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Synopsis 

The theory of fl-radioactivity, based on the use of a linear combinat ion 
of all five relativistic invariants,  is developed for allowed transitions. The 
interaction Hamil tonian is taken as H/3 = G Y.~= l CkJh, where the C h are 
coefficients tha t  determine the combinat ion of the invar iants  Jk with 
1----scalar, 2 = vector, 3 = tensor, 4 = axial vector and 5 -~  pseudo- 
scalar. The formula for the shape of fl+ and fl---spectra is calculated, 
taking into account the nuclear charge Z (E energy of the electron ; p and q 
are the momenta  of the electron and the neutr ino respectively): 

P:t:(E) = (G2/2zra)pEq2F(Z, E) [(C 2 + C 2) I f  1] 2 + (C 2 + C 2) I f o  12 + 

+ C2 I f  firs 12 T (2y/E) (C1C 2 I f l  12 + C3C4 [ f e  [2)] 

The probabil i ty for K-capture becomes for this interact ion:  

PK ~ (G2/4~z2) (Eo + E/c)2g~o [(C 2 + C 2) [./1 [2 + (C 2 + C 2) [ f a  [2 + 

+ C2 I//~'s 12 + 2C1C2 I f l  12 -t- 2CBC4 I f o  12] 
The angular correlation between electron and neutr ino is determined 
by (neglecting the influence of the nuclear charge): 

P+(E,  p, q) ---- {C2/(2=)s}pEq 2 ((C~ + C ~ ) I f l  12 +(C~ + C ~ ) I f o  12 + 

+ C2 Iff lYs 12 :F (2/E) (CIC 2 I f  1 12 + c3c4 [ f e  12) - -  
- - ( q . p / q E )  [ ( C 2 -  C22)]fl 12 - -~  (C 2 - - C  2) I f e  12 2~_ C 2 I f  firS 12]} 

A general principle, viz. complete symmetry  for the processes of fl* 
and fl--emission, is proposed, which has as a consequence tha t  only two 
types of combinations can exist: a) combinations of the invar iants  l, 4 
and 5, b) combinations of the invariants  2 and 3. We then obtain the result 
tha t  in both cases the l /E- term in the fl-spectrum drops out. 

Some considerations are given on the comparison of theory and ex- 
periment. Thus it is discussed that  recoil-experiments with 6He are not  
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ON BETA-RADIOACTIVITY I 457 

yet sufficient to decide if the interact ion is given by a "pure" invar iant  or 
by a linear combination. They should be completed by recoil-experiments 
with other nuclei e.g. 19Ne. 

§ 1. Introduction. The theories of (~-radioactivity that  have been 
developed since F e r m i 1) can all be characterized by saying 
that  they are a logical development according to the perturbation 
theory of quantum mechanics, if one has assumed a certain form 
for the interaction Hamiltonian. All theories are based on the 
neutrino hypothesis and the Dirac equation for leptons and nucleons. 
F e r m i has chosen a special form for the interaction Harniltonian. 
However, the interactions that  may be assumed are only restricted 
by the condition of relativistic invariance, which makes a more 
general choice possible than the one made by F e r m i. 

The present problem in E-radioactivity is to develop the theory 
for the different possible forms of the interaction Hamiltonian 
and to see if it is possible to get agreement with the experiments 
by choosing a special form for this interaction. If this is possible 
the selected interaction Harniltonian must be considered a funda- 
mental property concerning nucleons and leptons. 

Already in 1935 a form for the interaction, which differed from 
F e r m i's forin by the introduction of the derivative of lepton 
wave functions, was proposed by K o n o p i n s k i and U h 1 e n- 
b e c k 2) to get a better agreement with the measured form of 
E-spectra. However, it appeared later that  the first measurements 
contained experimental errors and that  this new form for the in- 
teraction was certainly not in agreement with later more accurate 
measurements 3). Even if no derivatives of wave functions are in- 
cluded in the interaction, the form for the interaction is not com- 
pletely determined by the condition of relativistic invariance. Ac- 
cording to the Dirac theory five independent relativistically in- 
variant expressions can be chosen for the interaction Hamil- 
tonian 4), which are usually called the scalar, vector, tensor, pseudo- 
vector (or axial-vector) and pseudo-scalar interaction (and denoted 
respectively with S, V, T, A, P). Linear combinations of these five 
invariants can also be chosen; they are the most general possibility 
of interaction if no derivatives of wave functions are included s). 
However, practically the whole discussion of experimental results 
in ~-radioactivity has been made under the rather special as- 
sumption that  the interaction is determined by only one of the 
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five invariants and not by  a linear combination (cf. e.g. 8)). The form 
of the /5-spectra for allowed transitions is the same for the five 
invariants. Hence the form of forbidden spectra is usually chosen to 
distinguish between the different interactions. However, no distinct 
results have as yet been obtained. It must be remarked that the 
theory for forbidden transitions is not only more complicated and 
more difficult to analyze but  also probably less certain than the 
theory for allowed transitions for the following reason : if the general 
form of the theory of /5-radioactivity is a reasonably good first 
approach, but  not rigorously correct (which might well be the case) 
then the theory of allowed transitions might still be a good first 
approximation while the theory for forbidden transitions may have 
to be altered seriously (imagine e.g. that  the true interaction Ha- 
miltonian has a slight "admixture"  of an invariant with derivatives 
of wave functions). Therefore in this series of articles the phenomena 
which may lead to a choice for the interaction, will be investigated 
under the general assumption of a linear combination of the in- 
variants for the interaction and special attention will be focused on 
allowed transitions. 

Even if a choice for the interaction could be made by  the s tudy 
of forbidden transitions e.g. the shape of forbidden E-spectra, a 
check of the result by  means of a comparison of such phenomena as 
electron-neutrino angular correlation (recoil experiments), observa- 
tion of polarisation of the/5-rays in combination with alignment of 
the nuclear spins, would be extremely interesting and from a theo- 
retical point of view, more straighforward and convincing if carried 
out for allowed than for forbidden transitions. 

In this article we investigate first the results of the theory of 
/5-radioactivity if a general linear combination of invariants is used. 
Theoretical considerations are then given on a certain type of sym- 
metry of the interaction Hamiltonian which restricts the number 
of possible linear combinations of invariants. F i e r z has first 
given calculations in this direction 6). 

