con-

volutional neural network for surgical skill assessment using 76 dimensional

kinematics data. In another study, Twinanda et al. (2016a) propose En-

doNet to jointly detect surgical phase and tool presence on cholecystectomy

videos.

Whereas, deep learning methods in surgical activity analysis are still

under-explored because of the limited accessibility of medical data and the

high-dimensional and irregular surgical content. Accordingly, to solve the

surgical data shortage problem, we use the pre-trained models from the open

domain to extract the low-level visual feature and apply the transfer learning

on the top. Our motivation is to design novel deep learning networks to un-

derstand surgical content and provide context-aware assistance for minimally

invasive surgery. Figure 1.2 shows a conceptual of vision-based context-aware

assistance.

Particularly, we focus on vision-based (surgical videos and images) ap-

proaches on account of following reasons. First, owing to the enormous inno-

vations on computer aided surgery (CAS) (Raab 1998) and robotic-assisted

minimally invasive surgery (RMIS) such as da Vinci (Bodner et al. 2004) sys-

tem, it is straightforward to record and access to surgical videos and images.

Whereas additional devices are required for other types of digital signals.

For example, radio-frequency identification (RFID) tracking systems electro-

magnetic (EM) sensors are often employed to track instrument usage and the

movement of clinicians (Parlak and Marsic 2013, Parlak et al. 2011). Second,

visual information owns high-dimensional and abundant features than other

digital signals. For instance, the kinematics data can only roughly describe

how the current action is performed (with position, angle, velocity param-

eters) without knowing what is actually performed, which is the additional

information from the visual data. Several applications can only achieved by

analyzing visual data, such as video summarization, video segmentation and

indexing, and concept retrieval.
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Figure 1.2: The context awareness system automatically recognize the
surgery type, the current surgical action, the expertise level of surgeon and
generate the instruction

1.2 Main Challenges

Although related technologies (video classification, action recognition, image

captioning) have been well studied in general computer vision community,

vision-based deep learning methods for surgical activities analysis is still at

its early stage. This is mainly because the MIS scene is different with the

visual data used in general computer vision research. Specifically, daily scenes

often include differentiable foreground (such as human, animal, plant, etc.)

and different background. While most of the surgical activities share similar

environment due to the similar appearance, color, and texture of human

anatomic structure. On the other hand, surgical data often has high level of

heterogeneity. Because surgical process is specific to the medical condition,

the surgeon and the patient (Lalys and Jannin 2014), the process varies

significantly from one to another. In addition, the operation environment for

MIS is particularly complicated, the motion of the camera and the frequent

usage and movement of the instruments cause the problem of occlusion, blur,

and the presence of the smog (see Fig 1.3). Therefore managing, analyzing,

and understanding the content of surgical activities is still highly challenge

for above reasons. Overcoming these challenges requires the techniques to

extract high level discriminative information to represent surgical activities

4



from the complicated and heterogeneous data.

Figure 1.3: Examples of blurry image, the occlusion and the movement of
the camera

1.3 Aims and Objectives

This thesis aims to analyze surgical content and design a vision-based context-

aware system to provide efficient assistance for MIS. Following the surgical

granularity in a top-down manner, from the coarse to fine level, we focus on

vision-based surgical skill assessment for a surgical procedure, fine-grained

surgical action detection, and single shot surgical instruction generation for

context aware surgical activities analysis. Based on our aims, we identify our

research questions and objectives as follows:

• How to identify skill level from a long and untrimmed surgical

video? Videos in general computer vision field usually last for seconds

or few minutes, however surgical videos always continue for minutes or

even hours. In addition, some surgical actions take few seconds while

some take minutes, and they do not equally contribute to the skill

determination. The major difficulty is to efficiently model dependencies

between the skill level and related frames.

• How to jointly segment and classify fine-grained surgical ges-

tures? Fine-grained surgical gestures have low inter-class variance and

high intra-class variance based on the fact that a surgery procedure is

5



performed in an environment with little changes and limited field of

view. In addition, the same instrument can be applied in different ges-

tures and one gestures might need multi-instruments. The challenge is

to extract spatial features and build the dependency between frames.

• How to generate surgical instructions from a single image?

Scenes captured in general environments often have discriminate back-

ground and characteristics. However, surgical images always has high

similarity in appearance due to the constant background and similar

color and texture of the anatomic structure and instruments. It is par-

ticularly difficult to bridge the visual patterns with informative human

linguistic descriptions in a dataset with the limited size.

In order to answer these questions, this thesis aims to achieve three major

objectives:

• Our first objective is to objectively assess surgical skill levels taking

surgical videos as the only input. In particular, we focus on designing

a framework to automatically extract representative spatial-temporal

features for skill determination. This objective is explored in Chapter 3.

• The second objective is to jointly segment and classify surgical ges-

tures from the long and untrimmed surgical videos. Surgical gesture

recognition requires identify the start-end frames for each fine-grained

gestures. We concentrate on capturing both global and local spatial-

temporal dependencies. This objective is achieved in Chapter 4.

• Finally, we aim to generate natural human language captions from a

single image as the instruction for surgeons. We try to bridge the gap

between visual and textual information. Ideally, the algorithm should

be able to look at the image, understand current situation, and generate

the relevant guidance. This objective is addressed in Chapter 5.
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1.4 Contributions

The main contribution of this thesis is to propose novel vision-based deep

learning solutions for surgical activities understanding, such that the meth-

ods can be applied for context-aware MIS assistance. Our main concern is

to bridge semantic gap between low level visual information and high-level

medical concept. The detailed contributions in each chapter are summarized

as follows:

• In Chapter 3 we propose a novel network architecture to automat-

ically assess surgical skills only using RGB surgical video sequence.

Our structure applies a 3D residual network (3D ResNet) to extract

spatial-temporal features and involves frame-to-frame relational fea-

tures through a self-attention module. We evaluate our method on

three fundamental robotic surgical tasks (suturing, needle passing, and

knot-tying). In addition to the original expertise level prediction task,

we also use our framework to evaluate the six assessment standards con-

currently. We achieve nearly 100% accuracy for three tasks. In regard

to the six standards evaluation, except for the time and motion, which

we infer is unrelated to the skill determination, predictions of other

five targets achieve satisfying accuracy, ranging from 56% to 91%. The

results indicates that our architecture is able to obtain representative

features by extensively considering the spatial, temporal and relational

context from raw video input. Accordingly, this technique introduces

applications such as the automatic generation of the comprehensive

skill assessment report.

• In Chapter 4 we propose a novel temporal convolutional architecture

to automatically detect and segment surgical gestures with correspond-

ing boundaries only using RGB videos. We devise our method with a

symmetric dilation structure bridged by a self-attention module to en-

code and decode the long-term temporal patterns and establish the

frame-to-frame relationship accordingly. We validate the effectiveness
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of our approach on a fundamental robotic suturing task from the JIG-

SAWS dataset. The experiment results demonstrate the ability of our

method on capturing long-term frame dependencies, which largely out-

perform the state-of-the-art methods on the frame-wise accuracy up to

∼6 points and the F1@50 score ∼6 points.

• In Chapter 5, inspired by the neural machine translation and imaging

captioning tasks in open domain, we introduce a transformer-backboned

encoder-decoder network with self-critical reinforcement learning to

predict instructions from surgical images. We evaluate the effective-

ness of our method on the DAISI dataset, which includes 290 pro-

cedures from various medical disciplines. Our approach outperforms

the existing baseline over all caption evaluation metrics. The results

demonstrate the benefits of the encoder-decoder structure backboned

by transformer in handling multimodal context.

• In Chapter 6, we presents an application by designing and implement-

ing a Unity-based laparoscopic cholecystectomy simulator as a starting

point in order to share the idea of combining the pre-operative surgical

training, intra-operative surgical guidance, and post-operative surgical

skill assessment into a whole system. Our design leverages physical

simulation and haptic force feedback to offer trainees a realistic visual

and tactile experience, respectively. We explore the possibility of using

game engine rather than developing from scratch to build the surgical

simulator. Based on the results and user feedbacks from a pilot ex-

periment, we conclude that game engine is a viable option for creating

a cost-effective, flexible and highly interactive virtual surgery training

platform for pedagogical purpose, which can shorten the development

time.
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1.6 Outline of Thesis

This thesis is organized as follows:

• Chapter 2 reviews the state-of-the-art approaches for surgical content

analysis, including surgical skill assessment, surgical gesture recogni-

tion, surgical instruction captioning, and their corresponding vision-

based techniques.

• Chapter 3 contains the proposed method for automatic multi-task sur-

gical skills assessment

• Chapter 4 includes fine-grained surgical gesture recognition task with

encoder-decoder symmetric dilated architecture

• Chapter 5 describes our method of generating surgical instruction,

which use the transformer encoder-decoder with reinforcement learning

• Chapter 6 implement a Unity-based laparoscopic cholecystectomy sim-

ulator towards integrating the context awareness surgical system

• Chapter 7 concludes the paper and discuss the possible solutions to

improve the current study
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Chapter 2

Literature Review

In this chapter, we discuss previous works related to surgical activity anal-

ysis. We first review some application scenarios for context-awareness sys-

tem and the next generation surgery. Then we discuss state-of-the-art ap-

proaches in vision-based surgical skill assessment for a surgical procedure,

fine-grained surgical action detection, and image based surgical instruction

generation. Finally, we review corresponding deep learning based techniques:

action recognition, action segmentation, and image captioning.

2.1 Context-aware Assistance for Surgical Ap-

plications

2.1.1 Surgical Applications

Surgical data science will build next-generation surgery (Maier-Hein et al.

2017). This emerging scientific field focuses on collecting, managing, analyz-

ing and modelling surgical data to assist the whole patient-care pathway (see

Fig. 2.1). Among great varieties technologies of surgical data science, surgi-

cal activity understanding is the prerequisite of building context-awareness

system. Specifically, such system has many intra-operative and post-

operative applications.

1. Intra-operative applications The intra-operative applications of

context-aware system involve surgical support for surgeons and resource
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Figure 2.1: Evolution of surgery (Maier-Hein et al. 2017). In the past, sur-
geons perform the treatment only based on their own experience with min-
imal devices and tools. At present, abundant information and equipment
are accessible. But still, a treatment only rely on domain knowledge. In the
future, surgical data science will integrate everything together.

scheduling (Franke et al. 2013). For example, real-time surgical ges-

ture recognition would be able to decide the suitable time to provide

useful information (e.g. overlay simulated structure for MIS as shown

in Fig. 2.2). Moreover, it can be applied to estimate the remaining

time (van Amsterdam et al. 2020) for OR resource management such

that minimize the waiting time for patients. In addition, by deeply

analyzing surgical workflow, the system can detect rare case or wrong

action and provide instructions to handle these cases.

2. Post-operative applications As for post-operatively, gesture recog-

nition can help with the surgical context indexing and management.
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For example, if a novice surgeon want to learn the gallbladder dissec-

tion procedure from laparoscopic cholecystectomy, he or she needs to

manually find the video in database and scroll the video to the wanted

part. With the context-aware assistance, the surgeon can just search

the name of that procedure. Furthermore, with the help of surgical

skill assessment, the system can evaluate the performance, generate

the surgical report, and give improvement suggestions for training and

education purpose.

Figure 2.2: Registration of a physically-based liver model during a minimally
invasive liver surgery (Haouchine et al. 2014)

2.1.2 Surgical Skill Assessment

Traditionally, the ”see one, do one, teach one” approach of Halsted (Kerr

and PATRICK 1999) is the mainstream to train a novice surgeon. Besides

the long training curve, the huge expenditure in capital and resources, etc.,

the performance assessment from the experienced surgeon is rather subjec-

tive and insufficient. Objective structured assessment of technical skill (OS-

ATS) (Martin et al. 1997), a global rating score system, has been developed

to evaluate specific surgical skills for trainees in an objective and systematic
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manner. But still, the manual OSATS assessment costs time and human

labor resources, because experts are required to observe trainees performing

the operation. Under this circumstance, the automatic assessment of dexter-

ous surgical skills while eliminating the subjective factor and implementing

the self-guided training becomes crucial. The major challenge of this idea is

how to handle and analyze the data such that surgeons can improve their

dexterity upon these information.

Before the deep learning era, objective skill assessment techniques mainly

fall into two strategies: motion feature based, and latent state representation

and interpretation. Number of researches have shown the inseparable corre-

lation between the skill level and surgical motions (Bodner et al. 2004, Datta

et al. 2001, Judkins et al. 2009), for instance, the instrument trajectory and

orientation, number of actions, and the operation time. Accordingly, the first

strategy concentrates on observing different motion features and designing

the descriptive metrics to identify surgical skill. In (Judkins et al. 2009),

the authors measure the time to task completion, total distance of path,

speed, curvature, and relative phase for three laparoscopical training tasks

to clearly differentiate the performance between the expert and the novice

surgeon. Nevertheless, motion metrics were selected humanly, so defining the

optimal metrics is always a controversial problem.

Differ from the first straightforward methodology, the other one tends to

transfer the raw motion data into an intermediate representation, and us-

ing this latent interpretation to evaluate the skill. It can be further divided

into machine learning based and statistic model based approaches. Machine

learning based approaches usually work with the Bag-of-Words (BoW) (Bet-

tadapura et al. 2013) expression using motion features (see Fig. 2.3) (Fard

et al. 2016), or more robust feature descriptors such as Histogram of Gra-

dients (HOG) (Zhang et al. 2013). Subsequently, different machine learning

algorithms (e.g. logistic regression (LG), support vector machine (SVM),

k-nearest neighbors (kNN)) are explored for expertise level classification. It

is worth noticing that the handcrafted feature selection is reckless, because

some valuable features are possible to be neglected. While the statistic model
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based approaches focus on decomposing a surgical task into a series of pre-

defined atomic gestures. The statistic modeling algorithms, HMM and its

variants (Reiley and Hager 2009, Tao et al. 2012, Zhang and Li 2011, Wang

and Mori 2009), are then applied to maximize the likelihood for a given se-

quence. However, the process of manually decomposing surgical gestures is

tedious, not to mention the hard parameters tuning for Markov model.

Figure 2.3: Different motion trajectories for expert and novice surgeons (Fard
et al. 2016)

A comprehensive review of deep learning in medical image analysis was

presented in (Litjens et al. 2017). Here, we only review some related deep

learning applications in surgical video analysis and skill determination.

As for the automatic surgical skills assessment, deep learning related al-

gorithms are still under-explored. Notwithstanding the fact that existing

deep learning evaluation methods have achieved high accuracy ranging from
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93% to 100% (Fawaz et al. 2018, Funke et al. 2019b, Wang and Fey 2018),

they either require the kinematics data or fail to capture the long-range tem-

poral dependency. There are other similar skill determination studies not

limit to medical application. In Parmar and Tran Morris (2017), Parmar

and Morris utilize 3D convolutional neural networks (C3D) and followed by

the long short-term memory (LSTM) networks to score Olympic events. In

another work, Doughty et al. (2019) take advantages of the Siamese Net-

work (Bertinetto et al. 2016) and customized triple loss function to rank

the skills for different tasks (scrambling eggs, braiding hair, suturing, etc.).

Among their results, the surgical task gets the lowest final score, it indicates

that the architecture designed for the general skills evaluation is insufficient

to capture fine-grained surgical motions for different skill levels.

2.1.3 Surgical Action Recognition

As discussed in Chapter 1, surgical activities follow a descending order of

granularity. Most of the researches focus on decomposing and classifying

coarse level activities (surgical phases), or recognizing fine-grained activities

(gestures and tasks). Some of the researches also try to detect and analyze

lower level activities, such as key shots and surgical episodes. In this sec-

tion, we review related techniques for surgical phase recognition and surgical

gesture recognition as these two areas have high correlation to our study.

