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Summary 
In the general case of a quantum mechanical system with a Hamiltonian 

that  is invariant for rotations spatial degeneracy will exist. So the initial 
state must be characterized except by the energy also by e.g. the magnetic 
quantum number. Both for emission of light and electrons plus neutrinos 
(fl-radioactivity) of a quantum mechanical system the following theorem 
is important:  the total transition probability from an initial level with some 
definite magnetic quantum number ml to every possible final level be- 
longing to one energy does not depend on ml. A simple proof is given for 
this theorem t h a t  embraces the case of forbidden transitions, which 
case is not covered by the usual proof. In the proof a Gibbs ensemble of 
quantum mechanical systems is used; the necessary and sufficient condi- 
tions for the rotational invariance of such an ensemble are given. 

§ 1. Introduction. I f  t rans i t ions  of a q u a n t u m  mechanica l  sy s t em 
are considered,• the  usual  case is t h a t  there  is spa t ia l  degeneracy :  
We can specify  a s t a te  of the  s y s t em  b y  n (de termining i ts  ene rgy  E~) 
and  e.g. m t h a t  defines the  z -componen t  of the  angula r  m o m e n t u m  ]'. 
The  to t a l  t rans i t ion  p r o b a b i l i t y o f  a n y  init ial  level wi th  a cer ta in  
va lue  m~ for  m to  all f inal levels (belonging to one ene rgy  value 

specified b y  nl) is given b y  a sum:  

A,l(m,) = Z,~ I A (n,, m,; n t, mr) (1) 

(A (n~, m~; n t, mr) is a par t i a l  t rans i t ion  probabi l i ty) .  This  sum migh t  
depend  on m i, as the  wave  funct ion of the  init ial  level can h a v e  
dif ferent  forms.  However ,  one can deduce t h a t  Aq does not  depend  
on m~, unde r  the  condi t ion t h a t  the  H a m i l t o n i a n  is inva r i an t  for  
ro ta t ions  of space (which means  t h a t  no privi l iged direct ions in space 
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exist) Roughly speaking we can say: m~ specifies only to a certain 
extent an orientation of the system and all orientations are equiva- 
lent if the Hamiltonian is invariant for rotations. This gives already 
an intuitive idea of the correctness of the theorem in question but  
is of course no exact proof of the statement. Similarly the sums of 
all partial transition probabilities with one final level, are indepen- 
dent of m t : 

Al',(~nl) = ~ . ,  A (hi, m~; ~1, ~1) (2) 

An immediate consequence of the independence of Air of me 
/ 

and A~t of m t is that" 

A,/AI'~ = (2/'1 + 1)/(21"~ + 1) (3) 

for: Z,~i A~/(mi) = ~Tm! A1'i(ml) = Zmi, ~! A (n i, ml; n I, .mr) 
t 

or: (2i, + 1) A,I = (2ii + 1)At, 

The property (3) has long been known for the case of light and 
allowed transitions (electric dipole) and is called the sum rule 
of 0 r n s t e i n-B u r g e r 1). In this paper a very general proof 
is given for the independence of A e of m~ and of AI' i of m t, which is 
also valid for the case of multipole radiation ("forbidden" transi- 
tions). The usual proof of the sum rule starts from the expressions 
for the relative magnitude of the matrix elements 4) for dipole 
radiation and is only valid for this type of radiation (cf. also 3)). 
The experimental check of the sum rule consists of the measurement 
of the relative intensities of the lines in a Zeeman splitting. In this 
case the invariance for rotations of the Hamiltonian is not strictly 
valid. In the first and sufficiently accurate approximation, however, 
the only effect of the Zeeman splitting is that  the degeneracy is 
removed without alteration of the partial transition probabilities. 
In this manner partial transition probabilities can be measured 
separately. 

The same questions as for the emission of light occur in the theory 
of E-radioactivity. However,  for this case ,,forbidden" transitions 
are very common. The independence of A e of m~ is again important 
and it is necessary to prove this property as well for forbidden as 
for allowed transitions. The use of this property is essential for the 
discussion of the matrix elements that  determine the transition 
probabilities ~) a) s). 
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§ 2. Remarks on the use o] ensembles in quantum mechanics. To 
prove the before-mentioned theorem about transition probabilities 
we make use of ensembles of quantum mechanical systems. We 
consider especially the rotational invariance of ensembles. Several 
general properties of transition probabilities follow directly from 
the ordinary transformation of operators in quantum mechanics 5). 
If viz. the matrix ] transforms according to" 

] = S + l°S = S - '  [°S (S Unita.ry) (4) 

(which gives the ordinary transformation to a new representation 
for operators) the trace of ] is invariant; the same is true for the 
trace of ]/, as ] / t rans forms  also according to (4). We consider the 
matrix elements /(n, m; n', m') in which n gives the energy level 
and m distinguishes the different states for the same energy in case 
of degeneracy, while S transforms to a new representation for the 
m's. We can write the invariance Of the trace of H for this case as: 