In a following article a new phenomenon in connection with 
allowed /~-transitions will be discussed viz. the polarization of 
/5-particles emitted by  nuclei with aligned nuclear spins. Though 
this has not yet been observed experimentally, this might be pos- 
sible in the near future. Preliminary notes of these studies have 
appeared earlier e). 
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§ 2. Calculation o/ the transition probabilities, neglecting nuclear 
charge. We suppose for the nucleon-lepton interaction Hamiltonian 
a linear combination of expressions each of the form: 

n --= (~v* f2Lg)QI2~ + (~V*DLg)*Q+ X2~ (1) 

with ~v wave function of the electron 
~0 wave function of the neutrino 
X2 L and ~N operators from Dirac theory for the leptons and 

for the nucleons. 

[00] and Q+ = [01] t ransi t ionoperatorsfor  thenucleons. 
Q =  10 00 

The first term of ( 1 ) should be used in case of/~--emission (because Q 
transforms a neutron into a proton) and the second in case of/~+- 
emission and K-capture (because Q+ transforms a proton into a neu- 
tron). Below we shall only write one term of (1) to simplify the no- 
tation. 

We shall write J1 . . . . .  Js  for the following invariant expres- 
sions, which are possible for the interaction energy and in which 
the interaction is said to be respectively of the scalar, vector, tensor, 
pseudovector, pseudoscalar type (These J ' s  are connected ~dth (1) 
according to: J = ~ T H ~ )  : 

s J1 = 

v J2 = ( W Q  - -  
T .]a = (g~7~Q~).(v,o*/5~9) + (WT/%tek°'~)-(~p*~Qtg) (2) 
A J4 = (~TaQ~,)  • (~v*e9) - -  (~79'sQ ~i) (~v*)Jsg) 

great small 

The words "great"  and "small" point to the fact that  the terms 
called "small" are relativistic terms in the velocities of the nucleons 
and therefore can be considered of a smaller order of magnitude. 
~i  and W 1 are the wave functions of the initial and final nucleus. 
The complete expression for the interaction energy becomes: 

H a = G x ~ = t c h J k  (3) 

The real constants Ck give the extent to which the invariants are 
mixed. We must impose a condition on the Ck's in order to deter- 
mine G and the Ck's completely; we can take e.g. (cf. however § 7): 

:eL,  C~ = 1 (4) 
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G is the Fermi constant (or rather: analogous to the Fermi constant 
in the theories with pure invariants). 

The shape of the E-spectrum for 8 + and E--emission can be cal- 
culated according to the following formula (if the influence of the 
nuclear charge is neglected) for the total transition probabili ty for 
emission of electrons with energy between E and E + dE: 

P(E)dE : (2~) - s  ~ , f d %  Z j d %  [ H/~ 12 pEq 2 dE (5) 

with: E energy of the electron 
E.  energy of the neutrino 
p momentum of the electron 
q momentum of the neutrino , 
E o maximum energy of the electrons in the E-spectrum 

We have the relation : q : E.  : E o - -  E 
d¢o e differential for solid angle in which the direction of emission 

of the electron lies 
d% differential for solid angle in which the direction of emission 

of the neutrino lies 
2', sum over the two polarization states of the electron 
2Jr sum over the two polarization states of the neutrino 

I H~ [2 = G2Eml ] Eh E~fd~ [Ck(~TDkQh~). (~O*X2k~0)h ] ] 2 (6) 

2:m t is the sum over the different possible orientations of the 
final nucleus; each state is characterized by  the magnetic 
quantum number m I 

Qh is the transition operator for the h th nucleon in the nucleus; 
the sum Y~h for all nucleons must be taken 
(the index h of (~v*X?,9)h denotes that  this quant i ty  must be 
evaluated at the place of the h th nucleon) 

Dk operator of Dirac theory in the expression for Jk in (2) (£2 k 
may be a vector or tensor in which case the product must be 
considered as inner product) 
denotes integration of the nuclear wave functions f d ~  

In the formula (5) it is supposed that for ~v and q0 plane wave solu- 
tions are chosen which are normalised to one particle per unit 
volume. For several phenomena, however, more detailed knowledge 
is wanted on the transition probability than given by  (5). In this 
article we calculate the transition probabili ty if certain directions 
of emission of electron and neutrino are assumed, while we take the 
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sum for bo th  or ienta t ions  of the spin for electron and neutrino." 
The  t ransi t ion probabi l i ty  to a s ta te  in which the m o m en ta  p and q 
of e lectron and neutr ino have directions within dco e and do~ v re- 
spect ively,  is given by :  

P(E,  p, q) dE  do~ e dc% = (2~) - s  Z e E v [ Hfl [2 pEq2dE do~e doJ~. (7) 

We use the following form for the Dirac equat ion in case there is 
no e lec t romagnet ic  field (this is the same as in ~) and 7) ; m a n y  others 
use, however ,  different  forms;  we use relativist ic uni ts :  uni t  of 
mass:  the electron mass me; uni t  of veloci ty  c; unit  of action t,; we 
write the equa t ion  for an a rb i t r a ry  mass m of the part icle;  later  we 
pu t  r e = m e =  1 for the electron and m = 0  for the neutr ino) :  

(E + m)~01 + (p. - -  iPy)~P4 -4- PNa = 0 

(E + m)w z + (Px + i P y ) w 3 -  PN4 = 0 (e) 
(E - -  m)~o 3 + (p. - -  ipy)~v 2 + PN, = 0 
( E  - -  m)~p4 --]- (Px -[- i~by)~01 - -  P N 2  ---- 0 

E and p are the opera tors :  E = - -  (tr/i)3/Ot and Px = (t,/i)3/~x etc. 