Surgical phase recognition is defined as surgical workflow analysis (SWA).

It has many important clinical applications, for instance, operational time

scheduling, key phrase indexing, etc. In order to find the semantic concept

from low level visual information, the pipeline of surgical activities analysis

generally includes: video segmentation (dividing the video into structural

units), feature extraction (representing the object or action), feature match-

ing, and action classification (Hu et al. 2011).

Some of the early works depend on tool usage signals to identify current

phase (Padoy et al. 2012, Stauder et al. 2014, Bouarfa et al. 2011), however,

this requires recording and annotating tool data at each time step, which
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is time-consuming and costly. Correspondingly, content-based phase detec-

tion has shown growing interest. In (Blum et al. 2010), the authors achieve

phase recognition tasks by combining histograms, colour values, and gradi-

ent magnitudes etc. features. Then, three different algorithms are applied,

namely dynamic time warping (DTW), combinations of hidden Markov mod-

els (HMMs), and principle component analysis (PCA).

In addition, more advanced feature extraction and classification approaches

based on deep learning have been recently proposed. Twinanda et al. pro-

pose Endonet (Twinanda et al. 2016a), which fine-tunes AlexNet (Krizhevsky

et al. 2012) architecture for jointly detecting surgical phase and tool presence

on laparoscopic cholecystectomy videos (see Figure 2.4). The highest preci-

sion reaches 92.2% and 86% for online and offline recognition, respectively.

This work has been regarded as the baseline of surgical phase recognition

based on deep learning. Later on, Jin et al. (2018) combine a fine-tuned

Resnet50 architecture for visual feature extraction and LSTM network to

encode temporal information. Lea et al. (2016) also use Spatiotemporal CNN

to capture object motion over short time intervals, for offline surgical phase

recognition.

Beyond the recognition of coarse phases, some studies apply Hidden

Markov Model (HMM) (Tao et al. 2013) and its variants (Lea et al. 2015)to

identify the latent state of surgical actions. The latent states transferring

among successive actions are subsequently modelled by the transition proba-

bility. Although state features in HMMs are interpretable, they only focus on

few local frames hence making the model incapable of capturing the global

pattern. In addition, some machine learning methods (i.e. Support Vector

Machine (SVM) (Twinanda et al. 2016a)) assemble multiple heterogeneous

features (color, motion, intensity gradients, etc.) to localize and classify sur-

gical actions. Nonetheless, these features are hand-crafted. Therefore some

crucial latent features could be neglected during feature extraction procedure.

More recently, Liu and Jiang (2018) employ deep reinforcement learning

algorithm to model the task as a sequential decision-making process and

reduce the over-segmentation error. Every time step, the agent look through

the video sequence from the beginning and gradually learns a strategical
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policy to classify the frame based on the reward. Furthermore, in order to

extract discriminative features from kinematics data, van Amsterdam et al.

(2020) present a framework to simultaneously recognize the surgical gesture

and predict the surgical task progress. The results prove that multi-task

architecture improve the performance of surgical gesture recognition without

any additional human annotation.

Figure 2.4: Endonet architecture for tool detection and surgical phase recog-
nition (Twinanda et al. 2016a)

2.1.4 Surgical Instruction Generation

Surgical instruction generation deals with the problem of automatically cre-

ating guidance from images of surgical procedure. The only prior work for

generating surgical instructions from medical images is (Rojas-Muñoz et al.

2020), which is also the baseline of our work in Chapter 5. In their work, the

authors present a Database for AI Surgical Instruction (DAISI) and use bi-

directional RNN to generate image captions. Correspondingly, we review the

most closely related topic, medical report generation. Manual report writing

can be subject to error for novice and tedious for experienced physicians.

Given a medical image, such as radiology or pathology, automatic report

generation aims at describing the impression , findings , tags , etc. for the

patient (see Fig. 2.5 as an example).

Medical report generation is a relatively new research field, because the

combination of image and human language is particular challenging. On
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Figure 2.5: The chest x-ray report example has the findings section for exam-
inations from different body areas and the tags section indicates key clinical
information (Demner-Fushman et al. 2016)

the other hand, due to the privacy and sensitiveness of patient data, such

resources are not easily accessible, and current public available dataset is

rather small or noisy (Pavlopoulos et al. 2019). Some of the early works

intend to match semi-template or template texts descriptions to medical im-

ages. Taking both optical coherence tomography (OCT) images and textual

input, Schlegl et al. (2015) trained a CNN to extract semantic concepts from

the textual report and classify images. In (Shin et al. 2016), the authors

adopt a CNN-RNN architecture for key words (e.g. locations, disease) pre-

diction from chest x-ray images.

One of the earliest medical report generation works based on natural

language is (Jing et al. 2017), where a pipeline of jointly predicting tags

and generating long paragraphs with co-attention and hierarchical LSTM

is proposed. However, applying conventional image captioning approaches

is not sufficient for medical report generation, because radiology report are

usually consists of a long paragraph with multiple sentences. In another

study, Li et al. (2018) combine the traditional retrieval-based and contem-

porary learning-based approaches with manually extracted template. They

train an agent using deep reinforcement learning, which is updated in re-

gards to sentence-level and word-level rewards. More recently, Chen et al.

(2020) improve the transformer model (Vaswani et al. 2017) by designing a
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relational memory to record key information of the generation process and a

memory-driven layer normalization for transformer decoder.

Despite the challenges, medical reports also have their own discriminating

characters. They often share predefined topics and follow similar writing

templates, while surgical instruction prediction with natural language has

no template to follow.

2.2 Vision-based Techniques

Because our study focuses on using recordings of surgical procedures to assist

the surgical skill assessment, surgical gesture recognition and surgical proce-

dure instruction for context-aware MIS. In this section, we review the corre-

sponding vision-based techniques behind the proposed surgical solutions.

2.2.1 Action Recognition

Action recognition has been an active research topic in computer vision com-

munity for decades. Generally, it can be comprehended as the extension

from single image classification to multi-frames action classification, which

aggregates the information for every single frame and identify different ac-

tions from videos. Due to huge computational cost and the difficulties of

capturing long text, action recognition faces many challenges.

Before deep learning based approaches, conventional computer vision ap-

proaches can be broadly divided into three steps: 1) Extracting high dimen-

sional visual features, either densely (Wang et al. 2011) or sparsely with set

of interest points (Laptev 2005, Dollár et al. 2005). Among all the hand-

crafted feature extraction, iDT (improved dense trajectories) (Wang and

Schmid 2013), which estimate camera motion by matching feature points

between frames using SURF descriptors (Bay et al. 2006) and dense opti-

cal flow, achieves state-of-the-art performance; 2) Combining and encoding

the extracted features into video-level description (for example, bag of visual

words); 3) Training a classifier such as SVF or RF for final prediction.
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Soon after, two breakthrough backbones are proposed for action recogni-

tion, namely single stream (Karpathy et al. 2014) and two stream (Si-

monyan and Zisserman 2014a) network. Single stream architecture fuse

spatial-temporal features from consecutive video frames using one and only

network. Many methods are derived from single stream, including LSTM

based (Donahue et al. 2015) and 3D convolution based (Tran et al. 2015, Yao

et al. 2015) (see Figure 2.6 for the difference between 2D and 3D convolu-

tion). While two stream architecture are built upon two separate networks

with one for spatial features modeling and the other for temporal features

modeling. For example, if a task needs to differentiate between wash face

and wash hair, the spatial branch are able to capture the spatial charac-

ter (if it is face or hair) and the temporal branch can capture the duration

of the action. Temporal segment networks (Wang et al. 2016) first divide

a video into K segments with same lengths. Then they randomly sample

snippets from each of the K segments and combine scores of spatial and

temporal streams separately by averaging across snippets. Finally, weighted

average and softmax are applied over all classes to fuse the final score. An-

other two-stream based study worth to mention is I3D (Two-Stream Inflated

3D ConvNet) (Carreira and Zisserman 2017), which demonstrate the ben-

eficial of using 2D pre-trained convolutional networks. This research takes

advantages of the 2D pre-trained models on Kinetics and apply two different

3D networks for both spatial and temporal streams. Plenty of the action

recognition and action detection tasks use the extracted I3D features as the

backbone (Hara et al. 2018, He et al. 2019a, Feichtenhofer et al. 2019).

2.2.2 Action Segmentation

Unlike action recognition task, which only has one action class in each video,

action segmentation requires jointly detect and segment multi-class actions

with their corresponding boundaries from untrimmed videos. Despite the

huge progress in recent years, number of intuitive challenges still exists 1)

Temporal boundaries are vague, so it is hard to define the exact start/end

frame for an action; 2) Still image features can determine the video class
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Figure 2.6: Comparison between 2D and 3D convolution. Where k is the
kernel size, T stands for the time, and d is the kernel size on time dimension

in action recognition task, although it is better to combine with the tem-

poral features. However, in action detection task, temporal information is

indispensable; 3) Time durations between different actions are huge. Some

actions only sustain for few seconds, whereas some last for minutes.

Early studies for action segmentation can be divided into two categories:

sliding window approaches (Rohrbach et al. 2012, Karaman et al. 2014) with

multi-scale temporal windows to segment actions and hybrid approaches (Kuehne

et al. 2016, Richard et al. 2017), which use Markov models for coarse tempo-

ral modeling above the frame-wise classifiers. Although conventional models

works well on modeling temporal dependencies, it takes too much time and

computational power to solve the maximization problem over long sequence.
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While recent studies solve action segmentation problem in two stages: 1) Ex-

tracting the spatial or spatial temporal features by pre-trained CNN models

(e.g. Res3D (Hara et al. 2018, Kataoka et al. 2020)); 2) Feeding the features

into a one-directional model. In this regards, large number of approaches de-

pend on Recurrent Neural Networks (RNN) (Singh et al. 2016, DiPietro et al.

2016), particularly, the Long Short Term Memory (LSTM) network, because

of their notable ability of modeling sequence data in variable length. The

gate mechanism of LSTM preserves temporal dependencies and drops irrele-

vant information during the training stage. However, LSTM-based methods

only have limited ability of capturing long-term video context, due to the

intrinsic vanishing gradient problem (Pascanu et al. 2013).

From another perspective, inspired by the success of temporal convolu-

tion in speech synthesis, Lea et al. (2017) introduce Temporal Convolutional

Networks (TCNs) to segment and detect actions by hierarchically convolving,

pooling, and upsampling input spatial features using 1-D convolutions and

deconvolutions (see Fig. 2.7). The promising experiment results manifest

that TCNs are capable of dealing with long-term temporal sequences (Lei

and Todorovic 2018, Ding and Xu 2018). Nonetheless, the model handles

information among local neighbors, thus showing incapabilities in catching

global dependencies. Following this work, Farha and Gall (2019) suggest a

multi-stage TCN, in which each stage is composed of several dilation lay-

ers, for action segmentation. Their work demonstrates the competence of

dilated convolution (Oord et al. 2016) in hierarchically collecting multi-scale

temporal information without losing dimensions of data.

2.2.3 Image Captioning

Image captioning, a class of sequence learning problem, is a task of automat-

ically describing visual content for still images with natural human language.

As such, it requires machine to understand and model the dependencies be-

tween visual and textual information and generate captions. Image caption-

ing is a one-to-many task due to the reason that there are many possible

captions correspond to one image. During the generation process, different
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Figure 2.7: An encoder-decoder temporal convolutional network architecture
to capture the temporal information from long and untrimmed sequence (Lea
et al. 2017)

captions might focus on different parts of the image (Dai et al. 2017). This

creates the huge challenge for designing the captioning models as well as eval-

uating them. The comprehensive review of sequence generation and image

captioning can be found in (Staniūtė and Šešok 2019, Lipton et al. 2015).

A typical image captioning system has an encoder-decoder architecture

that applies a CNN (convolutional neural network) to extract a high-level

feature representation and a RNN (recurrent neural network) with a word

vocabulary as the decoder. There are three popular choices of image encoder,

VGG Network (Simonyan and Zisserman 2014b), ResNet (He et al. 2016),

and Bottom-up features (Faster R-CNN with ResNet pre-trained on Ima-

geNet and attribute features with Visual-Genome data) (Russakovsky et al.

2015, Krishna et al. 2017, Anderson et al. 2018). Few studies also select

Google Net (Szegedy et al. 2015, Zhao et al. 2019), DenseNet(Huang et al.

2017, He et al. 2019b, Deng et al. 2020), or the novel Visual Commonsense

R-CNN features (Wang et al. 2020) based on casual intervention. As for

the language model, mainstream methods tend to choose a RNN network
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(such as LSTM) with attention mechanism (Xu et al. 2015, Lu et al. 2017

2018) (Figure 2.8 are some soft-attention visualization results using (Xu et al.

2015)) or transformer based self-attention mechanism without any RNN (Pan

et al. 2020, Herdade et al. 2019, Cornia et al. 2020).

From another perspective, sequence generation models are often trained

in “Teacher-Forcing” (Bengio et al. 2015), which inputs the ground-truth to

maximize the likelihood of next prediction during training and uses previ-

ously generated words from the model distribution to predict the next work

during test time. In order to alleviate the mismatch between train and test

and improve the evaluation performance, Rennie et al. (2017) propose the

reinforcement learning based approach to directly optimize the Cider score.

Rather than design a baseline to normalize the rewards and reduce the vari-

ance, they use the reward obtained by the current model under the inference

time at the time to normalize the rewards. Later on, Many variants of self-

critical sequence training have also been proposed. (Gao et al. 2019, Zhang

et al. 2017b, Liu et al. 2017)

2.2.4 Evaluation Metrics for Image Captioning

Besides the sequence generation task, how to automatically evaluate the gen-

erated captions has become increasing important. The key idea is to measure

the correlation of generated captions with human judgments. Following most

of the image captioning methods, we apply BLEU (Papineni et al. 2002),

Rouge-L (Lin 2004), METEOR (Banerjee and Lavie 2005), CIDEr (Vedan-

tam et al. 2015), and SPICE (Anderson et al. 2016) to evaluate our model,

while the first three metrics are originated from machine translation and the

last two are specifically designed for image captioning.

BLEU (Bilingual Evaluation Understudy) applies the modified precision to

compare the similarity between the candidate sentence against one or more

reference sentences. It is defined as:

BLEU = BP · exp(
N∑
n=1

wn log pn) (2.1)
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Figure 2.8: Visualization of attention states (Xu et al. 2015)

where n is n-gram and wn is the weight. The equation stands for the geo-

metric mean of weighted n-gram precision scores pn multiplied by a brevity
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penalty BP . In this regards:

pn =

∑
i

∑
kmin(hk(ci),maxj∈mhk(sij))∑

i

∑
kmin(hk(ci))

(2.2)

where hk(ci) is number of times word k appear in generated sentence and

hk(sij) is number of times word k appear in reference sentence. However, the

calculation of pn works well for the short sentence, so the authors a penalty

factor to penalize the short sentences.

BP =

{
1 if lc > ls

e1−
ls
lc if lc <= ls

(2.3)

where lc is the length of the generated sentence and ls is the length of the

reference sentence.

ROUGE-L ROUGE is originally proposed for summary evaluation and it

only focus on recall. ROUGE has many different types, such as ROUGE-N,

ROUGE-L and ROUGE-W. Here, we use ROUGE-L, which measures the

longest common subsequences (LCS) between a pair of sentences to evalu-

ate the model performance. Suppose X and Y are candidate and reference

sentences of length m and n. Then we have:

P =
LCS(X, Y )

m

R =
LCS(X, Y )

n

(2.4)

then the weighted harmonic mean of P and R is calculated as:

F =
(1 + β2)RP

R + β2P
(2.5)

METEOR is another machine translation evaluation metric, which is claimed

to have better correlation with human judgments than BLEU. Considering

the Wordnet synonyms and paraphrase matching, it calculates the weighted

F score of unigram matches between sentences and a penalty factor Pen for
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incorrect word order.

