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Geolocation-Centric Information Platform for Resilient
Spatio-temporal Content Management

Kazuya TSUKAMOTO†a), Hitomi TAMURA††b), Yuzo TAENAKA†††c), Daiki NOBAYASHI††††d),
Hiroshi YAMAMOTO†††††e), Takeshi IKENAGA††††f), Members, and Myung LEE††††††g), Nonmember

SUMMARY In IoT era, the growth of data variety is driven by cross-
domain data fusion. In this paper, we advocate that “local production
for local consumption (LPLC) paradigm” can be an innovative approach
in cross-domain data fusion, and propose a new framework, geolocation-
centric information platform (GCIP) that can produce and deliver diverse
spatio-temporal content (STC). In the GCIP, (1) infrastructure-based geo-
graphic hierarchy edge network and (2) adhoc-based STC retention system
are interplayed to provide both of geolocation-awareness and resiliency.
Then, we discussed the concepts and the technical challenges of the GCIP.
Finally, we implemented a proof-of-concepts of GCIP and demonstrated its
efficacy through practical experiments on campus IPv6 network and simu-
lation experiments.
key words: geolocation-centric, cross-domain data fusion, local produc-
tion for local consumption

1. Introduction

Advances of sensor devices and communication technolo-
gies are bringing the CPS (Cyber-Physical System)/IoT (In-
ternet of Things) into a reality. Physical “things” are dig-
itized by diverse and massive number of devices and the
information generated by those things is collected into the
cloud as “big data”. New insights are derived by applying
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AI processing to big data, helping human activity to harmo-
nize with the physical world.

In order to efficiently perform data mining, the prepa-
ration of cleaned, parsed, and formatted data is essential
[1]. However, since current IoT systems are largely isolated
within each individual vertical domains due to lack of stan-
dardization and interoperability, a horizontal IoT platform
enabling cross-domain data fusion becomes critical chal-
lenge in collecting huge amount of data [2]. Many coun-
tries including US, EU, and Japan are currently engaged in
the discussion of the requirements for cross-domain fusion.
A noteworthy effort exists in the collaboration of the cross-
domain data for smart cities [3] sharing such data as environ-
mental data (i.e., map and temperature) and user behavioral
data (i.e., trajectory and interests). Major challenges for the
cross-domain data fusion remain:

(a) Privacy issues for user behavioral data
(b) Incompatible policies and standards among IoT service

providers
(c) Isolation of facilities and infrastructure between net-

work operators.

For (a), the “user’s trajectory, interests, and preferences
data” are regarded as a part of “personal data” in many coun-
tries. EU ratified new rules for personal data treatment (i.e.,
GDPR: General Data Protection Regulations) in 2016, and
started already its operation since 2018 [4]. The GDPR per-
mits the processing of the personal data only for the impor-
tant public interest of the Union or of a Member State. Other
countries including Japan are anticipated to follow this trend
with the mandate to handle personal data “in the considera-
tion of geographical area”. Although several efforts on data
platform such as FIWARE [5] have accelerated the collabo-
ration on cross-domain data, they are still limited to “open
(processed) data”. That is, none of existing platforms treats
the personal data. As a result, many developed countries
have recently started the discussion on the utilization of per-
sonal data and announced the concept of data platform to
treat the personal data at the nation level. In general, the
current platforms treat personal data with user’s permission,
but are operated by different IoT service providers for a spe-
cific purpose as described in (b) above.

Note that some of environmental and personal data
suitable for the cross-domain data fusion such as map and
residential address are generated and managed in the geo-
graphical proximity (e.g., city and prefecture). Therefore,
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we advocate the “local production for local consumption
(LPLC) paradigm” as a viable approach for cross-domain
data fusion. In this regard, Edge Computing [6] can function
as data anchor point for cross-domain data fusion. However,
as Telecom companies have their own network infrastruc-
tures, the feasibility of data sharing in a geographical ser-
vice area is low due to a monopolistic stance in practice. It
is also difficult for IT companies to place their own facili-
ties to the Telecoms’ network edge (described in (c) above).
Consequently, the cross-domain data fusion even in a small
region is a remote possibility at the moment.