The  plane wave solutions of (8) can be wri t ten  as: 

~2 = }~2] exp i ( p . x - -  Et) (9) 

lY l 
~4 ~. '~4 ] 

I t  is easily seen tha t  (8) is also valid for the ~i if E and p are con- 
s idered as numbers ;  the relat ion between E and p is given by :  

E 2 _ _  m 2 = p2 (10) 

or :  E-----4- x/p 2 + m  2 (11) 

'(For convenience sake below we drop the ^ in our  notat ion)  
The  most  general  posit ive energy  solution is given by :  

Pz A (p. - -  ipy) B 
E + m  E + m  

V (P* + A + Pz B ~P = 2E E + m E +~--~ 
A 
B 
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This solution is normalized if I A 12 + I B 12 = 1. It is an immediate 
consequence of (8) that  if: ~o l 

~o2 
~o3 

v?4 

is a positive energy solution of (8), the corresponding negative 
energy solution is given by  (cf. 8), 9) and lo); the negative energy 
solution, so obtained, is the solution of the Dirac equation for a 
particle with opposite charge; this makes, however, no difference if 
no external fields exist as in the case treated here): I'l ~4 

m ~ 3  
(13) 

Hence, the general negative energy solution can be written in the 
form" 

B* 
- - A  * 

~ _ =  (Px--iPy) A*- P ~ B *  
E + m  E + m  

P ~  A* (Px + ip,) B* 
E + m  E + m  

(14) 

(The energy and momentum of the plane wave (14) are given by  
- - E  and - - p ;  the energy and momentum of the positon corres- 
ponding to the unoccupied negative energy state are therefore 
given by  E and p; we characterize everywhere the negative energy 
states by  the physical quantities for the corresponding positon). 
Below the matrices D ÷ and D -  will be used, defined by their matrix- 
elements according to: 

(Y'spi,, denotes that  the sum for both spin states must be taken) 
D + and D -  are the matrices defined by  (15) for positive and ne- 
gative energy solutions respectively. Calculation gives: 

D + = ½[1 - -  ( ¢ t . p  + tim)/El (16)  

D -  = ½[1 - -  ( ~ . p - - f l m ) / E ]  (17) 

We shall now calculate Y~e Y'y [ H~ ] 2 for allowed transitions and 
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neglect the effect of the nuclear charge (hence especially for ligh{ 
nuclei). For  convenience the signs Z,,! and Zh are no longer writ ten,  
fur ther  the index h is dropped to simplify the notat ion.  The factors 
~0"~2k9 can be put  before the integral  sign, as t hey  va ry  slowly. The 
following abbrevat ion for the nuclear matr ix  elements is used: 

f X2~ = f d r  ~TXSk Q ~ ,  if we have/5--emission (18) 

and fD~ = f d ~ P T D k Q  + ~v~, if we have/5+-emission (19) 
We shall fur ther  neglect all the "smal l "  terms of (2), which means 
tha t  relativistic effects for the nucleons are neglected except l?)% 
which will be retained because the coefficient C s might  be greater 
than  C 1, C 2, C a a n d C  4. 

We get in this way  for the case of/~--emission:  

IN  B ] 2 = G 2 [ Z~=~ Ck(w*Dk~0). f ~ k  12 (20) 

As the 9k for T and A are vectors and the product  a scalar product  
of two vectors we shall alter the notat ion to avoid confusion and put  : 

Ak(k = 1, 2 . . . . .  9) = /5 ,  1,/5o,,/502,/~o a, 01, a 2, o a,/Sy s (21) 

and C~(k = 1, 2 . . . . .  9) = C 1, C2, Ca, Ca, Ca, C4, C4, C4, Cs (22) 

and we can write with ordinary  products only:  

I H 3 I 2 ---- Gu I X~=1 Ck(~o*Akw)fA k 12 (23) 

or: I H a I 2 : e2 E9k,,= 1 Ck C, (~o*Akg) (9*A~v2) ( f  A k) ( f  A')* (24) 

We use the following reduction to calculate the result and write 
the Dirac wave functions in their  4 components  (Tr = trace): 

E,Xv(~o,Ak~0) (qo,Atv2) = X, Zv (X0,~o ° k . , A  s 

= Z,X~Za~,p,,Ako,,A~ , * v?0 ~o~, 9~.93 = Tr (A~D~A'D,) (25) 

Hence we van write:  

"Z,Y~ l na  l 2 = Gexgk,,=~ Ck C, (J Ak) ( f  A')* Tr (A~ D~A' D,) (26) 

For  the evaluat ion of the terms:  Tr(AkD~A ~ D,) we use the multi-  
plication properties of the Dirac matrices (cf. e.g. 7)) and the proper- 
t y  tha t  the only mat r ix  for which the trace is 4 : 0  is I ,  for which 
Tr(I) = 4. In this way, we find e.g.: 

Tr[/SD,7"/~ D + ] = 1 - -  q .  p/EvE (27) 

This is a term of the sum for the case of/5--emission, in which case 
negat ive energy solutions must  be taken for the neutrino and po- 
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sitive energy solutions for the electron. Because of the non-rela- 
tivistic approximation for the nucleons, we can put in the calcula- 
tions: f/5 = - - . f  1 and f/5a = - - f a .  

Collecting the terms of the sum we get as result for the transition 
probability in the case of/5--emission: 

P_(E, p, q)=(G2/(2~)s)pEq 2 {(C~+C~) [ f  l [2+(C~+C~) [f a [2+ 

+C~lf/5Y5 [2 (q. p/qE) [(C~ - -  C22) I f l l  2 - -  ~(C~ - -  C~) I f  a 12+ 

+ C~lf/sy~ 12] + (2/g) [C~C 2 I f l  12 + CaC 4 I f  a [2]} (28) 

Analogously we can calculate the result for/5 +-emission ; we have 
only to take negative energy solutions for the electron and positive 
energy solutions for the neutrino. Starting with (1) it is found that  
for/5+-emission instead of (24) the following formula must be used: 

[ H~ 12 = G 2 Zk,, C,~ C, (~v*A k 9) (9*A'~ o) (fA~) * (fA')  (29) 

The result of the calculation is: 

P+ (E, p, q ) =  (G2/(2~)s)pEq 2 {(C~+C~) I f  112+ (C~+C]) I f  a 12+ 

+C~ If/57s12--(q.p/qE) [ (C~- -C~) [ f l  2 2 [ --.~(C 3 -  C]) I fa  12+ 
+C~ [f/5:Vs 12]-  (2/E) [C,C 2 I f  l 12 + C3C4 [ f a  12]} (30) 

In the calculation of (28) and (30) the average for all directions of 
the nuclear spins has been taken. 