METEOR = (1− Pen)× Fmeans

Fmeans =
PR

αP + (1− α)R

P =
m

c

R =
m

r

(2.6)

where α is an adjustable parameter, m is number of matched unigrams from

the candidate sentence, and c and r is the length of candidate sentence and

reference sentence, accordingly. And,

Pen = γ(
ch

m
)β, where 0 ≤ γ ≤ 1 (2.7)

here ch is number of matching chunks between sentences. Under this cir-

cumstance, if most of the matches are continuous, there will be less chunks

and lower penalty.

CIDEr is a recent proposed metric for evaluating image captioning based on

consensus between candidate description c and the set of reference sentences

S. The key idea behind CIDEr is regarding every sentence as a document and

calculating its TF-IDF (term frequency-inverse document frequency) weight.

Then the cosine similarity is measured between n-grams candidate and ref-

erence TF-IDF.

CIDEr(c, S) =
1

M

M∑
i=1

gn(c) · gn(Si)

‖gn(c)‖ × ‖gn(Si)‖
(2.8)

where M is the amount of reference sentences and gn(.) represent the TF-

IDF weight of n-gram. CIDEr gives more weights to important words and

penalize the common words.

SPICE is also designed for image description similarity evaluation. It takes

the semantic meaning into account and parses the candidate and reference

sentences into scene graphs. Scene graph can be explained as a semantic

representation of the given sentence with semantic tokens such as object

class C, attributes A, and relations R. An example of scene-graph is shown

in Fig. 2.9
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Figure 2.9: An example of scene graph (Anderson et al. 2016)
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Chapter 3

Attention based Multi-task
Surgical Skill Assessment

3.1 Introduction

The importance of teaching and assessing surgical skills before a trainee

becoming a qualified surgeon cannot be overestimated. Despite the fast de-

velopment of the computational and simulation methods, surgical skills are

mainly assessed manually by experienced surgeons who need to monitor or

check the whole operation process. Apparently, it is time-consuming and

labor-intensive, and lack consistency and reliability. As a result, surgical ed-

ucation and training area would benefit from the idea of automatic surgical

skills assessment.

Some recent studies artificially partition a surgical task into several pre-

defined gestures. Then they apply the statistic model, such as Hidden Markov

Model (HMM) (Tao et al. 2012) to find the latent structure for the whole pro-

cess. Although the result is interpretative and promising, this requires huge

human labour to label the video. Other studies address the automatic as-

sessment task by extracting and combining the features from motion, speed,

surgical instruments usage, etc. (Zia and Essa 2018). However, for one, it

is quite unclear how these handcrafted features impact the expertise level

of a surgeon. For another, possible significant features might be overlooked

during the feature extraction process.
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In the recent decade, the outstanding feature learning capability of deep

learning algorithms provides possible solutions to extract highly discriminat-

ing visual features for surgical video understanding. This prominent tech-

nique also benefits the automatic surgical skill assessment task. Fawaz et al.

(2018) leverage the 76 dimensional kinematic data with Multivariate Time

Series (MTS) to estimate different skill levels for surgical tasks. In order to

get the interpretative pattern, rather than the general fully connected layer

on the last step, they use Global Average Pooling (GAP) to get Class Acti-

vation Map (MAP) (Zhou et al. 2016). Despite nearly 100 percent accuracy,

additional devices and tracking systems are demanded to capture the data.

Another work treats this task as a video classification problem (Funke et al.

2019b). The authors evenly choose few video snippets (consist of 64 con-

secutive video frames) and extract their spatial-temporal features by a 3D

ConvNet. The ultimate decision is made by the consensus among the selected

snippets. Nevertheless, the method cannot capture the long-range temporal

information, and they mistakenly assume that all video parts equally con-

tribute to the skill classification.

In this chapter, we propose a novel architecture motivated by the success

of the attention mechanism (Bahdanau et al. 2014, Xu et al. 2015), specifi-

cally, self-attention model (Vaswani et al. 2017) for automatic surgical skills

assessment. Our entire model structure can be seen in Figure 3.1. Taking a

whole surgical video into consideration, we first extract its spatial-temporal

information by a 3D ResNet (Hara et al. 2018). Next, driven by the exper-

tise level prediction task, the attention network automatically collects the

long-term temporal information and builds one-to-one relationships for ev-

ery frame sequence. Our design is based on three observations and insights:

(1) Surgical video data owns high-dimensional and abundant features, and

it is much easier to obtain than other data format, for example, kinematics

information or motion trajectory; (2) Temporal information is as significant

as spatial features in a video sequence; (3) Some video parts or gestures

are irrelevant whereas some are critical for skill evaluation. We validate our

approach on the JHU-ISI Gesture and Skill Assessment Working Set (JIG-

SAWS) (Gao et al. 2014), including suturing, knot-tying and needle-passing.
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In this regard, we claim our contribution as three-fold:

1. We propose a network architecture for automatic surgical skill assess-

ment, which extensively consider and jointly combine the spatial, tem-

poral and attention information in video frames.

2. Based on the attention mechanism, our model takes a whole video

as the input. It intuitively shows superiority in handling long-range

temporal signals.

3. To our best knowledge, we are the first to propose the multi-task learn-

ing for objective surgical skill assessment.

Figure 3.1: The spatial and motion features are extracted from a pre-trained
network for an input video. Then the attention network builds the frame-to-
frame relationship for input feature sequence. Finally, the outputs are the
classification of the expertise level and the concrete skill assessment

3.2 Methodology

When we consider the video analysis, it is naturally to think of the Recurrent

Networks (RNN), since RNNs are designed for the sequence with varaince

length (DiPietro et al. 2016). However, the conventional RNN and LSTM
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are computational inefficient, and learning a long-range dependency is still

a challenge. In contrast, the attention model (Vaswani et al. 2017) solves

above problems without using any CNN or RNN module. The effect of the

attention mechanism can be explained as optionally seeking related informa-

tion in regard to the intention.

In our work, we first apply a pre-trained 3D residual network to pre-process

the input video (see section 3.3.2). Then the attention network permits each

frame to look at all other positions in the input sequence to build the vector

of importance. These dependencies focus on relevant information when pre-

dicting the expertise level and assess the technical skills for a surgical video.

Next, we review the key components of our model in details.

3.2.1 Attention Network for Skill Assessment

Figure 3.2 illustrates the technical pipeline of our revised attention model

for skill determination. Following the setting of original transformer en-

coder (Vaswani et al. 2017), the network is composed of N (in our work

N = 6 following the original attention paper) identical blocks. Each block

is further broken down into two sub-layers: the Self Multi-head Attention

layer (see 3.2.2) and a simple position-wise fully connected feed-forward net-

work. There is a residual connection and a layer normalization around each

sub-layer. The residual and layer normalization operation is expressed as:

y = LayerNorm(x + Sublayer(x)), where x is the input hidden state for

each sub-layer, and y is the corresponding output. Before the attention net-

work, extracted spatial-temporal features are first feeded into a Positional

Encoding layer (see 3.2.3) to get the absolute position information.

3.2.2 Self Multi-head Attention

Self-attention, sometimes also called as intra-attention, is an attention mech-

anism (Cheng et al. 2016) to represent an input sequence itself by establishing

one-to-all relationships among all positions. The basic self-attention function
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Figure 3.2: Attention network

is called Scaled Dot-Product Attention. It is computed as:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (3.1)

where Q stands for queries packed as matrix, K and V are matrices of

key-value pairs, and dk is the dimension of queries and keys. In our case,

keys, values and queries are input video features. The dot product is first

calculated between query and all the keys to find the similarity, then divided

by
√
dk to get stable gradients. Finally, a softmax function is applied to

get the weighted average mapping from inputs. This is our way of building

dependencies between every input frame sequence with all other frames.

In addition, rather than building just one type of correspondence, we use
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multi-head attention. The model runs scaled dot-product multiple times in

parallel. Using this method, input frames are projected to diverse represen-

tation sub-spaces by obtaining information from different positions.

headi = Attention(QWQ
i , KW

K
i , V W

V
i ) (3.2)

MultiH(Q,K, V ) = Concat(h1, ..., hh)W
O (3.3)

where matrices WQ
i , WQ

i , WQ
i and WO are projection parameters to

be learned during the training phase. Different linear transformations are

applied to the queries, values, and keys for each attention ”head”. In our

work, we follow the original settings, 8 parallel heads, from the transformer

model (Vaswani et al. 2017).

3.2.3 Positional Encoding

The attention network contains no positional information, since no recur-

rence nor convolution component are included. Intuitively, we use positional

encoding (Vaswani et al. 2017) to explicitly encode the relative and absolute

position of the original video sequence and added to the input frame features.

The positional encoding is computed as:

PE(pos,2i) = sin (pos/100002i/dmodel) (3.4)

PE(pos,2i+1) = cos (pos/100002i/dmodel) (3.5)

where pos represents the position and i is the dimension. More specifically,

each dimension of the positional encoding is a sine wave with the wavelengths

ranging from 2π to 10000 × 2π. This function enables the relative position

easily to be referred due to the fact that any PE[pos + k] can be easily

depicted as a linear function of PE[pos].
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3.3 Implementation

3.3.1 Dataset Description

The JIGSAWS dataset is captured using da Vinci surgical system from eight

surgeons with different levels of skill, that is expert, intermediate, and novice.

They perform five repetitions for three elementary surgical tasks on a bench-

top model: suturing (39 videos), knot-tying (36 videos) and needle-passing

(28 videos), which are recognised as standard components of most surgical

skills training curricula (Peters et al. 2004) as shown in Figure 3.3. Videos

are captured at 30HZ with a resolution of 640×480 pixels. In addition, a gy-

necologic surgeon with extensive robotic and laparoscopic surgical experience

watches each video and assigns a global rating score (GRS) using a modified

OSATS for six elements, namely respect for tissue, suture/needle handling,

time and motion, flow of operation, overall performance, and quality of final

product. Due to the limited data and imbalanced label, we divide each of

six elements into three levels: score 1-2 as poor performance, score 3-4 as

fair performance, and score 5 as good performance.We expect our network

automatically predicting the expertise level and evaluating six standards for

an input video in parallel.

Figure 3.3: Shortcut of three tasks, from left to right are: suturing, needle
Passing and knot-tying (Gao et al. 2014)

3.3.2 Pre-trained 3D ResNet

Although JIGSAWS is the largest open-source surgical skill assessment dataset,

it is still relatively small for training a deep neural network from scratch. In-
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spired by the recent success of transfer learning in image classification prob-

lem, we take the 3D ResNet (Hara et al. 2018) as a feature extractor. The 3D

ResNet has been trained on the Kinetics dataset, which is one of the largest

human action dataset including 400 action classes. The output is the spatial

and temporal features of 512 dimensions (after global average pooling) for

continuous 16 frames.

3.3.3 Implementation and Training Details

The model is trained on a single NVIDIA GeForce GTX 1080 graphics card.

Each training batch contains a complete surgical video pre-processed by the

3D ResNet (512 dimension for 16 consecutive frames) as input. The network

hyper-parameters settings are described throughout the paper.

Given that three tasks are different, we respectively fit these tasks by

training three different models with the same network architecture. The

suturing, needle passing and knot-tying tasks are trained 20 epochs with

the learning rate at 0.01, 0.001, 0.0001, respectively. Same architecture and

other hyper-parameters settings are shared. For the output of each sub-layer,

the dropout is performed before each sub-layer, and the probability is set to

Pdrop = 0.1. We use the Adam optimizer with β1 = 0.9, β2 = 0.98 and

ε = 10−9, and the standard cross-entropy loss.

3.4 Evaluation

3.4.1 LOSO Evaluation

Originally, authors of JIGSAWS dataset define two cross validation schemes:

leave-one-supertrial-out (LOSO) and leave-one-user-out (LOUO). The for-

mer one (splited into five folds) every time lefts the ith trial from eight sur-

geons for test and the rest for training. While the latter each time left all

the trails from the ith surgeon for test and the rest for training. Although

LOUO validation is efficient to test if a model works for a new subject, data

from JIGSAWS is insufficient to support such a validation. One reason is be-

cause of the limited data size and imbalanced label. JIGSAWS only contains
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8 subjects in total, including only two experts and two intermediate level

surgeons. In one validation round, if we left one expert for testing and the

other subjects for training, then we only have one expert in the training set.

This is also the case for intermediate level surgeons. On the other hand, the

official dataset defined the expertise level of a surgeon in accordance with the

robotic surgical experience by hours: experts have more than 100 hours ex-

perience, intermediate subjects have 10 to 100 hours experience, and novices

have less than 10 hours experience. Nevertheless, some of the intermediate

surgeons get higher score than experts for their performance in skill anno-

tation. Therefore, we follow the LOSO scheme as other related studies for

three separate tasks.

As the result, the Micro average accuracy, Macro average recall, and av-

erage F1 score are calculated for the predicted results. The micrio and macro

strategies are defined in (Ahmidi et al. 2017). Accuracy is the percentage of

correct predictions over total predictions. While recall is computed as the

ratio between the correct predictions of a specific class and the total instances

of this class. On the other hand, precision represents how many true posi-

tives are actually correct predictions among all the true positives predicted

by the model. And finally, F1 score is a weighted harmonic average between

precision and recall.

We compare our experimental results with deep learning related state-

of-the-art algorithms shown in Table 3.1. Notably, the first two approaches

( (Fawaz et al. 2018) and (Wang and Fey 2018)) are on the basis of kinematics

data from JIGSAWS, whereas (Funke et al. 2019b) and ours are video-based.

Moreover, the overall performance of the knot-tying task is worse than the

other two, hence we visualize the confusion matrix for knot-tying predictions

accumulated five training validations (shown in Figure 3.4). The 3× 3 con-

fusion matrix C describes: for C(i, j) where i, j ∈ {0, 1, 2} how many times

the class i are classified as class j. Class 0, 1, and 2 represents expert level,

intermediate level, and novice, respectively.
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Table 3.1: Expertise level prediction results on the suturing, needle passing
and knot-tying tasks. The results are averaged over five validation runs for
the test set. The result is measured in %

Methods Suturing Needle Passing knot-tying

Accu. avg.recall avg.F1 Accu. avg.recall avg.F1 Accu. avg.recall avg.F1

CNN (Fawaz et al. 2018) 100 100 — 100 100 — 92.1 93.2 —

CNN+SVM (Wang and Fey 2018) 94.1 — 92.3 90.3 — 87.0 86.8 — —

3D-CNN (Funke et al. 2019b) 100 100 100 100 100 100 95.1 94.2 95.0

Attention (proposed) 100 100 100 100 100 100 94.8 94.2 94.8

Figure 3.4: Confusion matrix for knot-tying

3.4.2 Multi-Task Learning

Apart from the assessment for expertise level, we also evaluate the six stan-

dards (respect for tissue, suture/needle handling, time and motion, flow of

operation, overall performance, and quality of final product) in a multi-task

manner. We divide each standard into three levels, score 1-2 as poor, score 3-

4 as fair and score 5 as good performance. The output from attention model

is utilized to predict the expertise level and six elements simultaneously. The

standard cross-entropy loss function is also refined to achieve the multi-task

prediction as:

loss = losse + lossmulti (3.6)

39



lossmulti =
1

m

6∑
i=1

lossi (3.7)

where the overall loss is the sum of loss of expertise level losse and the

mean average loss over six evaluation elements. Following the LOSO cross-

validation scheme, the results for three tasks are presented in Table 3.2.

