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1.1.  Introduction 

 

Crude oil, or petroleum1 as it is often called in the United States, is the 

world’s most important fossil fuel today and the basic material for an immense 

range of products in society. Crude oil is primarily used for the production of 

transportation fuels, such as gasoline, diesel and kerosene, but it is also the 

major source for the synthesis of a range of polymers, paraffins and bitumen. 

This makes crude oil of invaluable economical importance [1-6]. The current 

amount of exploitable quantities of conventional crude oil is estimated at 1200 

billion barrels, while the amount of so-called unconventional crude oils, such 

as the Canadian tar sands, is expected to provide around 1300 billion barrels 

of crude oil equivalent [1, 7]. As schematically depicted in Fig. 1, the world's 

remaining crude oil resources are mainly non conventional, which means that 

they can't be extracted using traditional oil well methods.  

 

Fig. 1: Distribution of the total world crude oil resources [1]. 

 

Although, the proven quantities are huge, oil sources are obviously not 

inexhaustible. The daily consumption anno 2009, for instance, is around 90 

million barrels and this number is still increasing due to the growing demand 

for energy in rapidly expanding economies like China and India and the still 

                                             
1
 The name petroleum is derived from the Greece ‘Petra Oleum’, which means rock oil. 
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increasing world population. According to the International Energy Agency this 

will lead to shortness in the exploitable amounts of crude oils around 2030 

and hence to a proportional increase of the price of energy [2-4]. This 

scenario and the growing environmental concern, i.e., the supposed global 

warming as a result of the burning of fossil fuels, has urged the search for 

alternative and sustainable energy sources like bio-fuels, wind mills, solar 

cells and nuclear power plants. In parallel, it has stimulated research to a 

more efficient and ‘greener’ use of crude oils and related products. As a result, 

for example, improved processes have been developed to facilitate cracking 

of heavy fractions and hence to explore tar sands and substances that were 

initially regarded as ‘waste’ products like coke and bitumen. Likewise, studies 

have been undertaken to reduce the emission of polluting elements like sulfur, 

vanadium, copper and nickel that are released upon combustion of fossil 

fuels. Finally, a variety of physical, chemical and spectroscopic 

characterization techniques have been developed to determine the qualitative 

and quantitative composition of a crude oil in detail, since this type of 

information is inevitable for a complete and optimal use of the crude oil feed 

stock.  

 

1.2. The origin of crude oils 

 

There have been many hypotheses for the origin of crude oil. It has 

been proposed, for instance, that crude oil is formed from methane from the 

earth's interior, where rock melting may have generated it abiotically [8, 9]. 

Nowadays, the most commonly accepted theory is that crude oil originates 

from plant and animal life of 100 to 600 million years ago, where it has been 

formed from the preserved sediments of zooplankton, algae and animals on 

the bottom of prehistoric seas [2-5]. The presence of porphyrins, organic 

molecules that are structurally very similar to chlorophyll in plants and 

hemoglobin in animal blood, are used as evidence for the anaerobic 

conditions during the formation of oil [10]. The local oxygen poor conditions 

enabled anaerobic bacteria to digest the organic material into a solid 

substance that is named ‘earth wax’ or ‘kerogen’ and which is defined as the 

ancestor of crude oil. The anaerobic conditions explain the very low 
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concentration of oxygen containing molecules in crude oil. The continuous 

formation of new sediments on top of the kerogen layers resulted not only in 

an increasing pressure, but also in a considerable temperature raise. As a 

result, the kerogen transformed into crude oils at temperatures up to 100°C 

and to earth gas at higher temperatures. A typical depth for the oil formation is 

4-6 km, but oil might migrate after formation to much shallower depths. 

 

1.3. The composition of crude oils 

 

The local circumstances during the formation of crude oils are variable 

and for that reason, the molecular composition of crude oils can be diverse. 

First of all, crude oils contain a large variety of organic compounds, which may 

exceed the number of 20.000 different molecular structures [11]. The main 

fraction is always hydrocarbons and ranges from 97 weight % in light crude 

oils to about 50 wt % in bitumen and tar sands [6]. Most of these are straight 

and branched alkanes, cycloalkanes and (polycyclic) aromatic compounds, 

but the precise composition depends on the geological conditions under which 

it was formed. Crude oils from the Middle-East for instance, contain a 

relatively large amount of paraffins, whereas crudes from Nigerian wells count 

a greater proportion of cyclic alkanes and aromatic species. In contrast, the 

heavy Chinese crudes have a very high concentration of polyaromatic ring 

structures. To illustrate the large variety in hydrocarbon composition of crude 

oils, the range of relative weight percentages for the compound classes 

paraffins, naphtenes, aromatics and asphaltenes have been listed in Table 1. 

 

Table 1. Average and range of the relative percentage of four types of hydrocarbons, 

expressed in weight percentage, present in crude oils [2, 5]. 

Hydrocarbon type Average (weight %) Range (weight %) 

Paraffins 30 15 - 60 

Naphthenes 49 30 - 60 

Aromatics 15 3 - 30 

Asphaltenes 6 5-50 

 

Asphaltenes are defined as the fraction of the crude oil that does not 

dissolve in n-heptane or n-hexane but in benzene or toluene. It is the heaviest 
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and most polar fraction of the oil, which ends up in high concentrations in the 

residuals after extraction or distillation of the lighter fractions. For obvious 

reasons, asphaltenes form a major source of problems for the oil industry in 

recovery, blending, cracking, storage etc. [12]. The problems tend to become 

worse since nowadays the heavier oils need to be extracted as well and larger 

amounts of light fractions are extracted from crudes. 

As already mentioned, oxygen containing compounds are hardly 

present in crude oils due to the anaerobic conditions during genesis. Nitrogen 

and sulfur compounds, however, form a substantial part, in particular the 

benzothiophenes. Finally, small amounts of inorganic matter are found. Next 

to mineral particles, which are obviously abundant in the tar sands, elemental 

carbon and sulfur are present next to (traces of) iron, vanadium, nickel and 

copper. Also here, the geological origin largely defines the precise 

concentrations and appearance, but on average, the amount per element 

varies over a rather small range as listed in Table 2. 

 

Table 2. Chemical elements and their approximate concentrations, expressed in weight %, 

present in crude oils [2, 5]. 

Element Weigth % 

Carbon 83-87 

Hydrogen 10-14 

Nitrogen 0.1-2 

Oxygen 0.1-1.5 

Sulfur 0.5-9 

Metals 0.001-0.1 

 

1.4. Crude oil production and refining 

 

In principle, three different techniques are used to extract crude oils 

from the oil fields. The primary method is straightforward pumping the liquid 

material from the well. This technique is relatively easy, fast and facilitated by 

the fact that a natural high pressure is often present underground. The second 

method is applied when the natural underground pressure is absent or 

insufficient. As the reservoir pressure drops towards the end of a field's life 

time, artificial lifting and water flooding and gas injection techniques are used 

to continue production. The third method is used in case the high viscosity of 
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a crude oil does not admit the application of the other methods. It involves the 

injection of heat, solvents or miscible gasses, such as CO2, to enhance the 

fluidity. Currently, tar sand is the main source of non-conventional oils, but, 

due to their consistency, extraction of the oil is much more challenging than 

from conventional wells. For tar sands, a high temperature treatment by 

injecting steam, solvents, and/or hot air into the sands is often applied and 

occasionally, a chemical transformation into smaller transportable 

hydrocarbons is applied. As a consequence, these processes require 

considerably more energy than conventional oil extraction and hence oil 

production from these sources is more expensive. 

The first step after gaining crude oils is refining. Initially, this was done by 

straightforward distillation. However, since the obtained fractionation, based 

on differences in boiling point only, turned out to be not very economic, 

nowadays two linked processes are generally applied, i.e. fractionation and 

cracking. This is schematically shown in Fig. 2. 

 

Fig. 2: Scheme of a crude oil refinery. After preheating, the crude oil is brought into the  

atmospheric distillation tower. Blocks indicated with HT are hydrotreaters. 
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After distillation, the different fractions are transported to transformer units 

where hydrogenation, desulfurization and cracking are carried out to optimize 

the yield of the fuels as indicated. Furthermore, the residuum of the 

atmospheric distillation is directed to a vacuum distillation unit of which the 

distilled fraction is further processed, while the bitumen residue is used for 

other applications. As such, bitumen is often seen as a side product of the oil 

industry. However, it is widely applied as an important component for road 

construction, roofing, waterproof adhesive and sealing. Therefore, it has a 

substantial economical value. Besides, huge amounts of bitumen are also 

found in nature, i.e., buried in (tar) sands and in so-called bitumen lakes. For 

that reason, oil companies are very careful to fully assess the bitumen from a 

crude oil to ensure that it meets certain specifications, before proceeding to 

approving for normal refinery production. 

 

1.5. The characterization of crude oils 

 

It is clear from the preceding, that crude oils can have various 

compositions and hence different chemical and physical properties. For many 

reasons, knowledge of these properties is very important. First of all, it defines 

the potential applicability and hence whether it is economically justified to 

exploit an oil reservoir. Furthermore, information on the composition of a 

crude oil is critical to the selection of refining of the downstream processes 

and of the refining conditions [11]. For example, knowledge of physical 

parameters like the viscosity, liquidity and the presence of solid particles is 

crucial to prevent problems like clogging or solidification during transportation 

and processing. For that reason, the determination of physicochemical profiles 

or so called crude oil assays is common practice in oil industries. As such, a 

crude oil assay is the chemical evaluation of a crude oil feedstock. These 

tests provide not only more general information such as for example the 

Saturated, Aromatics, Resins, Asphaltenes (SARA) distribution, but also a 

series of chemical and physical properties that are important for refinery 

engineers, oil traders and producers. The suitability of crude oils for bitumen 

manufacturing, for instance, is based on the determination of more than 10 

so-called long residue (LR) and short residue (SR) properties. The LR 
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properties are defined as the physical and chemical properties of the residues 

flashed at 370°C, whereas the SR properties represent a number of 

physicochemical parameters of the residues flashed at higher temperatures. 

Another important parameter of crude oils is the sulfur concentration. As 

previously described, crude oils originate from anaerobic bacterial reduction of 

sedimentary biological matter. As a result, crude oils contain hardly any 

oxygen, but sulfur can be present in considerable amounts up to 9 weight %. 

The presence of sulfur species has a number of direct drawbacks, such as 

corrosion of the production plant and clogging in pipelines [11]. However, 

most importantly, sulfur has a huge environmental impact due to the formation 

of sulfur oxides (SOx) upon combustion of crude oil fuels. Therefore, next to 

the determination of other properties, sulfur speciation and characterization is 

also a major issue in crude oil production and refinery. For obvious reasons, 

these physicochemical tests can be quite complex and extensive. In practice, 

many tools are used for the characterization, depending on the application. 

Next to relatively simple tests to determine for instance the density, 

viscosity and total sulfur content, also rather complex experiments are carried 

out such as the characterization of the boiling range fractions by means of 

physical or simulated distillation and the speciation of sulfur compounds in a 

series of compound classes by 2-dimensional gas chromatography. At 

present, the majority of these tests are carried out by standard methods 

developed by the American Society for Testing and Materials International 

(ASTM International) [13] and the Energy Institute, formerly known as the 

Institute of Petroleum (IP) [14]. However, most of these methods are rather 

slow, elaborate and expensive, requiring large sample quantities of the crude 

oils to be sent to the laboratory. 

As a fast and viable alternative for these ASTM and IP tests, 

spectroscopic methods have been proposed already in 1995, since the 

corresponding spectra reflect the complete molecular composition of a crude 

oil [15]. Besides, spectroscopic techniques are able to supply information on 

interactions on a molecular scale. For that reason, the potentials of several 

spectroscopic methods for the characterization and classification of crude oils 

and crude oil products have been studied. Many of the results have been 

reported in the open literature, or filed in patents, comprising UV-Vis, infrared 
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(IR), near infrared (NIR), Raman, nuclear magnetic resonance (NMR) and 

mass (MS) spectrometry, often in combination with gas and liquid 

chromatography. Particularly, when combined with multivariate data analysis 

or chemometric modeling techniques spectroscopic data appear to be very 

useful to characterize and classify crude oils in many ways. In the next 

paragraphs, a brief description is given of the different spectroscopic methods 

that have been used in this thesis, including some examples from literature on 

the application of the technique in crude oil analysis. Furthermore, the basic 

principles of the chemometrical methods Partial Least Squares (PLS) 

regression and Principal Component Analysis (PCA) in relation to 

spectroscopic data are given. 

 

1.5.1. UV-Vis spectroscopy 

 

Ultraviolet-visible (UV-Vis) spectroscopy covers the wavelength range 

from 200-800 nm (50000-12500 cm-1). It is used to register the absorptions 

that are the result of electronic transitions between atomic or molecular 

orbitals. The frequency of a UV-Vis absorption band is correlated to a 

molecular structure or an oxidation state. This makes UV-Vis spectroscopy a 

useful tool for structural analysis and hence a potential technique for the 

characterization of crude oils. In organic chemistry, UV-Vis spectroscopy is 

widely used to investigate the extent of multiple bond or aromatic conjugation 

within molecules. Solutions for many organic compounds can easily be 

prepared in solvents with limited to no absorption in the UV-Vis range, such as 

hexane or dichloromethane. Since vibrational and rotational levels of the 

molecular orbitals are superimposed upon the electronic levels, the absorption 

bands are rather broad. This makes structural elucidation of unknown 

compounds difficult, but the technique is very useful for quantitative 

measurements. 

According to literature, the number of applications of UV-Vis 

spectroscopy in crude oil analysis is rather small [16-24]. Direct measurement 

is hampered by the high absorption coefficients of crude oils, which requires 

dissolution in a proper solvent prior to spectral acquisition. A typical UV-Vis 

spectrum of a crude oil is presented in Fig. 3. UV-Vis spectroscopy is found to 
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be particularly valuable to determine the amount of asphaltenes [16-21, 23], 

although it should be noted that due to asphaltene aggregation a non linear 

behavior with the concentration can occur [22]. Another method to determine 

the asphaltenes content comprises measuring the absorbance at 750 and 800 

nm in a solution or suspension in n-heptane [21]. This method is simple and 

straightforward applicable to crude oils as well as to bitumen. Furthermore, it 

has been demonstrated that complex peak structures can be revealed for 

crude oil UV-Vis spectra by mathematically pre-processing of the presumably 

featureless spectra [24]. UV-Vis spectroscopy is also applied to determine 

mono- and bicyclic hydrocarbons by characteristic absorptions at 200 and 230 

nm [16]. Finally, it is used to study the binding of metals like Ni and V in tar 

sand and bitumen [17]. 

 

Fig. 3. Typical UV-Vis spectrum of a crude oil (ratio 1:4000 in CH2Cl2). 
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in information, since each molecule exhibits 3N-6 normal modes with N being 

the number of atoms in the molecule. The frequency of molecular vibrations is 

defined by the bond strength and the mass of the atoms. It increases with the 

bond strength and decreases with the atomic mass. Besides, the vibrational 

frequencies are sensitive to changes in the intra- and intermolecular 

interactions. The intensity of an IR absorption band depends on the change in 

the dipole moment during the vibration: a large dipole moment change gives 

rise to strong absorption and a small change to a weak band. Therefore, IR 

spectroscopy is particularly useful in determining ‘polar’ functional groups, 

such as C=O, N-H and O-H. However, less polar aliphatic, olephinic and 

aromatic C-H and C-C vibrations also exhibit characteristic IR bands, which 

make IR also a valuable technique for crude oil analysis. As an example, a 

typical IR spectrum of a crude oil is presented in Fig. 4. 

 

Fig. 4. Typical IR spectrum of a crude oil. 
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prior to the spectroscopic analysis in order to convert the relatively weak IR 

absorbing carbon-sulfur and sulfur-hydrogen vibrations into S-O and S=O, 

since the latter functional groups have a much higher intensity in the infrared 

[49]. IR spectroscopy is also used to quantify the degree of aromaticity and 

the hydrocarbon composition by straightforward integration of the 

corresponding peaks [37, 38, 44, 48]. Other applications are the assessment 

of crude oil quality [33] and the classification of crude oils and coal, based on 

specific IR spectral features [30]. Finally, the technique is often used to predict 

crude oil and bitumen properties from their IR spectra [32, 33, 37, 39, 46, 47, 

50]. 

 

1.5.3. Near infrared spectroscopy 

 

Near infrared (NIR) spectroscopy is carried out in the region 800 to 

2500 nm (12500-4000 cm-1). In this part of the electromagnetic spectrum, 

overtone and combination bands of fundamental vibrations are found. 

According to the selection rules of quantum mechanics, they are forbidden for 

harmonic vibrations, but for anharmonic vibrations like C-H and C=O 

stretching, they are allowed. The corresponding molar absorptivity is much 

smaller than for fundamental modes as observed in IR spectroscopy, which 

opens the possibility to use much longer path lengths. Moreover, since glass 

can be used as sample cell material, NIR analysis is very easy and 

straightforward. As illustrated by the typical NIR spectrum of a crude oil in Fig. 

5, NIR absorption bands are usually very broad. As a consequence, it is 

difficult to assign specific features to chemical structures. For that reason, NIR 

is often used in combination with multivariate data analysis techniques to 

extract qualitative or quantitative information from the spectra. 

Due to the easy sampling properties, the number of applications of NIR 

spectroscopy to crude oil analysis is considerable, particularly in combination 

with chemometrics. Similar to IR spectroscopy, it is used for the determination 

of physical and chemical properties of crude oils and crude oil fractions [53, 

54] as well as for the prediction of parameters like viscosity and density [33, 

55, 59, 63]. Furthermore, NIR spectroscopy is applied to classify the 
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geographical origin of petroleum crudes [58] and the characterization of 

bitumen properties in order to determine the process ability of ores [61]. 

Fig. 5. Typical NIR spectrum of a crude oil. 

 

1.5.4.  Raman spectroscopy 

 

Similar to IR and NIR spectroscopy, Raman spectroscopy is used to 

study molecular vibrations. However, different from the photon absorption 

mechanism of (N)IR spectroscopy, Raman is based on the phenomenon of 

inelastic scattering of radiation by a sample molecule. The light interacts with 

the electrons and bonds of the molecule and excites the molecule into a 

virtual state. In this physical process, a part of the photon energy is 

transferred to a molecule as a result of the transition of the molecule to an 

excited vibrational state. The partial energy loss of the photon that is 

associated with this transition is expressed relative to the excitation 

wavelength of the laser and is called the Raman shift. This shift, expressed in 

cm-1, matches with the frequency of the corresponding molecular vibration 

and has exactly the same position in the Raman spectrum as in the IR 

12000 11000 10000 9000 8000 7000 6000 5000 4000

0.10

0.20

0.30

Wavenumber (cm-1) 

A
b

s
o

rb
a

n
c
e
  



14 
 

spectrum provided the vibration is both Raman and IR active. The activity and 

hence the spectral intensity is defined by the selection rules. In IR, the 

intensity depends on the change in dipole moment during the vibration, 

whereas in Raman it relates to a change in polarizability. As a consequence, 

the more symmetrical functional groups, like C=C, dominate the Raman 

spectrum, whereas more polar groups, like C=O, cause the most IR intense 

bands. This difference makes both techniques complementary. 

A drawback of Raman spectroscopy is its low scattering efficiency, 

which makes a laser source necessary to obtain a spectrum. Besides, the 

occurrence of fluorescence is a major nuisance of Raman spectroscopy. This 

phenomenon largely limits the application of Raman spectroscopy to crude oil 

analysis [64-71]. In order to reduce fluorescence, a pre-treatment with 

powdered charcoal and filtering is found to be effective but laborious [64]. 

Raman has been successfully used to determine the structural state of carbon 

in solid bitumen and kerogens [65, 66]. Another application is the analysis of 

distillation fractions of syncrude sweet blend to determine the aromatic 

content [68]. Lasers of various wavelengths were used to obtain useful 

Raman spectra and to calculate trends in the mono- and bicyclic aromatics 

content. Shoute et al. applied UV lasers to access oil sands-derived bitumen 

and other commercial petroleum products with Raman spectroscopy [69]. 

Only wavelengths below 240 nm, yielded fluorescence free Raman spectra 

which can be useful to determine the molecular composition of highly complex 

bitumen samples. Finally, Raman spectroscopy turned out to be a successful 

method to determine the asphaltene dimensions in Algerian crude oil [70, 71].  

 

1.5.5.  Nuclear magnetic resonance 

 

Some elements, like hydrogen (1H) and the 13C isotope of carbon 

possess a nuclear spin. Due to this property, the nuclei of these elements 

behave as tiny magnets. It allows the detection of these elements in a 

molecule by applying a periodical external magnetic field. This technique is 

called Nuclear Magnetic Resonance (NMR) spectrometry and can be used to 

obtain information on molecular structures. NMR spectra reflect the energy 

shift of a specific atom compared to a reference compound. This shift is called 
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chemical shift and is expressed in ppm units. In addition, the integrated peak 

intensities are proportional to the number of atoms that is present in the 

molecule. The environment of the nucleus, in terms of chemical bonding and 

neighboring atoms determines at which chemical shift an NMR peak is 

observed. Aromatic carbons, for instance, show up at a chemical shift of about 

120 ppm, whereas aliphatic carbon atoms appear around 20 ppm in 13C-NMR. 

In 1H-NMR the aromatic hydrogens are found around 7 ppm and the aliphatic 

ones around 1 ppm. Typical 13C-NMR and 1H-NMR spectra of crude oil are 

presented in Fig. 6. 

 

Fig. 6. Typical 
13

C-NMR (top) and 
1
H-NMR (bottom) spectra of a crude oil dissolved in CH2Cl2. 
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NMR spectrometry has been applied in several studies on the structural 

elucidation of molecules present in crude oils and crude oil fractions [72-88], 

such as asphaltenes [73], vacuum gas distillates [74] and bitumen [75]. 

Furthermore, 1H-NMR has been used for the characterization of oil and 

bitumen [8-81] and to determine the viscosity of heavy oil and bitumen [85]. 

More recent examples include the structural characterization of fluid catalytic 

cracking feeds [86], the analysis of hydrocarbon mixtures and asphaltenes 

[87] and the characterization of soluble fractions of coal tar pitch [88]. 

 

1.5.6.  Chemometrics or multivariate data analysis 

 

Chemometrics is commonly defined as the application of statistical 

methods to chemical data in order to establish correlations between sample 

properties and complex analytical data. A variety of advanced mathematical 

data reduction and pattern recognition techniques is used for this purpose. 

The combination of chemometrics and spectroscopic data is well established. 

The most versatile techniques used in spectroscopy are Principal Component 

Analysis (PCA) and Partial Least Squares (PLS) regression. Both techniques 

can make use of the complete spectral region, which allows for extracting 

information from very complex spectra.  

PCA is a data reduction technique and can be used qualitatively 

without any other information than the spectra. PCA decomposes a spectral 

data matrix X into a score matrix T and a loading matrix P according to the 

matrix formula X=TP. The formula is schematically depicted in Fig. 7. In this 

figure, matrix X represents n spectra, consisting of for instance p 

wavenumbers. The loading matrix P represents the r Principal Components 

(PC’s) which are spectrum like patterns with p wavenumbers. 

The score matrix T consists of the coordinates of the n original spectra on the 

new axes determined by the corresponding PC’s. PCA will capture the 

maximum variance in the spectra and this will result in the first Principal 

Component PC1. The next largest variation is called PC2 and so on. These 

PC’s will form the new axes for the dataset X. PCA will capture the most 

relevant information in the first few scores and noise will be represented by 

the higher PC’s. If the original spectra consist of 2000 wavenumbers this 
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means that the information is contained in a 2000 dimensional space. If the 

first 3 PC’s capture more than 99 % of the variance, this reduces the space to 

only 3 dimensions while losing less than 1 % of the information. 

 

 

Fig. 7. Schematical representation of the PCA methodology. 
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Fig. 8. Schematical representation of the PLS regression methodology. 

 

PCA and PLS are often used, particularly in combination with 

vibrational spectroscopy. This is due to the fact that the information content of 

vibrational spectra is high, but very difficult to access by straightforward 

interpretation. Many examples of PCA and PLS as applied to the 

interpretation of IR [42, 43, 47, 89, 94-96] and NIR [55, 56, 58-60, 62, 90] 

spectra can be found in literature and patents. Teixeira et al., for instance, 

applied multivariate calibration of IR data to detect alterations in Brazilian 

gasoline [94], while Honorato and co-workers used PCA to find the best 

calibration settings for simultaneous IR spectroscopic determination of 

gasoline properties [95]. PCA has also been used to compare the 

biodegradation level of crude oil by IR spectroscopy [96]. Other 

chemometrical applications to analyze IR data are the prediction of the source 

rock origin [91] and the determination of chemical-physical properties of 

gasoline [39]. For NIR spectroscopy, chemometrics has been used, for 

example, for the quantitative determination of physicochemical properties in 

the petrochemical industry [59] and to estimate crude oil properties from the 
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spectra of residual fractions [60]. Other multivariate data analysis methods 

have been used in crude oil analysis as well, such as moment combined 

partial least squares (MC-PLS) regression to analyse petroleum and 

petrochemical products [92] and neural networks to determine correlations 

between chemical and rheological properties of asphalt [97]. 

 

1.6.  Scope and outline of the PhD thesis 

 

The aim of the research, described in this PhD thesis, was to explore 

the potential of various molecular spectroscopic techniques in combination 

with chemometric modeling techniques, to classify crude oils and blends in 

terms of a number of physicochemical properties that are relevant for oil 

industries. The main goal was to predict bitumen properties, in terms of so-

called long residue (LR) and short residue (SR) properties. LR properties are 

defined as a series of physical and chemical properties of the residues 

obtained by flashing the oil at 370°C, while SR properties are described as 

physicochemical properties of the residues flashed at higher temperatures, i.e. 

400-590°C Maxwell-Bonnell. The LR and SR properties are used to determine 

the suitability of crude oils for bitumen manufacture and to predict bitumen 

properties as a function of the flash temperature directly from crude oil 

information. The underlying goal of this study was to link the more 

fundamental chemical composition of crude oils to the SR properties and thus 

to their bitumen quality. For this purpose six different spectroscopic 

techniques have been selected, namely mid IR, NIR, Raman, UV-Vis, 1H-

NMR and 13C-NMR. The second subject of the research was to explore the 

potentials of spectroscopy as a tool for the sulfur speciation of crude oils. This 

study has been carried out with IR spectroscopy only. A clear objective of both 

studies has been to utilize state-of-the-art instrumentation and software 

packages in order to allow implementation of the results in crude oil 

production plants and refineries. 