§ 3. The shape o/~5-spectra, neglecting nuclear charge. We get the 
formula for the shape of /5-spectra from (28) and (30) by sum- 
mation for all directions of emission of electron and neutrino: 

P+(E) = (G2/2~3)pEq 2 [(C~ + C~) [ f  ll 2 + (C~ + C]) ] fa  [2 + 

+ C~ l f  /57s [2 ::F (2/E) (CtCu i f  l ]2+ C3C4 l f  a lm)] (31) 

I t  is tacitly understood in this and the following formulae that the 
sum for the different states of the final.nucleus is taken, hence e.g. 

I f a  ] 2  Z.,t [] f 7iT(m/) a, 7t~ (m,)dx [2+I f  ~7'(rn/)ay~i(mi)dz 12+ 

+ I f  ~7(ml)a,~i(rn,) dz [2] (32) 

(this sum is independent of m~). 
The term with lIE can only occur if we have "mixed" invariants. 

However, mixing of invariants is possible for which the term never 
occurs (viz. combinations of either Jl  or J2 with either J3 or J4). 
Further  combinations can be given (e.g." of Jl ,  J2 and J3) so that  for 



ON BETA-RADIOACTIVITY I 465 

several nuclei the term occurs and for others it does not, depending 
on the magni tude  of l f 1] 2 and I r a  12. This 1/E-term was first 
calculated by  F i e r z S )  and later  by  R o z e n t a l n )  wi th  the 
aid of the meson theory.  (F i e r z simplifies the state of affairs for 
convenience by put t ing  all nuclear mat r ix  elements = 1; R o- 
z e n t a 1 gets a much more complicated formula as he calculates 
all the terms according to the meson theory  of M 0 11 e r and 
R o s e n f e l d ) .  

The influence of the nuclear charge will be discussed in § 5. A 
discussion of the possibility of a determinat ion of Cl . . .C~ ,  using 
amongst  others (31) and the measured shape of fl-spectra, will be 
given in § 7. 

§ 4. The angular correlation o/ electron and neutrino, neglecting 
nuclear charge. The general formula for the angular  correlation of 
the electron and the neutrino is a l ready given by (28) and (30), 
which we can write together as: 

P±  (E, p, q) (G2/(2~)5)pEq 2 2 2 2 2 2 12 ---- {(C~+C2) Ifil +(C3+C4)]f~ + 
+ C~ I f  fl','512- (q. p/qE) [(C~-- C 2) I f  112-  ~(c~-- c•) I f a  12+ 

+ C~ J f fl75 [2] T (2/E) [C,C 2 I f  1 [2 + C3C, I f  a [2]} (33) 

If  9 is the angle between q and p and if: 

fl = v/c = piE (34) 

we can write:  

q.p/qE = fl cos 0 (35) 

According to (33) the general law for the angular  correlation can be 
given as : 

1 + (B/E) + A fl cos ~ (36) 

in which A and B are constants  given by:  

A ---- (C~2 - -  C22) I f  1 ]2 __ k(C~ - -  C~) i f  a [2 + C~ i f  fiTs [2 
- -  ( 3 7 )  

(C~ 2 +  C ~ ) [ f l  [2 + (C~ + C 2) f f ~ l  2 +  C~[fflTs[2 
and : 

2C~C 2 I f  1 ]2 + 2 C3C 4 [ f a  12 
B+ = T (C~ + C~) IU l l2 + (C~ + C]) IUa l2 + C~ [f  flTa l2 (38) 

Hence B = 0 if CIC 2 = 0 and CaC 4 = 0. For  the case of pure in- 
var iants  it is found tha t  B = 0 and A = - -  1 for the scalar and 
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pseudo-scalar, A ~- 1 for the vector, A = ½ for the tensor and 
A = - -  ½ for the pseudo-vector (cf. 5), 1~), 13), 14) and 15) .). 

Experiments on the angular correlation of electron and neutrino 
are possible by  the s tudy of the recoil of the nucleus in/3-desintegra- 
tion. These experiments can give valuable information for the deter- 
mination of Cx . . . .  C 4. The technique has been improved very much 
in the last few years. Though at present the material on allowed 
transitions does not yet give clear results, it may be hoped that  
more accurate data will soon be available. It follows from (37) that  
[ A ]< I. The factor B/E does not vary rapidly and hence the pre- 
sent experimental technique of recoil experiments can probably not 
give more than an average value A/(1 + B / E )  (E is a mean value of the 
electron energy). B can, however, be determined from experiments 
on the shape of/3-spectra. 

§ 5. The shape o] ~3-spectra, taking into account the influence o] the 
nuclear charge; K-capture; the li/e-time o] ~3-emitters. The formula 
(31) gives the shape of the/3-spectrum without taking into account 
the influence of the nuclear charge; this is a reasonable approxima- 
tion for light nuclei and energies that  are not too small. To compare 
theory and experiments for other cases the effect of the nuclear 
charge must be calculated. We give the result and main features 
of the calculation. 

Coulomb field solutions for the electron and spherical wave so- 
lutions for the neutrino are used. With the same notations as in 
§ 2 we can write for the probability that  an electron is emitted 
with energy between E and E + dE (for allowed transition): 

P_(E)dE = 2~G2y.,./Xi~,v,,,vl Z~Ck(~o*Akg)f A ~ ledE (39) 
ieleme 

in which ~v and iv are now spherical wave solutions of electron and 
neutrino normalized to the energy. We must take the sum for all 
possible quantum numbers (i.l.m,) and (i.l.m.) for these solutions. 

If we introduce the matrices: 

v ; ,  = x;v,.. .  (40) 
and: 

F ~ p  = Y..ieter % ~p(iel,r%)* . 0  v~(i"~d"") (41) 

*) I t  m u s t  be men t ioned  t h a t  the resu l t s  in n) and  ~a) are eo r t t r ad ic to ry ;  we f ind the  
same  resul t s  as in ~a) ; al), ~,), and  ~n) do not  give the  resul t s  for all  i nva r i an t s .  H e b b a,) 
and  R o s e an) t ake  in to  accoun t  the inf luence of the nuc lear  charge,  b u t  the i r  r e su l t s  
disagree.  
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we can write : 

P_(E) = 2~G2Zht Ck Ct Tr(AkV'A'Ve) ( f  Ak) (fAt) * (42) 

The solutions tha t  must  be taken  for the electron are: 

Y ~--/-2 Yoo/-2 ] - -  - -  

- -  - -  - -  Yoo go (43) 

- -  [ Yoo g o  - -  

1----1 m------½ ----1 m = ½  l = O m = - - ½  l = O m = ½  

Analogously we have for the neutr ino (negative energy solutions): 

- -  Y o o Q  

from this it is calculated" 

YooQ 
- -  Y o o Q  (44) 

V '  = ½Y~o [(~ --I- IL2)  - -  t~(~ - -  ILs)3 (45) 

v" = Y,~o Q 2 (46) 

In (43) . . . . .  (46) the following notat ions have been used: 

Y o o  = (4~) --i 

go ~ functions tha t  give the radial dependence of the electron wave 
/ -2 ~ functions, evaluated at the surface of the nucleus (cf. le)). 