Table 3.2: Multi-task learning for elements of modified global rating score.
The result is measured in %

Expertise

Level

Respect for

tissue

Suturing

needle handing

Time and

motion

Flow of

operation

Overall

performance

Quality of

final product

Suturing

avg.accuracy
1.00 0.82 0.77 0.26 0.75 0.78 0.85

Needle Passing

avg.accuracy
1.00 0.75 0.82 0.43 0.74 0.83 0.56

Knot tying

avg.accuracy
0.95 0.86 0.77 0.31 0.86 0.91 0.89

3.5 Discussion

Consequently, our approach outperforms the first two ConvNet models, which

relies on the 76 dimensional robot kinematics, whereas achieves more or

less similar accuracy with the 3D-CNN model. It can be inferred that the

pre-trained 3D CNN features together with the attention mechanism are

capable of automatically learning complicated spatial temporal video features

to assess the expertise level for a given subject sample. Although our model

presents slightly lower accuracy (0.3%) and average F1 score (0.2%) than the

3D-CNN (Funke et al. 2019b) method for the knot-tying task, it is possibly

caused by the limited dataset size. Intuitively, we believe our model is more

reasonable. The 3D-CNN model evenly extracts several video snippets cross

the video and aggregates proposals from each snippet as the final prediction,

thus it fails to catch the long-range temporal information. In contrast, our

input is the whole surgical video, such that there is no temporal information

lost, and the attention mechanism automatically learns relationships between

the target and the input frame sequences. Another point is that our approach

is much more faster. Both of the two approaches initialize the network input
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with a pre-trained 3D ConvNet (Inception-v1 I3D for (Funke et al. 2019b)

and 3D ResNet for our network). However, they train the TSN classifier

for 1200 epochs while we only train our network no more than 20 epochs to

achieve the similar performance.

Among three tasks, the knot-tying shows the lowest accuracy. The con-

fusion matrices from Figure 3.4 mainly mis-classsify the expert and the in-

termediate level subjects. There are 7 intermediate surgeons mis-classified

as expert. On the one hand, knot-tying is regarded as a rather complex task,

which is also supported by the results from other studies. On the other hand,

the dataset publishers defined the expertise level of a surgeon in accordance

with the robotic surgical experience by hours: experts have more than 100

hours, intermediate subjects have 10 to 100 hours, and novices have less than

10 hours experience. Nevertheless, when we check the skill annotation, it is

surprisingly to find that some of the intermediate surgeons get higher score

than experts for their performance. Our multi-task idea is mostly inspired

by this finding.

As for the multi-task predictions, Table 3.2 displays the satisfying pre-

dictions among the five individual elements, except the Time and motion.

It only reaches 26%, 43% and 31% accuracy for three tasks separately, as

the random guessing. One possible explanation is that the time and mo-

tion is not absolutely related to the skill determination, which need further

validation. We further visualize the accumulative confusion metrics for six

evaluation standards for suturing task (see Figure 3.5). It can be clearly seen

that there is no pattern for time and motion, most of the poor and fair perfor-

mance have been misclassified as good performance. From the result of other

five predictions, although we achieve the satisfying classification results, the

samples are suffer from data imbalanced problem. Most of the samples are

annotated as the inter-mediate level performance such that the network lack

the ability of predicting poor and good performance. Nevertheless, we be-

lieve that the multi-task method presents the more detailed and complete

surgical skill assessment. By doing this, it can provide the meaningful and

concrete guidance for a trainee to improve the surgical skills. We provide a

baseline and discuss the limitations for current dataset.
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In order to prove the efficiency of multi-task learning, we train the network

to only predict six evaluation standards without classifying the expertise

level. From Table 3.3, it can be seen that jointly training two tasks improve

the overall performance.

Table 3.3: Multi-task learning for elements of modified global rating score.
The result is measured in %

Respect for

tissue

Suturing

needle handing

Time and

motion

Flow of

operation

Overall

performance

Quality of

final product

Suturing

avg.accuracy
0.8 0.68 0.43 0.79 0.74 0.78

Needle Passing

avg.accuracy
0.69 0.78 0.44 0.76 0.75 0.63

Knot tying

avg.accuracy
0.80 0.79 0.39 0.78 0.88 0.86

3.6 Summary

In this chapter, we have designed an automatic surgical skill assessment

framework based on the attention mechanism only using RGB video data.

Before feeding a video sequence into the network, we extracted its spatial-

temporal feature from the pre-trained 3D ResNet. With considering the

inter-relationship between video frames, the suturing and needle passing

tasks obtain the accuracy at 100% in testing, and the knot-tying reaches

94.8%. These competitive results denote that attention network allows video

frames to focus on the relevant information according to the final target. We

also evaluate our framework with not only the expertise level determination,

but also in assessing the six elements from OSATS. Among all the predictions,

five standards gains satisfied accuracy. This idea opens up new applications

for surgical skill assessment such as the comprehensive performance report

generation.

In our future work, besides the supplementary study of the multi-task

learning, more intensively labeled video data and relevant augmentation al-

gorithms are worthy to be built. Furthermore, rather than only using the

RGB video, we will consider the optical flow as motion feature from the video

due to its great performance on various video recognition tasks.

42



Figure 3.5: Accumulative confusion matrices over five cross-validation runs
for suturing task
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Chapter 4

Symmetric Dilated Convolution
for Surgical Gesture
Recognition

4.1 Introduction

Surgical gesture recognition is the process of jointly segmenting and classify-

ing fine-grained surgical actions from surgical videos. It is crucial for surgical

video understanding and building the context awareness system towards the

next generation surgery (Maier-Hein et al. 2017). Many medical applications

are included such as intra-operative computer assistance and objective sur-

gical skill assessment. However, raw surgical videos are normally untrimmed

and the operation environment is particularly complicated. Consequently,

detecting surgical gestures from these surgical videos with high intra-class

variance and low inter-class variance is inherently quite challenging.

Some of the prior works use probabilistic graphic models, for example,

HiddenMarkov Models (HMMs) (Varadarajan et al. 2009, Sefati et al. 2015)

and Conditional Random Fields (CRFs) (Mavroudi et al. 2018) to model the

latent state transition. However, these approaches either require additional

sensors to collect kinematics data or have limitations on capturing temporal

information from long and untrimmed surgical videos. Recently, various deep

learning techniques (recurrent neural networks (DiPietro et al. 2016), deep

reinforcement learning (Liu and Jiang 2018), temporal convolutional neu-
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ral networks (Lea et al. 2017)) have been applied to capture the long-range

temporal patterns. For instance, in order to sequentially capture the video

dynamics, Funke et al. (2019a) randomly sample video snippets (16 consec-

utive frames per snippet) and utilize a 3D Convolutional Neural Network

(CNN) to extract the spatial-temporal features. But still, they only consider

local continuous information. Because of the huge computational cost and

GPU memory expenditure of 3D-CNN, they can only train the network at

the clip level rather than inputted with the whole video (Zhang et al. 2020b).

To solve these difficulties, we propose a symmetric dilated convolution

structure embedded with self-attention kernel to jointly detect and segment

fine-grained surgical gestures. Figure 4.1 is an overview of our framework.

Taking the extracted spatial CNN features from (Lea et al. 2017) as input,

the encoder captures the long temporal information with a series of 1-D

dilated convolutions to enlarge the temporal receptive field, followed by an

attention block to establish the one-to-one relationship across all latent repre-

sentations. Symmetrically, we devise our decoder with another set of dilation

layers to map the latent representations back to each frame and predict the

frame-wise gesture label. Unlike 3D-CNN learning features from partial sam-

pled clips, our network takes the whole video into consideration. Owing to

the symmetric dilated convolution structure with the enclosed self-attention

kernel, not only can we learn the long-range temporal information, but also

we can process neighbor and global relationship simultaneously.

With the above facts, we claim our contribution as two-fold. First, we

propose a symmetric dilation architecture embedded with a self-attention

module. It takes into account the long-term temporal patterns and builds

frame-to-frame adjacent as well as global dependencies from the surgical

video sequence. Second, we validate the effectiveness of our approach on a

fundamental robotic suturing task from the JIGSAWS dataset. With the

novel network architecture, our approach consistently exceeds the state-of-

the-art method both on frame-level and on segmental-level metrics, improv-

ing the frame-wise accuracy ∼6 points, and the F1@50 score ∼6 points,

which largely alleviates the over-segmentation error.
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Figure 4.1: Overview of our architecture. Symmetric dilation network takes
frame-level spatial-CNN features as input. The architecture can be divided
into five steps: 1) 1-D convolution; 2) dilated convolution layers with max-
pooling; 3) self-attention; 4) upsampling with dilated convolution layers; 5)
frame-wise prediction.

4.2 Methodology

The architecture of our symmetric dilation network for surgical gesture recog-

nition is detailed in this section (see Figure 4.2), which consists of two sub-

structures: 1) the symmetric dilated Encoder-Decoder structure to capture

long-term frame contents with memory-efficient connections (dilated layers)

to aggregate multi-scale temporal information (see section 4.2.1); 2) the self-

attention kernel in the middle to deploy the deep frame-to-frame relations to

better discriminate the similarities among different frames (see section 4.2.2).

4.2.1 Symmetric Temporal Dilated Convolution

Temporal dilated convolution is a type of convolution applied on the input

sequence with a defined sliding gap, which increases the temporal receptive

field with less parameters (Oord et al. 2016, Lea et al. 2017, Farha and Gall

2019). In our study, we use blocks of identical dilation layers to capture

and aggregate the video dynamics in different time scale. The first layer of
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Figure 4.2: Symmetric temporal dilated convolution. With the layer number
increasing, the size of the temporal receptive field grows exponentially.

the encoder is a 1 × 1 convolution to map the dimension of input spatial-

CNN features to number of kernels f , followed by l layers of temporal dilated

convolutions, where the dilation rates {sl} are set to sl = 2l, l = 0, 1, ..., 9.

Because our target is the off-line recognition, we follow the details in (Farha

and Gall 2019) by using acausal mode with kernel size at 3. Furthermore,

we apply the non-linear activation function ReLU to each dilation output

followed by a residual connection between the layer input and the convolution

signal. The temporal dilated procedure can be formulated as follows:

Êl = ReLU(W1 ∗ El−1 + b1) (4.1)

El = El−1 +W2 ∗ Êl + b2 (4.2)
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where El is the output of l-th encoder layer, ∗ is the temporal convolutional

operation, W1 ∈ Rf×f×3, W2 ∈ Rf×f×1 represent the weights of a dilated

convolution and the weights of a 1 × 1 convolution with f convolutional

kernels, respectively. b1, b2 ∈ Rf are denoted as their corresponding biases.

In every dilation layer l, the receptive field R grows exponentially to capture

the long range temporal pattern, expressed as: R(l) = 2l+1−1. By doing this,

the temporal information on different scale is hierarchically aggregated while

keeps the ordering of sequence. We also employ a 4 × 1 max-pooling layer

behind the encoder dilation block to efficiently reduce the oversegmentation

error (see our ablative study results in Table 4.2).

Our symmetric decoder has a similar structure with the encoder block,

except that the max-pooling operations are replaced with a 1×4 upsampling.

To get the final prediction, we use a 1× 1 convolution followed by a softmax

activation after the last decoder dilated convolution layer:

Yt = Softmax(W ∗DL,t + b) (4.3)

where Yt is the prediction at time t, DL,t is the output from the last decode

dilated layer at time t, W ∈ Rf×c and b ∈ Rc, where c ∈ [1, C] is the surgical

gestures classes. Eventually, we use the categorical cross-entropy loss for the

classification loss calculation. The encoder-decoder architecture is designed

in this way to hierarchically accumulate the spatial features from different

temporal span with memory efficient dilated convolutions.

4.2.2 Joint Frame-to-Frame Relation Learning with Self-
Attention

The TCNs have shown consistent robustness in handling long temporal se-

quences with using relational features among frames. However, current

methods (Ding and Xu 2017, Lea et al. 2017) only consider relations in

local neighbors, which could undermine their performance in capturing re-

lational features within a longer period. To obtain the global relationship

among frames, it is essential to build frame-to-frame relational features with

a non-local manner in addition to our encoder-decoder dilated convolutions.
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With this insight, we introduce the non-local self-attention module to extract

discriminate spatial-temporal features for better prediction.

Figure 4.3: Self-attention block

Self-attention, or intra-attention refers to an attention mechanism, which

attends every position of the input sequence itself and build one-to-one global

dependencies. This idea has been widely used in Natural Language Process-

ing (NLP) (Vaswani et al. 2017), Object Detection and Segmentation (Wang

et al. 2018, Hu et al. 2018), etc. The key component of self-attention is called

Scaled Dot-Product Attention (Vaswani et al. 2017), which is calculated

as:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (4.4)

where Q is a packed Query matrix, K and V stand for Key-Value pairs, and
√
dk is the feature dimension of queries and keys. The structure of the self-

attention is shown in Figure 4.3. In our work, the input Queries, Keys, and

Values to the self-attention module are the same, that is the output hidden

temporal states from the encoder downsampling. The first step is to take

the dot product between the query and the key to calculate the similarity.
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This similarity determines the relevance between all other frames from the

input sequence to a certain frame. Then, the dot product is rescaled by
√
dk to prevent the exploding gradient and followed by a softmax function

to normalize the result. The intention of applying the softmax function here

is to give relevant frames more focus and drop irrelevant ones. Eventually,

the attention matrix is multiplied by the value and summed up. There is

a residual connection followed by a layer normalization to feed the result to

next two fully connected 1-D concolutional layers (see Figure 4.3). In this

manner, frame-to-frame global dependencies are constructed.

4.3 Evaluation

4.3.1 Experiment Settings

Dataset Description: We evaluate our approach on an elementary su-

turing task from JHU-ISI Gesture and Skill Assessment Working Set (JIG-

SAWS) (Gao et al. 2014), a robotic assisted bench-top model collected using

da Vinci surgical system. To our best knowledge, JIGSAWS is the only

public dataset for fine-grained surgical gesture recognition. There are 39

videos performed by eight surgeons with three skill levels. Ten different

fine-grained surgical gestures for example, pushing needle through tissue and

oriental needle for suturing task are manually annotated by an experienced

surgeon. We follow the standard leave-one-user-out (LOUO), a 8-fold cross

validation scheme for evaluation. In each fold, we leave one surgeon out for

testing to verify if the recognition model works for an unseen subject. For the

network input, we use the 128 dimensional spatial-CNN features extracted

by (Lea et al. 2017) with 10 FPS. Given a video sequence v ∈ V with length

T : v1:T = (v1, ..., vT ), our goal is to assign the corresponding gesture label

g ∈ G to each frame: g1:T = (g1, ..., gT ).

Implementation and Training Details: The model is implemented

based on Pytorch and trained on a single NVIDIA GeForce GTX 1080 graph-

ics card. For the symmetric dilated convolution, we set the layer number to
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10 (see the supplementary material for the hyperparameter tuning experi-

ment) and the channel number to 128 with the kernel size 3 followed by a

dropout after each layer. In regard to the attention module, the feature di-

mension of queries and keys is set to 16. The network is trained for 30 epochs

with the learning rate at 0.01. In addition, we apply Adam Optimizer such

that β1 = 0.9, β2 = 0.98, and ε = 10−9.

Evaluation Metrics: We adopt three evaluation metrics in our exper-

iments: frame-wise accuracy, edit score, and segmented F1 score.