Therefore, we propose a new framework, geolocation-
centric information platform (GCIP) that can produce di-
verse contents derived spatio-temporally from cross-domain
data fusion and deliver them to users within a small region.
Note that the contents produced by the GCIP are referred to
as the spatio-temporal contents (STCs) in this paper.

The rest of the article is organized as follows. We first
review the related works in Sect. 2. The concept of the GCIP
is discussed in Sect. 3. We then clarify the essential func-
tions and discuss technical issues with the proposed GCIP in
Sect. 4. The experimental results on our proofs-of-concepts
(POCs) implementation are explained in Sect. 5. Finally, we
conclude this article in Sect. 6.

2. Related Works

In this section, we first briefly discuss the characteristics of
data generated by massive sensor devices and review the IoT
systems for managing diverse data. Then, we introduce the
literatures focusing on edge cloud network architecture and
utilization of AI technologies for efficient data management,
and finally identify remaining challenges for horizontal IoT
platform enabling cross-domain data fusion we focus in this
paper.

2.1 Big Data and Cross-Domain Data Fusion

As stated in the Introduction, the proliferation of sensor
devices and deployment of diverse sensing systems explo-
sively increase the amount of data disparate in quality and
value. S. Oteafy [7] notes that the big sensed data (BSD) po-
tentially depletes communication resources and even makes
data analytics unmanageable. That is, BSD management is
a pressing issue. Lin [8] mentioned that the main objec-
tive of IoT is to interconnect various networks for efficient
data collection, analysis, and management across heteroge-
neous networks. The authors advocated that a horizontal
IoT platform enabling cross-domain data fusion becomes
crucial (as in [2]) and smart cities is one of the most rep-
resentative CPS/IoT applications. Celes [9] first listed a set
of cross-domain data in urban environment (referred to as
urban data), and then overviewed their advantages and lim-
itations for crowd management. They showed the under-
standing of crowd situations based on urban data can bring
many opportunities such as urban planning, intelligent trans-
portation systems, and traffic optimization.

2.2 Network Architectures for BSD Management

Qiu [10] and Huru [11] focused on the network architec-
tures and platforms to manage the BSD collected from di-
verse domain fields. The authors pointed out that horizon-
tal data processing architecture that integrates cross-domain
IoT data platforms becomes crucial for providing a variety
of convenient services for our future. Qiu [10] proposed
a layered approach in which all of BSD are transmitted
to cloud servers by networking layer and processed there.
Huru [11] proposed BigClue for data processing across mul-
tiple IoT domains. The BigClue is also a cloud-based data
processing architecture that performs the complex process-
ing demanded by cross-domain IoT data in the cloud, and
makes decision.

The work in [2] introduced a new architecture employ-
ing fog/edge computing as a support of cloud computing.
Since the fog/edge computing can act as a bridge between
end devices and cloud server, the architecture has the po-
tential to alleviate the burden of data processing and traffic
congestion, and to deliver better delay performance, while
increasing service resiliency and scalability. Elkheir [12]
overviewed the available processing paths throughout the
lifecycle in managing IoT data. However, the authors did
not mention how to design the concrete system architecture.
Moysiadis [13] surveyed ongoing research projects focusing
on distributed fog/edge computing for IoT services. In this
paper, the authors clarified that the storage capacity at each
location can be determined by the volume of data from the
devices with geographical proximity. Oteafy [14] focused
on the fog computing architecture with the characteristics
of lower access latency and limited geographical proximity
as a means of coupling of services with local IoT compo-
nents in user-centric contexts. However, the authors only
presented many future directions along this line, but did not
discuss how to achieve the convergence of communication
and computing in the edge cloud IoT system for providing
user-centric services.