Q = q/v',~ 

From the expressions for the wave functions we find: 

--/2_2= (7/E)(~q2/~2) with 7 = V 1 - -  a2Z 2 and a = e2/hc (47) 

and we get the result:  

P~ (E) = (G2/2~3)pEq2F(Z, E) [(C~ + C~) I f  1 12 + (C] + C]) I f  a 12+ 

+ C~ If  firs I s T (2y/E) (C,C 2 If  l [2 + CaC4 [fa Is)] (48) 
with:  

F(Z,E) = 
= 2(1 + 7 )  [ / ' (27+  1)_ ]-s (2pR) 2y-2 [exp(~aZE/p)] ]I'(7+iaZE/p ) is (49) 

R is the radius of the nucleus. 
The result (48) ior the shape of r -spect ra  taking the nuclear  

charge into account,  must  be compared with (31), in which the in- 
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fluence of the nuclear charge is neglected. It is seen that  the effect 
of mixed invariants may be an additional factor (1 + alE) in com- 
parison with the case of "pure" invariants, in (48) as well as in (31). 

The total transition probability P± can be calculated by inte- 
grating over the energy; if z± is the mean life and t± is the half-life 
we have : 

P± = l/z± ---- (ln 2)/t± ---- (G2/2~ 3) fgL~ pEq2F(Z,E) [(C~+ C~) [ f  1[2+ 

+ (C~+ C]) [ f a l 2 +  C~ I ft'37s]223 (27/E) (CtC 2 I l l  12+ CaC4I fal2)]dE (50) 

If we put:  

/(Z, Eo) = fgL, pEq2F(Z, E)dE (51) 

g(Z, Eo) = ffL~ pq2F(Z, E)dE (52) 

M 2 =  (C~2+C~)[fl  ]2+  (C 2 + C ] ) l f . I  2 + C ~ [ f f l y s ] 2  (53) 

N = 2CIC 2 ] f l  [2 + 2C3C 4 [ fa  [2 (54) 

this result can be written as follows: 

P± = (G2/2~ 3) [/± (Z, Eo) m 2 23 7g± (Z, E0)N ] (55) 

The transition probability for K-capture can be calculated in an 
analogous way, starting with the formula: 

PK ---- 2~G2 Z../Zj~,.., v I Zh Ck (~o* A k 90)* ( f A  k) [2 (56) 
/eleme 

in which the wave function ~p of the electron is a wave function of 
the discrete spectrum ; 9 a wave function of the neutrino normalized 
to the energy. The wave functions of electron and neutrino are given 
by: 

1 = 0  

and: 

9 

YooQ 

1=0  m = - - ½  

Yoo--go ] 
m - - - - - - ½  

m 

m 

Yoogo 

= 0  m = ½  

(57) 

m 

YooQ 

1=0  m=½ 

YooQ 

1 = 1  m 

YooQ 

=1 m=½ 

(58) 
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hence : 

v '  = .~Y~o go~(1 - -  #) (59) 

v .  = Y~0 Q2 (60) 

in which Q = q~ v/z~; the expression for go 2 is given by (62). 
The determination of the traces gives the final result: 

pK=(G2/4n2) (Eo+EK)2~I(C~+C~) i f  1 2 2 2 ] + ( C a + C 4 ) i f  ~ ]2+ 

+ C ~ [ f 3 y s l 2 + 2 C l C 2 [ f l  12+2C3C4[fn[ 2] (61) 

E K ~ x/1---a2Z 2 ~ 1  energy of an electron in the K-shell. 
The value of go 2 is given by: 

1 + E  K 
g°~ - 2/ '(2-I~+ 1) (2aZ")3 (2aZ, .  R)2r -2  (62) 

Especially important is the ratio PK/P+ as this can be determined 
experimentally; we find: 

PK (~r/2) (E o + EK)2~ (M ~ + N) 
(63) 

P+ /+ (Z, Eo)M 2 - -  7g+ (Z, Eo)N 

If CtC 2 = o, CsC, = 0 so that  N = 0, M 2 disappears from (63) 
which takes the simple shape: 

PK (vr/2)(Eo+En)2~ 
-- (64) 

P+ /+ (Z, Eo) 

(Remark: A possible deviation of the PK/P+ value from (64) as a 
consequence of mixed invariants was also considered by M e r- 
c i e r17 ) ;  as he uses the not entirely correct result of F i e r z S )  
his result differs from (63)). 

§ 6. Theoretical argum.ents /or certain linear combinations o/ in- 
variants. In the present state of the theory, no other well-founded 
theoretical arguments exist than relativistic invariance to deter- 
mine the interaction Hamiltonian. 

In the meson-theories of #-radioactivity certain linear combina- 
tions of invariants are found for H#, but as these theories are no 
longer accepted, we will not investigate these combinations. 

We will, however, consider the consequences for the interaction 
Hamiltonian of certain symmetries that  can be imposed on it. Of 
course no strict a priori reasons can be given for the validity of 
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such symmetries, but  it is interesting to investigate if such a sym- 
metry exists by comparison with experiment. 

Symmetry principle: To give a precise formulation of this prin- 
ciple, we consider the expressions for an arbitrary Jk for # -  and #+- 
emission, according to (1) and (2): 

]-= (6s) 

f+ = (~o*(-- e)D.L9 + (v))* (TVT(n)12~i(p)) (66) 

n and p indicate: neutron and proton wave function (the notation 
with isotopic spin is not used in (65) and (66)). The indices + and - -  
of ~o and 9 indicate that  we have to use positive or negative energy 
solutions; - -  e indicates that  we use the Dirac equation for electrons 
with a negative charge so that positons must be regarded as "holes". 