Frame-wise accuracy is to measure the performance in frame level. However,

long gesture segments tend to have more impact than short gesture segments,

and the frame-wise accuracy is not sensitive to the oversegmentation error.

Therefore, we use the edit score and F1 score to assess the model at segmental

level. Edit score is defined as the normalized Levenshtein distance between

the prediction and the groundtruth. While F1 score is the harmonic mean of

precision and recall with the threshold 10%, 25%, and 50% as defined in (Lea

et al. 2017).

4.3.2 Comparison with the State-of-The-Arts

Table 4.1 compares our symmetric dilation network with other state-of-the-

art methods. It can be seen that our model achieves the best performance in

all three metrics. Among other approaches, the baseline model Bi-LSTM

reaches the relative lower performance than other methods indicating that the

traditional RNN-based method is incapable of handing long video sequence.

Deep Reinforcement Learning (RL) method trains an intelligent agent

with reward mechanism and achieves the high edit 87.96 and F1 score 92.0,

but the low frame-wise accuracy at 81.43%, which shows its inadequacy in

capturing the global similarities throughout the frames. The latest 3D-CNN

method obtains the fair frame-wise accuracy at 84.3%, but it only obtains

80.0 for the edit score. This reflects that the model based on clip-level is still

inefficient in catching long temporal relationship such that it suffers from the

oversegmentation error.
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While our model reaches the best frame-wise accuracy at 90.1% as well as

the highest edit and F1 score at 89.9 and 92.5, respectively. It demonstrates

that our model is able to capture the long-range temporal information along

with the frame-to-frame global dependencies.

Table 4.1: Comparsion with the most recent and related works for surgical
gesture recognition. Acc., Edit, and F1@10, 25, 50 stand for the frame-wise
accuracy, segmented edit distance, and F1 score, respectively

JIGSAWS (Suturing) Acc. Edit F1@10 F1@25 F1@50

Bi-LSTM (Singh et al. 2016) 77.4 66.8 77.8 - -

ED-TCN (Lea et al. 2017) 80.8 84.7 89.2 - -

TricorNet (Ding and Xu 2017) 82.9 86.8 - - -

RL (Liu and Jiang 2018) 81.43 87.96 92.0 90.5 82.2

3D-CNN (Funke et al. 2019a) 84.3 80.0 87.0 - -

Symmetric dilation (w. pooling) 90.1 89.9 92.5 92.0 88.2

4.4 Discussion

4.4.1 Effectiveness of Submodules

To further investigate the functionality of each submodule in our method, we

conduct ablative studies with five configurations as follows. As our network

consists of a symmetric dilation structure with a self-attention kernel in the

middle. We decouple it into a head dilation module, a tail dilation module,

and the self-attention kernel to explore their joint effects.

(1) Self-attention module only (baseline)

(2) Baseline + head dilated convolution

(3) Baseline + tail dilated convolution

(4) Baseline + symmetric dilated convolution

(5) Baseline + symmetric dilated convolution + pooling
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We apply these settings to segment and classify the surgical gestures

and measure their frame-wise accuracy, edit score, and segmented F1

score separately. The experiment results are shown in Table 4.2.

Table 4.2: Ablative experiment results show the effectiveness of each sub-
model. Acc., Edit, and F1@{10, 25, 50}, stand for the frame-wise accuracy,
segmented edit distance, and F1 score, respectively

JIGSAWS (Suturing) Acc. Edit F1@10 F1@25 F1@50

Self-attn only 87.8 44.0 54.8 53.5 49.0

Head dilation + attn 90.8 76.9 82.5 81.8 79.3

Tail dilation + attn 90.5 77.9 83.4 83.4 79.7

Symmetric dilation + attn 90.7 83.7 87.7 86.9 83.6

Symmetric dilation (w. pooling) 90.1 89.9 92.5 92.0 88.2

(1) only: Self-attention module can achieve promising frame-wise accu-

racy at 87.8%, but with very low edit distance (44.0) and F1 scores. It can

be concluded that attention module is robust for classification tasks while

missing the long temporal information.

(1) v.s. (2) and (3): We put the temporal dilated convolution struc-

ture before and after the self-attention module and get the similar results.

The results have huge improvement in edit score and F1 score with differ-

ent threshold, increase around 30% in each metric. It states that temporal

convolution is capable of catching long temporal patterns.

(4): The obvious improvement on the segmental level evaluation shows

that the symmetric encoder-decoder dilation structure helps capture the

high-level temporal features.

(5): Max-pooling and upsampling further improve the edit distance and

F1 score at segmental level such that smooth the prediction and allievate the

oversegmentation problem.

Above controlled experiments verify the indispensability of each compo-

nent for our proposed architecture. From frame-level view, self-attention

mechanism is feasible to build non-local dependencies for accurate classifi-

cation. And from the segmental-level perspective, symmetric dilation with
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pooling is a viable solution for recognizing gestures from long and compli-

cated surgical video data.

In addition, Figure 4.4 and Figure 4.5 are the list of gesture labels and

the visualization result of our ablative experiments, respectively. From Fig-

ure 4.5, it can be seen that the self-attention can classify most of the frames

correctly, but it suffers from the over-segmentation problem. Dilation lay-

ers and pooling mechanism further smooth the classification result. Taking a

deeper look at the confusion metrics from one validation run (see Figure 4.6),

there are 60 frames of G1 has been mis-classified as G2 and 47 frames of G5

has been mis-classified as G3. This mainly because G1 and G2, G5 and G3

are consecutive actions. It is hard to precisely identify the boundary between

two continuous gestures.

Figure 4.4: List of gestures in suturing task
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Figure 4.5: Visualization of ablative experiments.(0) ground truth; (1) self-
attention module only (baseline); (2) baseline + head dilated convolution;
(3) baseline + tail dilated convolution; (4)baseline + symmetric dilated con-
volution; (5) baseline + symmetric dilated convolution + pooling.

Figure 4.6: Confusion metrics from one validation run.

4.4.2 Effectiveness of Number of Dilation Layers

In our experiments, we fix both encoder and decoder dilated convolution

layer number to 10. In Table 4.3 and Figure 4.7, we set the layer number l to

2, 6, 10, 14 both in encoder and decoder block to explore the impact of the

receptive field size. Increasing the layer number from 2, 6, 10, improves the

performance over all evaluation metrics. This is due to the increase of the

receptive field. However, the performances decrease in framewise accuracy,

F1 scores and edit score when we increase the layer number from 10 to 14.
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When l = 14, the receptive filed is 16383, which is much larger than number

of frames. It can be demonstrated that large receptive field can capture

changes over a wider area, but cause a less accurate perception. Among all

the settings, the configuration of 10 symmetric dilation layers achieves the

best results.

Table 4.3: Ablative experiment results show the effect of the number of
dilation layers (i.e the size of receptive field). Acc., Edit, and F1@{10, 25,
50} stand for the frame-wise accuracy, segmented edit distance, and F1 score,
respectively.

JIGSAWS (Suturing) Acc. Edit F1@10 F1@25 F1@50

2 Layers 89.6 75.0 82.2 81.3 81.3

6 Layers 90.6 88.2 91.5 91.0 87.6

10 Layers 90.1 89.9 92.5 92.0 88.2

14 Layers 89.9 86.4 90.6 89.6 86.3

Figure 4.7: Influence of different number of dilation layers. We set the layer
number l to 2, 6, 10, 14 both in encoder and decoder dilation block.

4.5 Summary

In this chapter, we propose a symmetric dilated convolution network with

self-attention module embedded to jointly segment and classify fine-grained
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surgical gestures from the surgical video sequence. Evaluation of JIGSAW

dataset indicates that our model can catch the long-term temporal patterns

with the large temporal receptive field, which benefits from the symmetric

dilation structure. In addition, a self-attention block is applied to build the

frame-to-frame relationship to capture the global dependencies, while the

temporal max-pooling and upsampling layer further diminish the overseg-

mentation error. Our approach outperforms the accuracy of state-of-the-art

methods both at the frame level and segmental level. Currently, our network

is designed with an off-line manner in acausal mode, and we will explore

the possibility of improving and applying it for real-time surgical gesture

recognition in the future work.
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Chapter 5

Surgical Instruction Generation

5.1 Introduction

The revolution of minimally invasive surgery has accompanied by a number

of controversies. Besides the benefits of small incisions on the skin, the short

recovery period, and cost effective, it has high demand of the surgical skills,

requires long training curves, and has high initial complication rate for a

novice surgeon. Under this circumstance, providing intra-operative surgical

instructions by expert surgeons is imperative when the on-site mentoring is

unavailable or insufficient.

Previously, telementoring (Challacombe et al. 2006), which exchanges

medical information through video and audio in real time, has been proved

as an efficient solution for intra-operative guidance, including pointing out

target anatomical structure from the monitor, controlling the camera or the

robotic arm, etc. Nonetheless, telementoring is limited by the cost of spe-

cific equipment and software, the high demand of transport speed, and legal

and ethic issues (Bilgic et al. 2017, Erridge et al. 2019). With the huge

development of the related techniques for context awareness assistance, un-

derstanding and analyzing the surgical activities in the operation room (OR)

opens up the possibility of identifying and providing assistance for surgeons

intra-operatively.

Automatic surgical instruction is the process of recognizing and analyz-

ing the surgical activity and generating instruction for surgeons. Most of
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existing literatures for surgical workflow analysis focus on surgical phases

and fine-grained gestures recognition (Twinanda et al. 2016a, Funke et al.

2019a, Zhang et al. 2020a). However, these methods can be regarded as the

classification problem based on pre-defined phases and gestures, thus have no

ability of generating the unseen instructions. The most related research topic

for us is the medical report generation (Jing et al. 2017, Chen et al. 2020,

Bustos et al. 2020), which describes the impression , findings , tags , etc.

of a patient in reference to the radiology or pathology. But medical reports

always follow similar writing template, while surgical activities data have

high heterogeneity even for the same type of surgery on account of different

surgical level, medical condition, and patient specific situation.

To our best knowledge, Rojas-Muñoz et al. (2020) is the only prior work

for surgical instruction generation. In their work, the authors create the

Database for AI Surgical Instruction dataset (DAISI) and use a bidirectional

recurrent neural network (RNN) to generate the description for a surgical

image. However their work has two limitations. For one, although RNNs are

designed for sequence generation with arbitrary length, they suffer from the

essential vanishing gradient problem Pascanu et al. (2013). For another, they

apply the BLEU score as the only evaluation metric, which is insufficient for

natural language evaluation.

In this chapter, inspired by the great performance of transformer model in

machine translation Vaswani et al. (2017) and image captioning Cornia et al.

(2020) from the open domain, we build our network with an encoder-decoder

fully backboned with transformers to predict surgical instructions. Taking

an surgical image as the input, we first extract its visual attention features

by a fine-tuned ResNet-101 module. Then the encoder attention blocks,

decoder attention blocks, and encoder-decoder attention blocks model the

dependencies for visual features, textual features, and visual-textural rela-

tional features, respectively. On the other hand, sequence generation models

are often trained using the cross-entropy (XE) loss and evaluated using non-

differential metrics such as BLEU, CIDEr, etc. In order to alleviate the mis-

match between training and testing and improve the evaluation performance,

we apply the reinforcement learning based self-critical approach Rennie et al.
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(2017) to directly optimize the CIDEr score. Experimentally, we extensively

explore the performance of different baselines (LSTM-based fully connected

and soft-attention models) on DAISI dataset Rojas-Muñoz et al. (2020). The

experiments demonstrate that our transformer-backboned architecture out-

performs the existing methods as well as our other proposed baselines. The

promising instructions generated from the network bring potential value in

clinical practice.

5.2 Methodology

5.2.1 LSTM-based captioning models

In order to explain the LSTM-based instruction prediction model, we first

introduce the mechanism behind LSTM. Recurrent neural networks (RNN)

are designed for modeling sequence data with arbitrary input/output length.

However, if a sequence is long enough, the vanilla RNN cannot convey in-

formation from the very early beginning. And for the back propagation, it

suffers from serious vanishing gradient problem. LSTM (Long Short Term

Memory) network (Hochreiter and Schmidhuber 1997) is a type of RNNs,

which is capable of carrying long-term temporal dependencies. It depends

on cell state and various gates to solve short-memory problem. Typically, a

LSTM cell consists of a cell state c′<t> to remember the relevant information

throughout the whole processing time, an input gate i<t> to update the cell

state, a f<t> forget gate to decide if the information should be kept or dis-

card, and an output gate o<t> to decide the next hidden state. Figure 5.1

and equation 5.1 explain the detailed LSTM mechanism.

c′<t> = tanh(Wc[a
<t−1>, xt] + bc)

i<t> = σ(Wi[a
<t−1>, xt] + bi)

f<t> = σ(Wf [a
<t−1>, xt] + bf )

o<t> = σ(Wo[a
<t−1>, xt] + bo)

c<t> = i<t> ∗ c′<t> + f<t> ∗ c<t−1>

a<t> = o<t> ∗ c<t>

(5.1)
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Figure 5.1: LSTM cell

FC model. In a similar way to (Vinyals et al. 2015), we first extract the

visual feature for an medical image I from the FC layer of a deep CNN. Before

feeding the feature into the LSTM, it is embedded by a linear projection WI

and is considered as the first word WICNN(I). As for the text information,

each word, which is represented as a one hot vector, is embedded by a linear

embedding E with the same dimension as WI .

x<t> = E1wt−1 for t ≥ 1, x1 = WICNN(F )

c′<t> = tanh(Wc[a
<t−1>, xt] + bc)

i<t> = σ(Wi[a
<t−1>, xt] + bi)

f<t> = σ(Wf [a
<t−1>, xt] + bf )

o<t> = σ(Wo[a
<t−1>, xt] + bo)

c<t> = i<t> ∗ c′<t> + f<t> ∗ c<t−1>

a<t> = o<t> ∗ c<t>

s<t> = Wsa
<t>

(5.2)

Soft-attention model. Rather than assume all spatial area has the same

contribution to the next word prediction, we use the soft-attention (Xu et al.

2015, Rennie et al. 2017) to estimate the specific image region needs to pay
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attention at each time step. The cell state c′<t> from Figure 5.2 is changed to:

c′<t> = tanh(Wc[a
<t−1>, xt, zt] + bc) where zt is the attention image feature

derived by soft-attention as defined in (Xu et al. 2015). Soft-attention (Bah-

danau et al. 2014) is a deterministic, differentiable mechanism, which cal-

culates the weights and applies the weighted average of the features across

all pixels according to the next word prediction. Given a image feature map

with N locations {z1, . . . zN}, then we have

z<t> =
N∑
i=1

α<t,i>z<i> where

α<t,i> =
exp(e<t,i>)∑N
i=1 exp(e

<t,i>)
and

e<t,i> = Wtanh(We[a
<t−1>, zi] + be)

(5.3)

In these two methods, a<0> and c<0> are initialized to zero. The output

from LSTM is a distribution over the next word w<t>: w<t> ∼ softmax(s<t>).

Figure 5.2 is the framework of surgical instruction generation with LSTM.

Figure 5.2: The image is encoded by a CNN and input into a LSTM network.
For every time step, the last hidden state, the groundtruth word, and the
attention from the weighted average across the image work together to predict
the next word.
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5.2.2 Transformer Captioning Model

In early chapters (Chapter 3 and Chapter 4), we use the self-attention block

from transformer model to build framewise relationships for long sequence.

In this chapter, we apply the whole transformer encoder-decoder structure

for surgical instructions generation, while the input is the extracted spatial

features from the surgical image and the output is its corresponding descrip-

tion. The whole architecture can be seen in Figure 5.3.