X,.,,., l l(n, m ; n', m')12 = Xm,,,, l /°(n, m ; n', m') ] 2 (5) 

which is the mathematical expression of the principle of spectro- 
scopic stability 6). If we have e.g. transition probabilities given 
by  a vector A according to: 

P(n, m; n', m') = ] A(n', m; n', m') ]2 = / 

-= lAx(n,m;n' ,m')[2 + [Ay(n,m;n' ,m')[2 + IA, (n ,m;n ' ,m ' )[  2 (6) 

(5) states for this case the invariance of a double sum of partial 
transition probabilities if new coordinates are chosen (when the m 
refer to spatial degeneracy). The before-mentioned theorem (§ 1) is, 
however, of a different type;  only a single sum occurs in it, whereas 
a double sum occurs in (5). Now some properties concerning tran- 
sition probabilities become only clear after introduction of ensem- 
bles in quantum mechanics. If e.g. the initial state is a mixed state, 
one gets, compared with the cases with as initial state a pure state, 
cross terms in the expression for the transitions to the final state. 
These cross terms are ~ 0 and can only be omitted after averaging 
all possible relative phases of the components of the mixed state. 
Writ ten in formulae: if 

~0. = Zm c. ,  m ~0. , .  (7)  

then the probability that  the system is in the state 9..,, is: 

I ~ (8) 
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If the probability for a transition per unit of time from a state 
9n,m to a state 9n',,,,' is given by  A.,.,.,,., then after a short time 3, 
we have for the probabil i ty to find the system in the state ~.,,,., : 

A~,n. ~, ~ (9) 

if the initial state was 9.,.. If the initial state is 9,,, this probability 
is, however, not given by:  

27. P .... A,,~,,,,~, ~ (10) 

This expression is only correct after averaging the phases. The 
use of a G i b b s ensemble is only a more technical device for 
averaging phase s that  are distributed at random: the precise s tudy 
of the involved relations was made in this connection 6) 7). The 
introduction of ensembles in quantum mechanics seems rather na- 
tural because a measurement that  determines the 9~,,. will give only 
the absolute value of the coefficients of the components of mixed 
states not the relative phases. However, these relative phases have 
physical significance and they could be determined by  other measu- 
rements. The result of the first measurements can, however, be 
expressed only by  giving an ensemble. 

The first theorem, that  is proved in this paper, is that  a necessary 
and sufficient condition for the invariance for rotations of an en- 
semble is that  the density matrix 0 (cf. e) ~) and below) is of the 
form : 

~,~,~, =PO,~ , . ,  (11) 

After this, it is simple to derive as second theorem: the transition 
probabili ty A~I is independent of rai and AI' i is independent of ra t ,  
if the Hamiltonian is invariant for rotations. We saw already that  
a direct consequence of the second theorem is: 

A, /A t '  ~ = (2jr + 1)/(2i, + 1) (3) 

§ 3. Quantura statistical ensembles with rotational invariance. We 
will consider in this section ensembles of quantum mechanical 
systems that  are invariant for rotations of space, and take as mem- 
bers of the ensemble, eigenfunctions belonging to a definite eigen- 
value of the angular momentum of the system. The simultaneous 
eigenfunctions of the total angular momentum and its z-component 
will be written as 9,.(ra = j, 1 " -  1 . . . . . .  - - j ;  1" quantum number 
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for the total angular momentum, m for its z-component). An ar- 
bitrary eigenfunction for 1" can be developed as: 

= z . ,  a m (12)  

We normalize all wave functions; hence 2~ m ] a m 12 = 1. The density 
matrix 0 is the operator, defined for an ensemble of quantum 
mechanical systems, by its elements. 

(13) Qr~ra" = a .¢  a.~ 

The double bar means the average for the ensemble. 
Often ensembles are considered that  represent the result that  a 

measurement has given the probability P,~ for the system being 
in state Pro; we cannot represent the result of such a measurement 
by a wave function 2~m amq0 m, because the relative phases of the dif- 
ferent 9m do not follow from the measurement, but only by an en- 
semble in which these phases are taken at random. From this it 
results that  0ram' becomes a diagonal matrix 

0--, = P ~  ~,.. .  (14) 

We can write this also in the form: 

and we verify easily that  : 

f 9"~ 9m dz = Pm (16) 

The diagonal form (14) of O is only valid for a definite system of 
9re'S; by a transformation 

~o~ = ~ . ,  St,,, qD,, (S unitary) (17) 

o is transformed according to: 

eL = s,* (18)  

It  is clear that  the new matrix will not generally have the dia- 
gonal form; the diagonal form is only valid for a definite represen- 
tation. Analogously the density matrix ~ for an ensemble will not 
hold the diagonal form generally, if the members of the ensemble 
change with time according to the S c h r/5 d i n g e r equation. 