First, research has been carried out to determine the potentials and 

limitations of different spectroscopic techniques combined with chemometric 

modeling to classify crude oils in terms of a number of physicochemical 

properties. The results of this characterization study are described in Chapter 



20 
 

2. As spectroscopic methods, Raman, UV-Vis, IR, NIR and 1H- and 13C-NMR 

spectrometry have been investigated, while PLS regression and PCA have 

been used as chemometrical methods to build prediction models from the 

different spectra types. Models have been built for the LR properties in order 

to determine their suitability in bitumen application. Since modeling of IR 

spectra and, to a slightly smaller extent, NIR spectra turned out to give the 

best results, these types of data have been investigated in more detail and 

models were developed for the SR properties as well. 

In order to determine the potentials of combining complementary 

spectral methods, the two most promising techniques as determined in 

Chapter 2, have been studied in Chapter 3. This chapter describes the results 

obtained from PLS modeling of IR and NIR spectra combined with 1H- and 

13C-NMR data to predict long residue properties of crude oils and blends. 

Next, the effect of temperature treatment of crude oils and blends prior to 

recording the IR spectra has been studied. Two treatments have been 

investigated: 1) exposure of the crude oil for 24 h to 65 °C to reduce the 

contributions of volatile constituents, and 2) recording of the spectra as a 

function of the temperature over the range 20 to 65 °C with increments of 5 

°C. The results of PLS-modeling of the corresponding spectra and the 

resulting effect on the accuracy of the prediction of LR and SR properties are 

presented in Chapter 4. 

Chapter 5 summarizes the results of a feasibility study of PLS models 

that are based on mathematically mixed IR spectra of pure crude oils in order 

to predict LR properties of blends. If successful, this method allows fast 

screening of crude oils for potential application in a blend and eliminates the 

need for the physical preparation of such mixtures. Chapter 6 describes the 

results of a study to the robustness of the prediction models. This was carried 

out by checking the effect of the spectral reproducibility on the results of PLS 

modeling and prediction. The same was done for spectra acquired from 

different spectrometers, equipped with different sampling accessories. As a 

spin-off of the preceding chapters, the PLS modeling of the IR spectra as a 

potential tool for sulfur speciation of crude oils has been studied. The results 

of that research are presented in Chapter 7.  
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Finally, Chapter 8 summarizes the conclusions from the research 

described in this PhD thesis and finishes with some recommendations for 

future research. 
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Abstract 

Research has been carried out to determine the feasibility of 

chemometric modeling of Raman, UV-Vis, 1H-NMR, 13C-NMR, IR and NIR 

spectra of crude oils to predict the long residue (LR) and short residue (SR) 

properties of these samples. The study has been carried out on 47 crude oils 

and 4 blends, representing a large variety in physical and chemical properties. 

Raman spectroscopy turned out to be not useful due to fluorescence and self 

absorption problems. For the remaining techniques, the spectra of 22 

representative samples were selected by Principal Component Analysis 

(PCA) and used to build prediction models for 7 different LR properties. The 

results obtained for the Partial Least Squares (PLS) regression models based 

on IR and NIR spectra appeared to be significantly better than for those 

derived from the UV-Vis and NMR data. For that reason research was further 

focused on IR and NIR spectra. From the set of 51 samples, 28 were selected 

by PCA and used for calibration. The remaining 23 samples were used as test 

set to validate the PLS models. As a result, a novel method is described to 

predict LR properties as well as SR properties at different flashing 

temperatures based on the IR spectrum of a crude oil measured at room 

temperature. The resulting method has been patented (WO/2008/135411) and 

demonstrates that this integrated approach offers a fast and viable alternative 

for the currently applied elaborative ASTM (American Society for Testing and 

Materials) and IP (Institute of Petroleum) methods. In particular, IR spectra 

were found to be useful input for the prediction of different LR properties. Root 

mean square error of prediction values of the same order of magnitude as the 

reproducibility values of the ASTM methods were obtained for yield long on 

crude (YLC), density (DLR), viscosity (VLR), the sulfur content (S) and Pour 

Point (PP) , while the ability to predict the carbon residue (CR) was found to 

be useful for indicative purposes. The prediction of SR properties is also 

promising. Modeling of the IR spectra, and to a less extent, the NIR spectra as 

a function of the Atmospheric equivalent Flash Temperature (AFT) was 

successful for the prediction of the short residue properties density (DSR) and 

viscosity (VSR). Similar results were obtained from the models to predict SR 

properties as a function of the yield short on crude (YSC) values. Finally, it 
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was concluded that the applied protocol including sample pre-treatment and 

instrumental measurement is highly reproducible and instrument and 

accessory independent. 

 

2.1.  Introduction 

 

Bitumen is a complex mixture of hydrocarbons and hydrocarbon 

derivatives, including aliphatic, olefinic and aromatic compounds. It is usually 

pictured as a colloidal solution of high molecular carbon-hydrogens (so-called 

asphaltenes) finely dispersed in a mixture of resins and oils [1, 2]. Bitumen is 

commonly known as an important component for road construction, but is also 

used for roofing, waterproofing adhesive and sealing applications. A 

substantial amount of bitumen is found in nature, i.e. buried in sand [3] but, 

more generally, it is obtained as a residue of crude oil after atmospheric and 

vacuum distillation in the refinery. As such, it is an important product of the oil 

industry and of considerable economical value. Therefore, oil companies are 

very careful to fully assess the bitumen from a crude oil to ensure it meets the 

market requirements, before proceeding to approving for normal refinery 

production.  

At present a crude oil is assessed by laboratory preparation of actual 

bitumen samples, which are then passed through a range of further tests to 

confirm meeting the required quality. The assessment of these chemical and 

physical properties is carried out by standard methods developed by the 

ASTM [4] and the Energy Institute [5], formerly known as the Institute of 

Petroleum (IP). These methods are rather slow, elaborative and expensive, 

requiring large sample amounts of the crude to be sent to the laboratory. As a 

fast and viable alternative, spectroscopic methods, such as nuclear magnetic 

resonance (NMR) [6-17], Raman [18-21], infrared (IR) [10, 21-40], near 

infrared (NIR) [41-53] and fluorescence [54], have been proposed since the 

corresponding spectra reflect the complete molecular composition of the 

crude oil [55]. Particularly, when combined with chemometric modeling 

techniques [31, 34, 35, 39, 44, 45, 48-50, 56-60], it might be possible to 

classify crude oils in terms of suitability for bitumen manufacture from their 

spectra. Hence, it is a logical step to explore the potential of various molecular 
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spectroscopic techniques in combination with chemometric modeling 

techniques to classify crude oils in terms of suitability for bitumen manufacture 

and to predict bitumen properties as a function of the flash temperature 

directly from crude oil information.  

This approach should link the more fundamental chemical composition 

of crude oils to short residue properties and thus, to their bitumen quality. For 

this purpose six different spectroscopic techniques, i.e., Raman, UV-Vis, 1H-

NMR, 13C-NMR, IR and NIR have been selected to predict bitumen properties 

in terms of so-called long residue (LR) and short residue (SR) properties. LR 

properties are commonly defined as a series of physical and chemical 

properties of the residues flashed at 370°C, while SR properties are described 

as physicochemical properties of the residues flashed at higher temperatures, 

i.e. 400-590°C Maxwell-Bonnell. The approach of this study should link the 

more fundamental chemical composition of crude oils to SR properties and 

thus, to their bitumen quality. A novel method is described to predict SR 

properties of a crude oil at different flashing temperatures based on the IR 

spectrum measured at room temperature. 

 

2.2.  General methodology 

 

2.2.1. Experimental protocols 

 

As a first step, methods for sample storage, sample pre-treatment and 

sample preparation were developed in experimental protocols to assure the 

acquisition of reproducible, high quality spectra. Although the high viscosity of 

several of the crude oils would make it reasonable to perform the 

measurements at elevated temperatures, for practical reasons, it was chosen 

to carry out all measurements at room temperature (20°C). As some samples 

contain considerable light-ends that flash off at low temperatures, spectra 

were acquired in closed cells. Next, experimental and instrumental settings 

were optimized to obtain sufficient spectral quality in terms of signal to noise 

ratio for each of the techniques. The final settings have been summarized in 

protocols and applied throughout the study.  
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For IR, 22 samples have been analyzed 3 times with time gaps of a few 

weeks to optimize the experimental conditions and to develop the final 

protocol. All other spectra were measured in accordance with this protocol. In 

a separate experiment, the effect of evaporation of volatile compounds from 

the crude oil during IR-spectroscopic measurement was tested by comparison 

of spectra recorded with the closed sample cell, with spectra taken with an 

open cell as a function of time. Finally, measurements were carried out to 

study the effect of time during spectra acquisition with a closed cell to 

determine whether precipitation or a change in homogeneity occurred during 

spectrum acquisition.  

PLS regression was applied to correlate the properties of long residues 

(LR) and short residues (SR) with the IR and NIR spectra of the crude oils. 

First, properties of residues flashed at 370°C (i.e. long residues) have been 

modeled. The following LR properties were studied: the long residue yield-on-

crude (YLC), density (DLR), viscosity (VLR), sulfur content (S), pour point (PP), 

asphaltenes (Asph) and carbon residue (CR). As input values for these 

properties, the data obtained with the following ASTM methods were used: D 

2892 (YLC), D 4052 (DLR), D 445 (VLR), D2622 (S), D 97 (PP) and D 4530 

(CR), while the values for Asph were determined by method IP 143.  

In a second step, research was carried out to determine whether the 

short residue (bitumen) properties as a function of the Atmospheric equivalent 

Flash Temperature (AFT) could be related to the spectral data of the crude 

oils in order to predict bitumen quality. As a starting point for the prediction of 

the short residue properties, the parameters penetration (P), softening point or 

ring and ball (R&B), viscosity (VSR) and density (DSR) were considered as the 

main properties. As input values for the SR properties, the data obtained with 

the ASTM methods D 5 (P), D 36 (R&B), D 4052 (DSR) and D 445 (VSR) were 

used. 

 

2.2.2. Materials 

 

Spectra were acquired from a set of 47 crude oil samples and 4 blends. 

As can be seen from Table 1, the set covers a wide range of LR properties. 

SR properties were known for smaller sets of samples. To reduce evaporation 
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of volatile constituents from the original samples, all crude oils were stored in 

the refrigerator at 3°C. Prior to analysis, samples were taken out of the 

refrigerator 8 h before measurement with caps closed to prevent condensation 

of moisture. Furthermore, samples were homogenized at least 1 h before 

measurement by shaking the sample every 10 min.  

From the total set, the samples C1-C22 were selected to build 

prediction models for Raman, UV-Vis, 1H-NMR, 13C-NMR, IR and NIR 

spectra. After evaluation of the results obtained for the different techniques, 

samples C1-C28 were used for calibration purposes of the LR properties from 

the IR and NIR spectra and the remaining 23 samples V1-V23 for validation of 

the models obtained. Modeling to predict SR properties was carried out on 

smaller sets since these data were not known for all compounds. 

 

Table 1. Crude oil samples used for calibration (C1-C28) and validation (V1-V23) with 

corresponding long residue (LR) properties. YLC: yield long-on-crude; DLR: density; VLR: 

viscosity; S: sulfur content; PP: pour point: Asph: asphaltenes content: CR: carbon residue.  

 
YLC 

(wt %) 
DLR 

(g/mol) 
VLR 
(-) 

S 
(wt %) 

PP 
(°C) 

Asph 
(wt %) 

CR 
(wt %) 

C1 34.7 0.8889 29.5 0.72 42 1.2 3.9 

C2 55.7 0.9507 37.2 4.75 30 9.5 14.0 

C3 23.9 0.8839 28.9 1.08 30 1.0 3.3 

C4 24.1 0.8827 28.8 1.11 36 0.7 3.3 

C5 64.1 0.8665 30.8 0.14 48 0.1 4.4 

C6 40.8 0.9003 29.1 0.70 36 1.6 6.4 

C7 61.8 0.9504 37.9 1.17 15 1.2 9.9 

C8 35.2 0.8962 34.6 0.56 30 0.6 4.1 

C9 47.1 0.9188 33.3 0.84 3 0.2 4.7 

C10 49.0 0.9488 36.8 3.22 21 5.8 12.6 

C11 58.0 0.9273 36.3 2.19 24 3.2 9.6 

C12 43.2 0.8660 29.2 0.25 42 0.2 4.4 

C13 80.7 0.9820 41.8 3.05 45 8.0 14.0 

C14 69.3 0.9086 36.2 0.99 48 0.2 9.7 

C15 56.8 0.9800 39.3 5.42 27 12.2 17.7 

C16 79.7 0.9842 41.9 3.14 39 8.0 14.2 

C17 49.4 0.9178 33.8 2.05 18 2.2 7.7 

C18 47.4 0.9236 33.5 2.15 27 2.7 8.0 

C19 32.7 0.9583 34.5 4.87 27 2.0 10.7 

C20 78.0 0.9429 39.8 0.30 30 4.5 12.6 

C21 39.1 0.9313 35.0 0.43 30 0.4 6.0 

C22 80.2 0.9958 44.1 3.88 48 12.0 16.8 

C23 36.9 0.8865 30.9 0.81 39 1.3 6.3 
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C24 49.1 0.9473 36.4 3.14 18 6.3 12.4 

C25 45.7 0.9332 33.2 3.23 6 3.6 10.4 

C26 65.5 0.9771 41.9 4.31 39 15.4 19.2 

C27 66.9 0.9344 35.7 1.47 9 2.0 8.7 

C28 55.6 0.9573 38.1 4.47 21 8.4 15.3 

        

V1 46.8 0.9278 32.7 2.85 39 5.3 11.0 

V2 46.1 0.9299 33.3 3.17 39 3.2 9.8 

V3 41.8 0.8970 31.5 0.42 39 0.1 5.0 

V4 49.9 0.9208 33.0 1.54 36 6.0 10.8 

V5 49.7 0.9444 35.3 4.30 9 4.2 11.7 

V6 58.7 0.9510 37.5 3.39 33 9.0 14.1 

V7 31.1 0.8822 31.9 0.46 36 0.2 4.3 

V8 61.7 0.9470 36.4 4.26 18 3.5 15.0 

V9 49.9 0.9471 35.9 3.76 21 5.6 12.2 

V10 51.6 0.9136 34.0 2.82 48 4.5 9.1 

V11 39.0 0.8969 30.1 0.48 36 3.3 6.8 

V12 51.4 0.9457 35.7 4.12 18 5.4 12.3 

V13 57.1 0.9546 38.3 2.52 15 8.6 13.8 

V14 66.7 0.9696 43.3 2.50 54 15.3 19.3 

V15 60.1 0.9682 38.6 5.09 18 9.9 16.1 

V16 41.4 0.9080 31.3 1.13 27 2.2 6.4 

V17 42.5 0.9325 33.6 3.09 30 2.2 8.3 

V18 48.1 0.9229 32.8 2.03 24 2.7 7.7 

V19 33.9 0.9533 35.1 4.55 24 2.1 10.4 

V20 45.2 0.9382 34.9 2.88 15 5.2 11.3 

V21 45.5 0.9376 35.3 2.76 21 5.6 10.9 

V22 43.7 0.9424 35.5 3.05 15 4.7 11.4 

V23 46.1 0.9392 35.4 2.91 21 5.4 11.8 

 

2.2.3. Spectroscopic methods 

 

Raman measurements were carried out on three different instruments: 

1) a Kaiser RXN spectrometer equipped with a 70 mW 532 nm diode laser for 

excitation, a holographic grating for dispersion and a Peltier cooled Andor 

CCD camera for detection, 2) a Kaiser RXN spectrometer equipped with a 60 

mW 785 nm diode laser a Peltier cooled Andor CCD camera for detection, 

and 3) a Perkin-Elmer System 2000 NIR FT-Raman with a 1064 nm laser line 

for excitation and a room temperature operated InGaAs detector. Spectra 

were recorded in glass vials (Spectra-Tech) at room temperature. Detector 

exposure time and scan accumulations were chosen, depending on the 

scattering properties of the samples. 
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For UV-Vis spectroscopy the crude oil samples were diluted in a ratio 

of 1:4000 in CH2Cl2 as the solvent in order to obtain sufficient transmission. 

Spectra were recorded with a Cary 50 spectrometer (Varian) equipped with a 

probe head that was connected to the instrument via optical fibers. The 

effective path length of the probe was 2 mm. Spectra were recorded from 

1100 to 200 nm at a data point interval of 0.15 nm and at a scan rate of 360 

nm/min. 

1H-NMR spectra were recorded at room temperature on a Bruker 

AC300 FT-NMR, set to 1H 300 MHz using WinNMR 6.0 software for control 

and acquisition. The instrumental settings were as follows: SW: 4505.4 Hz; 

FW: 5700 Hz; SI and TD: 32K data points; O1: 6100; O2: not used; LB: 0.3 Hz 

and SR: 3367.25. For each sample, a fresh homogeneous solution was 

prepared of 50 mg crude oil in 0.5 ml CDCl3. The solutions were spiked with 

tetramethylsilane (TMS). Solutions were analyzed in sealed 5 mm quartz 

NMR tubes with a spin speed of 20 Hz.  

13C-NMR spectra were recorded at room temperature on a Bruker 

AC300 FT-NMR, set to 13C at 75 MHz using WinNMR 6.0 software for control 

and acquisition. The instrumental settings were as follows: SW: 17857 Hz; 

FW: 20000 Hz; SI and TD: 32K data points; O1: 6100; O2: 4600; LB: 2 Hz and 

SR: -1405. For each sample, fresh homogeneous solutions were prepared of 

300 mg crude oil in 0.5 ml CDCl3. The solutions were spiked with 

tetramethylsilane (TMS) and analyzed in sealed 5 mm quartz NMR tubes with 

a spin speed of 20 Hz.  

IR measurements were carried out at room temperature on two 

different instruments: a Bruker Tensor-27 and a Perkin-Elmer 2000 Fourier 

transform spectrometer. Both instruments were equipped with a DTGS 

detector and the sample compartments were flushed with dry air to reduce 

interference of H2O and CO2. Spectra were recorded either with a horizontal 

ATR accessory (MIRacleTM, Pike Technologies) with a ZnSe/Diamond crystal 

as the internal reflection element (Perkin-Elmer 2000) or with a horizontal ATR 

accessory (FastIRTM, Harrick Scientific Products) with a ZnSe crystal as the 

internal reflection element (Tensor-27 instrument). The spectral resolution was 

4 cm-1 for all spectra and 50 scans were accumulated with medium 

apodization for each spectrum. ATR-intensity correction was not applied. 
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NIR spectra were recorded at room temperature on two different 

instruments: a Bruker Tensor-27 and a Perkin-Elmer 2000 Fourier transform 

infrared spectrometer. Both instruments were equipped with a (NIR) DTGS 

detector and the sample compartments were flushed with dry air to reduce 

interference of H2O and CO2. The spectral resolution was 16 cm-1 and 100 

scans were accumulated with medium apodization for each spectrum. Liquid 

samples were scanned in a fixed 0.1 mm cell equipped with CaF2 windows. 

Highly viscous samples were analyzed in a demountable cell with KBr 

windows and a path length of approximately 0.1 mm. 

 

2.2.4. Data analysis 

 

Modeling was performed using the PLS Toolbox (Eigenvector 

Research, Inc.) for MatLab (The MathWorks, Inc.). Prior to modeling, the IR 

and NIR spectra were pre-processed by first taking the 1st derivative (25 pt. 

Savitzky-Golay smoothing), followed by “Multiplicative Signal Correction” 

(MSC) and Mean Centering of the data. Pre-processing parameters were 

chosen based on prior knowledge for each spectroscopic technique combined 

with trial and error. For the IR spectra, the regions from 3200-2500 cm-1 and 

1800-650 cm-1 were used as input, whereas for NIR the spectra from 7000 

cm-1 to 4000 cm-1 (1429-2500 nm) were taken. The obtained root-mean-

square error of cross validation values (RMSECV) were based on ”leave-one-

out” (LOO) cross validation (CV). The number of latent variables (LV), used 

for a PLS model, was based on the minimum value of the RMSECV. In case 

the minimum was reached at only one LV in the PLS cross validation, the 

model was build with three LV’s in order to get a more realistic PLS model. 

First, modeling for the LR properties was carried out on the spectra (IR 

and NIR) of the set of 51 samples (47 crudes, 4 blends). This set was divided 

into a group of 28 spectra for calibration and 23 spectra for validation. The 

calibration set was based on the results of a Principal Component Analysis 

(PCA) of the total collection without the 4 blends to obtain a representative 

subset. The Mahalanobis distance based on the first 6 scores was used to 

select 21 extreme samples with largest distance and 2 samples with the 

smallest distance to the center of the scores. The 5 additional samples of the 
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calibration set were chosen randomly and the blends were added to the test 

set. Secondly, the 7 LR properties were modeled with PLS-1 with the 

described calibration and validation set of respectively 28 and 23 spectra (IR 

and NIR). 

Next, PLS models (SIMPLS algorithm, PLS-1) were created from the IR 

spectra of 43 crude oils for which SR properties were known. PLS prediction 

models were made for the SR properties Penetration (P), ring-and-ball (R&B), 

density (DSR) and viscosity (VSR) at various flash temperatures. The 

corresponding data sets consisted of 33 (P), 37 (R&B), 40 (DSR) and 38 (VSR) 

IR spectra with 99, 119, 130 and 118 SR properties, respectively. Because of 

the smaller number of spectra for which SR properties were known in 

combination with the model complexity, LOO cross validation was applied 

instead of creating an independent validation set. In addition, modeling of the 

spectra was carried out after randomizing SR properties, as a test for the 

validity of the models obtained [61]. Finally, the SR properties were further 

determined at various AFT and this AFT-value was used as discriminator.  

The process of the PCA as applied is schematically depicted in Fig. 1.  

 

 

Fig. 1. The schematic representation of the creation of the X-matrix using PCA. X is used as 

input for the PLS modeling of the crude SR-property P at the available AFT values. 
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The data matrix X was created by PCA on the available IR spectra (A) after 

pre-processing (1st derivative and 25 pt. Savitzky-Golay smoothing, 

Multiplicative Signal Correction and Mean Centering). The first 10 scores of 

this PCA model (S) were used to describe the spectra for which the SR 

properties were available resulting in a score matrix Sn. The discriminating 

AFT values were then added to Sn resulting in 11 variables in the new data 

matrix X, which were variance scaled for each crude. Next, the corresponding 

SR properties were used as the Y matrix in the PLS regression. The same 

procedure was followed using the “yield short on crude” (YSC) instead of the 

AFT values as additional input of the data matrix. PCA modeling was used to 

examine the differences between the different IR methods that were used.  

 

2.3. Results and discussion 

  

2.3.1. Raman spectroscopy 

 

The Raman spectra of all compounds appeared not to be useful for 

modeling purposes. In all cases, excitation with both the 532 nm and the 785 

nm laser line produced spectra with a very high fluorescence level, which 

completely obscured the much weaker Raman scattering. Similarly, heating 

effects and self-absorption prevented the acquisition of useful Raman spectra 

when using the 1064 nm laser line for excitation. UV laser excitation might be 

a way to reduce these interfering phenomena, but UV/Raman facilities are not 

available at the Debije Institute for Nanomaterials Science of Utrecht 

University. For that reason further studies to the potentials of this technique 

were not carried out. 

 

2.3.2 UV-Vis spectroscopy 

 

The UV-Vis spectra of the pure crude oils appeared to be too black to 

be analysed directly. For that reason dilute solutions were prepared. The 

suitability of hexane, acetone, CH2Cl2 and CCl4 as the solvent were tested. 

Both CH2Cl2 and CCl4 were found to virtually dissolve all constituents 

including asphaltenes. However, for environmental and safety reasons, 
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CH2Cl2 was selected for further application. A dilution factor of 1:4000 

appeared to be useful to obtain spectra of sufficient signal to noise ratio. As 

an example of the quality of the spectra obtained, the data of three crudes are 

shown in Fig. 2. All compounds showed a highly similar pattern with two 

strong bands at around 250 and 300 nm. Since this is the absorption region of 

aromatic compounds, it may reflect information on the amount of asphaltenes 

in the crude oil.  

 

Fig. 2. UV-Vis spectra of 3 different crude oils (V2, V4 and C5) dissolved in CH2Cl2.  

 

2.3.3. 1H-NMR spectrometry 
 

Characteristic 1H-NMR spectra of 2 crude oils, more specifically sample 

V5 and V9, are shown in Fig. 3. Dilution factors of 5-20 times appeared to be 

necessary to obtain useful data. The intense shifts around 1 and 1.5 ppm are 

typical for saturated carbon-hydrogen groups, e.g., methyl and methylene 

groups from alkanes, whereas the much weaker peaks around 7 ppm reflects 

the presence of aromatic compounds [62]. These peaks dominate the spectra 

of all 1H-NMR spectra. However, detailed analysis of the weaker peak pattern 

in exploded view revealed small differences between the different samples. 
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Fig. 3. 
1
H-NMR spectra of 2 different crude oils (V5 and V9). 

 
 

2.3.4. 13C-NMR spectrometry 

 

Characteristic 13C-NMR spectra of the crude oils C1 and C5 are shown 

in Fig. 4. At first glance, the spectra seem very much alike but closer 

examination reveals some significant differences. As a consequence, 13C 

spectra seem more promising than the corresponding 1H spectra. A 

complicating factor of both types of NMR spectra with respect to 

chemometrical modeling is the limited data point reproducibility. This problem 

is inherent to the calibration of NMR spectrometers and negatively affects 

modeling. 
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Fig. 4. 

13
C-NMR spectra of crude oils C5 (upper trace) and C8 (lower trace). Offset of the 

baseline has been applied to allow for better comparison. 

 

2.3.5. Infrared spectroscopy 

 

As illustrated by the IR spectra of sample C1 in Fig. 5, crude oils and 

blends are characterized by strong absorptions around 2900 and 1400 cm-1, 

originating from the C-H stretching and bending vibrations, respectively. 