Encoder. Before the encoder, every feature vector is embedded by a linear

embedding to reduce the dimension from 2048 to 512, and it is followed by a

dropout layer. The embedded feature is the input of the first encoder layer.

The whole encoder is a stack of 6 identical encoder layers, which generates

an attention-based representation for the image. Each encoder layer con-

sists of a multi-head self-attention layer and a position-wise fully con-

nected feed-forward network. The detailed explanation of multi-head

self-attention and fully connected feed-forward network is in section 3.2.2,

section 3.2.3, section 4.2.2 and the original transformer paper (Vaswani et al.

2017).

Decoder. The input of the decoder is the information retrieved from the

last encoder layer and the groundtruth caption. The decoder also consists of

six identical layers, with each has two multi-head attention layers (decoder

self-attention and encoder-decoder attention layer) and one fully connected

feed-forward network. Every decoder self-attention layer is masked to prevent

from attending to future locations.

5.2.3 Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning techniques. The

target of RL (as shown in Figure 5.4) is to maximize the cumulative reward

by training an actor to interact with unknown environment. In this study,

we focus on discussing one of the strategies called policy gradient and how

it is applied in sequence generation. All the detailed formula derivation

can be found in (Rennie et al. 2017). Policy gradient (Sutton et al. 2000)

methods target at modelling and optimizing parameterized polices directly.
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Figure 5.3: Overview of transformer based surgical instruction architecture.

Figure 5.4: An actor interacts with the environment and gets rewards

In sequence generation problem, the ’actor’, language model (such as LSTM

and transformer), interacts with the environment (image and word features)
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to maximize the expected reward (CIDEr score):

L(θ) = −Ews∼pθ [r(ws)] (5.4)

Here, maximize the expected reward equals to minimize negative expected

reward. Where the policy pθ is defined by the network parameters θ, and

ws = (ws1, . . . w
s
T ) and wst is the word sampled at time step t. Based on

the REINFORCE algorithm (Williams 1992), the corresponding gradient for

L(θ) (a non-differentiable reward function) can be computed as:

∇θL(θ) = −Ews∼pθ [r(ws)∇θ log pθ(w
s)] (5.5)

In order to eliminate the variance of the gradient, we add a baseline. The

baseline can be any function as long as it does not depend on network pa-

rameters θ, and this can be represented as:

∇θL(θ) = −Ews∼pθ [(r(ws)− b)∇θ log pθ(w
s)] (5.6)

According to the chain rule, the final gradient can be expressed as:

∇θL(θ) =
T∑
t=1

∂L(θ)

∂St

∂St
∂θ

(5.7)

where st is a vector with dimension size same as the vocabulary size. It is

the score of the word in time t, i.e. the input of the softmax layer. And

according to (Ranzato et al. 2015):

∂L(θ)

∂St
≈ (r(ws)− b)(pθ(wt|ht)− 1wst ) (5.8)

where ht is the output hidden state from the language model and 1wst is the

one-hot representation for word wst at time t.

In our work, we choose the baseline as (Rennie et al. 2017), which is the

reward r(ŵ) obtained by the current model under the inference algorithm

used at test time. As a result, we increase the probability of high reward

sample and penalty the low reward sample. The final equation can represent

as:
∂L(θ)

∂St
≈ (r(ws)− r(ŵ))(pθ(wt|ht)− 1wst ) (5.9)
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5.3 Evaluation

5.3.1 Dataset Description

We evaluate our approach on DAISI dataset, which contains 17255 color

images from 290 medical procedures, including external fetal monitoring, la-

paroscopic sleeve gastrectomy, laparoscopic ventral hernia repair, etc. Every

procedure is consisted of few images with their corresponding descriptions.

We further clean the dataset by deleting noisy and irrelevant images and

descriptions such as the description of the author information. Finally, there

are 16413 images (along with one caption each) in total, and we assign 13094

images for training, 1646 for validation, and 1673 for testing.

5.3.2 Text Preprocessing

Text preprocessing is an important step to transform the text into a more

analyzable and predictable format for the deep learning model. Raw text

instructions need to be preprocessed to learn meaningful features and not

overfit on irrelevant noise. We follow these steps to clean the text instruction:

1. Converting all words to lower case

2. Expanding abbreviations, including medical abbreviations (e.g. ‘a.’ to

‘artery’) and English contractions (e.g. i’ve to ‘i have’)

3. Removing numbers, punctuation, and whitespace

4. Tokening the sentence into words

As other image captioning task, we set the threshold of the sentence length

to 16, label any word count less than five as ’UNK’, and build a vocabulary

of size 2212 words. Figure 5.5 shows the distribution of the top 20 words.

Except for the most common words in English (‘to’, ‘of’, ‘the’, ‘and’ etc.),

there are some medical specific words in top 20 such as ‘muscle’, ‘remove’,

‘fascia’, etc.
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Figure 5.5: The distribution of top 20 words

5.3.3 Feature Extraction

LSTM model. We use Resnet-101 (101 layers) (He et al. 2016) pre-trained

on ImageNet classification task to extract image feature. Images are encoded

to 2048 dimension vectors with the final convolution layer of resnet follow by

an average pooling layer.

Attention model. For the LSTM-based soft-attention model and the trans-

former model, we also apply the Resnet-101 to encode images. Instead of the

average pooling, we apply a spatially adaptive max-pooling layer and end up

with 14× 14× 2048 dimension output.

5.3.4 Implementation Details

Following the standard procedure in image captioning task, we first train our

model with a word-level cross-entropy (XE) loss then optimize the model us-

ing reinforcement learning. During the XE training process, the model is

trained to predict the next word given previous ground-truth word, while

the reinforcement learning process is trained to predict the next token based

on the previous prediction.

LSTM-based models. For the LSTM model and LSTM-based soft-attention
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model, the image and words embedding dimension and LSTM hidden state

size are set to 512. For the XE training, we initialize the learning rate to 10−5

and follow the scheduled sampling strategy of (Bengio et al. 2015). During

the self-critical evaluation, we use a fixed learning of 10−5 using CIDEr score

as reward. Both models are optimized using ADAM optimizer (Kingma and

Ba 2014) with the batch size of 10.

Transformer model. In regard to the transformer model, we set both en-

coder and decoder to 6 layers with the dimensionality to 512 for each layer.

In addition, the head number for each layer is 8, the feed-forward dimension

is 2048, and there is a dropout layer with probability of 0.9 after each atten-

tion and feed-forward layer. For the XE training, we initialize the learning

rate to 5× 10−4 and follow the learning rate scheduling strategy with 20000

warm-up steps. During the self-critical evaluation, we use a fixed learning of

5 × 10−5. Both models are optimized using ADAM optimizer (Kingma and

Ba 2014) with the batch size of 5.

5.3.5 Comparison with the State-of-the-Art

We adopt the standard evaluation metrics from image captioning in our

experiments: BLEU (Papineni et al. 2002), Rouge-L (Lin 2004), ME-

TEOR (Banerjee and Lavie 2005), CIDEr (Vedantam et al. 2015), and

SPICE Anderson et al. (2016). The detailed explanation of these evalua-

tion metrics can be found in 2.2.4.

Since the code in Rojas-Muñoz et al. (2020) is not publicly available, we

re-implement their Bi-RNN model. The 4096 dimensional image features are

extracted using the last convolutional layer from a pre-trained VGG16 Si-

monyan and Zisserman (2014b). The Bi-RNN model is trained with 50

epochs by the initial learning rate at 5× 10−4 and the batch size at 10. Ta-

ble 5.1 compares our proposed models with the previous work (Rojas-Muñoz

et al. 2020). It can be seen that the Bi-directional RNN (Rojas-Muñoz et al.

2020) has relatively lower performance, especially for the 3-gram and 4-gram

BLEU score (11.3% and 9.3%) compared with ours (46.4% and 44.9%). In

BLEU score evaluation, long n − gram score measures the fluency of the
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instruction. It can be concluded that Bi-directional RNN is not capable of

generating adequate ’human-like’ instructions. Among three other models,

LSTM model achieves slightly better performance than LSTM-based soft-

attention approach, and the transformer model with reinforcement learning

outperforms all other methods in all evaluation metrics. The results indicate

that the conventional RNN-based methods have limited ability of catching

the dependencies between image features and text informations. While trans-

former encoder self-attention can encode the dependencies for image pixels,

the decoder self-attention is able to model dependencies for textual infor-

mation, and the encoder-decoder attention builds the relationship between

image features and textual information. Figure 5.6 shows some visualiza-

tion results using the proposed LSTM baseline and transformer framework.

The results shows that our method can generate meaningful descriptions for

surgical images.

Table 5.1: Comparison with the state-of-the-art (Rojas-Muñoz et al. 2020)
for surgical instruction generation task. B1, B2, B3, B4, C, M, R and S
stands for 1-4 gram BLEU, CIDEr, METEOR, ROUGE-L and SPICE score
respectively.

Surgical

Instruction
B1 B2 B3 B4 C M R S

DAISI (BiRNN) 21.0 14.4 11.3 9.3 8.32 10.3 22.0 12.1

LSTM 43.7 39.4 37.3 36.2 34.0 24.9 44.6 40.2

LSTM + soft-attn 43.2 38.7 36.3 34.9 32.4 24.3 43.7 38.0

Transformer + rl 52.8 48.7 46.4 44.9 42.7 30.7 53.1 48.4

5.4 Discussion

5.4.1 The Influence of Reinforcement Learning

To further explore the functionality of each component, we decouple three

networks and design an ablative experiment in six settings as follows:

(1) LSTM
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Figure 5.6: Some visualization results from transformer model

(2) LSTM + reinforcement learning

(3) LSTM + soft-attention

(4) LSTM + soft-attention + reinforcement learning

(5) Transformer
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(6) Transformer + reinforcement learning

We apply these six different settings to generate instructions from surgical

images and evaluate their 1-4 gram BLEU, CIDEr, METEOR, ROUGE-L

and SPICE score separately. The experiment results are shown in Table 5.2.

(1) v.s. (3): We add the soft-attention attention module on the top of

the LSTM to sequentially attend to different parts of image and aggregate

information, but it performs slightly worse (around 1% for each evaluation

standard) than the baseline model. This indicates that simple soft-attention

mechanism cannot build the correlation between salient pixels and the next

prediction word.

(1) v.s. (3) v.s. (5): Without using any recurrent neural units behind

LSTM models, transformer model only use the self-attention mechanism to

encode the spatial information and decode the text instruction. Transformer

model achieves better performance than two LSTM models, which demon-

strate its ability to multi-modal contexts.

(1) v.s. (2), (3) v.s. (4), and (5) v.s. (6): During the training

procedure, we first train each model with standard XE loss, then we add the

reinforcement learning block to optimize the CIDEr score directly. From the

results, it can be seen that not only the CIDEr score, but also the perfor-

mance of other evaluation metrics has been lifted. Specifically, we observe a

significant increase in performance when using reinforcement training after

the transformer model. The ablative experiment proves the functionality of

each component of our method.

5.4.2 Limitations and Challenges

In this subsection, we want to discuss the current challenges and limitations

for automatic surgical instruction based on the DAISI dataset. There are

mainly four challenges and limitations:

1. Small dataset size. Although various single-modal deep learning

tasks such as object detection, image segmentation, machine transla-

tion, sentiment analysis, etc. has achieved great performance, image
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Table 5.2: Ablative study to explore the influence of reinforcement learning.
B1, B2, B3, B4, C, M, R and S stands for 1-4 gram BLEU, CIDEr, METEOR,
ROUGE-L and SPICE score respectively.

Surgical

Instruction
B1 B2 B3 B4 C M R S

LSTM 43.7 39.4 37.3 36.2 34.0 24.9 44.6 40.2

LSTM + rl 44.6 40.3 38.3 37.1 35.1 25.4 45.3 41.1

LSTM + attn 43.2 38.7 36.3 34.9 32.4 24.3 43.7 38.0

LSTM + attn + rl 43.4 38.8 36.4 34.8 33.1 24.8 44.1 38.5

Transformer 45.5 41 38.7 37.2 34 25.6 44.3 39.7

Transformer + rl 52.8 48.7 46.4 44.9 42.7 30.7 53.1 48.4

captioning is a multi-modal process, which use both computer vision

and natural language processing techniques to generate text descrip-

tion from an image. Considering the complexity of the image caption-

ing task, deep learning algorithms often require the huge amount of

data to tune the parameters and prevent overfitting. For example, the

COCO dataset (Lin et al. 2014) has more than 120,000 samples, and

same types of objects appear many times. However excluding the noisy

and irrelevant images, DAISI dataset only contains 16,413 images. And

some of the surgical scenes only appear once. More importantly, un-

derstanding the surgical actions depends on the contextual activities

and their description, but we can only achieve instruction generation

based on single-shot due to the limited size of dataset.

2. No pre-trained model. Generally, the first step for image captioning

is to extract spatial features pre-trained ImageNet classification task.

More advanced algorithms then use Faster R-CNN algorithm (Ren et al.

2016) to detect the object bounding boxes and identify attribute fea-

tures with Visual-Genome data (Anderson et al. 2018). Next they apply

variants of attention mechanism over the extracted bounding boxes to

have a better understanding between image representation and text in-

formation. We also use the pre-trained ImageNet classification model
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to extract the medical image feature, because to our best knowledge,

there is no public pre-trained model for medical images. In addition,

higher level semantic information (object bounding boxes and attribute

features) cannot be extracted from the medical images, for the reason

that there are fundamental differences in image content, data size, and

task specifications between medical and natural images. This will limit

the ability of the model to build the dependencies between the predicted

word and the most salient object it should pay attention to.

3. Complicated descriptions and procedure. In general area, the

caption for an image is a simple sentence, which describe the objects,

the attributes of the object (color, number), and their relationships

(such as position relationship). As for the medical report generation, a

medical report is consisted of few sentences, but they often follow the

similar pattern. However, the instruction from DAISI are collected from

different sources, including the medical app, textbooks, etc. Surgical

instructions from the dataset are usually long and complex. During

the pre-processing stage, we have cut every description into a single

sentence and set the threshold to 16 words per sentence. But they

have no pattern or template, and some instructions even contain the

clauses.

4. One caption per image. In real situation, an image can be described

in different ways. For instance, in order to build human-like model and

evaluate the result objectively, Coco captioning task has equipped with

5 different reference translations for each image. Nonetheless, we have

only one annotation for each image. It is possible that the evaluation

metrics grade an adequate caption a low score only because it does not

look similar to the ground truth label.

In summery, understanding surgical action and generating instruction is still

at its early stage. Future works include collecting the large training dataset,

building the specialized pre-trained model for medical images, regularizing

and annotating more reference captions for surgical images.

73



5.5 Summary

In this chapter, we propose an encoder-decoder architecture fully backboned

by transformer to predict surgical instructions from various medical disci-

plines. The experiment results demonstrate that the transformer architec-

ture is capable of creating the pixel-wise patterns from self-attention encoder,

developing text relationships for masked self-attention decoder, and devising

the image-text dependencies from encoder-decoder attention. In order to

solve the mismatching between the training and testing procedure, we op-

timize the model with self-critical reinforcement learning, which takes the

CIDEr score as the reward after the general cross-entropy training.

Understanding surgical activity and predicting instruction prediction is still

at its early stage. Future works include collecting the large training dataset,

building the specialized pre-trained model for medical images, regularizing

and annotating more reference captions for surgical images.
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Chapter 6

A Simulation Platform towards
Context-aware Surgical
Assistance

Our final aim is to integrate context-aware assistance into whole MIS pro-

cess by taking advantages of deep learning techniques to automatically learn

highly discriminative features from surgical videos. In previous chapters, we

have designed an attention network to automatically assess the surgical skills

(see Chapter 3), a symmetric dilated model to identify surgical actions (see

Chapter 4), and a transformer based approach to generate surgical instruc-

tions(see Chapter 5). To achieve our final goal, in this chapter, we design

and implement an Unity-based laparoscopic cholecystectomy VR simulator

as a starting point.