T h e o r e m  I :  The necessary and sufficient condition that  a quantum 
statistical ensemble, composed of systems 9m (belonging to a de- 
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finite angular momentum) is invariant for rotations, is that  QR" 
has the form: 

Q,,., = P ~. . , ,  (19) 
or if @.m, has the form (14), this is equivalent with: 

P i  = . . . . . .  (20)  

Proof: We use infinitesimal rotations in the proof of this theorem. 
We can characterize a rotation of space D~ by  the vector (a., &, a,) 
that  has as direction the axis of rotation and as. value the angle 
of rotation. We now consider the infinitesimal rotation D~ with 
the infinitesimal vector of rotation (fl., fly, fl,). A wave function 9 
is transformed in a certain way by  Dt~; we write" 

D~9 = 9  + fl.I.9 + flyly9 + fl.I,9 (21) 

I . ,  I v and I ,  give the infinitesimal transformations of the repre- 
sentation of the rotations of space that  is defined by  the 9 (cf. e.g. 4) 
p. 62 ft.). 

The invariance of an ensemble for the infinitesimal rotations 
of space is of course a consequence of the invariance for all rotations 
of space, but  the inverse is also true: the invariance for the in- 
finitesimal rotations I . ,  I v and I,  is also sufficient for the invariance 
for all rotations. The invariance for rotations of the ensemble that  
we considered above, is equivalent with the property that  the ex- 
pectation values of ~ do not change if one passes from the 9m to the 
Dg~ (D is an infinitesimal rotation) or in formula (we use a represen- 
tation, for which O has the diagonal form (14)): 

PD~ = P~, for every m (22) 
with: 

Po.  = f (Dgm)*e Dgm d~ = 
= ~,," [f  (Dgm)* 9.,, dv] Pro, I f  9", 0 9 .  d~] .= 

= Z~' Prw * 12 If  gw Dg .  d,  
o r :  

if we put:  
Pp. = Z.' P., Pm,~ 

Pm,m * 12 = I f  gin, Dgm dr 

From (25) follows directly: 
P~,. ---- pm~, 

(23) 

(24) 

(25) 

(26) 
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We can prove this  in the following~way: , 

a) if m ' =  m, (26) is trivial 

fl) if m'  ~ m, we can write:  

f g*, D9,,, aT = f ~*~,(fij,, + fl,,I~, + fl,I,)9, dv 

The operators for infinitesimal rotat ions I~, Iy, I ,  are Hermi t ian  
except for a pure imaginary  factor.  They  give viz. wi th  thi~ factor  
the  operators for the components  of the to ta l  angular  momen- 
t u m  of the system. Now (26) is a direct consequence. 

We have fur ther :  
/7.' Pw. = l (27) 

We shall use this equat ion in the form: 

P,.. = 1 -- Z,.'.. P.,.. (28) 

We prove (27) by  s tar t ing from the development :  

9 = / 7 .  9 .  f 9"~ 9d* (29) 

I f  we take 9 = D g . ,  we get from (29) : 

1 = f (39 . )*  ( D g . )d ,  = Z. ,  I f  (Dg.) * 9.. d,] [fg*, (Dg.)  dz] = Z :  P . , .  

and (27) is proved. 
If  we consider the infinitesimal rotat ions I., Iy, I, for which 

the ensemble must  be invariant ,  we see tha t  I,  needs no fur ther  
consideration, for I ,  does not  alter the 9 . .  The t ransformat ions  
of the  eigenfunctions 9 .  for the infinitesimal rotat ions I ,  and Iy 
are well known from the t r ea tmen t  of the irreducible representat ions 
of the group of the  space rotat ions (cf. e.g. s) p. 66). We need 
only the following properties:  

The Hermi t ian  operators L, ,  Ly, L v defined by  

L,=a, L,=il, L.=a. (30) 

give the following result, if they act on the 9.(I m [ < J) 

{ L . 9 .  = alg.~_l + bl9.+1 

L~9 . ----- a29ra_l -~- b29.+ 1 (31) 

L .9  . = r ag .  

al, a~, bl, b 2 4:0 unless m = i, in which case: b I = b 2 = O; or 
m = - - i ,  in which case a 1 = a 2 = O. 
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We now consider the  invariance of the ensemble for rotat ions 
Ix; we have, if m =# m '  and if/~y = /~ ,  = 0: 

P . . '  I * 12 12 * I s = ~0./x9 ~, d~ (32) f 9,.D/3m, ., dx = I ~x I f 

so we have for rotat ions Ix: 

P,,~, : / :0 if m - - r e ' =  4- 1 / 
(33) 

J P u , = 0  if ] m - - m '  [ > 1  

According to (22) and (24), we can write the  condit ion for invariance 
in the form" 

27~, P,,, P u '  = P ,  for every  m (34) 

or using (28) and (33): 

/)I" (1 --Pi.i-,) + Pi-tPi-Li = Pi (m = i) ] 
P i - , (  1 --Pi-, i---Pi-, i-'2) + PiPii-, + Pi-2Pi-=i-, = J (35) 

' ' ' - - - - -P i - I  ( m = i I  1) 

We now f ind respectively using (26) : 

P] = P i - "  Pi-= = Pj-1 etc. 
o r :  

Pi = P i - ,  . . . . .  P ~  (36) 

Consideration of the rotat ion Iy gives exact ly the same result 
(36) as I x gives, as could be expected. 