Furthermore, the spectra show bands in the range 900-600 cm-1 due to 

aromatic ring deformation and out-of-plane vibrations and long alkyl chain CH2 

rocking modes. However, as shown in Fig. 6, the IR spectra of crude oils, 

recorded in an open cell as a function of time, may show considerable 

changes, particularly in the fingerprint region as result of the evaporation of 

volatile constituents during measurement. For that reason, only closed sample 

cell data were used for further modeling experiments. Under these conditions 

the spectra were found to be highly reproducible, as can be seen in Fig. 5. 
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Fig. 5. Overlay of 16 subsequently recorded IR absorbance spectra of sample C1 in a closed 

ATR sample cell recorded over a 1 h time interval. 

 

Fig. 6. Effect of evaporation of volatile components on the ATR-IR spectra of sample C1 when 

using an open sample cell. 
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2.3.6. Near infrared spectroscopy  

 

 

Fig. 7. NIR spectra of 4 different crude oil samples (C9, C12, C13 and C22). 

 

As shown in Fig. 7, the NIR spectra of the crude oils are characterized 

by absorption bands related to overtones/combinations of –C-H stretching and 

bending vibrations around 4100 cm-1 (2439 nm) and 5500 cm-1 (1818 nm). 

Also weaker bands can be observed at 7600 cm-1 (1316 nm) and 8300 cm-1 

(1205 nm). Furthermore, considerable baseline differences are present, which 

can be attributed to different scattering effects and electronic transitions at 

higher wavenumbers. In accordance with literature [40], the effect was found 

to be the strongest for the dark and viscous heavy oils, such as C2, C10, C15, 

C22, V14 and V15, which usually contain relatively high amounts of aromatic 

compounds including the solid asphaltenes. It should be noted that the highly 

viscous samples require the application of a demountable cell of which the 

path length cannot be adjusted with high accuracy, thus limiting a fair mutual 

comparison. This problem was partially circumvented in the modeling phase 

by normalizing the spectra on the strongest band present, i.e., around 4100 

cm-1 (2439 nm) or by applying MSC. 
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2.3.7. Data analysis of long residue properties 

 

The calibration sets of 22 UV-Vis, 1H NMR, 13C NMR, IR and NIR 

spectra were used to build PLS models for each of the 7 LR properties. The 

results are summarized in Tables 2-6, showing the mean value for each of the 

properties, the RMSECV based on the PLS model that was built, and the 

number of latent variables (LV’s) used. For all models, the RMSECV is based 

on LOO cross validation. All spectra were pre-processed before calibration 

was carried out. Pre-processing parameters were chosen based on prior 

knowledge of the spectroscopic technique combined with trial and error. The 

number of LV’s or principal components, used for a PLS model, was based on 

the minimum value of the RMSECV. In case the minimum was reached at 

only one LV in the PLS cross validation, the model was built with three LV’s in 

order to get a more realistic PLS model.  

 

Table 2. Results of a PLS-regression of the 22 UV-Vis spectra versus the LR properties. 

LR property mean value RMSECV used LV's 

YLC (wt %) 49.7 6.7 2 

DLR (g/ml) 0.926 0.023 2 

VLR (-) 34.4 2.8 3 

S (wt %) 2.08 0.57 2 

PP (°C) 27.3 12.8 2 

Asph (wt %) 3.4 2.5 2 

CR (wt %) 9.2 1.7 2 

 

Table 3. Results of a PLS-regression of the 22 
1
H NMR spectra versus the LR properties. 

LR property mean value RMSECV used LV's 

YLC (wt %) 49.7 11.7 4 

DLR (g/ml) 0.926 0.025 3 

VLR (-) 34.4 2.5 3 

S (wt %) 2.08 1.58 4 

PP (°C) 27.3 11.1 4 

Asph (wt %) 3.4 3.4 3 

CR (wt %) 9.2 3.3 3 

 

 

 



42 

 

Table 4. Results of a PLS-regression of the 22 
13

C NMR spectra versus the LR properties. 

LR property mean value RMSECV used LV's 

YLC (wt %) 49.7 7.9 3 

DLR (g/ml) 0.926 0.020 4 

VLR (-) 34.4 2.5 2 

S (wt %) 2.08 1.09 3 

PP (°C) 27.3 9.2 4 

Asph (wt %) 3.4 3.4 3 

CR (wt %) 9.2 2.6 5 

 

Table 5. Results of a PLS-regression of the 44 (2 replicates) ATR-IR spectra versus the LR 

properties. 

LR property mean value RMSECV used LV’s 

YLC (wt %) 49.7 2.1 6 

DLR (g/ml) 0.926 0.006 5 

VLR (-) 34.4 0.9 6 

S (wt %) 2.08 0.29 6 

PP (°C) 27.3 6.0 6 

Asph (wt %) 3.4 1.9 6 

CR (wt %) 9.2 1.1 5 

 

Table 6. Results of a PLS-regression of the 22 NIR spectra versus the LR properties. 

LR property mean value RMSECV used LV's 

YLC (wt %) 49.7 2.5 5 

DLR (g/ml) 0.926 0.009 4 

VLR (-) 34.4 1.3 3 

S (wt %) 2.08 0.64 4 

PP (°C) 27.3 11.3 3 

Asph (wt %) 3.4 2.5 2 

CR (wt %) 9.2 1.2 3 

 

As appears from Tables 2-6, the results of modeling based on IR and 

NIR spectra are in all cases better than those built on UV-Vis and 1H- and 13C-

NMR spectra. Compared to IR, the results of modeling for the NIR spectra 

were slightly worse as expressed by the larger RMSECV values. This is 

attributed to the stronger baseline effects in the NIR spectra. From a 

theoretical point of view, it can be argued that NIR spectra contain at 
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maximum the same information as the IR spectra. For that reason better 

models than obtained from IR are not very likely. 

The results from the UV-Vis data indicate that the usefulness of this 

technique for predicting LR properties is limited. At first glance the results from 

NMR are somewhat disappointing, but as previously indicated this is due to 

data acquisition inaccuracies. This is a well-known problem in NMR and tools 

to correct for these inaccuracies are currently being developed in literature 

[63]. Therefore, it should be emphasized that such enhanced pre-processing 

procedures will most likely considerably improve the results. As such, this 

offers potentials for further research as soon as this problem has been solved. 

As a consequence of these observations and considerations, it was decided 

to focus further research on the applicability of the IR and NIR spectra using 

an extended calibration set of 28 spectra and an independent set of 23 test 

spectra for validation, selected by PCA of the total set of 51. The results 

obtained for the IR spectra are summarized in Table 7, showing the mean 

value of the larger data set for each of the LR properties, the RMSECV based 

on the model that was built, the number of LV’s used and the predictions in 

terms of the root-means-square-error-of-prediction (RMSEP) values. The 

latter have also been depicted as prediction plots in Fig. 8. 

 

 

Table 7. Results of PLS modeling and prediction of the LR properties of crude oils based on 

IR. Models are based on 28 spectra for calibration and 23 for validation. Mean values and 

reproducibility values originate from ASTM and IP methods.  

LR-property Mean value Reproducibility(+/-) RMSECV LV's RMSEP 

YLC (wt %) 52.5 1.2 3.7 9 2.8 

DLR (g/ml) 0.930 0.0005 0.012 8 0.007 

VLR (-) 35.3 - 2.0 6 1.3 

S (wt %) 2.16 0.09*S (S>0.9%) 0.56 8 0.24 

PP (°C) 29.6 9 9.2 5 10.9 

Asph (wt %) 4.1 0.2*Asph 2.2 7 2.5 

CR (wt %) 9.7 0.046*(3+CR) 2.1 6 1.6 
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Fig. 8. Prediction plots of PLS modeling of the LR properties based on the IR spectra of 

crudes oils. (•) calibration spectra, (X) validation spectra of which (□) blends. 
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As appears, the plots obtained for the properties S, PP, Asph and CR 

are somewhat scattered. For PP, the corresponding RMSEP-value is 

relatively large, but of the same order of magnitude as the reproducibility of 

the ASTM method. The RMSEP values for S, Asph and CR are larger than 

the reproducibility of the physicochemical methods, which implies that these 

models are more useful for indicative purposes. However, the models 

obtained for the properties YLC, DLR and VLR perform very well. The high 

reliability of the predictions of these properties is reflected in the small 

RMSEP-values, particularly, regarding the small number of latent variables 

that was used in these models. The RMSEP values are not as good as the 

reproducibility values of the corresponding ASTM methods, but within 

reasonable limits. The RMSEP values are even smaller than the 

corresponding RMSECV’s. This result and the fact that the properties of the 

test set are close to the average values confirm the validity of the models. 

Besides, the more extreme samples were selected for the calibration set. It 

follows that the RMSEP-values are a better indication of the performance of 

the models than the RMSECV values. 

The same pre-processing and modeling procedure as for IR was 

applied to build PLS models for the different LR properties from the calibration 

set of 28 NIR spectra. The results are presented in Table 8. The independent 

set of 23 NIR test spectra was used for validation of the models and the 

RMSEP-values obtained are added to Table 8. The corresponding prediction 

plots are shown in Fig. 9. 

 

Table 8. Results of PLS modeling and prediction of the LR properties of crude oils based on 

NIR spectroscopy. Models are based on 28 spectra for calibration and 23 for validation. Mean 

values and reproducibility values obtained by ASTM and IP methods. 

LR property Mean value Reproducibility(+/-) RMSECV LV’s RMSEP 

YLC (wt %) 52.5 1.2 3.0 5 2.4 

DLR (g/ml) 0.930 0.0005 0.017 4 0.008 

VLR (-) 35.3 - 2.2 4 1.6 

S (wt %) 2.16 0.09*S (S>0.9%) 0.76 7 0.48 

PP (°C) 29.6 9 8.7 6 11.6 

Asph (wt %) 4.1 0.2*Asph 3.0 4 2.9 

CR (wt %) 9.7 0.046*(3+CR) 2.8 4 2.2 
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Fig. 9. Prediction plots of PLS modeling of the LR properties based on the NIR spectra of 

crudes oils. (•) calibration spectra, (X) validation spectra of which (□) blends. 
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Similar to IR, the properties YLC, DLR and VLR are predicted very well. 

Furthermore, the RMSEP values are again smaller than the corresponding 

RMSECV’s and fairly close to the reproducibility values of the ASTM-methods. 

The latter is also valid for the property PP, while the models for S, Asph and 

CR are more useful for rough, though very fast estimates. 

Comparison of the results obtained for IR and NIR demonstrate that in 

general the IR models perform better than the ones based on the NIR spectra 

for all properties. In most cases, the RMSEP-values are better and the plots 

less scattered. At first glance, one could attribute the lower performance of the 

NIR models to the strong baseline differences at higher wavenumbers in the 

NIR spectra. However, as indicated by Mullins et al. [40], these effects are 

partly due to differences in electronic transitions and become most apparent 

for the heavy crudes, since these contain relatively high amounts of aromatic 

compounds including asphaltenes. For this reason, one might expect a better 

performance of the NIR model to predict the property Asph, but this is not 

observed. Furthermore, it should be noted that the NIR spectra have been 

recorded on an extended range IR instrument. Possibly a dedicated high 

quality NIR instrument would have provided a better performance of the 

models. For that reason, it is not possible to judge from this study, whether IR 

is a better technique to predict LR and SR properties than NIR. However, the 

practical limitation that such an NIR spectrometer was not available lead to 

the decision to focus further research on IR spectroscopy.  

Finally, the use of a reduced IR spectral region was explored. However, 

the best results were obtained when using all parts of the spectrum that 

contain absorption bands, which implies the range 3200-2500 and 1800-670 

cm-1. This region was used in all further modeling experiments on IR data. 

 

2.3.8. Short residue properties as function of the flash temperature 

 

In a next step, the IR data were combined with the Atmospheric 

equivalent Flash Temperature (AFT) values in order to predict the SR 

properties P, R&B, DSR and VSR from the IR spectra at different AFT’s. First, a 

PCA was applied to the 51 available crude oil IR spectra after MSC and MC 

using the regions 3200-2500 and 1800-670 cm-1. The first ten scores were 
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used to describe each spectrum and the AFT value was added as the 11th 

variable and variance scaling was applied. The resulting data set consists of 

33 unique crude spectra for P, 37 for R&B, 40 for DSR and 38 for VSR 

combined with 99, 119, 130 and 118 SR properties for the different AFT 

values. Subsequently, a PLS regression was performed against the available 

SR property values. The results, expressed as RMSECV-values and the 

corresponding number of LV’s used, are presented in Table 9. In addition, the 

plots of the values predicted by the PLS model versus the measured SR 

properties are presented in Fig. 10. As appears, the RMSECV values for DSR 

and VSR are small, offering a good alternative for the corresponding ASTM 

methods, whereas Log P and R&B are not predicted very well. 
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Fig. 10. PLS-correlation plot obtained from IR spectra for the SR properties log
10

(P), 

log
10

(R&B), DSR and VSR using AFT values as additional input. 



49 

 

Table 9. Results of PLS modeling the SR properties at different flash temperatures (AFT 

input) of crude oils based on IR spectroscopy. Mean values and reproducibility values 

obtained by ASTM methods.  

SR property (AFT) 
Mean 
Value 

Reproducibility(+/-) RMSECV LV’s 

Log
10

 P (0.1 mm) 1.73 0.01-0.5 0.32 3 

Log
10

 R&B (°C) 1.66 0.04 0.09 3 

DSR (g/ml) 1.007 0.005 0.015 3 

VSR (-) 42.7 - 1.8 3 

 

The results of the prediction models with the YSC values as input are 

presented in Table 10 and Fig. 11. They illustrate that the performance of the 

prediction models is better for all SR properties, except for a slight 

improvement from 0.09 to 0.08 for R&B, when AFT is used as discriminator. 
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Fig. 11. PLS-correlation plot obtained from IR spectra for the SR properties log
10

(P), 

log
10

(R&B), DSR and VSR using YSC values as additional input. 
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Table 10. Results of PLS modeling the SR properties at different flash temperatures (YSC 

input) of crude oils based on IR spectroscopy. Mean values and reproducibility values 

obtained by ASTM methods. 

SR property (YSC) Mean Value Reproducibility(+/-) RMSECV LV’s 

Log
10

 P (0.1 mm) 1.73 0.01-0.5 0.39 3 

Log
10

 R&B (°C) 1.66 0.04 0.08 3 

DSR (g/ml) 1.007 0.005 0.020 3 

VSR (-) 42.7 - 2.1 3 

 

 

2.4. Conclusions  

 

Raman and UV-Vis spectroscopy appear not to be useful to predict LR 

properties from the corresponding crude oil spectra. Hence, it is neither useful 

to study the potential of predicting SR properties. For Raman, this is due to 

fluorescence and self-absorption phenomena, which prevent the acquisition of 

useful data. With respect to UV-Vis spectroscopy, the limited value can be 

attributed to the small amount of aromatic compounds and the inherent large 

bandwidth of electronic transition bands. 

The results obtained from 1H- and 13C-NMR data are disappointing 

regarding the commonly acknowledged high information content of the NMR 

spectra. This is largely due to the lack of reproducibility of the data, inherent to 

the limited spectral acquisition and processing facilities of the applied NMR 

spectrometer. Data point shifting and calibrating might be a way to solve this 

problem, but this turned out to be very time-consuming. Pre-processing is 

another option, but quite complex for the available NMR data. Software to 

correct for this type of data point shifting is currently being developed 

commercially and as a result improvement of the results of prediction can be 

expected. 

IR and NIR spectroscopy combined with PLS modeling have the 

highest potential to predict LR and SR properties as a function of the flash 

temperature. Both techniques offer a very fast alternative for the time-

consuming ASTM and IP methods, currently used to obtain this type of 

information. In accordance with vibrational spectroscopy theory, IR and NIR 

techniques score best on the same properties as a result of redundancy in the 
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information content. However, the results obtained from the IR models are 

better than for NIR in all cases. Even though pronounced electronic 

absorption profiles in the NIR spectra of heavy crude oils are present, 

significant better predictions for the property Asph are not observed. Possibly, 

a dedicated NIR instrument might improve the predictive power of the NIR 

models. 

As demonstrated by the prediction plots and RMSEP-values obtained 

from the set of 23 validation spectra, the prediction of the LR properties YLC, 

DLR and VLR from the IR data is quite reliable, while the inaccuracy in the 

prediction of PP is similar to that of the corresponding ASTM method. It 

follows that IR spectra of crude oils can be used to predict these LR properties 

with reasonable accuracy. The results to predict SR properties from the IR 

spectra of the crude oils are also promising. Modeling as a function of the 

Atmospheric equivalent Flash Temperature (AFT) was particularly successful 

for the density (DSR) and the viscosity (VSR). It is expected that a higher 

accuracy and reproducibility of the input property values on the one hand, and 

further optimization of the models by deliberate wavelength selections on the 

other hand, will lead to even better results. Other potential options for 

improvement are the application of other pre-processing methods and outlier 

removal. The performance of the models to predict SR properties decreases 

when the yield short on crude (YSC) is used as input instead of the AFT. The 

results of modeling the IR and NIR spectra recorded at different instruments 

and with different sample cells show that the applied analysis protocol 

including sample pre-treatment is well chosen and leads to highly reproducible 

results. 
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Chapter 3 

 

 

 

Prediction of Long Residue Properties from Combined 

Infrared, 1H-NMR and 13C-NMR Spectra  
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Abstract 

 

Research has been carried out to determine the potential of partial 

least squares (PLS) modeling of IR spectra of crude oils combined with the 

corresponding 1H- and 13C-NMR data, to predict the long residue (LR) 

properties of these substances. The study elaborates further on the results 

described in Chapter 2. PLS-modeling has been carried out for 7 different LR 

properties, i.e., yield-long-on-crude (YLC), density (DLR), viscosity (VLR), sulfur 

content (S), pour point (PP), asphaltenes (Asph) and carbon residue (CR). 

The research work was based on the spectra of 48 crude oil samples of which 

28 were used to build the PLS-models and the remaining 20 for validation. For 

each property, PLS-modeling was carried out on single type IR, 13C-NMR and 

1H-NMR spectra and on 3 sets of merged spectra, i.e. IR + 1H-NMR, IR + 13C- 

NMR and IR + 1H-NMR + 13C-NMR. The merged spectra were created by 

considering the NMR data as a scaled extension of the IR spectral region. In 

addition, PLS modeling of coupled spectra was performed after a Principal 

Component Analysis (PCA) of the IR, 13C-NMR and 1H-NMR calibration sets. 

For these models, the 10 most relevant PCA scores of each set were 

concatenated and scaled prior to PLS-modeling. The validation results of the 

individual IR models, expressed as root-mean-square-error-of-prediction 

(RMSEP) values, turned out to be slightly better than those obtained for the 

models using single input 13C-NMR or 1H-NMR data. For the models based on 

IR spectra combined with NMR data, a significant improvement of the 

RMSEP-values was not observed neither for the models based on merged 

spectra, nor for those based on the PCA-scores. It implies, that the commonly 

accepted complementary character of NMR and IR is, at least for the crude oil 

and bitumen samples under study, not reflected in the results of PLS-

modeling. In view of these results, it can be concluded that IR spectroscopy is 

preferred over NMR spectrometry for the prediction of LR properties of crude 

oils at site. 
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3.1. Introduction 

 

The characterization of crude oils in terms of physical and chemical 

properties is of major importance in petrochemical industries [1-2]. A low 

density, for instance, simplifies transportation and points to a high gasoline 

yield, while high concentrations of sulfur and heavy metals have 

environmental implications. Crude oils are also analyzed to determine their 

potential for bitumen application. Although this type of bitumen is a residual 

substance obtained after distillation, it is widely used for e.g. road pavement, 

roofing and sealing and therefore representing a substantial economical 

value. This explains the demand to determine the bitumen suitability of a 

crude oil prior to distillation as well.  

Current standard methods to characterize crude oils and bitumen are 

mainly based on a series of elaborate and time-consuming tests developed by 

the ASTM [3] and the IP [4] institutes. As a much faster alternative, molecular 

spectroscopic techniques have been proposed, with the main argument that 

these methods theoretically reflect the complete qualitative and quantitative 

molecular composition of a sample [5]. Next to Raman spectroscopy [6-10], 

the majority of the studies to characterize crude oils involve IR [9, 11-30] and 

NIR) spectroscopy [17, 19, 30-44]. Occasionally, NMR spectrometry has been 

used [11, 45-55]. Besides, it has been shown that multivariate data analysis of 

the spectra by means of methods, such as Partial Least Squares (PLS) 

regression, Principal Component Analysis (PCA) and artificial neural networks 

(ANN) can be of considerable help to enhance the reliability of the 

characterization and classification [21, 25, 29, 35, 36, 39, 40, 42, 56-59]. 

In Chapter 2, the potential of direct characterization and chemometrical 

classification of crude oils from their Raman, UV-Vis, NMR, IR and NIR 

spectrum has been explored. The aim of that study was to link the more 

fundamental chemical composition of these substances to so-called long 

residue (LR) and short residue (SR) properties. Hence, it would be possible to 

classify crude oils in terms of suitability for bitumen manufacture and to predict 

bitumen properties as a function of the flash temperature directly from the 

crude oil spectra. The results revealed that IR spectroscopy in particular can 
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be used as a fast and viable alternative for the currently applied elaborative 

ASTM and IP laboratory tests. 

However, next to IR spectroscopy, NMR is commonly acknowledged as 

a very powerful tool for structural analysis. Besides, the information from NMR 

spectra is supposed to be highly complementary to that from vibrational 

spectra. It is, therefore, a logical next step to explore improvement of the 

current IR prediction models by adding 1H- and 13C-NMR data to the IR 

spectra as input for modeling. In order to take full advantage of the 

complementary character of both techniques, this can be done as stand-alone 

IR, 1H-NMR and 13C-NMR methods, but also in an integrated manner by 

concatenating the IR and NMR spectra to single input data for PLS-modeling. 

For that reason, we decided to perform such a study on both the separate 

data sets of IR, 1H- and 13C-NMR spectra of the same 48 compounds, and on 

3 combinations of the spectra, i.e., IR + 1H-NMR, IR + 13C-NMR and IR + 1H-

NMR + 13C-NMR. It will be shown that the predictive value of the models 

based on IR spectra perform slightly better than the ones based on NMR data 

as well as on the combinations of IR and NMR spectra.  

 

3.2.  Experimental 

 

3.2.1. Crude oils, properties and treatment 

 

All crude oil samples have been stored and prepared according to the 

protocol as described in Chapter 2. All measurements have been carried out 

at 20°C in closed cells. Under these conditions the spectra were found to be 

highly reproducible [30]. 

Partial Least Squares (PLS) regression has been performed to 

correlate each of the LR properties with their IR, 1H-NMR and 13C-NMR 

spectra or the combinations of these data as described above. The following 

LR properties have been studied; long residue yield-on-crude (YLC), density 

(DLR), viscosity (VLR), sulfur contents (S), pour point (PP), asphaltenes (Asph) 

and carbon residue (CR).  

From the total number of 51 samples as listed with their corresponding 

LR properties in Table 1 of Chapter 2, 48 crude oils have been used in this 
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study. The blends V21-V23 were excluded as no NMR data were available for 

these compounds. The set of 48 samples was divided into a subset of 28 

calibration compounds (compounds C1-C28) for PLS-modeling and 20 

samples for validation (compounds V1-V20) as result of a PCA of the IR 

spectra. For each LR-property, PLS prediction models were built from the 

individual IR, 13C-NMR and 1H-NMR calibration sets and from the 3 calibration 

sets of combined spectra, i.e., IR + 1H-NMR, IR + 13C-NMR and IR + 1H-NMR 

+ 13C-NMR. Prior to concatenation of the different spectra, scaling and 

normalization was carried out. Besides, a 1st derivative was applied to the IR 

data mainly to eliminate baseline effects. Merging of the IR and NMR spectra 

was carried out by concatenating the 1H- and/or 13C-NMR to the IR data 

points. The regions 3200-2500 and 1800-670 cm-1 were used for the IR data 

(950 data points). For the 1H-NMR the regions 0.5-4 and 6-8 ppm (1100 data 

points) and for the 13C-NMR the regions 10-50 and 115-170 ppm were used 

(1900 data points). This resulted in an X/Y input matrix of arbitrary units for 

each sample. In order to minimize the effect of scaling and hence obtain 

better prediction models, PLS modeling was also carried out on the combined 

scores from a PCA of the individual IR, 13C-NMR and 1H-NMR calibration 

sets. The variance captured by the first 10 scores was 99.4, 97.3 and 99.5 % 

respectively. For each spectroscopic technique, these 10 most relevant 

scores were merged and autoscaled resulting in input matrices of 20 scores 

for the combination IR + 1H-NMR and IR + 13C-NMR, and 30 scores for the 

combination IR + 1H-NMR + 13C-NMR.  

Finally, all models obtained were tested by submitting the individual or 

merged validation data for prediction. The results for each of the LR-

properties, expressed as root-mean-square-error-of-prediction (RMSEP) 

values, have been compared and evaluated. 

 

3.2.2. IR and NMR spectroscopy 

 

IR measurements were carried out at room temperature on a Bruker 

Tensor 27 FTIR spectrometer. IR data were recorded with a deuterated 

triglycine sulfate (DTGS) detector. The sample compartment of the instrument 

was flushed with dry air to reduce interference of H2O and CO2. IR spectra 
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were recorded with a horizontal ATR accessory (FastIRTM, Harrick) equipped 

with a heatable base plate and ZnSe as the optical element at 20°C. A cover 

plate was used to prevent sample evaporation during measurement. The 

optical resolution of the IR spectra was 4 cm-1 with apodization set on 

‘medium’ and 50 scans were accumulated for each spectrum. 

13C-NMR-spectra were recorded at room temperature on a Bruker 

AC300 FT-NMR instrument, set to 13C at 75 MHz using WinNMR 6.0 software 

for control and acquisition. The instrumental settings were as follows: SW: 

17857 Hz; FW: 20000 Hz; SI and TD: 32K data points; O1: 6100; O2: 4600; 

LB: 2 Hz and SR: -1405. For each sample, fresh homogeneous solutions were 

prepared of 300 mg crude oil in 0.5 ml CDCl3. The solutions were spiked with 

tetramethylsilane (TMS) and analyzed in sealed 5 mm quartz NMR tubes with 

a spin speed of 20 Hz.  