While the above works mainly focused on the archi-
tecture of the edge cloud network, consideration of their
heterogeneous characteristics such as computation capac-
ity, caching capacity, and communication performance be-
comes essential for improving user QoE. Hao [15] proposed
the Smart-Edge-CoCaCo algorithm that uses joint optimiza-
tion of the wireless communication model, the collabora-
tive filter caching model in edge cloud, and the computa-
tion offloading model. Zhou [16] extended the architec-
ture for convergence of communication and computing, and
proposed a heterogeneous communication and hierarchical
computing network architecture, thereby improving capac-
ity over conventional cloud-based IoT system. In order to
meet users’ QoS requirements in edge and remote cloud en-
vironment, Liu [17] presented optimal multi-resource allo-
cation policy for computing and bandwidth resources for
IoT services. Furthermore, Cicconetti [18] proposed the
cloud server-less distributed computing architecture (con-
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sisting of edge servers only) and considered severe limita-
tions in edge domain in terms of scalability, performance,
and reliability, compared with the cloud domain. Wu [19]
also employed the collaborative edge computing (server-less
architecture), but focused on an important issue of establish-
ing trustworthiness among all edge servers. To address this
issue, the authors proposed a blockchain-powered frame-
work, called BlockEdge that can build trustworthy edge-
centric network and deliver trusted services.

2.3 Optimization Using AI Technology

Recently many researchers are paying attention to AI tech-
nology for optimizing not only communication procedures
but also data processing required in the edge cloud net-
work architecture. Karunaratne [20] discussed key machine-
learning (ML) technologies and analyzed past efforts ap-
plying ML to solve various design and management tasks
related to wireless mesh networks. Guo [21] handled task
offloading for achieving efficient edge computing and men-
tioned that existing researches cannot deal with varying sit-
uations. To solve this issue, the authors utilized supervised
decision tree based ML technology into task offloading at
the edge for designing an intelligent task offloading scheme.
Rodrigues [22] mentioned that “Modeling of edge cloud net-
work with a variety of users, servers, and applications” in-
volves inevitably many parameters for optimal configuration
of communication, resource allocation, and so on. There-
fore, the authors presented unsupervised learning approach
to achieve near-optimal solution and provided helpful guid-
ance which ML solutions can be applied to which problems.
Finally, Chen [23] surveyed applications where state-of-art
deep learning are used at the network edge, and described
example applications including not only in-network caching
as a network function but also IoT contents that need to be
fused and processed together in the spatiotemporal manner.
However, the authors did not clarify how to provide these
applications in the edge cloud network architecture.

2.4 Cache Management on Edge Cloud Network

Several papers focused on edge caching in which edges with
cache storages can solve several problems of edge cloud net-
work architecture. Yao [24] overviewed the state-of-the-art
edge cloud network and its advantages, and discussed how
the location of edge caching impacts on the cache perfor-
mances. Moreover, the authors divided the caching process
into four functions: content request, exploration, delivery,
and update, but mentioned that none of the existing studies
takes the dynamic IoT contents fused by multi-source and/or
variable IoT data into consideration. That is, how to de-
sign the caching strategies by incorporating the dynamic IoT
contents still remains as one of important challenges. Sinky
[25] also focused on in-network, content-centric caching ap-
proaches for smart cities. The information of network topol-
ogy, content popularity, and users’ trajectory is assumed and
utilized for efficient content caching and delivery, thereby

minimizing service disruption. However, other three func-
tions (contents request, exploration, update) were not dis-
cussed. Pattar [26] mentioned that combining the IoT data
can build dynamic IoT contents and reviewed state-of-the-
art content search methods. The authors reviewed search
methods in view of location, content, and spatiotemporal
basis; however, none integrated all three attributes which
can substantially facilitate content search in edge cloud net-
work. The authors also mentioned that dynamic and real-
time recognition and response to user queries becomes im-
portant to improve the QoE of users.

To the best of our knowledge, none of existing studies
proposes a new information platform that can provide essen-
tial functions [24] for dynamic IoT contents fused by IoT
data. This paper is the first concept paper of geolocation-
centric information platform for dynamic IoT contents man-
agement that embraces essential functions, in the resilient
manner.