I f  (36) is satisfied, we can wr i te  O as : 

e.., = P&.., (37) 

and it is clear from (18) tha t  (36) is also sufficient for the  rotat ional  
invariance of the ensemble, as the representat ion D of the  rota t ion 
group determines again un i t a ry  t ransformat ions  S. 

We want  to emphasize tha t  (36) or (37) are essential for rota t ional  
degeneracy and are not  at all valid for every  case of degeneracy.  
If we have e.g. a qua n tum mechanical  sys tem which has two dif- 
ferent  systems of levels at an energy E ,  (fortuitous degeneracy),  
one with 1. = 0 : 9 (11, the o ther  with 1. > 0 : 9~ I, we have  (21. + 1) + 1 
levels with the same energy. The 21. + I eigenfunctions 9~ I are 
t ransformed in each other ;  9(1) is, however,  not  t rans formed at  
all, if a rotat ion is performed.  If we use m "merely as an index to  
distinguish the different degenerate  states wi th  the  same energy  
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(put m = 0 for 9(') and m = 1 . . . . .  2 j +  I for 9~)), the form of 0 
becomes: 

{p (tl~mm, if m = 0  
(38) 

0...' = p(2) ~,.~. if m > 1 

This form is again invariant for rotations, though it is not a mul- 
tiple of the unit-matrix if p( l ) :#  p(2) and though it does not 
remain a diagonal matrix for the most general unitary transfor- 
mations. 

§ 4. Application ol theorem I: A general prool o I the sum rule. 
Theorem H :  The sum' A# of partial transition probabilities (of. (I)) 
is independent of m~ and the sum At' ~ (2) is independent of m 1, if 
the HamiRonian of the quantum mechanical system is invariant for 
rotations, 

The proof of theorem II is easy with the use of theorem I;  we 
consider again a quantum statistical ensemble that  is invariant 
for the rotations of space. We take, however, the case that  the en- 
semble contains states that  differ not only in the magnetic quantum 
number m, but  also in other quantum numbers, which we denote 
together b y  n. Hence we write the eigenfunctions ~0., m and the 
expectation values of the density matrix: P.,m. The energy eigen- 
value E .  for 9.,,. will, generally, be different for different n's, 
though it is independent of m (spatial degeneracy). 

We now consider the case that  the P.,~. depend on the time t, 
which is the case that  transitions between different states are 
possible; we write P.,,.(t) for the value at time t. The necessary 
and sufficient condition for invariance for rotations of such an 
ensemble is (according to theorem I): 

P n , i  = P n , i - - I  - -  - -  P.,- i  for every n (39) 

(It is supposed that  the n's are not affected by  rotations) 
We had for the ensemble that  was considered in theorem I: 

r. P. = 1 (40) 

However, we have for the ensemble considered in theorem II 

z . , , .  P . , .  = i (41) 

We now consider the case of 2 values of n: between 2 spatially 
degenerate energy-levels transitions are possible. Let P ~  be the 
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probabilities for the initial level, P/~I for the final level. If P~(0) 
and P~/(O) are the values at time t = 0, the values at a short time 

afterwards can be given in terms of the initial probabilities and 
the transition probabilities. 

If we take: 

P~.(0) = P the same for all m! (42) 
and: 

P~I(O) .----0 for a11 m I (43) 

then we have after a short time ~ (cf. (1)): 
, 

= Pro(0)[1 - -  Z,,/ A (n,, m,; n/, mt)r ] = P[ l - -A, t (m,)z]  (44) 

and (cf. (2)): 

z . ,  ' " = ( 4 s )  = P,~(O)A (n~, m~; n/, 

Now if the Hamiltonian is invariant for rotations and if (42) is 
valid ((42) expresses the invarianee for rotations of the initial 
ensemble) the ensemble must remain invariant for rotations; thus 
P~(~) and 19~1(~) must be independent respectively of m~ and rot, or: 
A~/(m~) and A/'~(mt) must be independent of m, respectively m I. 
Hence theorem II  is proved. 

The sum rule (3) is an immediate consequence of this theorem, 
as we saw already in § 1. 

Received May 13th, 1949. 
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