1H-NMR spectra were recorded at room temperature on a Bruker 

AC300 FT-NMR instrument, set to 1H at 300 MHz using WinNMR 6.0 software 

for control and acquisition. The instrumental settings were as follows: SW: 

4505.4 Hz; FW: 5700 Hz; SI and TD: 32K data points; O1: 6100; O2: not 

used; LB: 0.3 Hz and SR: 3367.25. For each sample, a fresh homogeneous 

solution was prepared of 50 mg crude oil in 0.5 ml CDCl3. The solutions were 

spiked with tetramethylsilane (TMS). Solutions were analyzed in sealed 5 mm 

quartz NMR tubes with a spin speed of 20 Hz.  

Prior to modeling the 1H- and 13C-NMR spectra, a data point shift 

correction was applied to compensate for the shifts observed in the NMR 

spectra [60-62]. The latter is a commonly known problem that is attributed to 

variations in the sample matrix and to instrumental instabilities [62], 

hampering the building of statistical models with NMR data [63, 64]. The 

measured 13C-NMR data were shift corrected by dividing the spectra from 10 

to 115 ppm into 9 different ppm regions as indicated in Table 1. Next, a peak 

in each region was used to determine the average shift value and this value 

was used to shift the data points in that particular region. The same procedure 

was applied to the 1H-NMR spectra, using the 5 different regions as listed in 

Table 1. 
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Table 1. Regions and peak positions (ppm) used for the shift correction of the 
1
H-

 
and 

13
C-

NMR spectra. 

 Region (ppm)  Peak position (ppm) 

0.70 1.00  0.87 0.91 

1.00 1.35  1.20 1.30 

1.40 1.45  1.41 1.44 

2.32 2.38  2.33 2.36 

1
H-NMR 

6.50 8.00  7.20 7.30 

 

10.00 13.00  11.30 11.60 

13.00 18.00  14.00 14.50 

18.50 24.20  22.70 23.00 

24.00 25.80  24.10 24.70 

26.20 27.80  26.00 26.85 

27.70 28.50  27.80 28.50 

29.20 31.00  29.20 30.00 

31.00 50.00  31.90 32.20 

13
C-NMR 

75.00 80.00  76.90 77.10 

 

 

3.2.3. Chemometrics 

 

PLS modeling was carried out as in Chapter 2 with the PLS Toolbox 

(Eigenvector Research, Inc.) for MatLab (The MathWorks, Inc.). Prior to 

modeling, the IR spectra were pre-processed by first taking the 1st derivative 

(25 pt. Savitzky-Golay smoothing), followed by Multiplicative Signal Correction 

(MSC) and Mean Centering (MC) of the data. The 1H- and 13C-NMR spectra 

were pre-processed by a 25 pt. Savitzky-Golay smoothing followed by MSC 

and MC. Pre-processing parameters were chosen based on prior knowledge 

for each spectroscopic technique combined with trial and error. Wide spectral 

regions were used as input, since it was concluded from a previous study [30] 

that this approach provided the best models. The obtained error values 

expressed as Root Mean Square Error of Cross Validation (RMSECV) values 

were based on ”leave one out” (LOO) cross validation (CV). The number of 

latent variables (LV), used for a PLS model, was related to the minimum value 

of the RMSECV-value but limited to 10 to reduce the chances of overfitting. 
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PCA of the IR, 1H-NMR and 13C-NMR spectral data sets was also 

carried out using the MatLab PLS Toolbox package. For PLS modeling of the 

PCA scores, the 10 most relevant scores from the IR, 1H-NMR and 13C-NMR 

calibration sets were joined and autoscaled. In all cases, the models with the 

lowest RMSECV (LOO) were used to predict the LR properties of the samples 

in the validation sets.  

 

3.3. Results and discussion 

 

3.3.1. Models based on separate IR, 1H- and 13C-NMR spectral data sets 

 

As described in Chapter 2 and illustrated in Fig. 1, the IR spectra of the 

48 crude oils are very similar. All IR spectra are dominated by characteristic 

strong aliphatic C-H stretching and deformation bands around 2900 and 1450 

cm-1, respectively, while the band of medium intensity at around 1375 cm-1 

originates from the symmetric bending vibrations of methyl groups attached to 

carbon atoms. Furthermore, a complex band pattern in the region 1200-650 

cm-1 is present in all spectra, which can be assigned to a mixture of aliphatic 

and aromatic skeletal vibrations. Also, the (CH2)n>4 in phase rocking at 720 

cm-1, characteristic for longer aliphatic chains, is observed in all IR spectra. 

More detailed examination of the fingerprint region, however, reveals 

significant differences, when comparing the spectra of light crudes with those 

of the more dark and viscous heavy ones.  

As illustrated in Fig. 2, heavy crudes exhibit in general stronger and 

broader bands in the C-H out of plane region 900-700 cm-1, whereas the light 

samples show sharper peaks and two additional bands at around 675 and 

695 cm-1. The latter bands can be assigned to the sextant ring bending or 

puckering mode of relatively small aromatic molecules, such as benzenes and 

xylenes [65]. This type of compounds is known to be a considerable fraction 

(~ 5% w/w) of light crudes [66]. In contrast, heavy crude oils contain large 

amounts of so-called asphaltenes, a group of compounds that mainly consists 

of complex polycyclic aromatic molecules of 4 to 5 fused aromatic rings, 

together with aliphatic bridges and heteroatoms. 
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Fig. 1. Overlay of the IR spectra of 10 representative crude oil samples. 

 

Fig. 2. The aromatic fingerprint region (1200-650 cm
-1

) of a heavy crude (sample C22, solid 

line) and a light crude oil (sample C3, dashed line). 

 

Not only the broad band observed around 875 cm-1 can be assigned to these 

compounds, but also the slightly elevated baseline between 1300 and 1000 

cm-1 (Fig. 1). Finally, heavy crudes show, in general, a minor contribution at 
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1705 cm-1, which is indicative for the presence of C=O and hence of a small 

fraction of oxidized compounds. 

 

 

Fig. 3. The 
1
H-NMR (a) and 

13
C-NMR (b) spectra of 48 crude oil samples. 

 

Table 2. RMSEP values of PLS models to predict LR properties from IR, 
1
H-NMR or 

13
C-NMR 

spectra. Models are based on calibration spectra C1-28. RMSEP values are obtained from 

validation spectra V1-20. Mean values and reproducibility obtained from physical tests have 

been included. 

Input LR-property 

 
 YLC 

(wt %) 
DLR 

(g/mL) 
VLR 
(-) 

S 
(wt %) 

PP 
(°C) 

Asph 
(wt %) 

CR 
(wt %) 

 Mean  52.5 0.930 35.3 2.16 29.6 4.1 9.7 

 Reproduc. 1.2 0.0005 - 
0.09 
xS 

9 
0.2x 
Asph 

0.046x 
(3+CR) 

         

IR RMSEP 2.8 0.007 1.3 0.24 10.9 2.5 1.6 

1
H-NMR RMSEP 6.9 0.014 2.1 0.66 9.2 3.4 2.9 

13
C-NMR RMSEP 5.4 0.019 2.4 0.99 11.7 3.7 3.5 

 

 

Likewise, the MSC corrected 1H-NMR and 13C-NMR spectra, presented 

in Figure 3, are mutually very much the same. In accordance with literature 

[43, 4, 51], small differences in the 1H-NMR spectra are observed in the ratio 

of aliphatic protons (δ = 0-4 ppm) and aromatic protons (δ = 6-9 ppm). Similar 

information can be extracted from the 13C-NMR spectra where the aromatic 
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and olephinic 13C chemical shifts cause a complex pattern at δ = 118-170 

ppm, while the aliphatic carbons show up at δ = 0-70 ppm [49, 51]. The 

validation results for the different spectroscopic methods, expressed as 

RMSEP values and obtained by submitting the independent test set of 20 

crude oil spectra to the different PLS models, have been summarized in Table 

2. 

As appears from Table 2, the RMSEP-values for IR, 1H-NMR and 13C- 

NMR are of the same order of magnitude as the reproducibility values, 

determined by the chemical/physical methods (except for DLR). Besides, the 3 

spectroscopic techniques perform the best on the same properties. In 

particular, the models for YLC, DLR, VLR, S and PP exhibit a reliability level 

similar to that of the corresponding ASTM and IP methods. To illustrate this, 

the correlation plots of the properties YLC and DLR for the 3 spectroscopic 

methods are presented in Fig. 4. 

Table 2 also shows that the scores for the properties Asph and CR are 

less good, but the corresponding models are still useful to obtain a fair 

indication of the property-values. Further comparison of the RMSEP values 

reveals that the models built from IR spectra perform significantly better than 

the ones based on 1H-NMR and 13C-NMR data, except for PP. It should be 

noted, however, that the IR spectra have been recorded from pure crude oils. 

In contrast, NMR data acquisition required the samples to be dissolved in 

CDCl3. This will not only lead to a change in the intermolecular interactions of 

the oil constituents, but also to differences in concentration between heavy 

and light crude oil samples. Possibly, this results in a decreased performance 

of the NMR models. 

The RMSEP-values obtained for the IR models appear to be practically 

identical to the ones reported in Chapter 2, even though in the present study 

only 48 samples have been used instead of 51. The latter is due to the fact 

that the NMR data of 3 blends were not available. 
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Figure 4. Correlation plots of the PLS models to predict the LR-properties YLC and DLR of 

crude oils. Models are based on the IR, 
1
H-NMR and 

13
C-NMR spectra of 28 calibration 

samples (•) and 20 validation samples (x). 
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3.3.2.  Models based on merged IR, 1H- and 13C-NMR spectral data 

 

The results of PLS modeling the 3 data sets of merged IR and NMR 

spectra, expressed as RMSEP-values, are presented in Table 3. In addition, 

the PLS correlation plots of the properties YLC and DLR are presented in Fig. 

5 to illustrate the performance of the models and to allow comparison with the 

results of modeling single type spectra. It appears that the combination of IR 

and NMR spectra results in improved RMSECV values, but the RMSEP 

values are worse. This is particularly reflected when comparing the plots of 

Fig. 4 and 5. In Fig. 5, the calibration points (•) almost coincide with the 

calibration line, whereas the validation samples (x) show larger deviations 

compared to Fig. 4. It indicates that for the data sets of combined IR and NMR 

spectra, the selection criterion of taking the number of LV’s that corresponds 

with the minimal RMSECV (LOO) value might result in overfitting of the data. 

This was confirmed by taking less LV's. As expected, the RMSEP values were 

not better, but the calibration models turned out to be more realistic. 

Comparison of the results with those obtained from the single type spectra 

(Table 2) shows that the RMSEP values of the combined data are of the same 

order of magnitude as the ones obtained for the single type IR, 1H-NMR and 

13C-NMR models for all properties. Apparently, the commonly accepted 

complementary character of IR and NMR spectroscopic data is, at least for 

crude oil samples, not reflected in a significant improvement of the results of 

prediction of crude oil LR properties. The same conclusion, that a combination 

of two complementary spectra of the same compound is not necessarily more 

powerful than a single spectroscopic technique has also been reported for the 

combination of IR and mass spectra [67], for IR and Raman spectra [68] and 

NIR and MIR spectra [69, 70]. 
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Fig. 5. Correlation plots of the PLS models to predict the LR-properties YLC and DLR of crude 

oils. Models are based on the merged IR + 
1
H-NMR, IR + 

13
C-NMR and IR + 

1
H-NMR + 

13
C- 

NMR spectra of 28 calibration samples (•) and 20 validation samples (x). 
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Table 3. Results of PLS models to predict the LR properties of crude oils V1-V20 from 

merged IR, 
1
H-NMR and/or 

13
C-NMR spectra. Models were built from the spectra of samples 

C1-C28. 

Input LR-property 

 

 

YLC 
(wt %) 

DLR 
(g/mL) 

VLR 
(-) 

S 
(wt %) 

PP 
(°C) 

Asph 
(wt %) 

CR 
(wt %) 

IR+
1
H-NMR RMSEP 3.7 0.008 1.3 0.54 13.0 3.1 2.2 

IR+
13

C-NMR RMSEP 3.7 0.013 1.8 0.44 11.6 3.0 2.6 

IR+
1
H+

13
C-NMR RMSEP 4.7 0.012 1.9 0.65 10.3 3.1 2.8 

 

In our opinion, a plausible explanation for the redundancy in the 

information of the crude oil spectra relates to the fact that these compounds 

consist of a huge amount of components of strongly related structures, i.e. 

aliphatic and aromatic carbon hydrogen compounds. As a consequence, the 

peak patterns in the IR and NMR spectra are not only extremely complex, but 

also very much representing the same type of information, i.e., C-H and C-C 

vibrations versus C and H chemical shifts. This strongly reduces the 

complementary and hence discriminating potential of IR and 1H-NMR and 

13C-NMR. Besides, the fact that crude oils largely consist of the same type of 

hydrocarbon compounds also causes a large redundancy in spectral 

information. In other words, the vibrational C-H bands that dominate the IR 

spectra correlate with both the 1H and 13C shifts and therefore hardly provide 

different or additional information. 

The results of PLS modeling the joined 10 best scores from PCA of the 

separate IR, 1H-NMR and 13C-NMR calibration sets are presented in Table 4. 

The obtained RMSEP-values show that modeling PCA scores instead of 

spectra is only slightly favourable if 13C-NMR data are used. For that reason, 

we conclude that modeling the IR and NMR spectral information after PCA 

data reduction does not provide a significant improvement in the results of 

predicting LR properties, as compared to the models based on straightforward 

merging the original spectra. 
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Table 4. Results of the PLS models to predict the LR properties of crude oils V1-V20 from the 

joined PCA scores of a PCA of the IR, 
1
H-NMR or 

13
C-NMR spectra of the crude oils C1-28. 

LR-property Input data  

(10 scores) 

 

YLC 
(wt %) 

DLR 
(g/mL) 

VLR 
(-) 

S 
(wt %) 

PP 
(°C) 

Asph 
(wt %) 

CR 
(wt %) 

IR+
1
H-NMR RMSEP 3.8 0.009 1.5 1.00 10.5 2.8 2.0 

IR+
13

C-NMR RMSEP 3.8 0.010 1.7 0.63 13.0 2.7 2.2 

IR+
1
H+

13
C-NMR RMSEP 3.7 0.010 1.6 0.89 11.2 2.7 2.2 

  

 

3.4.  Conclusions 

 

PLS modeling of the IR, 1H-NMR and 13C-NMR spectra to predict the 

LR properties of crude oils offers a valuable and fast alternative for the 

comprehensive laboratory methods that are currently used for this purpose. 

Different from what was expected, models based on IR, 1H-NMR or 13C-NMR 

spectral data score about the same on the different properties. The same 

conclusion is drawn from merging IR spectra with 13C-NMR and/or 1H-NMR 

data as input for modeling. It demonstrates that the combination of 

complementary spectroscopic techniques does not automatically lead to 

better results. For all data sets, correlations at a level that is competitive with 

the reproducibility of the currently applied ASTM and IP methods have been 

obtained for the properties YLC, VLR, DLR and PP. The scores for S, Asph and 

CR are somewhat lower but still useful for indicative prediction. Regarding the 

slightly better results for IR spectroscopy and taking into account the absence 

of sample preparation and the straightforward way of data acquisition, IR is 

preferred over NMR for the prediction of LR properties of crude oils at site.  
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Abstract 

 

Research has been carried out to the effect of the temperature on the 

results of predicting long residue (LR) and short residue (SR) properties of 

crude oils from their IR spectra. Two effects on the results of partial least 

squares (PLS) modeling of the spectra have been studied: 1) the exposure of 

the crude oils to 65°C for 24 h prior to recording the IR spectra, and 2) 

recording the spectra of the 65°C pre-exposed samples at 10 different 

temperatures between 20 and 65°C. It is concluded that pre-exposure of 

crude oils to 65°C to reduce the amount of volatile constituents does not result 

in a significant improvement in the results of predicting the LR and SR 

properties as compared to the models based on the IR spectra of the 

untreated materials. Modeling of the spectra recorded as a function of the 

temperature between 20 and 65°C revealed a linear relation with the 

temperature, which is attributed to a decrease of the density with increasing 

temperature. Pre-processing of the spectra by mean centering and a 

subtraction step showed that the root mean square error of prediction 

(RMSEP) values improved for the LR-properties density (DLR), viscosity (VLR), 

sulfur (S) and carbon residue (CR), but worsened for the LR properties yield 

long on crude (YLC), Pour point (PP) and asphaltenes (Asph). The effect on 

the results of predicting the SR properties was found to be negligibly small. 

 

4.1. Introduction 

 

In the Chapters 2 and 3, the results have been described of research to 

the potential of molecular spectroscopic methods combined with partial least 

squares (PLS) regression to predict the quality of crude oils for bitumen 

application from a single spectrum. Aim of these studies was to determine the 

value of such an integrated approach as a fast alternative for the elaborate 

and time-consuming laboratory tests which are currently used in oil industries 

to determine the so-called long residue (LR) and short residue (SR) properties 

of crude oils. Six standard spectroscopic techniques that can be applied on a 

routine basis have been investigated, i.e., Raman, UV-Visible, IR, NIR and 1H- 

and 13C-NMR spectroscopy. The best results to predict LR and SR properties 
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were obtained from models based on IR and NIR spectra, although in 

accordance with theory, the performance of both techniques was much the 

same due to the redundancy in spectral information [1, 2]. 

The underlying idea to explore molecular spectroscopic methods to 

determine LR and SR properties was that the spectral data obtained with 

these techniques contain information on structures and interactions on a 

molecular scale. This level of detail is important since all molecules in a crude 

oil will affect each other by a mechanism of attractive and repulsive intra- and 

intermolecular interactions. Obviously, the temperature plays an important role 

in this process. For that reason, data acquisition in the previous studies has 

been carried out at a carefully controlled temperature of 20°C. Besides, a 

change of the temperature of a crude oil affects the inter- and intramolecular 

interactions and hence (some of) its physicochemical properties [3]. Crude oil 

features that are known to be temperature sensitive are, for instance, the gel-

point, pour point and viscosity, parameters which are highly important in 

pipeline transportation [4-8]. For that reason, heating experiments are often 

carried out on crude oils to obtain a thermal fingerprint or to determine the 

amount of paraffins and waxes [9, 10]. Furthermore, the temperature is known 

to affect adhesion phenomena between a crude oil and brine, injected brine 

and rock surfaces that hampers the extraction of the oils from soil [11] or 

promotes its sorption [12]. 

For obvious reasons, a change in the inter- and intramolecular 

interactions of a crude oil as result of a temperature increase will also affect its 

spectral characteristics [13, 14]. Such differences might be useful to extract 

additional information on crude oil LR and SR properties, thus offering a way 

to improve the prediction models. Therefore, it was decided to carry out 

modeling of IR spectra recorded over a temperature range from 20°C to 65°C. 

Additionally, it was chosen to apply a pretreatment of the samples by 

exposing the crude oils to 65°C for 24 h in open air to reduce the spectral 

contributions of the volatile constituents thus coming closer to the 

characteristics of a long residue fraction. The reason is that knowledge of LR 

and SR properties is particularly important for bitumen applications, where the 

heavy components prevail over the volatile ones. A pretreatment at elevated 

temperature will reduce the influence of the lighter fractions and, as a 
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consequence, might lead to better bitumen prediction models. This chapter 

describes the results of this study. 

 

4.2. Experimental 

 
4.2.1. Materials 

 

Modeling experiments have been carried out on the same collection of 

samples as used in the previous and which are listed in Table 1 of Chapter 2. 

For the prediction of the LR properties, the samples C1-C28 were used for 

calibration and V1-V20 for validation. 43 samples of the total set were used to 

build prediction models for the SR properties, since these data were only 

known for a smaller number of compounds. For that reason, a division into a 

calibration and a validation set was not made for this part of the study. All 

compounds have been stored and prepared as described in Chapter 2. The 

effect of an extra heat pre-treatment on the results of predicting the LR and 

SR properties was studied first. For this purpose, 20 mL aliquots of each 

sample were brought into an open 100 mL beaker glass. After precisely 

determining the starting weight, the temperature was increased to 65°C at a 

ramp of 1°C/min to reduce the amount of volatile species in the sample. After 

24 h at 65°C, the sample was covered with a watch glass and allowed to cool 

down to ambient temperature (20°C). Finally, the weight loss was determined 

and then the spectrum of the residue was recorded at 20°C. 

Next, the effect of modeling the IR spectra of crude oils, recorded at 

different temperatures, for the LR and SR properties was carried out. Hereto, 

the spectra of the crude oils, previously exposed to 65°C for 24 h, were 

recorded over a temperature range from 20°C up to 65°C with steps of 5°C, 

resulting in 10 spectra per sample. After each step, the temperature of the 

sample was kept constant for 2 min to allow scanning at the specified 

temperature. 

The following LR properties were studied; the long residue yield-on-

crude (YLC), density (DLR), viscosity (VLR), sulfur content (S), pour point (PP), 

asphaltenes (Asph) and carbon residue (CR). As input values for these 

properties, the data obtained with the following ASTM methods were used: D 
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2892 (YLC), D 4052 (DLR), D 445 (VLR), D2622 (S), D 97 (PP) and D 4530 

(CR), while the values for Asph were determined by method IP 143. As SR 

properties, the penetration (P), softening point or ring and ball (R&B), viscosity 

(VSR) and density (DSR) were considered as the main properties. As input 

values for the SR properties, the data obtained with the ASTM methods D 5 

(P), D 36 (R&B), D 4052 (DSR) and D 445 (VSR) were used. 

 

4.2.2.  Spectroscopic data acquisition 

 

IR measurements were carried out on a Bruker Tensor-27 FTIR 

spectrometer equipped with a deuterated triglycine sulfate (DTGS) detector. 

Samples were analyzed with a horizontal ATR accessory (FastIRTM, Harrick) 

with a heating cover plate and ZnSe as the optical element. The cover plate 

was used to achieve homogeneous heating and to prevent sample 

evaporation during measurement. Data acquisition was performed by co-

adding 50 scans/spectrum at a spectral resolution of 4 cm-1 with apodization 

set to ‘medium’. The sample compartment of the instrument was flushed with 

dry air to reduce interference of H2O.  

 

4.2.3.  Chemometrics 

 

Since the temperature variation results in a data cube with the crude oil 

sample, wavenumber and temperature as the three dimensions, PARAFAC 

(parallel factor) modeling was tested [15-17]. However, it appeared that the 

complexity of the crude oil spectra prevented a straightforward application of 

this multi-way method. Instead of using the combination of the PARAFAC 

scores with MLR (multiple linear regression) for quantification [18] it was 

decided to unfold the multi-way array to a matrix and perform PCA combined 

with PLS. 

Partial Least Squares (PLS) modeling was carried out with the PLS 

Toolbox (Eigenvector Research, Inc.) for MatLab (The MathWorks, Inc.). Prior 

to modeling, the IR spectra were pre-processed by first taking the 1st 

derivative (25 pt. Savitzky-Golay smoothing), followed by Multiplicative Signal 

Correction (MSC) and Mean Centering (MC) of the data. Pre-processing 
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parameters were chosen based on prior knowledge for each spectroscopic 

technique combined with trial and error. The spectral region 3200-670 cm-1 

was used as input, since it was concluded from the previous studies that this 

interval led to the best results. The obtained error values (Root Mean Square 

Error of Cross Validation (RMSECV) of the prediction models were based on 

”leave one out” (LOO) cross validation (CV). The number of latent variables 

(LV), used for a PLS model, was based on the minimum value of the 

RMSECV. 

The study on the effect of the 65°C temperature pre-treatment on the 

results of modeling was carried out on the same set of 28 spectra for 

calibration and 20 spectra for validation as used in Chapter 3. The study on 

PLS-modeling of the spectra recorded as a function of the temperature for the 

LR and SR properties was initially performed on the same calibration and 

validation sets. However, the modeling results indicated that sample C22, the 

heaviest crude of the collection, was an outlier. Visual inspection of the 

corresponding spectra revealed extreme water adsorption at the ATR crystal 

during measurement. Repeating the experiment for this crude oil showed the 

same anomalous behaviour and for that reason it was removed from the 

calibration set. 

Next, modeling of the remaining 27 spectra for the 7 different LR 

properties was performed in two steps. First, for each crude oil, the mean 

spectrum of the 10 spectra recorded between 20 and 65°C was calculated 

and subtracted from the variable temperature spectra. This mean spectrum 

was subtracted from each of the 10 individual spectra in order to exhibit no 

more than the spectral changes due to temperature change. Next, principal 

component analysis (PCA) was performed on all 470 (47x10) pre-processed 

spectra (1st derivative, 25 pt. Savitzky-Golay smoothing, followed by MSC and 

MC). From this PCA, the scores 1-3 of the 3 spectra recorded at 20, 40 and 

60°C were added to the PCA scores 1-10 of the spectrum of the same crude 

but without pre-treatment and recorded at 20°C. This resulted in 19 data 

points (variables) for each sample on which PLS-modeling was applied: 

10 representing information on the crude oils recorded without pre-treatment 

at 20°C, and 9 (3 x 3) for the variation due to the temperature. It should be 

noted that the first 3 scores from the 20, 40 and 60°C spectral data were 
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taken deliberately, since more scores appeared to deteriorate the RMSECV 

values for all LR properties. Finally, the 7 prediction models obtained were 

tested by submitting the 20 spectra of the validation set. For each model, the 

results have been expressed as root-mean-square-error-of-prediction 

(RMSEP) value. 