The expression for the total interaction is given by  

n ~  = G ~$k=l Ck J~ (67) 

We now formulate the symmetry principle as follows: 

The processes o/ negaton and positon emission must be sym- 
metrical, apart/rom Coulomb interactions, in such a way that, 
i/ this Coulomb interaction is neglected, the expressions /or 
H f  and H~ are equal (possibly with exception o~ the sign) in any 
two cases o/ negaton and positon emission in which the wave (68) 
/unctions o/ the emitted (positive and negative) electrons and 
neutrino's are physically equivalent and i//urther: Wt(P) and 
~i(n) /or negaton emission are respectively the same as ~1 (n) 
and ~i(p) /or positon emission. 

If we say that the wave functions of a positon and negaton are 
"physically equivalent" we mean that they represent particles that 
have e.g. the same momentum if both wave functions are plane wa- 
ves. However, one particle may be represented as a "hole" with 
negative energy in such a way that the wave functions are not 
identical. 

We will prove that according to this principle only two kinds of 
linear combinations are possible: 1) combinations of S, A and P, 
2) combinations of V and T. In the first case H# changes its sign, 
if we change from H~-to H~-, in the second case the sign remains the 
same for this change. The change of sign in the former case does not 
give a different r61e to negatons and positons: all physical conse- 
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quences as transition probabilities remain the same, even if the 
sign changes. 

The exact mathematical  expression that  H a is symmetrical, 
respectively antisymmetrical is, for the case of a pure invariant 
(H~ = J): 

(V*(-- e) -QLg+ (v})* ---= e(V+ (--  e) OLg_(V)) (69) 

(e = + 1 symmetrical case; e = - -  1 antisymmetrical case) if for 
~v*(--e) and ~v~_(--e) as well as for 9+ (v) and 9_(v) solutions are 
chosen that  are physically equivalent (except for the sign of the 
charge) which choice is possible if no r61e is played by Coulomb 
fields. 

Remark:  Between neutron and proton a slight mass-difference 
exists. This difference has for result that  the wave functions ~ ( n )  
and ~/(p) cannot be rigorously the same as respectively ~Y~(p) and 
~t(n), if (positive and negative) electron and neutrino are emitted 
with physically equivalent wave functions for both cases. In passing 
from (68) to (69) this difference between the nucleon wave functions 
is neglected. (69) is the starting-point for further deductions, which 
are rigorous. 

In order to prove the above-mentioned results we also use a 
Dirac equation for electrons with positive charge for the positons 
and hole theory for the negatons; the expressions corresponding to 
(65) and (66) are in this formulation: 

]7_ = ( .  ( +  e) 0 L 9+ (v))* (eT(p) QN ~,(n)) (70) 

] +  = (~v+(+ e) O L 9_(v)) (~7(n) Q N ~,(p)) (71) 

Between the solutions of the Dirac equation with negative and po- 
sitive charge a (1, 1)-correspondence exists, determined by a matrix 
C, in such a way that  we can write 8) 9) 10): 

v , - ( - - , )  = c - ' , p * ( +  ,)  

9 +  (,') = c9_ ( , , )  
(72) 

q,_(,,) = c - ' 9 + ( , , )  

The matrix C has the property: 

C* = C -1 (73) 
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In the ordinary representation of the Dirac matrices as is used here 
(the same as in ~)) C is given by" 

C = ifla 2 = - -1  

1 

1 

--1 
(74) 

According to (72), (69) can be wri t ten in another  way, for we have:  

(~o*_(-- ~) ~9:o+ if))* = [ ( c * - ' ~ o +  (+ ~)) ~ ( c ' 9 o * ( ~ ) ) ] *  = 

= (c-'~o+ (+~)) ~ (c~o_(~))= (~* (+~)~-') sg*(c~o_(~))= 
= ~o~ (+ e) (c  + ~ c ) ~ 0 _ f f )  (75) 

hence (69) becomes" 

E * ~o*+(-k- e) (C+ D*C) f  _(v) --= ~o+(--e)Qt.q~_(v ) (76) 

which condition is imposed for every case tha t  9+ ( +  e) and ~o+ ( - -  e) 
are the same for the electrons as well as the 9 - i f )  for the neutr ino 
wave functions, and (76) is equivalent  with" 

C+K2*C = eY2 L (e -- 4- 1) (77) 

This is the mathemat ica l  expression of (68) for pure invariants,  but  
it is clear tha t  it can be extended immedia te ly  to the case of mixed 
invariants.  We shall prove" 

S, A, P satisfy (77) with e = --1 / (78) 
V, T satisfy (77) with e = + 1 / 

hence it is clear tha t  linear combinat ions of S, A, P respectively 
V, T also satisfy (77) with e = --1 respectively e ---- + 1. Fur the r  
(77) cannot  be satisfied if linear combinations are used in which in- 
variants  of both  groups, (S, A, P) and (V, T), occur. 

The proof of (78) can be given by the use of the expression (74) 
for C and using the ordinary representat ion of the Dirac matrices. 
We will give, however, a proof which does not depend on the re- 
presentat ion chosen for the Dirac matrices and it will also be shown 
tha t  (77) is a Lorentz- invar iant  condition for the interact ion Ha- 
miltonian, which proper ty  is of course necessary for a physical 
condition. 