3. Geolocation-Centric Information Platform (GCIP)

As stated earlier, some types of environmental and user
behavioral data suitable for the cross-domain data fusion
are generated and managed in the geographical proximity.
Therefore, we assume that public organizations such as local
governments (LGs) (e.g., municipal and prefectural offices)
are responsible for collecting and managing these data, and
contents providers (CPs) contracted with the LGs are re-
sponsible for producing STCs by fusing the cross-domain
data obtained from LGs. That is, each of edge cloud can be
built by the cooperation between LGs and CPs.

For example, some static environmental and personal
data such as map, residential address, and social security in-
formation are strictly managed by LGs. On the other hand,
more dynamic data such as temperature and user behavior
information are collected to the cloud server to provide a
specific service. If these dynamic data can be collected at
the edge cloud serving a specific geographical area, we will
be able to fuse these abundant cross-domain data, thereby
producing new/diverse STCs. For example, the relationship
between the discomfort index (DI) calculated from tempera-
ture and humidity and human traveling flow can be used for
the estimation of wireless resource utilization.

As mentioned in Sect. 2, to utilize STC effectively,
four essential functions consisting of STC production, STC
discovery, STC delivery, and fault tolerance management
should be provided in the resilient manner. Therefore, in
this paper, we here propose a new information platform,
geolocation-centric information platform (GCIP) with edge
cloud for Spatio-Temporal Content (STC) management is as
shown in Fig. 1. We first outline the concept of the proposed
GCIP (shown in Fig. 2) and briefly describe its two main
components: (1) infrastructure-based geographic hierarchy
edge network (GHEN) and (2) adhoc-based STC retention
system (STC-RS). Also provided is the description of adap-
tive use of these two components.
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Fig. 1 Essential functions for resilient STC management on edge cloud.

Fig. 2 Conceptual architecture of the GCIP.

3.1 Concept of the GCIP

Since STC strongly depends on the location and time where
and when it is generated, we advocate that the most effec-
tive exploitation of STC could be to deliver it directly to the
users who are at the location (local production for local con-
sumption, LPLC), rather than serving it from remote cloud
servers.

GCIP manages the interplay between GHEN and STC-
RS for STC management. The GHEN is a hierarchical edge
network handling variables in geographical proximity, while
STC-RS is virtually built over multiple vehicles located in
a certain region by forming a wireless network in the ad-
hoc manner. The GHEN provides a network substrate sup-
porting “geolocation-aware” STC management, whereas the
STC-RS maintains the geolocation-awareness in a resilient
manner even when the infrastructure fails.

As a result, our proposed GCIP can achieve consistent
STC management (production, maintenance, and delivery),
while maintaining not only geolocation-awareness but also
resilient nature. Furthermore, as a secondary advantage,
since GCIP can complete all the processing required for the
STC management within the edge network, congestion in
the core network can be mitigated.

Fig. 3 Topology and allocated mesh IDs of GHEN.

3.2 Infrastructure-Based Geographic Hierarchy Edge Net-
work (GHEN)

A geographical space is virtually divided into meshes based
on the latitude and meridians lines and the meshes is orga-
nized in a hierarchical structure as shown in Fig. 3. One 1st

level mesh is 80 km by 80 km square area and one 2nd level
mesh is 10 km by 10 km square area; that is, one 1st level
mesh is equally divided into 64 2nd level meshes. For the
nth level for (3 ≤ n ≤ 10), we define that one nth level mesh
is divided into four (n + 1)th level meshes.

A unique number, called mesh ID of variable length is
allocated to each of meshes: 1st level mesh is given a 4 dig-
its decimal ID and additional 2 digits for 2nd level meshes.
Note that in Japan, geographical areas and those IDs for 1st
and 2nd level meshes are pre-allocated by NTT DoCoMo
Open iArea [27]†. The ID length allocated to higher than
3rd level meshes increases in proportion to the increase in
the level. Figure 3 illustrates an example ID allocation. As-
suming the area covered by one Wi-Fi AP 50 m by 50 m
square area, we define the minimum (10th level) mesh size
as 39 m by 39m square area. This mesh ID allows us to
flexibly identify the geographical spaces in handling STCs.