Modeling to predict the SR properties P, R&B, DSR and VSR by PLS 

was performed on the IR spectra of 43 crude oils for which SR properties 

were known at one or more AFT-values. Due to the limited number of spectra, 

LOO cross validation has been applied instead of creating independent 

calibration and validation sets. The same procedure as for modeling for the 

LR properties was used, but the available AFT values were added as input, 

resulting in 20 data points (variables) that were PLS modeled versus the SR 

properties. The spectral data matrix X was created by a PCA on the available 

IR spectra of the untreated samples after pre-processing (baseline correction, 

MSC and MC). The first 10 scores of this PCA model were used to describe 

each spectrum. In the next step the same 9 scores (3x3) that were used for 

the PLS modeling of the LR properties were added. The AFT values, if 

available, were then added to the scores of the spectra (10) and the 

temperature series (9) resulting in 20 variables, which were variance scaled 

for each crude oil. PLS prediction models were made for the SR properties P, 

R&B, DSR and VSR at various flash temperatures. The ASTM method to 

determine the P-property is not able to determine values higher than 200. For 

these compounds with a higher P value, these were set to 200 to include as 

much data as possible. The different data sets consisted of 36 (P), 40 (R&B), 

43 (DSR) and 41 (VSR) IR spectra with 103, 123, 134 and 122 properties 

respectively. The corresponding SR properties were used as the Y matrix in 

the PLS regression. The same procedure was followed using the yield-short-

on-crude (YSC) property instead of the AFT values as additional input of the 

data matrix. 
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4.3.  Results and discussion 

 

The weight loss of the different samples as result of exposure to a 

temperature of 65°C during 24 h in open air is depicted in Fig. 1. The weight 

losses vary from 43% for the light crude oils (e.g. sample C3) to 1% for the 

very heavy and highly viscous samples (e.g. sample C22). 

 

Fig. 1. Weight loss of crude oils as result of exposure to 65°C during 24 h. 

 

An effect on the IR spectra of the heavy crude oils is virtually absent. 

However, for the light samples, changes in the band pattern are clearly visible, 

particularly in the region of the C-H stretching vibrations around 3000 cm-1. 

This is illustrated in Fig. 2 by the spectra of sample C2 before and after 

exposure to 65°C. As can be seen, the bands at around 2955 and 2870 cm-1, 

which can be assigned to CH3 anti-symmetric and symmetric stretching 

vibrations, respectively, have been decreased in intensity compared to the 

CH2 stretching bands at 2925 and 2850 cm-1. This effect can be largely 

attributed to the relatively higher volatility of short and branched aliphatic 

compounds, compared to the longer paraffin-like species. In addition a 

difference is observed in the region of the out-of-plane vibrations of aromatic 

compounds below 800 cm-1. 
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Fig. 2. IR spectra of sample C2 before (….) and after (

___
) exposure to 65°C (24h). 

 

4.3.1. The effect of exposure to 65°C on the prediction of the LR properties 

 

The results of modeling the IR spectra recorded at 20°C after exposure 

to 65°C for 24 h for the LR properties are shown in Table 1. The 

corresponding prediction plots are presented in Fig. 3. For reasons of 

comparison, the results of modeling the IR spectra of the same 28+20 crude 

oils without the 65°C temperature pre-treatment as previously reported in 

Chapter 3, have been included in Table 1. Comparison of the RMSEP-values 

shows no significant improvement for the samples as a result of the exposure 

to 65°C. Therefore, it is concluded that a reduction of the volatile constituents 

prior to recording the IR spectra, does not lead to better results when 

predicting LR properties. For the YLC property the prediction even is 

significantly worse. This is probably due to the fact that before the pre-

treatment a spectrum contains information on the complete crude whereas 

after the heating the volatile compounds are removed. Measuring the ratio of 

the volatiles and the long residue will be advantageous for the prediction of 

the yield of long residue on a crude oil. 
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Fig. 3. PLS prediction plots for the LR properties of crude oils from spectra recorded at 20°C 

after exposure to 65°C for 24 h. Calibration spectra (•) and validation spectra (x). 
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Table 1. PLS modeling results of the LR properties based on the IR spectra of 28 calibration 

and 20 validation samples before and after exposure to 65°C for 24 h. 

LR property 
Mean 
value 

With 65°C pretreatment Without 65°C pretreatment 

RMSECV LV's RMSEP RMSECV LV's RMSEP 

YLC (wt %) 52.5 5.9 7 4.5 3.7 9 2.8 

DLR (g/ml) 0.930 0.005 7 0.007 0.012 8 0.007 

VLR (-) 35.3 1.3 6 1.4 2.0 6 1.3 

S (wt %) 2.16 0.29 9 0.32 0.56 8 0.24 

PP (°C) 29.6 10.1 4 10.7 9.2 5 10.9 

Asph (wt %) 4.1 2.2 6 3.2 2.2 7 2.5 

CR (wt %) 9.7 1.4 6 1.7 2.1 6 1.6 

 

4.3.2. The effect of exposure to 65°C on the prediction of the SR properties  

 

Similar to predicting the SR properties of the untreated crude oils, PLS 

modeling was carried out on the IR spectra of the samples, pre-exposed to 

65°C, using the AFT and the YSC values as input for the X-matrix. Also, LOO 

cross validation was applied instead of independent calibration and validation 

sets. The results of prediction of the SR models based on the IR spectra of 

the 43 available crude oils when using the AFT values as input are shown in 

Table 2. The corresponding prediction plots are presented in Fig. 4. Again, for 

reasons of comparison, the results obtained from the SR prediction models of 

the untreated samples have been included in Table 2. Note that the latter data 

originate from Chapter 2, since the prediction of SR properties from combined 

IR and NMR data have not been studied in Chapter 3. Due to the smaller data 

set and the applied cross validation instead of using separate calibration and 

validation data sets, only RMSECV-values are given. Comparison of the 

RMSECV-values in Table 2 reveals no significant improvement as result of 

the high temperature pre-treatment. The SR properties DSR and VSR are 

predicted well, while the Log P and Log R&B perform reasonably well. Similar 

results have been acquired from the SR models when using the YSC values 

as input for the X-matrix. This is shown in Table 3 and the corresponding 

prediction plots in Fig. 5. RMSECV-values obtained for the untreated samples 

have been included in Table 3. As for using the AFT-values as additional 

input, there is hardly any difference compared to the results obtained for the 
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non pre-treated samples. The scores for the SR properties DSR and VSR are 

better than for Log P and Log R&B, while the overall performance when using 

AFT as extra input is better than when YSC input is applied. Closer 

examination of the log P plots in Fig. 4 and 5 revealed a distinctive pattern at 

the measured Log P-values of 2.3. This is due to the fact that P-values 

exceeding 200 units have been automatically set to 200 by the 

physicochemical method used. Obviously, using these data in the Y-matrix 

has a negative effect on the accuracy of the prediction model for this property. 

However, leaving out these values from modeling would improve the accuracy 

of the predictions of the P-values smaller than 200, but it also would reduce 

the general applicability of the model. 
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Fig. 4. Prediction plots of PLS modeling of the SR properties based on the IR spectra of crude 

oils pre-exposed to 65°C, using AFT values as additional input. 
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Table 2. Results of PLS-modeling to predict SR properties of crude oils based on IR spectra 

of crude oils before and after pre-exposure to 65°C, using AFT values as additional input. 

SR-property Mean value 
With 65°C pretreatment Without 65°C pretreatment 

RMSECV LV’s RMSECV LV's 

Log
10

 P (0.1 mm) 1.73 0.32 3 0.32 3 

Log
10

 R&B (°C) 1.66 0.08 3 0.09 3 

DSR (g/ml) 1.008 0.013 3 0.015 3 

VSR (-) 42.7 1.7 3 1.8 3 

 

In order to improve the applicability and reliability of the models, 

additional physicochemical analysis was carried out for the 8 compounds with 

P values above 200 compounds to obtain more accurate input data. The 

same was done for 6 samples with assumed inaccurate values for R&B. The 

results of modeling the IR spectra of the untreated samples before and after 

correction of these P and R&B values, using AFT values as additional input 

are listed in Table 4. The corresponding prediction and LV plots 1-3 are 

shown in Fig. 6. 

 

Table 3. Results of PLS-modeling to predict SR properties of crude oils based on IR spectra 

of crude oils before and after pre-exposure to 65°C, using YSC values as additional input. 

SR-property Mean value 
With 65°C pretreatment Without 65°C pretreatment 

RMSECV LV’s RMSECV LV's 

Log
10

 P (0.1 mm) 1.73 0.41 3 0.39 3 

Log
10

 R&B (°C) 1.66 0.10 3 0.08 3 

DSR (g/ml) 1.008 0.017 3 0.020 3 

VSR (-) 42.7 2.6 3 2.1 3 

 

Table 4. Results of PLS modeling the SR properties Log P and Log R&B using the AFT-

values as additional input before and after correction of P and R&B reference values.  

 Before correction After correction 

SR-property Mean value RMSECV LV’s Mean value RMSECV LV’s 

Log
10

 P (0.1 mm) 1.73 0.32 3 1.83 0.37 3 

Log
10

 R&B (°C) 1.66 0.09 3 1.65 0.10 3 
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Fig. 5. PLS prediction plots of the SR properties based on the IR spectra of crude oils pre-

exposed to 65 °C, using YSC values as additional input. 
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Fig. 6. Results of modeling the SR property Log P and Log R&B as function of AFT with 

improved reference data. 

 
Obviously, as can be seen from Table 4, modeling with the corrected P and 

R&B values as input resulted in minor changes of the mean property values 

and the RMSECV-values. It could be argued that the P model as well as the 

R&B model has slightly decreased. However, the range of the P model has 

increased significantly from a maximum of 2.4 to 3.4, which corresponds with 
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P values of 269 and 2440 and this extension could be very valuable for softer 

crudes. 

 

4.3.3. The effect of modeling spectra recorded at 20-65°C on the prediction of 

the LR properties 

 

As a check to determine leakage or sample change during the 

measurements at elevated temperature, after each cycle, the spectra 

recorded prior to heating in the ATR-cell and after cooling back to 20°C were 

compared for each sample. As illustrated in Fig. 7 for sample V2, the spectra 

are virtually identical. Besides, leakage was not observed in the accessory. 

 

Fig. 7. Overlay of the C-H stretching region of the pre-exposed sample V2 recorded in the 

ATR-cell, prior to heating to 65°C (dotted line) and after cooling down to ambient temperature 

(plain line). 

 

The variable temperature spectra of calibration sample C22 are presented in 

Fig. 8 and the extreme water adsorption at the ATR crystal surface during 

measurement is evident. The two broader peaks at 3400 and 1640 cm-1 

belong to OH stretching and bending vibrations of water, respectively. These 

peaks are absent in the variable temperature spectra of all other crude oils. It 

illustrates the fact that the sample is considered to be an outlier and why it has 

been removed from the calibration set. 
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Fig. 8. Variable temperature spectra (20-65°C) of sample C22, pre-treated at 65°C. 
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Fig. 9. PCA of spectra recorded at 10 different temperatures for 47 crude oils: loadings and 

corresponding scores for PC1 (top) and PC2 (bottom). 
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The results of modeling the spectra of the remaining 47 crude oils 

recorded at 10 different temperatures between 20 and 65°C for the different 

LR properties revealed an almost linear relationship with the temperature for 

all samples. A PCA of the dataset of the 470 spectra after MC gave a rather 

constant decrease of the score values with increasing temperature. This is 

illustrated in Fig. 9, showing the scores for PC1 and PC2 for the 47 samples 

at 10 different temperatures. Similar trends were observed for PC3 and PC4. 

Next, in order to study the spectral differences as a function of 

temperature and its potential for LR prediction purposes, the spectra recorded 

at the 10 different temperatures were mean centred by subtracting the mean 

spectrum of the 10 temperature spectra for each sample. This step ensures 

that the differences represented by the spectra are due to the temperature 

change and not to the overall crude composition. The results of this pre-

processing are shown in Fig. 10.  

 

 

 

Fig. 10. Mean centered difference spectra of 47 crude oils recorded in the temperature range 

20-65°C. Spectra were obtained by subtraction of the mean spectrum from the spectra 

recorded at 10 different temperatures. 
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The peaks pointing up correspond to the spectra recorded at low temperature 

and the peaks pointing down to the high temperature data. 

A PCA of the temperature MC corrected data provided the results illustrated in 

Fig. 11, showing the loading of PC1 describing 93.5% of the variation and the 

corresponding scores plot on PC1. Obviously, this observation can be largely 

attributed to a decrease in the density of the samples, proportional to the 

increase of the temperature. It indicates that the predictive power of such 

models will be limited.  
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Fig. 11. Results of mean centred difference spectra of 47 crude oils recorded in the 

temperature range 20-65°C. The spectra were obtained by subtraction of the mean spectrum 

from the spectra recorded at 10 different temperatures. 

 

However, closer examination reveals that different samples exhibit 

slightly different patterns, suggesting that some discriminative and hence 

predictive potential might be present. This is not confirmed by the RMSEP 

values obtained after PLS-modeling of the original spectra (i.e. from the 

samples not exposed to 65°C) combined with the spectra recorded at 20, 40 

and 60°C after data reduction. On the other hand it appears that the 

decreased number of used LV’s, implicating more robust models, for DLR and 

VLR leads to comparable RMSEP values. These results have been 

summarized in Table 5 together with the prediction values of the models 

obtained for the 28 calibration and the 20 validation spectra of the untreated 

samples as previously presented in Chapter 2.  
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Table 5. Results of modeling spectra recorded at 20, 40 and 60°C for the LR properties of 27 

65°C pretreated samples, compared to the results of the models built from the spectra of 28 

untreated samples. The RMSEP is determined by using the 20 validation samples. 

 Variable temperature data (27+20) Original spectra (28+20) 

 Mean RMSECV LV's RMSEP Mean RMSECV LV's RMSEP 

YLC (wt %) 51.5 4.1 4 4.5 52.5 3.7 9 2.8 

DLR (g/ml) 0.928 0.015 3 0.008 0.930 0.012 8 0.007 

VLR (-) 35.0 2.1 3 1.4 35.3 2 6 1.3 

S (wt %) 2.09 0.72 3 0.46 2.16 0.56 8 0.24 

PP (°C) 28.9 11.5 4 10.9 29.6 9.2 5 10.9 

Asph (wt %) 3.8 2.7 4 3.0 4.1 2.2 7 2.5 

CR (wt %) 9.4 2.1 6 2.5 9.7 2.1 6 1.6 

 

 

4.3.4. The effect of modeling spectra recorded at 20-65°C on the prediction of 

the SR properties 

 

The first 10 scores of the PCA of 47 untreated crude spectra were 

combined with the 9 scores obtained by PCA of the spectra recorded at 10 

different temperatures (20-65°C) and the AFT values. Modeling results of 

these 20 variables against the different SR properties are shown in Table 6. 

The corresponding correlation plots are presented in Fig. 12. The results 

obtained for the spectra recorded at 20°C without pre-exposure to 65°C have 

been included in Table 6. Obviously, the same samples were used for both 

series of prediction models.  

 

Table 6. Results of modeling spectra recorded at 20, 40 and 60°C for the SR properties, using 

the AFT-value as additional input. Modeling based on corrected data for P and R&B; sample 

C22 excluded. Results for modeling of the spectra of the original samples have been added 

for comparison. 

 Variable temperature data Original spectra 

SR-property Mean value RMSECV LV’s Mean value RMSECV LV’s 

Log
10

 P (0.1 mm) 1.86 0.33 3 1.83 0.37 3 

Log
10

 R&B (°C) 1.65 0.09 3 1.65 0.10 3 

DSR (g/ml) 1.006 0.013 3 1.008 0.015 3 

VSR (-) 42.5 1.6 3 42.7 1.8 3 
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Fig. 12. Correlation plots of modeling the SR properties Log P, Log R&B, DSR and VSR as 

function of AFT using the IR data obtained at 20, 40 and 60°C. 

 

As can be seen, slightly smaller RMSECV values were obtained when 

modeling the spectra recorded at different temperatures. However, model 

validation by an independent test set is necessary to determine whether these 

differences are really significant. 

It should be noted that, until this study, no more than 3 LV’s have been 

used in the PLS models in order to prevent overfitting. However, when using 

PLS models with a maximum of 5 LV’s the results appeared to be significantly 

improved as is shown in Table 7. Obviously, these models should be validated 

before they are used in practice since the data set is rather limited and hence 

no external validation has been performed by using an independent test set. 

Besides, several data points observed in the correlation plots require closer 

examination of the physicochemical data to figure out whether these points 

should be considered as reliable or as outliers. 
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Table 7. Results of modeling spectra recorded at 20, 40 and 60°C for the SR properties using 

AFT as input and a maximum of either 3 or 5 LV’s for the PLS models. Modeling based on 

corrected data for P and R&B; sample C22 excluded. 

SR-property Mean value 
Variable temperature data Variable temperature data 

RMSECV LV’s RMSECV LV's 

Log
10

 P (0.1 mm) 1.86 0.33 3 0.30 5 

Log
10

 R&B (°C) 1.65 0.09 3 0.08 5 

DSR (g/ml) 1.006 0.013 3 0.010 5 

VSR (-) 42.5 1.6 3 1.3 5 

 
 
4.4. Conclusions 

 

The exposure of crude oils to 65°C during 24 h does not result in a 

significant improvement in the results of predicting the LR and SR properties. 

The performance of the different models was about the same as for the 

models based on the IR spectra of the untreated materials. Modeling of the 

differences between spectra of the same sample recorded at different 

temperatures revealed a linear relation with the temperature. Most likely this is 

the result of a decrease of the density with an increase of the temperature. 

Modeling the IR spectra including the spectra recorded at 20, 40 and 

65°C after mean centering for temperature and a PCA analysis produced 

virtually the same prediction errors. However, a more detailed analysis 

showed that the number of used LV’s decreased for all LR-properties, which 

implies more robust and simpler models. A more detailed exploration by 

means of external model validation is necessary to determine the significance 

of these differences and to asses this topic. 
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Abstract 

 

Research has been carried out to determine the feasibility of partial 

least squares regression (PLS) models to predict the long residue (LR) 

properties of potential blends from IR spectra that have been created by 

linearly co-adding the IR spectra of crude oils. It is found that the PLS 

prediction models developed for 7 different LR properties (i.e., yield long on 

crude (YLC), density (DLR), viscosity (VLR), sulfur content (S), pour point (PP), 

asphaltenes (Asph) and carbon residue (CR)), enabled to predict the LR 

properties of 16 blends in two ways. The first predictions were carried out on 

the IR spectra recorded from the physically prepared blend samples. Next, IR 

spectra were submitted to the PLS models, that were created mathematically 

by linearly co-adding the IR spectra of the corresponding crude oils in the 

appropriate weight ratio. Minor differences in the real and artificial blend 

spectra have been observed which have been assigned to non-linear effects. 

However, pre-processing of the spectra, by subsequently taking the 1st 

derivative, multiplicative signal correction (MSC) and mean centring (MC), 

resulted in predicted LR-property values of the two parallel sets that are 

largely the same. It implies that mimicking blend spectra by mathematically 

mixing the IR spectra of crude oils is a valuable, fast, clean and cheap 

alternative for the elaborate preparation and testing methods of real blends 

currently used in the laboratory. Besides, the method can be used as a rapid 

screening tool for large series of potential blends.  

 

5.1.  Introduction 

 

Blending of crude oils is a commonly applied method in petrochemical 

industries to optimize unit throughput and meet product specification [1-8]. 

Extra heavy crude oils with low viscosity are, for instance, blended with light 

fractions to facilitate transport and improve the process ability. Another 

example is mixing of lower grade crude oils with higher grade materials to 

obtain a product with specific chemical and physical properties, such as 

bitumen. To determine mixing ratio, most companies use models or basic 

reference sets based on laboratory test data [7-11]. This is, however, largely a 
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trial and error process of physically blending followed by analysis until the 

target specifications have been reached. For that reason, a method to predict 

the properties of a potential blend, without the need for elaborate preparation 

and testing, could be highly profitable. 

Numerous studies have been undertaken to characterize and classify 

petrochemical compounds. Many of these apply spectroscopic methods as 

the discriminating tool, such as IR [12-19], NIR [20-27], Raman [28-30], UV-

Visible [31, 32], MS [33] and NMR spectrometry [13, 33-39]. In addition, 

chemometric methods have been applied to spectroscopic data to develop 

models that enable determination or prediction of specific oil properties [16, 

20, 23, 25, 26, 40-49]. Specific studies on the characterization of blends have 

been undertaken as well [50-52] of which Brown et al. [50] patented a method 

on IR analyzing an unknown crude oil as a blend of known components in 

order to predicts it properties. 

In Chapter 2, we reported on the potential of IR characterization and 

chemometric classification of crude oils and blends to determine the 

properties of the long residue (LR) and short residues (SR). The aim was to 

develop prediction models to classify crude oils in terms of suitability for 

bitumen manufacture and to predict LR and SR bitumen properties as a 

function of the flash temperature directly from crude oil IR spectra. It has been 

demonstrated that such models can replace the elaborate and time-

consuming ASTM (American Society for Testing and Materials) and IP 

(Institute of Petroleum) laboratory tests that are currently applied for 

characterization. 

Since blends are mixtures of crude oils in a specific weight ratio, it 

might be possible to mimic the IR spectra of blends by linearly co-adding the 

spectra of the underlying crude oils in the same ratio. Next, the PLS prediction 

models could be applied to predict the LR and SR properties of these blends 

from the corresponding, artificially created IR spectra. If valid, this approach 

would eliminate the elaborate preparation of real blends in the laboratory, thus 

offering a ‘clean’ and fast testing and screening tool for large series of 

potential blends. In order to determine the validity of this approach, research 

was carried out on the prediction of the LR properties of 16 blends from IR 

spectra that were mathematically created from the corresponding crude oil 
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spectra. The obtained prediction values were compared with the ones 

produced by the models from the spectra of the samples that were prepared 

physically in the laboratory. This Chapter describes the results of this study 

and shows that the LR property values predicted from real and mimicked IR 

spectra of blends match very well. 

 

5.2.  Methods and materials 

 

Two sets of 16 IR spectra of crude oil blends have been submitted to 7 

different PLS regression models in order to predict the following LR properties 

of these samples: yield-long-on-crude (YLC), density (DLR), viscosity (VLR), 

sulfur content (S), pour point (PP), asphaltenes (Asph) and carbon residue 

(CR). The first set of spectra consisted of the data recorded from 16 blends 

that were prepared in-house by physically mixing 2 crude oils from a collection 

of 47 crude oil samples that have been used to build the PLS models. For this 

purpose, crude oil samples were selected that represented a wide variety of 

LR properties. Details on the composition of the blends are given in Table 1. 

The 1:1 blends were prepared by mixing about 4 grams of each crude oil, 

while for the 2:1 ratio about 8 and 4 grams quantities were mixed. After firmly 

shaking, the blends were treated in agreement with the protocols reported in 

Chapter 2 and the IR spectra were recorded accordingly. The second set also 

consisted of 16 IR spectra of principally the same blends, but these spectra 

were created mathematically by linearly co-adding the IR spectra of the 2 

corresponding crude oils in exactly the same ratio as the weight ratio of the 

physically prepared samples (Table 1).  
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Table 1. Composition of the 16 crude oil blends under investigation. 

Blend nr. Composition and origin 

 Crude 1 Crude 2 

1 50% Denmark 50% Libya 

2 50% Denmark 50% China 

3 50% Denmark 50% Iraq 

4 50% Denmark 50% Venezuela 

5 50% Italy 50% Kazakhstan 

6 50% Italy 50% Ecuador 

7 50% Italy 50% Iran 

8 50% Italy 50% Congo 

9 33% Denmark 66% Libya 

10 33% Denmark 66% Italy 

11 33% Denmark 66% China 

12 33% Denmark 66% Iraq 

13 33% Italy 66% Venezuela 

14 33% Italy 66% Kazakhstan 

15 33% Italy 66% Ecuador 

16 33% Italy 66% Congo 

 

5.2.1. IR spectroscopy  

 

IR measurements were carried out at room temperature on a Bruker 

Tensor-27 Fourier transform spectrometer equipped with a DTGS detector. 

The sample compartment was flushed with dry air to reduce interference of 

H2O and CO2. Spectra were recorded with a horizontal ATR accessory 

(FastIRTM, Harrick) with a ZnSe crystal as the internal reflection element. The 

spectral resolution was 4 cm-1 for all spectra and 50 scans were accumulated 

with medium apodization for each spectrum. ATR-intensity correction was not 

applied. All spectra were recorded at room temperature (20°C) in closed cells 

to prevent evaporation of light-ends. Samples were homogenized at least 1 h 

before measurement by shaking the sample every 10 min. Experimental 

protocols on sample storage, pre-treatment, preparation and spectral 

recording have been applied throughout this study to assure reproducible, 

high quality IR spectra. Details on these protocols can be found in Chapter 2.  
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5.2.2. Chemometric prediction 

 

The PLS regression models, as obtained from the study described in 

Chapter 2, have been used to predict the LR properties of 2 series of crude oil 

blends. Prior to submission to the models, the IR spectra of the blends were 

pre-processed similar to the spectra used for modeling by first taking the 1st 

derivative (25 pt. Savitzky-Golay smoothing), followed by Multiplicative Signal 

Correction (MSC) and Mean Centering (MC) of the data. Prior knowledge of 

artifacts like baseline drift and atmospheric spectral contributions were taken 

into account during pre-processing. A baseline correction was applied by 

subtracting a 3rd degree polynomial fit using the regions 4000-3500, 2500-

2000, 1900-1800, 1560-1520, 1000-990 and 650-600 cm-1. Subsequently the 

region 2500-1800 cm-1 was removed from the spectra. No extra pre-

processing was applied on the mathematically created spectra. The spectral 

region from 3200-670 cm-1 was used as input, since it was concluded from the 

previous study based on trial and error that these models led to the best 

results [53]. Evaluation of the 7 LR property values, predicted by the models, 

properties, i.e., YLC, DLR, VLR, S, PP, Asph and CR, was carried out in two 

ways. First, for each property, the predicted values from the physically 

prepared blends were plotted against the values obtained from the set of 

mimicked blend spectra in order to determine the rate of correlation. 

Secondly, the difference in the predicted values of both data sets was 

expressed in a root mean square error (RMSE) parameter for each of the LR 

properties. Since no physical/chemical data were available for the 16 blends, 

these RMSE values were calculated for the set of mathematically created 

spectra relative to the property values predicted for the measured blends. As 

already described in Chapter 2, the developed PLS models have proved to be 

valid for the prediction of blends since 4 blends with known LR properties 

were included in the applied test set and predicted correctly. 
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5.3.  Results and discussion 

 

The spectra of the physically prepared blends and the mathematically 

composed blend spectra were found to be virtually the same, particularly after 

intensity normalization and pre-processing. This is illustrated in Fig. 1, 

showing the overlay of the real and the mimicked spectrum of the 50% 

Denmark, 50% Libya blend. On the other hand, as shown in Fig. 2, closer 

examination reveals that minor differences can be present in the fingerprint 

region 1100-700 cm-1. The high similarity between the spectra of the real and 

the artificial blends is also reflected in the LR property values predicted by the 

models. This is illustrated in Fig. 3, showing the values predicted from the 

measured blend spectra plotted against the values obtained for the artificial 

blend spectra. 