On the one hand, surgical simulator can integrate pre-operative surgical

training, intra-operative activities recognition and guidance generation and

post-operative comprehensive surgical skill assessment into a whole ecosys-

tem (see Figure 6.1). On the other hand, after the integration of vision-based

skill assessment, surgical gesture recognition and the surgical instruction,

more data can be collected without any private and ethics issues. And the

data can be applied to train and improve the existing model.
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Figure 6.1: VR surgical simulator is an efficient solution to improve the eye-
hand coordinate and dexterity skills prior to the surgery. During the surgery,
on the one hand, the context-aware system can provide surgical instructions
if any inappropriate surgical gesture is detected. On the other hand, surgical
video is recorded for post-operative surgical skills analysis and assessment.
Furthermore, this process will generate more training data to improve current
deep learning model.

6.1 Introduction

Cholecystectomy, a surgical procedure to remove the gallbladder, is one of

the most common operating room surgeries. With the explosion of related

minimally invasive surgery (MIS) techniques, cholecystectomy can be oper-

ated with the assistance of a video camera and several laparoscopic instru-

ments. Benefits of laparoscopic cholecystectomy include few post-operative

complications, small incisions on the skin, and a relative shorter recovery pe-

riod (Suzuki et al. 2000). However, the limited viewing angle and restricted

operating space during laparoscopic cholecystectomy often cause undesirable

complications (such as bile duct leak or injury). Therefore, it is indispensable

for surgeons to acquire pertinent surgical skills prior to a real surgery.

Traditionally, using cadavers or animals for training faces many ethical

issues. Training by supervised experienced surgeons is a feasible solution,

but it is at the cost of the huge expenditure and a long training period. For-

tunately, virtual reality (VR) simulator has gradually become an effective
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approach (Alaker et al. 2016) to teach and assess surgical skills outside oper-

ation rooms. Medical students and surgeons can practice their professional

skills along with the transferable skills such as team-working and emergency

reaction using this advanced technique. Many research works have proven

the correlation between game-based training and the improvement of surgical

skills (Rosser et al. 2007, Knight et al. 2010, Andreatta et al. 2010, Kurenov

et al. 2009, Creutzfeldt et al. 2010). Specifically, advantages of the surgical

simulator include:

1. offering a secure and efficient environment for surgeons to deeply un-

derstand the whole surgery process

2. enabling surgeons to practice two essential skills for MIS, namely eye-

hand coordination and the ability to execute 3D actions using a 2D

screen as a guide

3. allowing trainees to practice the challenging and significant procedures

repeatedly and save the training cost

It is complicated to model and simulate a typical laporoscopic cholecys-

tectomy scene. The simulation of multiple organs and tissues, the interaction

between tools and tissues, and feedbacks from both visual and tactile are all

necessary components. Developing and integrating all these functional com-

ponents independently is time and resources consuming. Unity (Goldstone

2009) is a cross-platform modern game engine which has a great support

of advanced audio and visual effects. Its integrated development environ-

ment, easy profiler, on-shelf tools and modules make Unity stable and highly

productive.

In this chapter, we design and develop a laparoscopic cholecystectomy

simulator using Unity Game Engine. Our surgical simulator provides trainees

an effective platform to practice surgery procedures with realistic visual and

haptic feedbacks (shown in Fig. 6.6 and Fig. 6.3). In our design, the organ

and soft tissue simulation are based on uflex, a unity plugin originated from

NVidia Flex(Korzeniowski 2016), and the haptic feedback is in reference to
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Unity 5 Haptic Plugin for Geomagic OpenHaptics 3.3 (Poyade et al. (2014)-).

There are mainly two contributions of our work:

1. Developing an interactive laparoscopic cholecystectomy simulator for

surgeons to enhance their surgical skills

2. Exploring the use of game engine for novel development of a surgical

simulator to achieve efficient and cost-effective solutions

Figure 6.2: Laparoscopic cholecystectomy simulator working environment

6.2 Related Work

Game like medical education and surgical skills training with different objec-

tives have been proven to be valuable where users can improve their related
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Figure 6.3: Screenshot from cholecystectomy simulator

skills and experience various circumstances that are impractical in the real

world due to the safety, cost, or other reasons (Susi et al. 2007). James et al.

presented that surgeons who had experienced selected representative video

games (Super Monkey Ball 2, Star Wars Racer Revenge, and Silent Scope)

performed better in laparoscopic handling and made fewer errors (Rosser

et al. 2007). Another interesting experiment (Knight et al. 2010) compared

the tagging accuracy between participants who had undertaken the game,

Triage Trainer (Blitz Games Studios, Leamington Spa, Uk) training and

who had taken traditional card-sort exercise. The Triage Trainer group was

more likely to triage precisely in casualties than the card-sort group. Game

like training was also used for team training in emergency crisis manage-

ment (Andreatta et al. 2010, Kurenov et al. 2009), daily clinical tasks for

junior doctors, and cardiopulmonary resuscitation (Creutzfeldt et al. 2010),

etc. In this research, we focus on the laparoscopic surgical skills trained via

the surgical simulator.

Simulators for surgical skills training can be categorized into two types:

low fidelity and high fidelity. Evaluation criteria of fidelity are decided by

the extent of visual and tactile realism and system interactivity. Synthetic

models (Hammoud et al. 2008) and Video Box Trainer belong to low-fidelity

simulators. Synthetic models are static bench models such as tissue models
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for fascia closure and knot-tying training. Video Box Trainer (Fried et al.

2004) takes advantage of real laparoscopic instruments as well as the camera

and video monitors to simulate surgery procedures. Although low fidelity

simulators are cost-efficient, easy to make and portable, they usually sacrifice

the realism and only offer a single surgical skill training rather than a whole

process.

Virtual reality surgery training is a type of high fidelity surgical simula-

tion. This type of technology satisfies the requirements of taking 2D screen

as a guide to performing 3D surgery with realistic visual and tactile feed-

back while also has the ability to monitor and record the training progress.

Most of the existing surgical simulators either reinvent all components inde-

pendently (Qian et al. 2015, Pan et al. 2015) or build from an extendable

framework such as SOFA (Kim et al. 2015) and GiPSi (Cavusoglu et al.

2006). Whereas building medical educational or training systems upon game

engines is not fully explored. Few research works (Marks et al. 2007b a)

have discussed the possibilities and advantages of game engine based surgery

simulators. In order to bring more understanding in this direction, we use a

robust multipurpose game engine Unity to build our simulation architecture.

We also evaluate and compare the pros and cons between the game engine

and other simulation methods for surgical training.

Immersive surgery simulation requires accurate physical behaviors, the

precision of soft tissue deformation enormously affects the sense of reality

of the whole framework (Gallagher et al. 2005, Zhang et al. 2017a). Three

types of simulation approaches have been widely applied nowadays.

• Mass spring-based: Mass-spring (Baraff and Witkin 1998, Bouaziz et al.

2014, Liu et al. 2013) system consists of sets of point masses connected

by spring dampers. It is a simple and efficient scheme which takes

Hooke’s Law as the theoretical basis. But it is hard to tune the spring

constants to get a desired behavior and usually causes the overshooting

problem.

• Finite element-based: Unlike the mass-spring system which discretize

an object into finite number of point masses, finite element method

80



(FEM) (Zienkiewicz and Taylor 2005) is based on continuum mechan-

ics theory. It is capable of handling accurate physical behaviors for

different types of elastic and non-elastic material. However, the model

complexity associates the technique with difficult initial settings and

high computational cost (Sifakis and Barbic 2012).

• Position Based Dynamics (PBD) (Müller et al. 2007): PBD is a method

which works on positions directly in each simulation step to resolve

constraints. It is fast, stable, and controllable which makes the simula-

tion process highly efficient and functionally suitable for the interactive

environment (Bender et al. 2014). Despite the fact that PBD is not

physically accurate, it achieves real time surgical simulation which is

still visually plausible. We applied the PBD solver with different con-

straints for our physics simulation as a test prototype.

6.3 System Infrastructure

6.3.1 Procedures and Challenges in Laparoscopic Chole-
cystectomy

Laparoscopic Cholecystectomy has gradually replaced the open surgery to

become the major modality of treating gallstones, gallbladder carcinoma,

trauma and porcelain gallbladder. Four primary steps are involved in the

surgery as shown in Fig. 6.4: a) Position the patient correctly and insert

the trocars and camera through three labeled minimal ports; b) Identify the

position of the gallbladder, and then dissect the tissue to find the cystic

duct and cystic artery; c) Clip and ligate the cystic duct and cystic artery

structure; and d) Tease away adhesions between the gallbladder and the liver,

put the gallbladder into a pre-prepared bag and drag it out. In our training

system, we focused on the core steps b), c), and d), as a) can be conducted

in a separate training session.

During the intra-operative process, some challenges and difficulties re-

quire a particular attention, especially for a novice:
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(a) Initial view (b) Dissect Calot’s Triangle

(c) Clipping and cut (d) Teasing away the gallbladder

Figure 6.4: Surgery process. Image by School of Surgery (Jones 2014)

• Identifying the Calot’s triangle properly is the prerequisite to safely

remove the gallbladder. Calot’s triangle, shown in Fig. 6.5, is the most

important anatomy structure in laparoscopic cholecystectomy. It helps

the surgeon clearly identify the relative position among the cystic duct,

common hepatic duct, and inferior border of the liver.

• Always clipping the cystic duct and cystic artery first and then cutting

them to prevent uncontrollable bleeding or bile leaking.

• Gallbladder closely connects with the liver. Correctly separating adhe-

sions between them prevents the harm to the liver.

• In laparoscopic surgery, a surgeon operates 36-39cm long instruments

through a tiny entry point, such that the unskilled and careless manip-

ulation is possible to damage intestines or main blood vessels.

6.3.2 Objectives and System Design

This laparoscopic cholecystectomy simulator is designed and developed for

medical students and junior doctors to train their surgical skills in a safe,
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Figure 6.5: Calot’s Triangle. (Suzuki et al. 2000)

repeatable and cost-effective manner. Medical students can thoroughly un-

derstand the surgery process and practice essential skills before a hand-on

operation on a real patient. As for junior doctors lacking practical experi-

ences, they are able to draw lessons from their weakness and practice repeat-

edly to further enhance operation skills. Laparoscopic experts are involved

to monitor the progress of students and juniors to give valuable feedbacks

and guidances during the training.

Typically, a surgery training simulator includes a rendering module for

displaying 3D models and user interface, a physics simulation module for

collision detection, rigid body, soft tissue, and smog/fluids simulation, and

an event handling module for input/output. In our development, to exclude

unnecessary complexity, we only prototype the anatomical structure for a

normal patient without lesions. The patient specific mode will be the future

work, which would be of better use to benefit surgical planning. Concretely,

we design the game module as below (Fig. 6.6 shows four crucial steps) :

1. A video (Jones 2014) illustrates the process of labeling the patient and

inserting trocars through abdomen.
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2. Viewpoint selection is important on account of the limited vision field

of minimally invasive surgery. Users are able to adjust the camera to

get the optimal viewpoint by keyboard.

3. After identifying correlated anatomical structures, trainees need to clip

three staples in correct positions on the cystic duct and ligate the gall-

bladder.

4. With the help of two haptic devices, trainees are required to separate

the adhesion between the gallbladder and the liver.

5. The remaining task is rather simple, so we use another video clip to

present the procedure of putting the gallbladder into a pre-prepared

bag and dragging it out.

(a) Port insertion (b) Anatomical structure identification

(c) Clipping and ligating the cystic duct(d) Teasing away the gallbladder

Figure 6.6: Operation procedures.

6.4 Physical Simulation

NVIDIA Flex is a particle-based simulation library for real time visual ef-

fects. In Flex, everything is modeled as a system of particles connected by
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different constraints, which is broadly based on PBD and Unified Particle

Physics (Macklin et al. 2014). NVIDIA FleX does not support the Unity

Game Engine directly. Instead uFlex, a Unity asset integrated low-level Flex

native library, is applied in our development. The core idea is to solve a

non-linear system sequentially with equality and inequality constraints in

different time steps:

Ci(p + ∆p) = 0, i = 1, ...n (6.1)

Cj(p + ∆p) >= 0, j = 1, ...n (6.2)

where p = [p1,p2, ...,pN ]T is the vector of particle positions. The unified

representation allows modeling different materials and interactions between

various types of models, namely rigid body, soft body, cloth, and fluids in a

fully efficient and flexible manner. There are mainly two types of the soft

tissue associated with laparoscopic cholecystectomy: volumetric soft tissue

and surface deformable tissue. We explain their modeling methods as follows.

6.4.1 Volumetric Soft Body Simulation

Liver, gallbladder and fat tissues are regarded as 3D volumetric deformable

objects in cholecystectomy, since they keep their intrinsic shape most of the

time. When instruments contact or manipulate the organ, only the contacted

part deformed. Shape matching constraints of clusters are used to simulate

soft bodies. The core idea of shape matching (Müller et al. 2005) can be

described as: Attracting initial point sets x0
i towards the ”goal” positions pi

by finding the global optimal transformation and rotation matrix against the

current state. That is to minimize:∑
i

wi(R(x0
i − t0) + t− pi)

2 (6.3)

where weights {wi|i = 1, ...n} in this case are mass, R is the rotation matrix,

and t is the translation vector. The optimal translation vectors turn out to

be the displacement of the center of mass for the shape, and the global
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rotation matrix is extracted from the global transformation matrix by polar

decomposition. Finally, the goal potion can be calculated as:

pi = R(x0
i − x0

cm) + xcm (6.4)

where xcm is the center of mass.

Throughout the simulation, a soft body consists of several clusters is

shown in Fig. 6.7. Each particle belongs to one or more clusters with a

weight between 0 and 1, standing for the extent of a particle influenced by

the corresponding cluster. The final deformation result is the overlapping

and averaging of the constraints which defines in each cluster independently

as described by the shape matching model. The more clusters in a soft body,

the more elastic it will become. Shape matching constraint does not need the

connectivity information, and the result is easy to compute, thus it is efficient

for an interactive environment which compromises some physical accuracy.

Figure 6.7: Clustering in shape matching

6.4.2 Surface Mesh Simulation

We need to simulate the fascia tissue between the gallbladder and the liver

in the dissection procedure. Given the extensible and thin features of the
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fascia, it is modeled using cloth simulation. The fascia is displayed as spring

networks, in which one triangle handles the stretch and two adjacent trian-

gles handle the bending constraint. For each edge, the stretching constraint

function is:

Cstretch(p1,p2) = |p1 − p2| − l0 (6.5)

where l0 is the rest length of the edge. As for two neighbor triangles (p1, p3,

p2) and (p1, p2, p4), the bending constraint is generated as:

Cbend(p1,p2,p3,p4) = arccos(n1 · n2)− ϕ0 (6.6)

where n1 and n2 are the normal vector of two triangles and ϕ0 is the dihedral

angle between two triangles in the rest pose. The overall goal is to minimize

total energy defined as:

E =
∑

(kstretchC
2
stretch + kbendC

2
bend) (6.7)

where kstretch and kbend are global stiffness parameters provided by the user.