We write the Dirac-equation in a relativistic form with real t ime 
coordinate : 

[# '(p.  + (e/c)A•) + imc]v 2 = 0 (79) 
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The ? %  generally not Hermit ian,  sat isfy the commuta t ion  rule: 

+ ) z # )  = 

with : 
(8o) 

1 

g~V = l (81) 

--I 

We introduce the matrices A, B, C according to (this introduction of 
the matrices is slightly different from s) because of the use of a real 
time coordinate): 

~,~' = - -  A # ' A  -~  (82) 

= c # c  (83) 

~ -- - - B ~ ' B - '  (84) 

A and C can be chosen in such a way that: 

A + = A (85) 

C* = C -1  (86) 

Fur ther  the following relation between A and C exists: 

A = - - C + A * C  (87) 
We put  : 

~0 + = ~o*A (88) 

If we perform a Lorentz- t ransformat ion of the coordinate system, 
the wave function t ransforms with a matr ix  S, which defines a re- 
presentat ion of the Lorentz-group:  

~o' --= S~0 (89) 
A and C than  t ransform according to:  

A '  = S + - 1 A S  -1  (90) 

C'  = S*  C S  - I  (91) 

p+ transforms according to:  

~o +' ----- ~o+S -1 (92) 
Fur the r  : 

t 

y~' = S - I y ~ S  = Z a ~ 7  v (93) 

The auv are real and determine the ~Lorentz t ransformation.  
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The invariants of the Dirac theory can be given in the form: 

 o+r 0 =  o*Ar  (94) 

in which F is a product of matrices yr. (We do not write the indices 
explicitly in F).  If we impose the physical condition on the invariants 
that  the ~+F~0 are real quantities we get the condition: 

(~0+r~o) * = ~+F~0 (95) 

which can be reduced to: 

A_PA - I  = / ' +  (96) 

By means of (96), (82), (80) it can be deduced if a factor i must be 
used in the y - p r o d u c t / '  ( i n / '  a real factor remains undetermined), 
and the following list o f / " s  for the various invariants is found: 

S / ' = 1  
V / '  = iy~ 
T ff = / y ~ y "  
A .C = yzy~,y~ 
P F = y,'~yt, y,'yo 

(97) 

Hence we can write for the different invariants: 

F *  = O C . F C  - 1  (98)  

in which O = + 1 is a number that  can be determined from (80), (83) 
and (97) ; it is found: 

O = 1 for S, A, P } (99) 
= --1 for V, T 

We will deduce (78) and write (77) in the form that  is obtained by  
putting g2 L = A F :  

C + A * F * C  = e A F  (100) 

In order to investigate if this condition can be satisfied we reduce 
it in the following way (by the use of (98)): 

C + A * C I ' C - 1 C  = A I ' . e ~  (101) 

C + A * C  = A .tO (102) 

Comparing (102) with (87) we see that  (100) is satisfied by  every 
(pure) invariant, and that the value of e is given by:  

e = - - ~  (103) 

According to (99) and (103), (78) is proved. 
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We now check the Lorentz-invariance of the condition (100). 
Some calculation shows that  if ~v transforms according to (89), 
(100) is transformed into: 

C+A*(S - t  FS)*C = A(S -1FS)  (104) 

Hence it is clear that  this is a Lorentz covariant condition, for the 
expressions for S - t F S  are determined by  (93) and as the a~v are 
real, (S-IFS) * has an expression with the same coefficients as 
S - t  FS. 

A different symmetry  principle has been given by  C r i t c h- 
f i e 1 d and W i g n e r is) (cf. also s)). These authors treat the four 
particles participating in the interaction on an equal footing. This 
is possible because all the particles are assumed to satisfy the Dirac 
equation. It is clear that  this symmetry  is a heavier restriction than 
our symmetry  principle and that it must be expected that  the 
possible linear combinations will also be more severely restricted. 
The result is indeed that only the linear combination: 

S - - A - - P  (105) 

satisfies this symmetry  principle. This combination is antisymmetri- 
cal in the four particles; a combination symmetrical in the four 
particles does not exist. 

We think that it is preferable not to treat nucleons and leptons on 
the same footing and therefore introduced the above-mentioned less 
restrictive symmetry  principle. Even then the same important con- 
clusion as can be drawn from C r i t c h f i e l d  and W i g n e r ' s  
symmetry  principle remains valid viz. the nonexistence of a 1~E- 
term in the expression for the shape of the/5-spectrum. For it is an 
immediate consequence of our symmetry  principle that  C1C 2 = 0 
and C3C 4 = 0. Whether this is true must be tested by  careful ex- 
periments (cf § 7). 

§ 7. The present experimental data and the determination o/ the 
Hamiltonian. If we take the general starting point ((3) from § 2): 

H~ = G Z~= x C~ Jk (106) 

for the nucleon-lepton interaction energy, it can be asked how the 
constants G, C 1, C 2, C 3, C 4, C 5 that  define the interaction can be 
determined from the experiments. These constants are subjected to 
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a condition e.g. the condition (4) from § 2; however, it is easier to 
use the following condition (which will be used below): 

C~ q-- C~ -4- 3C;~ + 3C~ (-/- C~) = 1 (107) 

as in this way G is uniquely  determined by  the half life of the neutron 
(cf. no 3 below). 

For  the determinat ion of the constants  it is impor tan t  to remem- 
ber the selection rules for the nuclear matr ix-elements  (allowed 
transitions):  

I f  1 12 AJ = 0 no change of par i ty  ] 
I f a l  2 A J = O ,  i l  ( n o 0 ~ 0 )  no change of par i ty  [ (108) 
I f//75 12 A J = 0 change of par i ty  

We now give a short survey of the present experimental  da ta  on 
/ /-radioactivity for allowed transi t ions and the conclusions tha t  
can be drawn from them:  

1) The results on the shape of al lowed//-spectra give a check on 
the theory  and give the possibility to see if a 1/E-term is present. 
The latest  measurements  with very thin sources still show some 
deviation from the original Fermi distr ibution (which has no 1~E- 
term) for small energies, but  it seems probable tha t  these deviations 
are due to the remaining source thickness or the electric charge of 
the source. I t  seems tha t  no 1/E-term exists: the deviations tha t  
still remain have an entirely different shape. If  the measured shape 
is compared with the Fermi distr ibution with an extra  factor 
(1 + a/E), it can be concluded for m a n y  cases tha t  have been 
measured accurately tha t  0 < a < 0,1 (it is difficult to give a very  
low upper  limit for a, because 1/E is a slowly varying funct ion;  
E ~ 1). We ment ion the following nuclei for which accurate experi- 
menta l  determinat ions have been carried out :  3H19), 12B 20), 13 N 21), 
15 0 22), 61Cu 23), 64Cu 24). 

If a = 0 it follows tha t  C1C 2 = 0 and C3C 4 = O, hence only the 
following combinat ions of invariants  can be realized: S with T, 
S with A, V with T or V with A. 