 

 

Fig. 1. Overlay of the real IR spectrum of Blend 1 (50% Denmark, 50% Libya) (solid line) and 

the mathematically created spectrum of this blend (dotted line), obtained by mixing the 

spectra of the corresponding crudes in the appropriate ratio.  
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Fig. 2. Exploded view of the fingerprint region of the IR spectra of Blend 1 (50% Denmark, 

50% Libya) shown in Fig. 1. Solid line: real blend, dotted line: mathematically created 

spectrum. 

 

Table 2. RMSE values of the LR property values predicted from the artificially created IR 

spectra of blends versus the property values predicted from the IR spectra of the physically 

prepared samples. Additionally, the average property values of the crude oils used to build 

the prediction models and the corresponding RMSEPVS values are given, as well as the 

reproducibility of the ASTM and IP methods. 

LR-property Original models Artificial/Measured blends  

 Mean value RMSEPVS RMSE ASTM/IP reproduc. 

YLC (wt %) 52.5 3.5 5.2 1.2 

DLR (g/mL) 0.930 0.012 0.005 0.0005 

VLR (-) 35.3 2.1 0.9 - 

S (wt %) 2.2 0.5 0.21 0.09xS (S>0.9%) 

PP (°C) 29.6 9.1 2.2 9 

Asph (wt %) 4.1 2.1 0.8 0.2xAsph 

CR (wt %) 9.7 2.0 0.8 0.046x(3+CR) 
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Fig. 3. LR property values predicted from the IR spectra of the real blends versus the spectra 

of the artificially created blends. 

 

Similar conclusions can be drawn from the RMSE values presented in 

Table 2. For reasons of comparison, the RMSEP values (denoted as 
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RMSEPVS) of the initial models have been added to this Table, as well as the 

corresponding average LR property values and the errors of the 

physicochemical ASTM and IP methods. Although it should be emphasized 

that the RMSEPVS values represent a different data set, it is evident that, apart 

from YLC, the scores for the artificial blends stay well within the errors of the 

prediction models. For that reason, it is concluded that straightforward 

mathematically mixing the IR spectra of crude oils offers a useful method to 

predict the LR properties of blends without having to physically prepare such 

mixtures.  

It could be argued that further improvement of this method might be 

achievable when taking into account non-linear effects. For instance, the 

weight percentage of sulfur will change proportionally with the weight ratio of 

the crude oils, whereas the effect on parameters like viscosity, density and 

pour point will certainly be non-linear. In principle, these non-linearity effects 

will be reflected in differences in the IR spectra of the blends that are 

physically prepared and the ones that have been mathematically created. It 

might explain the small but significant differences in the fingerprint region of 

these spectra (Fig. 2). In a univariate model, these deviations would result in 

relatively larger prediction errors for the LR-properties that exhibit non-linear 

behaviour. For multivariate (PLS) models however, it is known that terms 

which are linear in absorbance, can account for non-linear effects in the 

samples and vice versa [52]. For that reason, it is not surprisingly that most of 

the plots in Fig. 3 show more or less linear correlations.  

Closer examination of the plots also reveals that for YLC and VLR, a bias 

is present. For YLC in particular, this is reflected in a relatively large RMSE 

value (Table 2). This ‘offset’ might as well originate from nonlinearities, but is 

not fully clear yet. At this point, it should be noted, that the fact that the IR 

spectra in this study have been recorded by means of the ATR technique, 

might play a role in the linearity and accuracy of the predictions. With this 

sampling method, the penetration depth of the IR radiation into the sample 

depends on the refractive index of the sample and is the largest at longer 

wavelength. It follows that non-linear effects will be the strongest at low 

wavenumbers. This is not only in line with the observations in Fig. 3, but also 

with the difference spectra of the mimicked and the measured blends in Fig. 4, 
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which were obtained by spectral subtraction. As can be seen, considerable 

residues are present across the complete spectral region, particularly in the 

range 1600-500 cm-1. Furthermore, the extreme appearance of the dotted line 

difference spectrum points to an outlier, but it is actually due to the relatively 

high water content in one of the involved crude oil components. However, the 

fact that even the property values for this artificial blend were predicted 

reasonably well proves that the models, including the pre-processing used, 

are quite robust and (partly) compensating for nonlinearities.  

 

Fig. 4. Difference spectra obtained by subtracting the measured blendspectra from the 

artificially created ones. 

 

In our opinion, taking into account such non-linear effects offers the 

possibility to achieve even more accurate results from the mimicked spectra. 

Especially for the LR properties that are sensitive to these effects, such as 

YLC, VLR, DLR and PP, this might lead to improvement of the reliability of the 

predicted values. A way to obtain insight into this would be the prediction of 
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the high viscosity of several of the blends prevented the use of transmission 

cells of sufficient short path length. Extra pre-processing steps and a 

calibration transfer protocol for the artificial spectra might be other ways to 

achieve this. On the other hand, it should be noted that nonlinearities may as 

well be composition dependent, which makes this matter highly complex. 

Further research on this issue is therefore needed. However, even without this 

improvement, it can be concluded that mimicking the IR spectra of potential 

blends by mathematically mixing crude oil spectra offers a rapid and ‘clean’ 

screening alternative for the elaborate laboratory preparation and testing of 

blends. Most likely, this will also be valid for the prediction of SR properties.  

 

5.4.  Conclusions 

 

PLS regression models, based on IR spectra of crude oils, can be 

applied in a straightforward manner for the prediction of LR properties of IR 

blend spectra that have been mathematically created by linearly co-adding the 

IR spectra of the corresponding crude oils in the appropriate weight ratio. The 

PLS models predict the LR property values for the mathematically created 

blend spectra largely the same as for the IR spectra of the physically prepared 

blends. Therefore, it is concluded that ‘artificial blending’ of crude oil IR 

spectra is a valuable alternative for the elaborate preparation of blends in the 

laboratory. Besides, the method can be used as a rapid testing and screening 

tool for large series of potential blends. Compared to the spectra of real 

blends, slightly larger deviations are observed for some of the LR properties 

when submitting artificial blend spectra. This is assigned to non-linear effects 

that occur when blends are physically prepared, but which are not reflected in 

the mathematically created blend spectra. Further reduction of the prediction 

errors is foreseen by implementation of an extra pre-processing step that 

corrects for this type of non-linearity. 
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Abstract 

 

Research has been carried out to instrumentation effects on the PLS 

regression models based on IR spectra to predict the LR properties of crude 

oils. Three factors that may affect the predictive accuracy have been studied: 

1) the spectral reproducibility in time, 2) the use of different instrumental set-

ups for data acquisition, and 3) the property prediction from spectral data that 

have been recorded on a different instrument than the one that was used to 

acquire the calibration data. 

The reproducibility of the spectra in time appears to be very high as 

expressed by a negligible effect on the predicted LR property values. 

Furthermore, the effect of using a different spectrometer or a different ATR 

accessory on the performance of the prediction models was found to be very 

small, provided the spectra for calibration and validation were recorded on the 

same experimental set-up and with more or less the same scanning 

conditions. In contrast, the performance of the models to predict LR properties 

from a spectrum that was recorded on another spectrometer than the one that 

was used for modeling, turned out to be negatively affected. In order to 

maintain the predictive power of the original models for this type of spectra, 

the development of a calibration transfer protocol is inevitable. 

 

6.1.  Introduction 

 

As demonstrated in the previous Chapters of this PhD thesis, IR 

spectroscopy in particular, combined with PLS regression, is a valuable 

method to predict the quality of crude oils for bitumen application from a single 

spectrum. As such, it forms a fast alternative for the elaborate and time-

consuming laboratory tests, currently used in oil industries, to determine the 

LR and SR properties of crude oils and blends [1, 2].  

Thus far, the IR spectra that were used for calibration and validation 

were recorded under well-defined identical experimental conditions to assure 

the highest possible reproducibility and reliability of the prediction models. 

This included the use of only one IR spectrometer with fixed scanning 

conditions and the same attenuated total reflection (ATR) sampling accessory. 
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It is reasonable to assume that the same high prediction accuracy can be 

achieved when spectral data are used that have been recorded on other IR 

instruments and/or accessories, provided that the data for modeling and 

prediction originate from the same set-up.  

It is to be expected, however, that the performance of a prediction 

model will decrease when spectra are submitted, that have been recorded on 

a different instrument than the one that was used to build the model. This 

effect can be attributed to the (small) differences in the numerical output 

accuracy and non-matching data point spacing when comparing IR 

instruments form different manufacturers. Although practically all companies 

agreed to enable conversion of their spectra to a uniform, so-called JCAMP-

DX format to facilitate data exchange [3-6], small but significant differences 

still exist due to different optical configurations of instruments [7, 8]. In 

mathematical and chemometrical operations, this can be a complicating factor 

that negatively affects the results.  

For that reason, several studies have been undertaken to circumvent 

this problem, particularly, in applications of NIR spectroscopy [9-19]. One 

strategy is to create robust models that can be achieved by selecting robust 

spectral variables (wavenumbers) [9-11], and/or by the removal of differences 

by data pre-processing [12, 13]. Many examples can be found in literature of 

protocols that facilitate the transfer of a calibration model from one instrument 

to another [14-20]. Other strategies include bias correction and the transfer 

the spectral data instead of the model, i.e. Direct Standardization or Piecewise 

Direct Standardization [15, 20]. In order to determine whether such a protocol 

will also be needed to realize a more universal application of the LR prediction 

models, developed in this PhD thesis, a robustness study for the models has 

been carried out, based on 3 different IR spectrometers and 2 different ATR 

accessories. This chapter describes the results of this study. 
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6.2.  Experimental 

 

6.2.1. Methods and materials 

 

IR data acquisition has been carried out on 5 different experimental 

set-ups as listed in Table 1. The Perkin-Elmer 2000 FT-IR spectrometer was 

equipped with a DTGS detector. With this instrument 25 scans of 4 cm-1 

optical resolution were accumulated for one spectrum. The Bruker Tensor-27 

and Tensor-37 FT-IR instruments were also equipped with a DTGS detector. 

Spectral scanning with these instruments was carried out with an optical 

resolution of 4 cm-1 too, but 50 scans were accumulated for each spectrum. 

The optical element of the MIRacle ATR accessory (Pike Technologies) was 

diamond/ZnSe. The one of the FastIRTM (Harrick) was a large area ZnSe 

crystal. 

 

Table 1. Overview of the different combinations of IR spectrometers and ATR units. 

Set-up IR-instrument ATR accessory 

A Perkin-Elmer 2000 MIRacle
TM

 

B Bruker Tensor-27 FastIR
TM

 

C Perkin-Elmer 2000 FastIR
TM

 

D Bruker Tensor-37 FastIR
TM

 

E Bruker Tensor-37 MIRacle
TM

 

 

The effect of the reproducibility of the spectra on the accuracy of the 

LR prediction models was studied first. For this purpose, the IR spectra of the 

28 crude oils of the calibration set and 20 of the validation set, as listed in 

Table 1 of Chapter 2 (samples C1-C28 and V1-V20), have been measured on 

Set-up A with a time gap of 2 months. During this period, samples were stored 

in a refrigerator at 4°C.  

The effect on the results of modeling for the LR property prediction of 

the IR spectra recorded on two different instrumental set-ups was carried out 

with Set-ups A and B on the same set of 28 crude oil samples C1-C28. The 

results obtained for the two different spectral datasets were compared.  
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The study to establish the robustness of the LR prediction models, built 

from the 28 calibration spectra recorded with Set-up B, was carried out on 10 

crude oils that were selected in order to obtain a representative variety of 

geographical origin and LR properties. For this purpose, spectra recorded on 

all 5 different experimental set-ups A-E were submitted to the models. The 

root-mean-square-error-of-prediction (RMSEP) values obtained for the 

different data sets were mutually compared. 

The following LR properties were studied; the long residue yield-on-

crude (YLC), density (DLR), viscosity (VLR), sulfur content (S), pour point (PP), 

asphaltenes (Asph) and carbon residue (CR). As input values for these 

properties, the data as presented in Table 1 of Chapter 2 and obtained with 

the corresponding ASTM and IP methods were used. 

 

6.2.2. Chemometrics 

 

Partial Least Squares (PLS) modeling of the different data sets was 

carried out with the PLS Toolbox (Eigenvector Research, Inc.) for MatLab 

(The MathWorks, Inc.). Pre-processing and PLS modeling was performed 

according to the method described in Chapter 2. In order to enable 

submission of spectra for LR property prediction, which have been recorded 

on the Perkin-Elmer instrument (set-up A and C) to models built from Bruker 

Tensor-27 spectra (set-up B), matching of the data point position and 

resolution was necessary. For that reason, the Perkin-Elmer spectra were pre-

processed to obtain the same data point resolution. 

 

6.3.  Results and discussion 

 

The results of modeling the spectra that have been recorded with a 

time gap of two months on the same instrumentation, namely Set-up A, have 

been summarized in Table 1. As appears, the RMSECV values of modeling 

the LR properties are very similar for the duplicate measurements when 

based on the total data set of 28 crude oil spectra. The 20 validation samples 

were used to determine the RMSEP. 
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Table 1. Results of PLS modeling of the IR spectra of 28 crude oils, as recorded at 2 different 

moments in time with Set-up A, for the LR properties.  

 Measurement 1 Measurement 2 

LR-property Mean value RMSECV LV’s RMSEP RMSECV LV’s RMSEP 

YLC (wt %) 52.5 3.0 8 2.3 2.6 7 2.1 

DLR (g/mL) 0.930 0.011 8 0.016 0.010 8 0.010 

VLR (-) 35.3 1.9 4 1.9 1.6 5 1.5 

S (wt %) 2.16 0.5 8 0.4 0.5 9 0.3 

PP (°C) 29.6 9.2 6 10.5 9.0 5 11.3 

Asph (wt %) 4.1 2.0 9 3.2 2.1 10 3.1 

CR (wt %) 9.7 1.8 5 1.7 1.7 5 1.5 

 

 

Fig. 1. Regression vectors of the PLS models for VLR based on spectra from Measurement 1 

(lower graph) and Measurement 2 (upper graph) on set-up A. 

 

The obtained regression vectors of the 2 models for VLR, presented in 

Fig. 1, are very similar. This means that not only the RMSEP values are 

comparable, but also the PLS models itself. For the other properties the 

regression vectors were also very much the same. Based on these findings, it 
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was concluded that data acquisition over a longer period, including the 

storage of samples in a refrigerator at 4°C, does not significantly affect the 

model performance or the IR spectra. 

The results of modeling the 28 IR calibration spectra that have been 

recorded on the 2 different spectrometers with different ATR-units are listed in 

Table 2, including the RMSEP values of the 20 validations samples. The 

average peak-to peak noise in the IR spectra (range 2200-2000 cm-1) 

recorded with Set-up B was a factor of 2 better than for Set-up A (0.0004 

against 0.0008 absorbance units). This is ascribed particularly to the larger 

contact area of the FastIRTM accessory and could be one of the reasons that 

the RMSEP values obtained with this accessory are slightly better for DLR, 

VLR, S and Asph. However, as appears from Table 2, the effect of the 

difference in the S/N ratio is too small to affect the results of modeling 

significantly. It indicates that the performance of the prediction models does 

not depend on the instrumentation used, provided the spectral quality is about 

the same. Furthermore, it can be concluded that the chosen experimental 

settings and scan parameters were correct for the purpose of this modeling 

study. 

Closer examination of the different regression vectors revealed a high 

similarity, but also some significant differences in relative intensities. This is 

illustrated in Fig. 2 by the regression vectors obtained for VLR from data of 

Set-up’s A and B. It indicates that models built with the spectra collected with 

one set-up cannot be used straightforward to predict a property value using 

spectra obtained from the other set-up. It should be noted that the minor shifts 

observed in the peak positions in the regression vectors were also observed 

when comparing the original Bruker and Perkin-Elmer spectra. It implies that 

the observed differences in the regression vectors are largely due to the 

different optical configuration of both set-ups. Especially the combination of 

the ATR accessory and beam shape of the instrument is considered to be the 

main source of the differences. 
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Table 2. Results of PLS modeling for the LR properties of 28 crude oil IR spectra recorded on 

Set-up A and Set-up B. 

 Set-up A Set-up B 

LR-property Mean value RMSECV LV’s RMSEP RMSECV LV’s RMSEP 

YLC (wt %) 52.5 2.6 7 2.1 3.7 9 2.8 

DLR (g/mL) 0.930 0.010 8 0.010 0.012 8 0.007 

VLR (-) 35.3 1.6 5 1.5 2.0 6 1.3 

S (wt %) 2.16 0.5 9 0.3 0.6 8 0.2 

PP (°C) 29.6 9.0 5 11.3 9.2 5 10.9 

Asph (wt %) 4.1 2.1 10 3.1 2.2 1 2.5 

CR (wt %) 9.7 1.7 5 1.5 2.1 6 1.6 

 

 

Fig. 2. Regression vectors of the PLS models for VLR based on spectra from Set-up A (lower 

graph) and Set-up B (upper graph). 

 

The results of predicting the LR properties from the 10 spectra recorded on a 

different experimental set-up than the one that was used for the spectra to 

build the models (i.e., Set-up B), are shown in Table 3 and Fig. 3. Table 3 lists 
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the RMSEP values obtained for each of the LR-properties and each of the 5 

different instrumental combinations (Set-up A-E). Fig. 3 represents the LR 

properties predicted for the different sets plotted against the LR reference 

values. The RMSEP values clearly show that the data measured with the 

Tensor-37/FastIRTM combination (set-up D) match the best with the prediction 

results of the original models based on Tensor-27/FastIRTM spectra (set-up 

B). This is rather obvious regarding the similarity in optical lay-out and data 

acquisition features of both instrumental combinations. Apart from the 

property Pour Point (PP), which is not connected to a very reliable model, all 

RMSEP values are the lowest for this configuration. However, the results 

obtained for the other combinations are at maximum a factor 2-3 worse. On 

the one hand, it implies that the robustness of the original prediction models is 

fairly large, particularly since a rather straightforward pre-processing method, 

i.e., baseline correction, 1st derivative and MSC, was applied to the spectra. 

On the other hand, a calibration transfer method is expected to further 

improve the similarity between the spectra recorded on different instrumental 

set-ups. 

 

Table 3. RMSEP values of the LR properties predicted from 10 spectra recorded on 5 

different experimental set-ups (A-E), using the models from spectra recorded on Set-up B. 

 RMSEP values 

LR-property Set-up A Set-up B Set-up C Set-up D Set-up E 

YLC (wt %) 3.6 1.6 4.1 2.9 4.5 

DLR (g/mL) 0.008 0.005 0.012 0.006 0.013 

VLR (-) 0.9 1.0 1.6 0.9 1.7 

S (wt %) 0.4 0.2 0.6 0.3 0.4 

PP (°C) 9.5 5.5 6.8 8.3 13.0 

Asph (wt %) 1.6 1.4 1.6 1.6 2.2 

CR (wt %) 1.5 1.2 1.1 1.1 1.6 
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Fig. 3. Correlation plots of predicted LR values from 10 spectra recorded on 5 different 

experimental set-ups (A-E), using the models built from spectra recorded on Set-up A. 
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6.4. Conclusions 
 

It is found that the performance of the PLS models to predict the LR 

properties of crude oils, is not affected by a large time delay in the acquisition 

of the data that are used for calibration and validation. Moreover, the effect of 

the applied spectrometer and/or ATR accessory on the performance of the 

prediction models is very small when the spectra for calibration and validation 

are recorded on the same instrumentation and with comparable scan settings. 

The performance of the models to predict the LR properties from spectra that 

have been recorded on a different spectrometer than the instrument that is 

used to build the models decreases with a maximum factor of 2. This 

accuracy is still sufficiently good for most of the LR properties to apply the 

models for indicative prediction purposes. However, in order to assure the 

highest reliability and facilitate a more universal application of the models, 

further research on this issue is necessary. In this respect, the development of 

a calibration transfer protocol for each data acquisition station to be used next 

to the original set-up is essential. In addition, the issue of instrument 

independent wavenumber selection should be explored. 
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Abstract 

 

Research has been carried out to determine the feasibility of PLS 

modeling of IR spectra of crude oils as a tool for fast sulfur speciation of these 

materials. The study is a continuation of the methods to predict long and short 

residue properties of crude oils from IR and NIR spectra as outlined in the 

previous chapters. Retention data of two dimensional gas chromatography 

(2D-GC) of 47 crude oil samples have been used as input for modeling the 

corresponding IR spectra. 10 different PLS prediction models have been built: 

1 for the total sulfur content and 9 for the sulfur compound classes 1) sulfides, 

thiols, disulfides and thiophenes, 2) aryl-sulfides, 3) benzothiophenes, 4) 

naphthenic-benzothiophenes, 5) dibenzothiophenes, 6) naphthenic-

dibenzothiophenes, 7) benzo-naphthothiophenes, 8) naphthenic-

benzonaphthothiophenes and 9) dinaphthothiophenes. From the total set of 

47 spectra, 28 were used for calibration. The remaining 19 spectra were used 

as a test set to validate the PLS regression models. The results obtained 

confirm the conclusion from the previous chapters that PLS modeling of IR 

spectra to predict the total sulfur concentration of a crude oil is a valuable 

alternative for the commonly applied physicochemical ASTM method D2622. 

Besides, it is demonstrated that the concentration of dibenzothiophenes and 

the related benzothiophene compound classes benzothiophenes, naphthenic-

benzothiophenes and naphthenic-dibenzothiophenes can be predicted with 

reasonable accuracy. It implies that these models offer a valuable tool for 

quick on-site screening on these compounds, which are potentially harmful for 

the production plant. The models for the other sulfur compound classes are 

insufficiently accurate to be used as a method for detailed sulfur speciation of 

crude oils. 

 
7.1. Introduction 
 

Crude oils are very complex mixtures of organic compounds with a 

large variety in elemental composition and chemical structures. All crude oils 

contain sulfur in concentrations between 0.1 weight % in light samples up to 

10 % in for example bitumen and tar sands [1]. The majority of the sulfur is 
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present as organic molecules in more than 10.000 different structures, ranging 

from aliphatic sulfides, disulfides and alkyl-substituted thiophenes to a variety 

of large polycyclic benzothiophenes [2]. The presence of sulfur species in 

crude oils has a severe impact on the oil production and refinery process. 

Next to direct corrosive effects on the plant infrastructure and equipment, 

macromolecular sulfur compounds form a substantial part of the solid 

asphaltenes and may cause clogging of the pipelines [3]. Therefore, an 

important task at production platforms and refineries is to quickly identify the 

compounds that are harmful for the production plant. 

Another, well-known drawback of sulfur in crude oils is the release of 

sulfur oxides (SOx) upon combustion of crude oil based fuels. This 

environmental effect has lead to more and more severe directives on SOx 

emission. As a result, novel or improved hydrodesulfurization (HDS) catalysts 

have been developed and as a consequence the sulfur content of fuels is 

dramatically reduced. Nowadays, the maximum sulfur concentration in Europe 

is 10 ppm for gasoline and diesel [4] and 1000 ppm for marine diesel [5]. 

Desulfurization is therefore a big topic in oil industries. The current method of 

choice in refineries is HDS by means of e.g., a cobalt-molybdenum based 

catalyst. This catalytic method is expected to stay the dominant technology for 

the coming years, even though it is still not possible to eliminate the sulfur 

completely [6]. On the other hand, HDS is an expensive treatment for deep 

desulfurization, while the removal of heterocyclic aromatic sulfur compounds 

is not very effective. This is particularly relevant since the exploration of the tar 

sand fields in Canada and China has brought large amounts of crude oils with 

high sulfur concentrations onto the world market. For that reason, research for 

alternative methods and ways to enhance the efficiency of the HDS process is 

ongoing [4]. Obviously, also in this process, detailed knowledge of the 

qualitative and quantitative composition of sulfur compounds in crude oils is 

essential. Besides, the type and molecular structure of the sulfur compounds 

are found to affect the crackability and detachability [7], while the 

desulfurization efficiency for an individual sulfur compound differs with the 

type of crude [8]. Evidently, sulfur speciation of crude oils, either into detail or 

indicative and fast, is an important task in oil industries. 
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Many analytical techniques have been explored for this purpose, 

ranging from square wave voltammetry [9] and liquid chromatography [10] to 

conventional gas chromatography (GC) and two dimensional GC (2D-GC) 

[11-13]. A variety of sulfur selective detectors have been used in combination 

with GC, such as atomic emission detection (GC-AED) [14], sulfur 

chemiluminescence detection (GC-SCD) [1, 7, 15-18] and mass spectrometric 

detection (MSD) [19-24]. Other detection techniques have been based on X-

ray spectroscopy including X-ray fluorescence (XRF) [25-28] and X-ray 

absorption near-edge structure (XANES) spectroscopy [29-32]. Furthermore, 

the potentials of temperature programmed reduction and oxidation methods 

have been studied [27, 33] as well as the new, but powerful technique of 

Fourier transform ion cyclotron resonance (FT-ICR)-MS [3, 34-38]. 

Occasionally, IR spectroscopy has been used, either including an oxidation 

pre-treatment [39] or without it [40]. The advantage of IR is that it can be 

easily performed on location without any preparation of the sample. In the 

previous Chapters, we have demonstrated the viability of chemometric 

modeling IR spectra of crude oils to predict long and short residues properties 

of crude oils straightforward from their spectra. This method, based on Partial 

Least Squares (PLS) regression models has been patented [41] and is 

currently tested on-site as a fast alternative for the much more elaborate 

ASTM and IP methods used thus far. Also, the method turned out to be able 

to predict the sulfur content with high accuracy. For that reason, a study to the 

potentials of PLS modeling of IR spectra as a tool for sulfur speciation is a 

logical next step. This Chapter describes the results of that study, using the 

speciation data obtained from standard 2D-GC analysis as reference values.  