To identify the mesh ID, any devices in GHEN need to
acquire its geolocation information. Widely implemented
GPS in smartphone and network devices such as cellular
Base Station (BS) and Wi-Fi AP conveniently provide ge-
olocation information. Even without GPS, inexpensive sen-
sor devices can obtain approximate geolocation information
from their APs and BSs of the infrastructure network.

However, in practical environments, some network fa-
cilities are forced to be located at non-optimal area due to
the limitation of space availability: AP in home, cellular BS,
and OLT (Optical Line Terminal) in a NTT central office. As
a result, the topology of the GHEN inherently forms an ir-
regular mesh as shown in Fig. 3. Also, as a large number of

†Although Open iArea is here employed as just one example
of grid reference system, we can use the grid code defined by any
kinds of reference systems including JIS X0410 (Japan), MGRS
(USA), European Grid [28] for the GHEN.
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APs are already deployed especially in the urban area, sev-
eral APs can be accommodated within the minimum mesh
area (10th level mesh).

3.3 Adhoc-Based STC Retention System (STC-RS)

As stated in Sect. 3.1, the STC-RS allows us to maintain
the geolocation-awareness in a resilient manner, even when
infrastructure network fails. To achieve this, large transmis-
sion bandwidth, large storage, and high-performance CPU
are required as in the edge cloud. A virtual edge cloud is
established over the VANET, thereby maintaining functions
of STC management even when the GHEN becomes inac-
tive due to a variety of network problems.

Modern vehicles (e.g., smart cars) have three remark-
able features. First, data can be collected by and ana-
lyzed within individual vehicles owing to significant in-
vehicle storage, battery power, and high-level computa-
tional resources in the near future. Second, emerging
vehicle-to-everything (V2X) communication can provide
high transmission capacity via such wireless standards as
IEEE DSRC/WAVE and 3GPP C-V2X (Cellular V2X).
Third, ubiquitous presence of highly mobile vehicles oper-
ating all over the world can function as a substrate layer over
which efficient data collection and dissemination can be pro-
vided.

In this study, we employ user’s neighboring vehicles
as vehicular edge clouds for STC management, where each
vehicle acts as an edge cloud. If the STCs are replicated
and managed in multiple vehicles existing in the geograph-
ical proximity, users can obtain their desired STCs from
one of the neighboring vehicles even when some vehicles
move away and/or break down, not to mention the failure
of the GHEN. As a result, the STC-RS achieves the LPLC
paradigm for STC management in the resilient manner.

3.4 Interaction of GHEN and STC-RS

Basic concept of the hybrid system consisting of GHEN and
STC-RS is already described in our prior work [29]. The co-
operation between GHEN and STC-RS is critical if GHEN
fails. If GHEN fails, STC-RS should first consider the geo-
graphical area of GHEN. For example, when a user moves
from the failed area to the neighboring mesh area, the han-
dover of STC management from STC-RS to GHEN should
be performed according to the user mobility.

Since the information of vehicles’ mobility and density
in the wide area is available by the support of the GHEN, not
only the estimation of the status of the STC-RS but also the
preparation of the handover process of the STC management
described above can be performed effectively.

4. Essential Functions and Technical Issues of the
GCIP

In this section, we first clarify the essential functions, and
then discuss technical issues with the proposed GCIP, which

engender main research items for GHEN and STC-RS.