2) I t  is practical ly certain tha t  G a m 0 w - T  e 1 1 e r selection 
rules are valid i.e. the nuclear spin m a y  change with one or remains 
the same for allowed transitions. The main a rgument  is tha t  
6He --> 6Li is an allowed transi t ion according to life-time and energy. 
6He has as even-even nucleus probably spin 0; the spin of 6Li has been 
measured to be 1 ; we refer for other arguments  to K 0 n 0 p i n s k i s). 
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The va l id i ty  of G a m o w - T  e 1 1 e r selection rules means tha t  
Czs + C~ is not  too small in comparison with C2~ + C~, and tha t  
C~ + C~ > 0 ( though it m a y  be tha t  C~ + C~ -= 0) cf. (50). 

If C s should be =~ 0 and not  too small, t ransi t ions had to exist,  
which must  be classified as allowed, according to their  lifetime and 
m a x i m u m  energy and which show change of par i ty .  As the par i ty  
of nuclei cannot  be measured  bu t  must  be deduced for example  from 
the not  ve ry  cer ta in  shell-model, conclusions on C s are not  yet  
wholly conclusive. Available evidence makes  probable,  however,  
tha t  no allowed transi t ions with change of pa r i ty  exist 25) 26). Hence 

below we shall put  C s = 0. 
3) For  a de te rmina t ion  of the Fermi-constant G it is necessary to 

determine half-life and m a x i m u m  energy *or a/3-transit ion for which 
the nuclear ma t r ix  e lement  is known. The s implest /3- t ransi t ion is: 
n ~ p + / 3 -  + 780 keV. In this case no theory  of nuclei is needed 
for the nuclear  mat r ix -e lements ;  we have namely  I f l  12= 1 and 
-~ I f a  12-- 1, hence M 2 =  1 for the neu t ron  independent  of the 
values of C1 . . . . .  C 4 and we can calculate G from a de terminat ion  
of the half-life of the neutron,  which is, however,  ve ry  rough a.t 
present  (between 9 and 18 min ~7)). Other  /3-transitions m ay  also 
be used to determine G ; the nuclear ma t r ix  elements  nmst  be esti- 
m a t e d  in this case. a H - +  3He is a suitable t ransi t ion for this pur- 

pose. 
I t  is found tha t  G ~ 4.10 -~2 relativist ic units. 
4) The angular  correlat ion between electron and neutr ino can be 

de te rmined  by  recoil experiments•  The only recoil exper iment  to 
de termine  A in the angular  dis t r ibut ion law: 

(1 + A/3 cos 9) 

for an allowed t ransi t ion has been made on 6He b y  A 1 1 e n et al 28). 
However ,  these fine exper iments  still had large stat ist ical  errors;  
wi th  a reasonable ce r t a in ty  one can only say tha t  

- - 1  < A < 0 , 5  

De te rmina t ion  of A for various allowed transi t ions can give the 
• ( c , - c g / ( c ,  + c~) following combinat ions  of the constants  Ci (cf. (37)) 2 2 2 2 

and (C] - -  C~)/(C] + C~) which would be very  valuable informat ion 
on the C{s. As according to 1) CsC 4 = 0 we must  expect  A ---- ~- 
or A = - -  ~ for 6He, because it results from AJ = I tha t  I f  112 = 0. 
I t  is clear tha t  a measurement  tha t  gives A = ½ or - -~-  for 6He 
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does not imply at all t ha t  the interact ion is given by  a pure invar iant  
(cf. (37)). In order to decide this point, A must  also be measured for 
a case with AJ  -~ 0 e.g. 19Ne. If A for 19Ne and 6He should turn out  
to be the same, it would follow tha t  the interact ion is indeed given 
by  a pure invar iant  ; if t hey  should be different a linear combinat ion 
must  be used and it could even be concluded which linear combina- 
tion : if e.g. A = - -  ½ was measured for 6He and A < - -  ~ for tgNe, 
it would follow tha t  the expression for the interact ion energy is a 
combinat ion of S and A, but  if A > - -  ½ for 19Ne, it would follow 
tha t  we have a combinat ion of V and A. 

5) An accurate check on the theory  of f l-radioactivity is possible 
by the determinat ion of the ratio PK/P+ for s imultaneous positon 
emission and K-capture  .Within the limits of exper imental  accuracy 
the agreement  is very sat isfactory 29). 

6) An accurate determinat ion of half-lives and m a x i m u m  ener- 
gies for K o n o p i n s k i ' s  group 0 A 3) allows : 

a) A test of the theory,  namely  of the law for the (rough) de- 
pendence of halflife on max imum energy. Wi th  the present da ta  this 
check gives a sat isfactory result (half-life is approximate ly  inversely 
proportional to the fifth power of the ma x i mu m energy of the  
fl-spectrum). 

b) A determinat ion of (C~+ C~)/(C2+ C2~) must  be possible if 
measurements  are made with great accuracy, and if nuclear mat r ix  
elements can be es t imated from knowledge on nuclear wave func- 
tions (cf. (50)). The present da ta  are ra ther  scarce for this purpose, 
we hope to come back to this point in the future.  

7) Recent ly  L o n g m i r e ,  W u  and T o w n e s 3 0 )  have dis- 
cussed a forbidden fl-spectrum (38C1) on the assumption of different  
combinations of invar iants ;  it is concluded tha t  several of them 
can explain the shape of the spectrum, while this is not  possible 
by  any  single invariant .  MM. B o u c h e z et N a t a f have, how- 
ever, pointed out  to us tha t  this case might  also be explained with a 
pure invariant ,  if an al terat ion of the ordinary  selection rules is 
taken into account,  which might  be necessary for light nuclei (cf. 81)). 

The symmetry principle, we proposed in § 6 has as result : a = 0, 
i.e. no 1/E-term exists. This is also a consequence of the s y m m e t r y  
principle of C r i t c h f i e l d  and W i g n e r .  According to 1) 
of this section the absence of a 1/E-term is in accordance with  the  



ON BETA-RADIOACTIVITY I 479 

experimental data. As both symmetry principles give, however, a 
more severe restriction on the linear combinatJons than C1C 2 = 0 

and C3C 4 ---- 0 (equivalent to a = 0) further experimental data will 
have to be used to decide if one or the other or perhaps neither of 
these symmetry principles is true. E.g. our symmetry principle 
could be tested according to 4) using recoil experiments ~ i th  6He 
and 19Ne. 

Received May 3rd 1950. 
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