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LETTER TO THE EDITOR

On the Bose-Einstein condensation of a perfect gas

An article by Fowler and Jones!) onthe Bose-Einstein
condensation of a perfect gas has prompted a further investigation of this
problem.

As is well known, a perfect gas, consisting of a very great number N of
Bose-Einstein particles, enclosed in a box of volume V¥, has a
transition temperature T, defined by: ’
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at which there is a discontinuity in the second derivative, with respect to
the temperature, of the total energy E of the gas, and below which the
pressure of the gas is independent of the volume, as with a real gas in the
coexistence region. This phenomenon is therefore called Bose-Ein-
stein condensation ?) 3).

Now the question presents itself, whether this phenomenon will also
occur with another number w of dimensions, or with a more general form
of the field. Therefore (while taking the usual well-known formulae of Bose
statistics to be correct) we have investigated w-dimensional potential fields
of such a shape as to give sequences of eigen-values of the form:
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where a is a number between 1 and 2; s, ...., s, are the w necessary
quantum numbers, and a;, ...., a, are certain ‘‘characteristic lengths”
of the field. (The lowest level, with s, ...., s, = 1, has been taken as the
zero point of the energy scale). For « = 2 the potential field is that of the
w-dimensional rectangular box, with side lengths ay, .. .., a,; fora = 1 we
obtain the w-dimensional harmonic oscillator field (with appropriate choice
of the constant, the a4, ...., a, can be considered as the half-axes of the

(w-dimensional ellipsoidal) classical “‘livingspace’ of the particles at the
lowest level).

In an article, still to be published %), it will be shown, that the occurrence
and chavacter of the transition temperature Ty depend on the value of the number
q = w/a (quotient of the number of dimensions and the exponent of the quantum
number in the energy eigenvalue). For q < 1 there is no such point Ty, for
q > 1 a transition point exists, and is defined by an equation
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in which » is the quantity
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The character of the transition point, is as follows: For | < g < 3/2.
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E, dE/dT and dzE/de are continuous at T = T,; discontinuities occur in
higher derivatives. For ¢ = 3/, (just the case of the 3-dimensional box,
w=23, a=2), d2E/dT? shows a finite discontinuity, for 3/, < ¢ < 2
d2E[d T? shows an infinite discontinuity at T = T,. For ¢ > 2, the specific
heat dE/dT shows a finite discontinuity at T = T, so that we havea A-point.

A well-defined transition point Ty appears only with a very great number
N of particles (theoretically only for infinite N); the transition temperature
Ty is finite only [in the limiting case N = oo] if » is finite.

For the box, a = 2, vis equal to the (mean) density of the gas (the number

w

of particles per unit volume, » = N/ ITa,). If, with N — oo, » tends to zero or
v=1

infinity, then T also tends to zero or infinity respectively, i.e., the transi-

tion point, while becoming sharper, at the same time tends to zero or infi-

nity. The first case occurs e.g. when, with a < 2, one keeps the “‘density”

w
n = N/ II a, a constant while N - oo; the second case when for example one
v=1
introduces N = oo particles in a field with finite characteristical lengths
ay, ....; a, {e.g. a box of finite dimensions).

With N - oo and finite », in the case ¢ > 1 (transition point) and at
temperatures below T, the number Ny of particles in the lowest state also
tends to infinity, in such a way as to remain a finite fraction of the total
number N and the formula
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holds. London's? well-known formula for Ny/N is the special case for
g = 3/, (3-dimensional box).

Like Fowler and Jones!), but unlike London3) we carried out
the mathematical proofs and calculations without approximating the (for
finite N) discrete energy spectrum (2) by a continuous one. Our method
can only be used with potential fields of special form (e.g. with a rectangular
box, but not with a box of arbitrary form). Fields of still more general
form can probably only be tackled with a ‘“‘continuous spectrum’’ approx-
imation; in that case Lond on’s ‘“‘mixed continuous discrete spectrum’’
method is to be preferred, as it avoids some of the mathematical difficulties
which are encountered when a completely ““continuous spectrum’ method
is used. S. R. pE GROOT *).
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