4.1 Essential Functions

• STC production: Integration of environmental data
and user behavioral data in a certain geographical prox-
imity can produce diverse STCs which have been diffi-
cult to realize so far. However, since the data are gath-
ered into cloud servers, the data collection at the edge
network beyond the border of network operators needs
to be negotiated among relevant network operators. We
assume here that the operators agreed already with data
sharing under limited conditions of geographical prox-
imity to provide diverse STCs for users. Furthermore,
user’s consent should be obtained in advance.
Since edge servers for data management and mesh
routers are assumed to be isolatedly operated by LGs
and Telecom companies, edge router should replicate
the data and transfer the replicated data to the edge
server, while transmitting original data to the cloud
server. As a result, the data transmitted from certain ge-
ographical areas are collected at the edge server man-
aged by LGs. In parallel, to produce appropriate STCs
flexibly, how the CP retrieves the necessary data from
the edge server managed by LGs should be carefully
planned.

• STC discovery: The data collected from massive IoT
devices will experience spatio-temporal change in view
of the amount and generation rate. As a result, the
STCs produced by the CPs by the cross-domain data
fusion is also inherently spatio-temporal. In such a
case, users who want to get a STC on the edge server
cannot directly discover which CP has the desired one.
Therefore, methods for STC discovery should be prop-
erly designed.

• STC delivery: Since users may search desired STCs
from anywhere in the Internet, the associated locations
can be widely different. If a remote user wants to get
some STC for a specific geographical area, the gran-
ularity of the STC needs to be dynamically modified
according to its privacy policy that is differential pri-
vacy. After discovering the desired STCs, an effective
delivery method should be selected from among multi-
ple candidates in response to both of the user location
and the demands for the STCs such as time constraints
and confidentiality.

• Fault tolerance management: Resilience is closely
related to reliability of networks when a subset of edge
clouds becomes inactive. GCIP service disruption may
happen due to edge network failures, temporary hard-
ware failures, maintenance, power outage, access im-
balance congestion, etc. Therefore, alternative meth-
ods that can maintain all of the STC management func-
tions (production, discovery, delivery) should be con-
sidered even when none of edge clouds are available.
We are tackling how to secure fault resilience man-
agement in edge cloud network through NSF/NICT
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Fig. 4 Physical location-aware communication (PLAC) method.

JUNO2 project [30].

4.2 Research Items in GHEN

4.2.1 Geolocation-Aware Data Collection

In order to collect geolocation aware data, we introduced in
Sect. 3 the mesh ID, so that all network devices such as mesh
router and terminals for GHEN can identify their own geolo-
cation and corresponding mesh IDs to handle all of data con-
taining the same mesh ID. We present a new data communi-
cation method that can consider geolocation, called physical
location-aware communication (PLAC) method.

For smooth deployment of the new PLAC method, we
adopt the geolocation aware IPv6 compatible (GIP) address
format [31], which is compatible with the current IPv6. The
GIP does not modify the network prefix (the upper 64 bits)
as show in Fig. 4. Instead, a mesh ID described in Sect. 4.2
is embedded in the lower 64 bits of IPv6 address because
the lower 64 bits can be freely determined while avoiding
address duplication (as in the stateless autoconfiguration).

Specifically, a mesh ID is placed in the beginning of the
lower 64 bits and used as a part of network address. Since
the network address length matches the size of physical re-
gion, the PLAC is achieved by IP routing on the basis of
longest match by using the extended network address (pre-
fix + mesh ID). This means that by choosing either IP or GIP
address, the users can indicate their willingness to agree or
not the geolocation aware data collection at mesh router in
the GHEN. Thus, the use of the GIP address by a user indi-
cates her consent to geolocation aware data collection†.

4.2.2 Publish/Subscribe-Based Networked Data Prepro-
cessing for STC Production

As stated in Sect. 3, we assume that local governments

†We assume that users need to choose GIP address on a per-
application basis when they agree with geolocation aware data col-
lection at mesh routers in the GHEN. The actual operating proce-
dures are supposed to be like a means of selecting an access net-
work such as Wi-Fi or LTE on smartphone.

(LGs) such as municipal and prefectural offices are respon-
sible for collecting and managing these data, and content
providers (CPs) contracted with the LGs are responsible for
producing STCs by fusing the cross-domain data obtained
from LGs. To achieve this, we consider that a data storage
(DS) server and data fusion (DF) server(s) are deployed in
each mesh area, operated by LGs and CPs respectively. The
former is operated by LGs and the latter is by CPs. Since
the interplay of these servers yields the diverse STCs, the
communication method between the DS server and the DF
server should be defined. The Publish/Subscribe model will
be used for this communication.