 

7.2.  Experimental 

 

Protocols for sample storage, pre-treatment and preparation, as 

described in Chapter 2, have been applied throughout this study to assure the 

acquisition of reproducible, high quality data. The same set of samples has 

been used as in Chapters 3-5 except sample V20, for which no 2D-GC data 

could be obtained. The resulting set of 47 crude oil samples represents a wide 

range of oil wells and hence a large variety of different sulfur compounds and 
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concentrations. Modeling has been carried out for 10 different sulfur classes, 

as listed in Table 1, i.e., the total sulfur content and 9 commonly used sulfur 

speciation groups. 

 

Table 1. Sulfur compound classes as applied in this study. 

1 STD Sulfides, Thiols, Disulfides, Thiophenes 

2 Ar-S Aryl-sulfides 

3 BT Benzothiophenes 

4 NBT Naphthenic-benzothiophenes 

5 DBT Dibenzothiophenes 

6 NDBT Naphthenic-dibenzothiophenes 

7 BNaT Benzonaphthothiophenes 

8 NBNaT Naphthenic-benzonaphthothiophenes 

9 DNaT Dinaphthothiophenes 

10 S Total Total sulfur amount (including elemental S) 

 

7.2.1. IR-spectroscopy 

 

IR measurements have been carried out at room temperature on a 

Bruker Tensor-27 Fourier transform spectrometer equipped with a DTGS 

detector. The sample compartment was flushed with dry air to reduce 

interference of H2O. Spectra were recorded with a horizontal ATR accessory 

(FastIRTM, Harrick Scientific) with a ZnSe crystal as the internal reflection 

element. The spectral resolution was 4 cm-1 for all spectra and 50 scans were 

accumulated with medium apodization for each spectrum. ATR-intensity 

correction was not applied. Although the high viscosity of several of the crude 

oils would make it reasonable to perform the IR measurements at elevated 

temperatures, all IR measurements were carried out at room temperature 

(20°C) for practical reasons and to obtain a high screening velocity.  

 

7.2.2. Gas chromatography 

 

GC x GC analysis was performed on a double column Hewlett-Packard 

P 6890 gas chromatograph (Agilent Technologies) equipped with a CIS4 PTV 

injector, a sulfur chemiluminescence detector, and a liquid nitrogen cryogenic 
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modulation assembly (Zoex Corp.). The first column was a nonpolar DB-1, 

dimethylpolysiloxane, 10 m, 0.25 mm i.d., 0.25 µm Df. (J&W Scientific) and 

the second one a medium polarity stationary phase BPX-50, 50% phenyl 

(equiv.)-polysilphenylene-siloxane, 2 m, 0.10 mm i.d., 0.10 µm Df. (SGE). The 

modulation capillary was comprised of DPTMDS fused silica tubing, 2 m (1 m 

in loop), 0.10 mm i.d. (BGB Analytik Vertrieb, Germany). The initial oven 

temperature for the first dimension column was 40°C. After an initial hold of 5 

min, the oven was programmed at a rate of 2.5°C/min to 320°C, which was 

maintained for 20 min. The secondary oven chamber for the second 

dimension column had an initial temperature of 90°C. After an initial hold of 5 

min., it was programmed at a rate of 2.5°C/min up to 370°C, which was 

maintained for 20 min. The hot-pulse duration was set to 500 ms, and the 

modulation time was 10 s. Samples were injected either pure or, when 

viscosity at 60°C or S-content did not allow so, diluted with toluene and/or 

cyclohexane. Concentrations of components in parts per million sulfur (ppm S) 

were calculated by means of a classified internal standard. 

 

7.2.3. Chemometrics 

 

Modeling was performed using the PLS Toolbox (Eigenvector 

Research, Inc.) for MatLab (The MathWorks, Inc.) on the IR spectra of the 47 

crude oils. This set was divided into a group of 28 spectra for calibration 

(samples C1-C28) and 19 spectra for validation (samples V1-V19) listed in 

Table 1 in Chapter 2. As input for modeling of the 9 different sulfur compound 

classes, the concentrations as determined with 2D-GC have been used. 

Modeling for the total sulfur content was carried out on the data as determined 

according to ASTM method D2622. 

Prior to modeling, a baseline correction was applied to the IR spectra 

by subtracting a 3rd degree polynomial fit using the regions 4000-3500, 2500-

2000, 1900-1800, 1560-1520, 1000-990 and 650-600 cm-1. Subsequently, the 

region 2500-1800 cm-1 was removed from the spectra since no absorbance 

bands were observed in this region. Next, pre-processing of the IR spectra 

was optimized for all 10 sulfur classes by systematic varying pre-process 

parameters like scaling, smoothing, region selection and spectrum derivative 
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options. This resulted in a selection of 18 different pre-processing methods 

which are listed in Table 2. MC refers to mean centering and was applied in all 

cases. The spectral range was either 3500-650 or 1800-650 cm-1. For scaling 

either the option “none”, Multiplicative Signal Correction (MSC) or Standard 

Normal Variate (SNV) with and without detrending, 2nd or 3rd order polynomial, 

was applied. The Savitzky-Golay (SG) smoothing and differentiation 

parameters were varied from 25-49 points, using a 2nd order polynomial and 

none, 1st or 2nd derivative. As an example, pre-processing method 13 

comprises a SG smoothing with 25 points using a 2nd order polynomial and 

taking the 1st derivative followed by SNV, detrending with a 2nd order 

polynomial and MC on the 3500-650 cm-1 region. For each of the 18 pre-

processing methods, PLS modeling was carried out for the 10 sulfur classes, 

which resulted in 180 models. From these, the 10 models with the lowest root 

mean square error of prediction (RMSEP) value for each of the sulfur classes 

were selected for concentration prediction. 

 

Table 2. Schematic representation of the 18 pre-processing methods used. 

1 MC, 1800-650 

2 MC, 3500-650 

3 MSC, MC, 3500-650 

4 SNV, MC, 3500-650 

5 SNV, Detrend (2), MC, 3500-650 

6 SNV, Detrend (3), MC, 3500-650 

7 SG (25 2 0), MC, 3500-650 

8 SG (25 2 0), MC, 1800-650 

9 SG (25 2 1), MC, 3500-650 

10 SG (25 2 1), MC, 1800-650 

11 SG (25 2 1), MSC, MC, 3500-650 

12 SG (25 2 1), MSC, MC, 1800-650 

13 SG (25 2 1), SNV, Detrend (2), MC, 3500-650 

14 SG (25 2 1), SNV, Detrend (2), MC, 1800-650 

15 SG (35 2 2), MC, 3500-650 

16 SG (25 2 2), MSC, MC, 3500-650 

17 SG (49 2 2), MSC, MC, 3500-650 

18 SG (49 2 2), MSC, MC, 1800-650 
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7.3.  Results and discussion 

 

7.3.1. Gas chromatography 

 

The concentrations in ppm of the 9 different sulfur compound classes, as 

determined with 2D-GC analysis and S Total analyzed with ASTM method 

2622, are presented in Table 3. As appears, the calibration samples C1-C28, 

used for building the models, as well as the samples applied for validation 

(V1-V19) represent a wide range of concentrations for the different sulfur 

speciation classes. It implies that PCA of the IR spectra, as described in 

Chapter 2, is also valid for this study. To illustrate the results from 2D-GC, a 

retention time-intensity plot for crude oil C21 is shown as an example in Fig. 1. 

Note that the physicochemically determined amount of “total S” differs from 

the summed concentrations as measured with 2D-GC. This is due to the fact 

that the latter method only covers compounds that elute in the boiling point 

range from ambient to 465°C, whereas the ASTM method includes elemental 

and inorganic sulfur.  

 

Table 3. Crude oil samples for calibration (C1-C28) and validation (V1-V19) used for modeling 

of 10 different sulfur classes. Compound class abbreviations refer to names listed in Table 1. 

Concentrations (ppm) have been determined with 2D-GC. 

Sample 
Concentration (ppm) 

STD Ar-S BT NBT DBT NDBT BNaT NBNaT DNaT S Total 

           

C1 14 8 359 57 742 114 187 26 15 7180 

C2 4 1 20 3 59 4 13 2 1 1370 

C3 62 254 1083 759 1521 683 519 197 62 11700 

C4 53 59 461 191 490 195 171 61 38 5630 

C5 11 67 598 332 1038 442 436 164 111 8350 

C6 26 15 98 24 85 18 24 9 6 2530 

C7 586 272 811 308 412 116 63 18 9 9900 

C8 1803 607 6791 929 5335 1068 2678 804 870 54200 

C9 138 91 111 58 124 37 50 16 11 3000 

C10 62 70 366 167 218 64 31 13 6 4330 

C11 385 318 2458 600 2097 638 728 309 205 21900 

C12 170 830 2129 2149 3312 1425 1529 632 527 30500 
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C13 2488 557 6340 1193 4357 1301 1943 726 589 50900 

C14 130 612 2096 2020 3193 1270 1415 571 522 31400 

C15 269 1412 2704 2306 4248 1345 1597 589 506 38800 

C16 1848 421 4907 974 2810 757 773 270 120 47500 

C17 1039 262 950 200 1371 250 322 74 78 10800 

C18 1622 640 3400 867 2033 756 664 289 105 20500 

C19 623 289 5689 1075 4872 1166 1816 438 336 45500 

C20 1179 293 1052 209 1475 277 331 72 62 11100 

C21 1228 451 2821 929 1694 608 540 268 158 21500 

C22 71 239 1606 492 1790 533 705 297 246 14700 

C23 1022 501 3070 875 2448 844 1053 471 436 32200 

C24 333 182 5114 928 4264 1124 1577 471 315 31700 

C25 1448 520 5452 1292 2652 599 566 112 38 30900 

C26 57 35 160 58 208 51 57 29 0 4580 

C27 871 332 4506 717 4290 1086 1987 714 670 48700 

C28 757 247 4264 756 3323 681 1101 201 154 37600 

           

V1 23 22 119 54 175 44 42 24 0 4200 

V2 31 48 1700 357 1534 351 364 65 32 15400 

V3 684 217 5322 1063 4053 1005 1476 326 274 43000 

V4 1759 687 4306 1055 1980 557 486 164 90 33900 

V5 20 21 212 68 380 92 121 36 0 4840 

V6 966 268 5603 915 3651 785 1247 266 137 41200 

V7 252 403 2213 760 1717 415 430 83 42 25200 

V8 242 130 5449 991 5010 1195 2070 581 456 32300 

V9 2073 665 2902 994 1760 642 531 259 149 28200 

V10 881 292 3981 760 3094 876 1298 538 466 44700 

V11 1210 437 5146 862 3994 1010 1642 618 473 42600 

V12 736 235 3537 600 2614 751 1183 518 444 43100 

V13 1279 374 3191 705 1470 271 223 53 23 20300 

V14 807 473 2715 668 1248 236 223 61 34 25000 

V15 263 150 1121 338 805 191 174 79 38 11300 

V16 638 235 608 124 370 77 73 18 9 8130 

V17 1149 446 4123 862 3096 871 1097 294 175 31400 

V18 174 90 418 150 362 93 99 41 35 7010 

V19 675 518 3935 1109 3082 1030 1148 480 479 28500 
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Fig. 1. 2D-GC plot of crude oil C19. S-compound classes and internal standard have been 

indicated. White colors represent high concentrations, black colors low concentrations. 

 

7.3.2. Infrared spectroscopy 

 

As reported in Chapters 2 and 3, the IR spectra of crude oils are very 

similar, particularly after intensity normalization and pre-processing. This is 

illustrated in Fig. 2, showing the overlay of the 28 baseline corrected crude oil 

spectra of the calibration set C1-C28. All spectra are dominated by strong 

absorption bands of aliphatic C-H stretching (3000-2800 cm-1) and bending 

(1470-1350 cm-1) vibrations. Small differences are present in the fingerprint 

region (1300-650 cm-1). The absorption bands in this region can be merely 

attributed to aromatic skeletal modes. In general, specific C-S, S-H and/or S-S 

vibrations are not very IR active because of the small dipole moment change 

during the vibration of these structural elements [42]. However, for example 

thiophene rings exhibit several sharp bands related to ring stretching (1550-

1350 cm-1) and =C-H out of plane vibrations (800-690 cm-1) [42, 43]. 

 

0 25 50 75 100 125 150

10 

8 

6 

4 

2 

0 

First dimension retention time [minutes] 

S
e
c
o
n

d
 d

im
e

n
s
io

n
 r

e
la

ti
v
e
 r

e
te

n
ti
o
n
 t

im
e
 [

s
e
c
o
n
d
s
]

BT 

NBT 

DBT 

NDBT 

STDT 

Ar-S 

BNaT 

NBNaT 

DNaT 

Internal standard 



133 
 

 

Fig. 2. Overlay of 28 spectra of crude oils as used for calibration of the PLS-models. 

 

7.3.3.  Data analysis 

 

As already mentioned, PLS modeling of the 10 sulfur classes, using 18 

different pre-processing methods, resulted in 180 models. For these 180 

models, the RMSEP values obtained for each speciation class were divided 

by the standard deviation of the calibration values to express the relative 

error. These relative errors have been plotted as a function of the pre-

processing method for each sulfur speciation class in Fig. 3. The figure 

illustrates that, independent of the applied pre-processing method, some 

classes (e.g. NBT) are better predicted than others (e.g. STD). In our opinion, 

this demonstrates the ability of the models to extract structure related 

correlations from the IR spectra. Next, the models with the lowest RMSEP 

values for each of the 10 classes were selected for further evaluation. This is 

summarized in Table 4, showing for each class, the applied pre-processing 

method, the mean concentration value for the calibration set, the 

corresponding standard deviation, the root mean square error of cross 

validation (RMSECV) value, the number of latent variable (LV’s) that was 

used for the model and the RMSEP values obtained for the validation set. In 
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addition, the corresponding plots of the predicted versus the measured 

concentrations for the calibration set (●) and the validation set (x) are shown 

in Fig. 4. 

 

Fig. 3. RMSEP values divided by the standard deviation for the 10 sulfur speciation classes 

for 18 different pre-processing methods. 

 

Table 4. Results of optimized PLS models to predict the concentrations of 10 different sulfur 

compound classes in crude oils. Mean concentration, STDEV, RMSECV and LV values refer 

to the calibration set, RMSEP values to the validation set. 

S class Pre-processing 
(method number) 

Mean 
(ppm) 

STDEV 
(ppm) 

RMSECV 
(ppm) 

LV's RMSEP 
(ppm) 

STD 15 586 585 448 6 537 

Ar-S 10 328 302 229 4 147 

BT 18 2161 1864 769 6 700 

NBT 15 666 625 306 6 228 

DBT 9 1976 1553 632 10 383 

NDBT 7 585 451 213 8 187 

BNaT 9 773 722 367 5 331 

NBNaT 11 281 253 95 8 194 

DNaT 13 227 243 131 4 199 

S Total 9 21587 16351 5403 7 2520 
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Fig. 4. Prediction plots of PLS modeling the concentration of 10 sulfur speciation classes of 

crude oils based on their IR spectra. Calibration spectra (•) and validation spectra (x). The 

corresponding pre-processing methods are listed in Table 4. 

 

First of all, the results confirm the conclusion from the previous chapters that 

the prediction of the total sulfur concentration of crude oils by means of PLS 

modeling of the IR spectra is a valuable alternative for ASTM method 2622. 

Furthermore, the model to predict the dibenzothiophenes (DBT) is promising 

followed by the related benzothiophene compound classes BT, NBT and 

NDBT. The correct prediction of DBT concentrations is particularly interesting 

in view of the fact that these compounds are the major sulfur containing 

species left in fuels after desulfurization. Moreover, the models for the 

speciation of DBT together with BT, NBT and NDBT might be useful, as this 

type of compounds is known to hamper efficient crude oil processing and 

refining. Finally, the models for the remaining classes STD, Ar-S, BNaT, 

NBNaT and DNaT are not very useful for concentration prediction. The 

differences in the predictive power of the models can be explained by the 

assumption that vibrations related to benzothiophene structures are well 
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represented in the IR spectra, whereas other sulfur containing functional 

groups lack specific sulfur related absorption bands.  

 

7.4. Conclusions 

 

PLS modeling of the IR spectra of crude oils is a valuable alternative to 

ASTM method 2622 to predict the total sulfur content of these materials. The 

application as a tool for sulfur speciation, however, is limited. From the 9 

different sulfur compound classes that are usually determined with standard 

2D-GC analysis, the model to predict the concentration of dibenzothiophenes 

is promising. Also, the regression models for the related benzothiophene 

compound classes BT, NBT and NDBT perform reasonably well. However, 

the models for the remaining classes STD, Ar-S, BNaT, NBNaT and DNaT are 

not very useful. As such, PLS regression modeling is not as widely applicable 

for sulfur speciation as 2D-GC. On the other hand, it can be a fast method for 

the qualitative and quantitative on-site screening on dibenzothiophenes, a 

class of compounds which is known to be detrimental in crude oil processing 

and a predominant sulfur-residual in fuels.  
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Summary and Concluding Remarks 
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8.1.  General considerations 

 

Nowadays, molecular spectroscopic analysis is the method of choice to 

obtain detailed qualitative and quantitative information of complex structures 

and mixtures. Valuable chemical and physical data can be extracted from the 

spectral data, particularly, when chemometric modeling techniques are used. 

This combined approach might as well be useful to determine the 

physicochemical properties of crude oils. Knowledge of parameters such as 

density and viscosity, for instance, are important to determine whether it is 

economically justified to exploit an oil reservoir, whereas e.g., the sulfur and 

asphaltene content is crucial to define the catalytic and refining conditions. If 

successful, a combined spectroscopic-chemometric method offers a fast 

alternative for the elaborate and occasionally complex crude oil assays that 

are currently used in petrochemical industries. This challenging objective has 

been the major motivation of this PhD work to explore the potential of a 

number of molecular spectroscopic methods in combination with chemometric 

modeling techniques, to classify crude oils in terms of a series of 

physicochemical properties. 

The primary goal of the research conducted was to develop models to 

predict so-called long residue (LR) and short residue (SR) properties directly 

from a single crude oil spectrum. An additional aim was to study the 

usefulness of this integrated approach as a tool for sulfur speciation and 

possibly to determine structural information of these species on a molecular 

scale. This topic is important to improve the efficiency of the current catalytic 

hydrodesulfurization processes. Six different spectroscopic techniques have 

been explored: IR, NIR, Raman, UV-Vis, 1H-NMR and 13C-NMR. Principal 

Component Analysis (PCA) and Partial Least Squares (PLS) regression have 

been selected as modeling techniques, since these standard methods allow 

direct implementation of the developed hard- and software in crude oil 

production plants and related refineries. The approach that has been followed 

to achieve the stated goals is schematically listed in Table 1 together with the 

topics and techniques that have been studied. 
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Table 1. Schematic representation of the research performed in this PhD thesis. 

Chapter Technique Properties Topic 

 IR NIR NMR 
(
1
H) 

NMR 
(
13

C) 
Raman UV-Vis LR SR  

2 + + + + + + + + Utility testing 

3 +  + +   +  Complementarity 

4 +      + + Temperature effects 

5 +      +  Mathematical blending  

6 +      +  Model robustness  

7 +      +  Sulfur speciation 

8 +      + + Model implementation 

 

 

8.2. Prediction of long and short residue properties 

 

From the six spectroscopic techniques that have been explored in this 

work, Raman and UV-Vis spectroscopy were found not to be useful to 

establish the goals set. As outlined in Chapter 2, the acquisition of useful 

Raman spectra was hampered by extreme fluorescence and self-absorption 

phenomena, while the interpretative value of the UV-Vis spectra was limited 

as result of the lack of details in the electronic transition bands. PLS modeling 

of the 1H- and 13C-NMR spectra provided rather disappointing prediction 

models in view of the intrinsically high information content of NMR data. This 

appeared to be due to a poor reproducibility of the spectral data points, a 

drawback that is frequently encountered in NMR spectrometry combined with 

multivariate data analysis. The best results in predicting the LR properties 

were obtained for PLS modeling of the IR and NIR spectra. For that reason, 

modeling of these data types has been studied in great detail, including the 

development of models to predict SR properties. It was concluded that both 

methods provide a valuable alternative for the time-consuming ASTM and IP 

methods, which are currently used in petrochemical industries to determine 

LR and SR properties. The IR models perform slightly better than the NIR 

ones probably since the corresponding spectra reflect the fundamental 

vibrational transitions, whereas NIR only exhibits overtones and combination 

bands. From the 7 different LR properties for which IR models were built, i.e., 

yield-long-on-crude (YLC), density (DLR), viscosity (VLR), pour point (PP), 
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asphaltenes (Asph), carbon residue (CR) and sulfur content (S), the ones to 

predict YLC, DLR and VLR were found to be the most reliable while the 

inaccuracy in the prediction of PP is similar to that of the corresponding ASTM 

method. The scores for S, Asph and CR are less good, but still useful for 

indicative purposes. The results to predict SR properties from IR spectra are 

also promising, particularly for the density (DSR) and the viscosity (VSR), when 

modeling was carried out as a function of the Atmospheric equivalent Flash 

Temperature (AFT). The use of yield-short-on-crude (YSC) instead of AFT as 

input did not provide better results. The resulting methodology has been 

patented. 

Chapter 3 summarizes the results of PLS modeling of the spectra of 

two complementary methods, i.e., IR and NMR spectroscopy, to predict crude 

oil LR properties. After applying a data point shift correction to the NMR 

spectra in order to compensate for the data point inaccuracies, as observed in 

Chapter 2, IR spectra were merged with 1H-NMR and/or 13C-NMR data and 

used as input for modeling. Surprisingly, this did not lead to a significant 

enhancement of the results compared to the models, based on separate IR, 

1H-NMR or 13C-NMR data. It implies that combining the spectra of 

complementary spectroscopic methods does not automatically lead to better 

results. For all combined data sets, prediction accuracies for the properties 

YLC, VLR, DLR and PP were obtained that are of the same order of magnitude 

as the reproducibility of the previously mentioned ASTM and IP methods. 

However, since the best results were obtained with the models based on only 

IR spectra, this technique is to be preferred over NMR for the prediction of LR 

properties of crude oils at site, especially since IR spectroscopy can be 

realized much easier at lower cost and does not require any special sample 

preparation. 

As a next step to improve the LR and SR prediction models, 

temperature effects were studied in Chapter 4. The exposure of the crude oils 

for 24 h to 65°C to reduce the contributions of volatile constituents in the 

spectra, did not lead to an increase in the results of predicting the LR and SR 

properties. Modeling of the spectra of the same sample, recorded over the 

range 20 to 65°C with increments of 5°C, showed a linear correlation with the 

temperature. This effect was assigned to a decrease of the density with 
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increasing temperature. Application of mean centering for temperature prior to 

modeling of the IR spectra recorded at different temperatures also revealed a 

linear relationship with the temperature. More detailed analysis of the 

prediction results showed a decrease in the number of used LV’s for the 

prediction models of the LR-properties. A minor improvement in the RMSECV 

values for the SR prediction models was observed if the variable temperature 

data were used. 

Chapter 5 describes the results of the study to determine the 

applicability of the IR models to predict the LR properties of mathematically 

created spectra of blends. These mimicked blend spectra were produced by 

co-adding the IR spectra of two crude oils in various weight ratio. The results 

of prediction were compared with those obtained from the spectra of the 

same, physically prepared blends. The predicted LR properties of the artificial 

and the physically mixed blends turned out to be largely the same. For that 

reason, it is concluded that ‘artificial blending’ of crude oil IR spectra is a fast 

and clean desk-top alternative for physically mixing blends in the laboratory. 

Moreover, the method can be used as a rapid testing and screening tool for 

large series of potential blends. Compared to the spectra of real blends, 

slightly larger deviations are observed for some of the LR properties when 

submitting artificial blend spectra to the prediction models. This is assigned to 

non-linear effects that occur when blends are physically prepared, but which 

are not reflected in the mathematically created blend spectra. 

In order to determine the utility of the developed IR prediction models 

on different crude oil production sites, the robustness of the LR prediction 

models was studied in Chapter 6 by modeling spectra that were recorded on 

different instrumental set-ups. First of all, it was concluded that spectra, 

recorded at different instruments and with different sample cells, are highly 

reproducible. This confirms that the experimental protocol is correct. Also, 

large time delays in the acquisition of the spectra did not influence the 

accuracy of the predicted property values. The effect of the applied 

spectrometer and ATR accessory on the performance of the prediction 

models appeared to be very small if the calibration spectra and the ones used 

for validation were recorded on the same instrument. In case validation 
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spectra were recorded on a different instrument than the one that was used 

for the calibration set, the accuracy decreases with a factor of 2. 

Finally, the result of PLS-modeling of IR spectra as a tool for sulfur 

speciation of crude oils was investigated in Chapter 7. Although, this 

approach was found to be successful for the prediction of the total sulfur 

content, as demonstrated in Chapters 2-6, the potential for sulfur speciation 

turned out to be limited compared to the 2D-GC analysis, currently used for 

this purpose. On the other hand, it was concluded that the models to predict 

the concentration of dibenzothiophenes (DBT) and the benzothiophene 

classes BT, NBT and NDBT perform reasonably well. It offers the possibility to 

use these models as a tool for fast indicative on-site screening on 

benzothiophenes. Knowledge of the concentration of this compound class is 

very helpful to determine the optimal parameters for crude oil processing.  

 

8.3. Future developments 

 

Thus far, the prediction models based on IR spectra have shown to 

provide the highest accuracies. From a theoretical point of view, it is not very 

likely that models based on NIR data will provide better results than the IR 

ones. However, NIR spectroscopy has a number of practical advantages over 

IR, particularly with regards to sampling and signal to noise ratio. As such, the 

design of an NIR instrument, dedicated to crude oil measurement, might lead 

to more reproducible spectra and thus better models. Another option for 

improvement of the IR and NIR models is the use of more accurate property 

values as input for modeling. Particularly, the physicochemically determined 

values for the LR property PP and the SR properties P and R&B are rather 

insecure.  

The currently available models for the prediction of SR properties at 

various AFT values are only capable of prediction linear correlations. It is 

known that the P values, especially for softer crudes, show non linear 

behavior for the complete AFT range. In order to overcome this limitation the 

utility of non linear multivariate regression methods should be explored. An 

alternative approach is the combination of the IR spectrum of the crude oil 
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with AFT and an additional input value, e.g. YSC, to describe the non linear 

relationship. 

Optimization could also be achieved by selecting specific parts of the 

spectrum for modeling on the basis of prior IR knowledge. For example, 

modeling of only that part of the spectrum that is characteristic for aromatic 

compounds, might give rise to improved results for the Asph prediction model. 