However, the fascia simulation is not visually plausible in our test, because

fascia is not a single layer of smooth structure as the cloth. While splitting

the gallbladder from the liver in our simulation, the fascia just looks like

a piece of cloth with explicit triangle mesh in the torn partition as shown

in Fig. 6.8(a). We design an adhesive constraint to simulate the breakable

fascia to enhance the visual effects. Because uFlex can only access to the

basic-level library of NVIDIA Flex, it cannot simulate the sticky effects. We

tested the algorithm in Houdini, and we will integrate the adhesive constraint

into system in the future work. As the result, the breakable fascia is visually

satisfying as shown in Fig. 6.8(b).

In cloth simulation, fascia tissue is represented as connective triangle

mesh. While in our new algorithm, we simply use lines and the distance

constraint to model the fascia. Initially, we randomly generate several points

on the surface of the gallbladder and the liver and connect them with lines. In

each connection, few points are randomly scattered and marked as breakable

group. At the same time, we assign a rest length and a very large stiffness

parameter to each line. Finally when we drag the gallbladder, if the distance
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(a) Artifact in fascia simulation

(b) Adhesive constraint for the fascia

Figure 6.8: Comparison between original and improved results

between two organs exceeds a given break threshold, the stiffness parameter

of random breakable points will be reset to a very small number such that

any force can break the connections. In such way, the connection between

the gallbladder and the liver no longer looks like a piece of papery cloth with
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apparent triangle mesh. Instead, it presents a sticky behavior of the fascia

when we drag the gallbladder away.

6.4.3 Haptic Rendering

A system requires at least 500-1000 HZ for smooth haptic rendering (Booth

et al. 2003), in which 25-30 Hz for visual rendering in order to provide users

realistic feedbacks. Haptic feedback is able to enhance both cognitive ability

by offering continuous movement sensory and kinesthetic sense by differenti-

ating different inner structures. Phantom Omni is a feasible and affordable

haptic device for virtual-real interaction. It takes the 6 DOF input and gener-

ates forces to constrain the 3 DOF output in a high sensory frequency. Haptic

rendering in Unity enables the user to control haptic effectors as laparoscopic

instruments to interact with organs and tissues.

Figure 6.9 shows the interactive work flow of the haptic device. At the be-

ginning, we predefine the haptic workspace dimensions(Poyade et al. (2014)-).

Within the workspace, meshes and transformation matrices of haptic geome-

tries (organs and tissues) are set into haptic frame. During the training

process, the position of the haptic proxy (i.e. the graphic representation of

the haptic device in the screen, in our case is the position and orientation of

the laparoscopic instrument model) keeps updating. If no collisions happen

between instruments and the organ, the proxy position and the device posi-

tion will stay the same. But if the proxy get contact with the haptic objects,

the proxy position will be assigned to the device position. According to the

position and the collided particle ID information, the simulation algorithm

calculates the deformation and gives visual feedbacks to the screen and force

feedbacks to the user hand.

6.5 Evaluation and Feedback

A PC with an Intel Xeon 5 CPU, a GeForceGTX 1080 graphics card, and

two Phantom Omni devices is used to built this laparoscopic cholecystec-

tomy simulator. The criterion-based quantitative assessment (Jackson et al.
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Figure 6.9: Haptic device workflow

2011) is employed to evaluate the overall capacity of the simulator from sys-

tem performance and usability perspectives. Ten volunteer PhD students

and five volunteers from general surgery department (including students and

laparoscopic experts) participated in the test and gave their suggestions ac-

cordingly.

6.5.1 System Evaluation

There are five criteria chosen to evaluate the system performance: 1) ease of

use, 2) interactivity, 3) visual realism, 4) freedom of movement and effective-

ness, and 5) system stability. Ten volunteer PhD students are asked to grade

each criterion from 1 to 5, representing ”Poor” to ”Excellent”. Figure 6.10

presents the average result of each criterion about the performance of our

simulator. The system interactivity, freedom of movement and effectiveness

and, ease of use receive the positive feedback with the score around four.

All participants mentioned that haptic device with force feedback hugely im-

prove the user experience. However, the visual realism and system stability

need to be improved, due to the fact that the related FLEX solver is not

physically accurate.
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Figure 6.10: System Performance Evaluation (1-Poor, 2-Fair, 3-Average,
4-Good, 5-Excellent)

6.5.2 Simulator Usability Evaluation

Five criteria, namely 1) ease of use, 2) anatomy precision, 3) visual realism,

4) integrity of procedure, and 5) utility, are applied to assess the usability

of the simulator. Evaluators from general surgery department are asked to

grade each criterion from one to five, representing ”Poor” to ”Excellent”.

Figure 6.11 presents the average score of each criterion about the usability of

our simulator. Due to the small sample numbers, such evaluation provided

some guidance and further validation will be carried in the future work. The

utility and ease of use reach the highest score around four, thus demonstrat-

ing the usefulness of VR surgical simulation. Nevertheless, there is still a

space for improvement in anatomy precision, visual realism and integrity of

procedure. Surgeons and medical students claim that as there are no profes-

sionals involved in our simulator design, some minimal details are neglected.

For example, the inner structure of calot’s triangle is more complex than the

one we built. This defective anatomical representation has the potential to

mislead trainers. In the future improvement, we will improve them with the

guide from medical experts.
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Figure 6.11: Simulator usability evaluation. (1-Poor, 2-Fair, 3-Average, 4-
Good, 5-Excellent)

6.5.3 Game Engine based Simulator

Most of the existing simulators are either developed independently or based

on some open-source framework, whereas we built the whole architecture

upon Unity Game Engine. We have discussed our experimental results in

a focus group of eight attendances from both computer scientists and la-

paroscopical surgeons. Comparing with other two types of simulators, we

summarized advantages as well as limitations of using Game Engine for the

surgical training.

Advantages

• For the self-developed simulators, reinventing essential functional blocks

(rendering, physic and event handling components) for a simulator is

time-consuming and leads to huge development expenditure. In our

case, we spent about four months for the whole development cycle,

but it took one year or more for a simulator like (Qian et al. 2015) to

achieve the similar function.

• Robust game engine architectures allow developers to concentrate more

on the content rather than the implementation, thus could improve the

user experience.
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• Most of the simulator systems only focus on the technical training of the

surgery process. However, other skills such as team collaborative and

patient care are also very important for a qualified surgeon. The self-

development simulators are not able to network with other simulators

for collaborative tasks. None of them are audio supportive (Marks et al.

2007b). Game engine has better support for network and audio.

Limitations

• Game engines are primarily designed for game development. The phys-

ical simulation capability of virtual surgery still has a room for improve-

ment. Unlike the ordinary soft body, the structure of human organs

and soft tissues are very complex. The physics engine in Unity is not

able to provide high fidelity laparoscopic features, e.g. cutting and

multi-layer heterogeneous soft tissue simulation.

• It is a trade-off for a game engine to either sacrifice the precise an-

imation for speed or emphasize on pleasant visual without real time

interactive ability.

6.5.4 Improvement Suggestions

According to the evaluation results and suggestions from open-ended ques-

tionnaires, further improvements need to be achieved:

1. Although the game engine has integrated a system development archi-

tecture for audio, rendering, event handling and networking, the visual

realism of soft tissue deformation and the precision of collision detec-

tion needs to be improved. We will first integrate adhesive constraint

simulation for fascia into our simulator.

2. Several participants from medical institution indicate that we need

more precise anatomy structures for calot’s triangle. The success of

laparoscopic cholecystectomy largely relies on whether surgeon could

identify the anatomy structure properly.
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3. We will also add more interactive modules to improve the integrity and

efficiency of the simulator. Currently, only one type of laparoscopic

instrument is modelled in the simulator. Several instruments (retractor,

electrodes, and anvil graspers) will be integrated, and users will be

allowed to change the instruments for different tasks.

6.6 Summary

In this chapter, we have designed and developed a novel game engine based

surgical simulator for laparoscopic cholecystectomy. Surgeons are able to

train their surgical and decision making skills in this virtual environment be-

fore they encountering real patients. The VR surgical training allows trainees

to operate the immersive cholecystectomy by using haptic devices with force

feedbacks and a computer screen as the guide. The training environment is

safe, cost-efficient, and repeatable. The user evaluation results demonstrate

that the simulator is easy to use and interactive.

Currently, we only receive feedbacks from few laparoscopic surgeons and

medical students. Before it can be validated as a surgery training tool, we

need to further improve the evaluation strategy. Controlled experiments will

be taken by dividing surgeons into two groups with one trained by the sim-

ulator and one without training to determine the benefits and drawbacks

of our simulator. Further improving works are desired, including modeling

the anatomic structures of Calot’s triangle accurately, solving technical chal-

lenges related to realistic soft tissue simulation and integrating other training

tasks for a better user experience.
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Chapter 7

Conclusion and Future Work

In this chapter, we conclude the thesis by summarizing our works. We also

discuss the possible future work directions to resolve current limitations.

7.1 Conclusion

This thesis targets at analyzing and understanding surgical activities and

building an integrated context-aware system in different surgical activity

granularities to assist minimally invasive surgery. Specifically, we focus on

vision-based solutions, because surgical video and image data are relatively

easy to access. And visual data has high-dimensional semantic features. To

achieve this goal, we provide solutions from the coarse to fine level and design

a simulation system towards integrated context-aware system.

On the coarsest level, we propose a novel multi-task framework for automatic

surgical skill assessment with six detailed evaluation standards by modified

objective structured assessments of technical skills (OSATS). The spatial-

temporal features are first extracted from a 3D residual network (3D ResNet).

Then we present a self-attention based architecture to capture the spatial-

temporal features and establish frame-to-frame relationship to automatically

find the critical frames for surgical skill determination. We evaluate our ap-

proach for three fundamental surgical tasks (suturing, needle passing and

knot-tying) and achieve nearly 100% accuracy. As for the detailed surgical

technique skills evaluation, six elements are assessed in a multi-task manner
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and achieve the performance ranging from 56% to 91%. As the result, our

proposed method opens the possibility of automatic surgical assessment and

comprehensive performance report generation. The details of this work has

been discussed in Chapter 3.

On the fine-grained level, we present a temporal convolutional framework

to jointly segment and detect the fine-grained surgical gestures from a RGB

surgical video. Rather than using video clips, we take the whole video into

consideration and apply the extracted spatial-temporal feature as the input

of the the network. The network is composed of a symmetric dilated encoder-

decoder to enlarge the receptive field and catch the long term temporal in-

formation, an self-attention module in the middle to build the frame-wise

adjacent as well as the global relationships, and the pooling and upsam-

pling layer to alleviate the over-segmentation error. Our method has been

evaluated on the suturing task from the JIGSAWs dataset over five cross-

validation runs. Our results largely outperform the state-of-the-art methods

on the frame-wise accuracy up to ∼6 points and the F1@50 score ∼6 points.

The details of this work has been discussed in Chapter 4.

Taking one step further from the video classification and gesture recogni-

tion, we aim to recognize surgical actions and generate instructions from still

images. Firstly, we apply the pre-trained ResNet-101 from ImageNet clas-

sification task to extract the image features. Then we have the long short

term memory (LSTM) and LSTM-based attention model as the baseline to

predict the text description. Furthermore, the transformer-based encoder-

decoder approach is proposed. In order to solve the mismatch between

the training ans testing process, we optimize the models with reinforcement

learning algorithm, which takes the CIDEr score as the reward after the gen-

eral cross-entropy training. We validate the task using evaluation metrics

from image captioning models for DAISI dataset. Among all the methods,

transformer-based method achieves the best performance over all evaluation

metrics. It demonstrates that transformer architecture is capable of creating

the pixel-wise patterns from self-attention encoder, developing text relation-

ships for masked self-attention decoder, and building the image-text depen-

dencies from encoder-decoder attention. The details of this work has been

96



discussed in Chapter 5.

In order to integrate the surgical activities analysis in different granular-

ity into a context-aware system. We design and implement an Unity-based

laparoscopic cholecystectomy simulator as a starting point. For one, this

system is a carrier for building the context-aware system. For another, the

simulation system can provide novice surgeon a secure and repeated envi-

ronment to improve surgical skills pre-operatively. Rather than implement

everything from scratch, game engine is a cost-effective, flexible and highly

interactive solution, which provide the user plausible physics simulation and

realistic haptic feedback. The details of this work has been discussed in

Chapter 6.

7.2 Limitations and Future Work

Integrated context-aware system. As we discussed in the thesis, our

final goal is to provide surgeons context-aware assistance through whole clin-

ical pathway. On the basis of the laparoscopic cholecystectomy developed in

Chapter 6, we will merge the surgical gesture recognition, surgical instruction

generation and surgical skill assessment into the system. On the one hand,

this integrated system can provide the pre-operative surgical training, intra-

operative activities recognition and guidance generation and post-operative

comprehensive surgical skill assessment. Surgical report can be created to

help surgeons understanding their skill limitations and the way of improve-

ment. On the other hand, we can collect huge amount of data from the whole

process without any privacy or ethical issues and the data can be trained to

optimize our current algorithms to improve the usability, plausibility and

effectiveness of our current algorithms.

Training data and pre-trained medical model. The performance of

the deep learning algorithms hugely depend on the amount of training data.

Previous research (Twinanda et al. 2016a) has proven the correlation be-

tween the network performance and the amount of training data. Currently,

for the surgical recognition and skill assessment task, JIGSAWs is the only

public dataset, which only have 39, 36, and 28 video for suturing, knot-tying,
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and needle passing, respectively. Comparing with the hundreds or thousands

training data in other research field, the task with limited data size is harder

to train and easier to face overfitting problems. As for the surgical guidance

generation tasks, thousands of images are also far from enough. In our future

work, more surgical data need to be collected and annotated.

In addition, we extracted the high level features from surgical data using

pre-trained model for natural images. The pre-trained model is trained on

a large scale benchmark dataset, which contains a wide diversities of object

categories (e.g. ImageNet). It helps the network to extract general features

which can be reused on the target task. However, natural images have es-

sential differences in image content, amount of data and task specifications

with medical images. In (Raghu et al. 2019), the authors surprisingly find

that the performance of medical imaging tasks has not significantly been im-

prove by transfer learning. In order to achieve the better performance and

get interpretable model, the pre-trained model based on surgical data need

to be built specifically.

Other visual data source. In our current surgical skill assessment and sur-

gical gesture recognition tasks, we only use visual information captured by

3D-camera from da Vinci surgical robot. This kind of camera is able to record

the whole surgical procedure, which shows the anatomical structure inside

human body and tool-tissue interactions. Besides the activities happened in-

side the patient, the general activities occurring in the operation room (OR)

such as the manipulation of the surgeon and the cooperation between the

clinical teams, are also important for surgical activities analysis. (Twinanda

et al. 2016b) use a multi-view RGBD camera system mounted on the celling

of the OR to record the color images and 3D OR-scene structure by the depth

camera. They then use the OR-scene videos to recognize the surgical phases

of laparoscopic surgery. In our future work, in order to acquire a complete

information regarding surgical activities from different perspective, we will

simultaneously use visual information from the surgical scene and OR-scene

considering their complementary nature for surgical activities analysis.

Semi-supervised or unsupervised learning algorithms. Currently, our

approaches work in a fully supervised manner, which means surgical data
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need to be densely annotated, and the annotation result is subjective. In

order to reduce the cost and human labor for data annotation, it would

be interesting to explore the semi-supervised or unsupervised learning algo-

rithms such that only small part of data need to be annotated.

On-line learning. In present settings, the surgical gesture recognition

method works off-line in acausal mode. It means all the previous and after-

wards information are available for the current prediction. However, during

intra-operative process, only the current frame and previous frames are avail-

able. We will develop the real-time surgical gesture recognition algorithm in

our future work.
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