The use of advanced algorithms for wavelength selection in combination with 

PLS could also be employed to determine the important spectral regions. In 

addition, the application of alternative spectral pre-processing will provide 

insight in ways to optimize modeling.  

Spectral data acquisition at different temperatures resulted in small 

improvement for some of the models. However, a more detailed study of this 

topic is necessary to determine the significance of the observed effect. The 

same holds for the non-linear trends that showed up in the spectra of the 

physically prepared blends. The artificial blends are constructed by straight 

forward linear addition of the IR spectra. An additional pre-processing step in 

the mathematical blend creation that corrects for this type of non-linearity 

might be a way to reduce the prediction errors. 

Finally, the most important issue is to allow the application of the 

prediction models at different crude oil production plants. Developing robust 

prediction models which are insensitive to instrument configuration and 

environment, for instance by applying wavelength selection, could be part of a 

solution. Alternatively a calibration transfer protocol could be developed. This 

transfer protocol should adjust the available model to work with the spectra of 

the new set-up or it should convert the spectra of the new set-up to a format 

that can be used with the available model. Further research on this field, 

particularly focused on the development of a calibration transfer protocol for 

each data acquisition station to be used, is considered inevitable. 
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Samenvatting en Conclusies 
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Algemeen 

 

Moleculair spectroscopische analyse is een belangrijke manier om 

gedetailleerde kwalitatieve en kwantitatieve informatie van complexe 

structuren en mengsels te verkrijgen. Waardevolle chemische en fysische 

data kunnen uit deze spectroscopische data worden geëxtraheerd, vooral in 

combinatie met chemometrische modelleertechnieken. Deze gecombineerde 

benadering zou ook zeer nuttig kunnen zijn om de fysisch-chemische 

eigenschappen van ruwe aardolie te bepalen. Kennis van de parameters 

zoals bijvoorbeeld dichtheid en viscositeit zijn belangrijk om te bepalen of het 

economisch gerechtvaardigd is om een aardoliereservoir te exploiteren. De 

hoeveelheid zwavel en asfaltenen zijn bijvoorbeeld cruciaal om de 

katalytische en raffinagecondities te bepalen. Een geslaagde combinatie van 

een spectroscopische en chemometrische methode biedt een snel alternatief 

voor de arbeidsintensieve en soms complexe analyse van ruwe aardolie die 

momenteel gebruikt wordt in de petrochemische industrie. Dit uitdagende doel 

vormde het startpunt van dit promotieonderzoek naar de mogelijkheden van 

een aantal moleculair spectroscopische methoden gecombineerd met 

chemometrische modelleer technieken, om ruwe aardolie te classificeren op 

basis van een reeks fysisch-chemische eigenschappen. 

Het belangrijkste doel van het onderzoek was om modellen te 

ontwikkelen die de zogenaamde ‘long residue’ (LR) en ‘short residue’ (SR) 

eigenschappen voorspellen aan de hand van een spectrum van een ruwe 

aardolie. Het LR ontstaat na atmosferische destillatie van een ruwe aardolie 

(>370°C) en het SR na vacuümdestillatie van het LR. Deze LR en SR 

eigenschappen zijn ook essentieel bij de productie van bitumen, een 

belangrijk onderdeel van asfalt. Een bijkomend doel was te onderzoeken of 

deze geïntegreerde aanpak ook geschikt zou kunnen zijn als zwavel speciatie 

methode en om structuurinformatie van zwavel componenten op een 

moleculaire schaal te verkrijgen. Dit onderdeel is belangrijk om de efficiëntie 

van de huidige katalytische ontzwavelingsprocessen te verbeteren. Zes 

verschillende spectroscopische technieken werden onderzocht: Infrarood (IR), 

Nabij Infrarood (NIR), Raman, UV-Vis, 1H-NMR en 13C-NMR. Principale 

componenten analyse (PCA) en ‘Partial Least Squares’ (PLS) regressie 
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werden geselecteerd als de multivariate modelleer technieken, omdat deze 

standaardmethoden directe implementatie van de ontwikkelde software 

mogelijk maken bij zowel de winning van ruwe aardolie als bij de raffinage. De 

gevolgde strategie is schematisch weergegeven in Tabel 1 samen met de 

eigenschappen en technieken die onderzocht zijn. 

 

Tabel 1. Schematische weergave van het wetenschappelijk onderzoek beschreven in dit 

proefschrift. 

Hoofdstuk Techniek Eigenschappen Onderwerp 

 IR NIR NMR 
(
1
H) 

NMR 
(
13

C) 
Raman UV-Vis LR SR  

2 + + + + + + + + Haalbaarheid studie 

3 +  + +   +  Complementariteit 

4 +      + + Temperatuur effecten 

5 +      +  Mathematisch mengen 

6 +      +  Model robuustheid  

7 +      +  Zwavel speciatie 

8 +      + + Model implementatie 

 

 

Voorspelling van de LR en SR eigenschappen 

 

Van de zes spectroscopische technieken die onderzocht zijn in dit 

promotieonderzoek bleken Raman en UV-Vis niet geschikt om de gestelde 

doelen te bereiken. Zoals beschreven in Hoofdstuk 2, konden geen bruikbare 

Raman spectra worden opgenomen vanwege extreme fluorescentie en 

zelfabsorptie. Tevens werd de interpreteerbaarheid van de UV-Vis spectra 

beperkt door een gebrek aan detail in de UV-Vis absorptiebanden. De 

bruikbaarheid van de ontwikkelde PLS modellen om de LR eigenschappen 

van ruwe aardolie te voorspellen aan de hand van 1H- en 13C-NMR spectra 

bleek kleiner dan werd verwacht op basis van de intrinsieke hoge informatie-

dichtheid van NMR data. Dit kon echter met name worden toegeschreven aan 

de beperkte reproduceerbaarheid van de datapunten in de NMR spectra. Dit 

verschijnsel blijkt vaker problemen op te leveren bij de toepassing van 

multivariate data analysetechnieken op NMR gegevens. De beste resultaten 

voor de voorspellingen van de LR eigenschappen werden behaald met de 
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modellen gebaseerd op IR en NIR spectra. Om die reden zijn, voor deze 

spectrale data, de modellen tot in detail bestudeerd, inclusief de ontwikkeling 

van modellen om de SR eigenschappen te voorspellen. Het bleek dat beide 

methoden een waardevol alternatief bieden voor de tijdrovende ASTM en IP 

standaardmethoden die momenteel in de petrochemische industrie gebruikt 

worden om de LR en SR eigenschappen te bepalen. De IR modellen 

presteren in het algemeen iets beter dan de NIR modellen. Dit kan worden 

toegeschreven aan het feit dat IR spectra met name de fundamentele 

vibratieovergangen weergeven, terwijl NIR spectra alleen boventonen en 

combinatiebanden bevatten. Van de 7 verschillende LR eigenschappen 

waarvoor IR modellen zijn ontwikkeld, nl. de opbrengst-LR-uit-ruwe aardolie 

(YLC), de dichtheid (DLR), de viscositeit (VLR), het schenkpunt (PP), de 

asfaltenen concentratie (Asph), het koolstof residu (CR) en het zwavel gehalte 

(S), bleken de meest betrouwbare modellen die voor YLC, DLR en VLR. Tevens 

was de fout in de voorspelling voor PP vergelijkbaar met die van de 

corresponderende ASTM methode. De prestaties voor S, Asph en CR waren 

minder goed, maar de modellen zijn nog wel bruikbaar voor indicatieve 

doeleinden. De resultaten om de SR eigenschappen te voorspellen op basis 

van de IR spectra waren ook veelbelovend, met name voor de dichtheid (DSR) 

en de viscositeit (VSR), als de modellen ontwikkeld werden als functie van de 

atmosferisch equivalente vlampunt temperatuur (AFT). Het gebruik van 

opbrengst-SR-uit-ruwe aardolie (YSC) in plaats van AFT leverde minder 

goede voorspellingen op. De ontwikkelde methode is gepatenteerd. 

In Hoofdstuk 3 zijn de resultaten beschreven van het PLS modelleren 

van de spectra van twee complementaire methoden om de LR eigenschappen 

van ruwe aardolie te voorspellen, nl. IR en NMR spectroscopie. Na het 

toepassen van een datapunt verschuiving op de NMR spectra om te 

corrigeren voor de onnauwkeurigheid in de x-as, zoals vermeld in Hoofdstuk 

2, werden de IR spectra gecombineerd met de 1H-NMR en/of 13C-NMR data 

en gebruikt als input voor het modelleren. Tegen de verwachting in leidde dit 

niet tot een significante verbetering van de voorspellingen in vergelijking met 

de modellen die gebaseerd waren op de afzonderlijke IR, 1H-NMR of 13C-

NMR data. Hieruit is geconcludeerd dat het combineren van spectra van 

complementaire technieken niet per definitie leidt tot betere resultaten. Voor 
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alle gecombineerde data sets bleek de fout in de voorspelde waarden van 

YLC, VLR, DLR en PP van dezelfde orde van grootte als de 

reproduceerbaarheid van de ASTM en IP methoden. Aangezien de beste 

resultaten werden verkregen met de modellen gebaseerd op alleen de IR 

spectra geniet deze techniek de voorkeur boven NMR om de LR 

eigenschappen van ruwe aardolie te voorspellen. Bovendien is IR 

spectroscopie goedkoper en eenvoudiger en derhalve meer geschikt voor 

gebruik in een raffinaderij of op een olieplatform. 

Als een volgende stap om de LR en SR voorspelmodellen, gebaseerd 

op IR spectra, te verbeteren werden twee temperatuureffecten bestudeerd in 

Hoofdstuk 4. Het 24 uur lang blootstellen van de ruwe aardolie aan 65°C, om 

zodoende de bijdrage van de vluchtige componenten in de spectra te 

verminderen, leverde geen verbetering op in het voorspellen van de LR en SR 

eigenschappen. Het modelleren van de spectra, verkregen door de olie te 

verwarmen van 20 tot 65°C met stappen van 5°C, vertoonde een lineair 

verband met de temperatuur. Dit effect werd toegewezen aan een afname van 

de dichtheid van het monster met een toename van de temperatuur. Ook het 

aftrekken van het gemiddelde spectrum van de temperatuurreeks van ieder 

individueel spectrum, voorafgaande aan het modelleren, resulteerde in een 

lineair verband met de temperatuur. Een meer gedetailleerde analyse van de 

voorspellingen liet een afname in het aantal LV’s zien voor de LR-

voorspelmodellen. Ook werd een kleine verbetering in de RMSECV-waarden 

van de SR voorspelmodellen waargenomen indien de variabele temperatuur 

spectra werd gebruikt. 

In Hoofdstuk 5 zijn de resultaten beschreven van het onderzoek naar 

de bruikbaarheid van de IR modellen om LR-eigenschappen te voorspellen 

aan de hand van nagebootste IR spectra van aardoliemengsels, ook wel 

genoemd ‘blends’. Deze blend-spectra werden gecreëerd door de spectra van 

twee ruwe aardoliën bij elkaar op te tellen in de gewenste 

gewichtsamenstellingen. De voorspelresultaten van deze kunstmatig 

verkregen spectra werden vervolgens vergeleken met de resultaten die 

werden verkregen met de spectra van de daadwerkelijk geprepareerde 

aardoliemengsels. De voorspelde LR eigenschappen van de oliemengsels 

bleken nagenoeg hetzelfde voor de nagebootste en de echte spectra. Voor 
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sommige LR eigenschappen werden iets grotere voorspelfouten 

geconstateerd bij gebruik van de nagebootste spectra. Dit is toegekend aan 

niet-lineaire effecten, zoals intermoleculaire interacties, welke optreden 

wanneer aardoliën echt gemengd worden en die niet verwerkt zijn in de 

mathematisch gecreëerde spectra. Echter, op basis van de verkregen 

resultaten kon worden geconcludeerd dat het softwarematig nabootsen van 

ruwe aardoliespectra een snel en schoon alternatief is voor het daadwerkelijk 

prepareren van blends in het laboratorium. Bovendien kunnen met de 

ontwikkelde methode grote series van potentiële blends getest en 

geselecteerd worden. 

Om inzicht te krijgen in hoeverre de ontwikkelde LR voorspelmodellen 

universeel toepasbaar zijn, dat wil zeggen op verschillende olieproductie- en 

raffinage-locaties, is onderzoek gedaan naar de robuustheid van de modellen. 

De resultaten hiervan zijn beschreven in Hoofdstuk 6. De studie is uitgevoerd 

door het modelleren van de IR spectra van dezelfde verzameling 

aardoliemonsters, welke op verschillende instrumentele opstellingen werden 

opgenomen. Allereerst werd geconcludeerd dat de spectra, afkomstig van 

verschillende IR spectrometers en met de verschillende optische accessoires, 

zeer reproduceerbaar zijn. Dit bevestigde de juistheid van het opgestelde 

experimentele protocol. Daarnaast bleek dat een groot tijdsverschil tussen 

opnames van de spectra geen invloed heeft op de nauwkeurigheid van de 

voorspelde eigenschappen. Ook werd vastgesteld dat het effect van de 

gebruikte spectrometer en accessoire op de nauwkeurigheid van de 

voorspelmodellen erg klein is als zowel de calibratie- als validatiespectra op 

dezelfde instrumentele opstelling worden opgenomen. Indien de 

validatiespectra op een ander instrument worden opgenomen dan de 

calibratiespectra, dan vermindert de nauwkeurigheid met een factor 2. 

Als laatste werd in Hoofdstuk 7 de toepasbaarheid van PLS modellen 

op basis van IR spectra onderzocht als alternatieve methode voor de 

speciatie van zwavel in ruwe aardolie. Zoals reeds werd vastgesteld in de 

Hoofdstukken 2-6, is deze aanpak succesvol voor de voorspelling van het 

totale zwavelgehalte. De potentie voor zwavelspeciatie bleek echter beperkt in 

vergelijking met de 2D-GC analyse die momenteel voor dit doel wordt 

gebruikt. Wel kon worden geconcludeerd dat de modellen om de concentratie 



155 
 

van dibenzothiophenen (DBT) en de benzothiopheen klassen BT, NBT en 

NDBT te voorspellen, redelijk presteren. Dit biedt de mogelijkheid om deze 

modellen te gebruiken voor een snelle indicatieve analyse van aardolie op 

benzothiophenen. Deze kennis is belangrijk om de optimale parameters voor 

de opwerking van ruwe aardolie te bepalen. 

 

Toekomstige ontwikkelingen 

 

De modellen gebaseerd op de IR spectra hebben tot nu toe de beste 

resultaten opgeleverd. Vanuit theoretisch oogpunt is het niet waarschijnlijk dat 

het gebruik van NIR data tot betere resultaten zal leiden. Echter, NIR 

spectroscopie heeft een aantal praktische voordelen ten opzichte van IR, met 

name voor wat betreft bemonstering en de signaal-ruis verhouding. Een NIR 

instrument geoptimaliseerd voor ruwe aardolie metingen zou tot beter 

reproduceerbare spectra en dus tot betere modellen kunnen leiden. Een 

andere optie voor verbetering van de IR en NIR modellen is het gebruik van 

nauwkeuriger referentiewaarden van de LR- en SR-eigenschappen als input 

voor het modelleren. De fysisch-chemisch bepaalde waarden voor de LR 

eigenschap PP en de SR eigenschappen P en R&B zijn bijvoorbeeld niet erg 

betrouwbaar. 

De momenteel beschikbare modellen voor het voorspellen van de SR 

eigenschappen bij verschillende AFT waarden zijn alleen in staat om een 

lineair verband te voorspellen. Het is bekend dat de P-waarden, vooral van 

‘zachte’ olie, een niet lineair gedrag vertonen voor het volledige AFT bereik. 

Om deze beperking op te heffen zullen niet-lineaire multivariate regressie 

methoden onderzocht moeten worden. Een alternatieve aanpak om deze niet-

lineariteit te kunnen beschrijven is het combineren van een IR spectrum van 

een ruwe aardolie met de AFT-waarde en een additionele inputwaarde, zoals 

bijvoorbeeld YSC. Ook kan worden geprobeerd te optimaliseren door 

specifieke delen van het spectrum te selecteren voor het modelleren op basis 

van IR kennis. Het modelleren van het deel van het spectrum dat 

karakteristiek is voor aromatische componenten zou bijvoorbeeld kunnen 

leiden tot een verbetering voor het Asph voorspelmodel. De belangrijke 

spectrale gebieden kunnen ook worden bepaald door het gebruik van 
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geavanceerde algoritmes voor golflengteselectie in combinatie met PLS. Ook 

het toepassen van alternatieve spectrale voorbewerkingen kan inzicht geven 

in de model optimalisatie strategie. 

Opname van de spectra bij verschillende temperaturen leidde tot kleine 

verbeteringen voor enkele modellen. Een meer gedetailleerde studie is nodig 

om de significantie van de waargenomen effecten te bepalen. Hetzelfde geldt 

voor de niet-lineaire trends die optraden in de spectra van de fysische 

geprepareerde aardoliemengsels. Tot nu toe werden de gesimuleerde spectra 

geconstrueerd door lineaire additie van de ruwe aardoliespectra. Toevoeging 

van een extra voorbewerking, welke corrigeert voor deze niet-lineariteit, zou 

de fout in de voorspelling kunnen verminderen. 

Het belangrijkste onderwerp ten slotte, is de vergroting van de 

robuustheid van de modellen. Dit maakt de bruikbaarheid onafhankelijk van 

de spectrometer configuratie en dus ook van de olie-productie en -raffinage 

locatie. Het toepassen van golflengteselectie zou een deel van de oplossing 

kunnen zijn. Een andere mogelijkheid is om een calibratietransfer protocol te 

ontwikkelen. Een dergelijk protocol zou het beschikbare model zodanig aan 

moeten passen dat het spectra kan verwerken die afkomstig zijn van 

spectrometers met een andere configuratie. Als alternatief kan een protocol 

ontwikkeld worden dat de spectra van de andere configuratie zodanig aanpast 

dat het beschikbare model direkt gebruikt kan worden. Onderzoek gericht op 

de ontwikkeling van een calibratietransfer protocol voor ieder spectrometer 

type dat gebruikt gaat worden, wordt noodzakelijk geacht. 
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List of Abbreviations 

 

AFT Atmospheric equivalent Flash Temperature 

Asph Asphaltenes content  

ASTM American Society for Testing and Materials International 

ATR Attenuated total reflection 

CCD Charge-coupled device 

CR Carbon residue 

CV Cross validation 

DLR Density (long residue) 

DSR Density (short residue)  

DTGS Deuterated triglycine sulfate 

FT Fourier-transform 

GC Gas chromatography 

HDS Hydrodesulfurization 

IP Institute for petroleum 

IR Infrared 

LOO Leave one out 

LR Long residue 

LV Latent variable 

MC Mean centering 

MLR Multiple linear regression 

MSC Multiplicative signal correction 

NIR Near infrared 

NMR Nuclear magnetic resonance 

P Penetration 

PARAFAC Parallel Factor(s) 

PC Principal component 

PCA Principal component analysis 

PLS Partial least squares 

PP Pour point 

R&B Ring and ball (or softening point) 

RMSEC Root mean square error of calibration 



158 
 

RMSECV Root mean square error of cross validation 

RMSEP Root mean square error of prediction 

S Sulfur content 

SG Savitzky-Golay 

SNV Standard normal variate 

SR Short residue 

STDEV Standard deviation 

UV-Vis Ultraviolet-visible 

VLR Viscosity (long residue) 

VSR Viscosity (short residue) 

YLC Yield long on crude 

YSC Yield short on crude  
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Dankwoord 

 

Deze bladzijden zijn misschien wel de belangrijkste van het proefschrift. Als het goed 

is zal niemand verrast worden op deze pagina's omdat ik de meeste mensen al 

persoonlijk bedankt heb gedurende de afgelopen jaren. Door het vast te leggen op 

papier (en internet) wordt het voor een groter publiek duidelijk wie een onmisbare 

bijdrage hebben geleverd. 

 

Om bij mijn begin te beginnen wil ik mijn liefdevolle ouders Wout en Henny 

bedanken. Vanaf dat ik me kan herinneren, en eerder, zijn ze er voor mij geweest en 

hebben ze mij de ruimte gegeven om me in mijn eigen tempo te ontplooien. 

Stimulerend maar nooit dwingend. Wat mij betreft was die gelukkige jeugd de basis 

voor alles wat ik bereikt heb en waar ik tot nu toe van heb mogen genieten. 

Bert Weckhuysen, mijn promotor, wil ik bedanken voor het risico dat hij aangedurfd 

heeft om mij het beschreven promotie werk toe te vertrouwen. Door zijn snelle 

respons op alle ingeleverde teksten en het stellen van deadlines (voor mij in deze 

zeker noodzakelijk) is dit proefschrift er gekomen. 

Tom Visser, mijn co-promotor en meer vriend dan collega. Door zijn vertrouwen in 

mijn spectroscopische en chemometrische kennis ben ik betrokken geraakt bij het 

beschreven Bitumen project. De samenwerking was wat mij betreft geweldig en ik 

hoop dat ondanks zijn nakende pensioen we op welke manier dan ook, blijven 

samenwerken. Desnoods in zijn tuin. De afgelopen jaren was hij mijn kamergenoot, 

reisgenoot (in binnen- en buitenland), spectroscopiegenoot en Betuwegenoot. Dus 

veel genoten. Ik had het zonder Tom niet gehaald, zelfs niet gewild. "Het staat nu 

geschreven, dus is het waar!" 

Joop van der Maas, die al tijdens het 2e jaar van mijn studie scheikunde als 

opvallend goede docent invloed kreeg op mijn keuzes. Hij was het die mijn interesse 

in de vibratiespectroscopie gewekt heeft en van wie ik nog steeds veel leer. Hij heeft 

al vanaf het begin geprobeerd mij warm te maken voor een promotie. Dit is hij blijven 

doen, ook later tijdens de reisjes van de vibratievrienden naar oorden die voldeden 

aan de criteria zonnig (niet altijd), goed eten en drinken. Zowel in Lissabon, Malta, 

Porto, Lyon, Londen, Marseille en tijdens de etentjes bij de Griek in Utrecht werd 

grote druk uitgeoefend op de enige Drs. in het gezelschap. 

Fouad Soulimani, die onmisbaar was bij het uitvoeren van veel metingen aan de 

vaak lastige olie. Goede metingen blijven de basis voor goede resultaten, hoeveel er 

daarna ook nog aan gerekend wordt. Zijn behulpzame, vriendelijke en sociale 

opstelling is de afgelopen jaren onmisbaar geweest. 

Derek Petrauskas, Fred Singelenberg and Fabien Salvatori from Shell Global 

Solutions B.V. are thanked for their input and guidance during the Bitumen project. 

De studenten Christophe Rebreyend en Bob van de Giessen bedank ik voor het 

prima uitvoeren van het experimentele werk voor hoofdstuk 6. Monique Lamers en 

vooral Dymph Serrée van het secretariaat voor alles wat ze voor me gedaan hebben 

waaronder het op het juiste moment uitvoeren van administratieve handelingen. 

Vincent Koot voor de ondersteuning bij netwerk problemen en andere computer 

gerelateerde zaken. The 'colleagues' from the Inorganic Chemistry and Catalysis 
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group but especially the ones I have worked with: Leticia Espinosa-Alonso, Muriel 

Lepage, Ana Iglesias Juez, Marianne Kox, Gerbrand Mesu and Jaap Bergwerff. 

Aangezien ik al ver voor deze promotie in de vibratiespectroscopie werkzaam was 

zijn er nog enkele mensen die ik wil bedanken voor hun bijdrage in een eerdere fase. 

H.J. Luinge, die mij als collega in de vibratiespectroscopie groep de basis van de 

chemometrie heeft bijgebracht. Ik hoop dat het hem goed blijft gaan in Florida waar 

hij de beste spectroscopist en chemometrist is binnen zijn huidige vakgebied. 

Bert Lutz, die ik helaas niet meer persoonlijk kan bedanken. Hij heeft meer invloed 

op mijn leven en werk gehad dan hij ooit geweten heeft. Naast een geweldige collega 

en spectroscopist was hij een fantastisch mens.  

Jan Jansen, mijn baas ("nee, collega"), omdat hij het mij mogelijk heeft gemaakt voor 

de Universiteit Utrecht te blijven werken tijdens mijn dienstverband met Philips en 

goedkeurde dat ik een bedrijf oprichtte in hetzelfde vakgebied. Dit heeft uiteindelijk 

de deur geopend voor dit promotie onderzoek. In deze gaat ook mijn dank uit naar de 

steun van Arjan Mank, de opvolger van Jan, en sinds dit jaar ook weer ‘collega' bij de 

Universiteit Utrecht. 

RKTVC 3 voor de sportieve ontspanning. Onoverwinnelijk....., in ieder geval als het 

om feest maken gaat. 

Mijn zussen voor 'het zus zijn' en het uiteindelijk niet volledig verstoren van de 

randvoorwaarden die heel belangrijk zijn in ieders leven, zeker tijdens zo'n drukke 

periode. Laten we de sibling etentjes in ere houden. 

Mijn drie geweldige zonen, Luuk, Mick en Stan (Large, Medium en Small) voor hun 

pesterijen en grappen die gewoon doorgingen tijdens het schrijven ("Zóóó saaaaiii") 

van dit boekje. Het positieve voor LMS is de vrije dag van school én het feest. 

Binnenkort weer MOH met jullie, online, 3 tegen 1, kom maar op! 

Als laatste, maar zeker niet de minste, bedank ik mijn geliefde Henriëtte Sloot (Jet). 

Doordat zij zo lief, sterk en stabiel is kan ik de meest wilde plannen uitvoeren, zelfs 

een promotie, zonder dat ons gezinsleven of onze relatie er onder gebukt gaat. Ze is 

mijn desk Jet, privé Jet, (meestal) easy Jet en super Jet. Dit boekje staat bol van de 

modellen, maar het mooiste, beste en meest betrouwbare model is wat mij betreft 

pas in deze laatste alinea beschreven... 
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cursussen en het onderzoek op het gebied van vibratiespectroscopie aan de 

Universiteit Utrecht. In 2004 richtte hij in samenwerking met van der Maas het bedrijf 
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