In this model, the mesh router publishes the collected
data to the DS server and the DS server stores/aggregates the
published data. Each of the DF servers, as the “subscriber”,
requests the stored information from the DS server. Data
mining will be performed on the DF server to produce useful
STCs by exploiting an appropriate AI technology.

In general, intensive preprocessing including anony-
mous processing, Fourier analysis, labeling, and object ex-
traction is required before AI processing, but many pro-
cessing functions can be made common because of their
wide range of use cases. Therefore, we will consider a net-
worked preprocessing method in which multiple DF servers
with different functions execute the preprocessing in order.
Since efficient preprocessing order can be designed by con-
sidering both the functions each DF server maintains and
the network load, the flexible functions of SDN (Software-
Defined-Netwoking) technology is utilized for obtaining the
information. Note that since we here focus on the edge net-
work operated by LGs and CPs, the scalability problem in
SDN can be mitigated.

4.2.3 User/CP Requirement Matching-Based STC Search

Since users and sensor devices are numerous and diverse,
their data transmission timing, intervals, and the amount
are also significantly different. Therefore, the retrieved
data from the DS server will change depending on not only
“time” but also “location”. Moreover, the types of process-
ing may range from simple computations such as finding
the maximum/minimum or mean value over a set of sensed
data (e.g., movement speed and temperature) to more com-
plex data aggregation, spatial/temporal correlation or filter-
ing operations on the raw data. As a result, the STCs pro-
duced by the DF server will also exhibit the spatio-temporal
characteristics.

The popularity of STCs requested by users also varies
spatio-temporally. Therefore, a search techniques tailored
to both location and contents are necessary. Although wide
variety of search techniques exist [26], studies still lack ad-
dressing the spatio-temporal characteristics in terms of the
STCs and users’ request (popularity). In the proposed GCIP,
since the DS server can collect the statistical information of
both users’ and CPs’ requests, we proposed a new content
discovery method that evaluates the relevancy between top-
ics specified user requests and topics representing IoT data
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used for creating STCs, called matching, and presents the
candidates for the desired STCs based on the relevancy [32].

4.2.4 Geolocation-Aware STC Delivery on GHEN

In the proposed GCIP, every IoT data or STCs need to be de-
livered through the mesh structure; that is, the delivery route
to the location of designated destination is automatically de-
termined by following the mesh structure in which every
data must go upward through router(s) on higher level(s)
and again go downward through router(s) on lower level(s).
This means that not only the amount of data traffic increases
but also the area suffered from the traffic is wider, in propor-
tion to the extension of the length of delivery route.

Even if only the summarized information is sufficient
for distant users, transmitting detailed information may pose
privacy concern. The private information accessible for lo-
cal users can be visible to distant users as well. To solve this
issue, we focus on the gap between transmitted granularity
and required granularity of data, and propose a new data de-
livery method in GCIP that can take the physical distance
into account.

According to the mesh architecture presented in
Sect. 4.2.1, the number of packets that routers in the net-
work process increases in accordance with the physical dis-
tance between the source and destination. We rather exploit
this to control data granularity. Specifically, we proposed an
in-network processing mechanism on GCIP, which changes
information granularity when a communication data passes
each router [33]. In this mechanism, we put a same function
of data processing into every router and that function is exe-
cuted for communication passing from lower-level mesh to
higher-level mesh. As the number of routers increases, the
information granularity becomes coarse due to the increase
of the number of data processing. On the other hand, when
the data is transmitted to a very near location (e.g. within the
same mesh), data processing never happens.

4.3 Research Items in STC-RS

The STC-RS allows us to maintain the geolocation-
awareness in a resilient manner, even when infrastructure
network (GHEN) fails.

4.3.1 STC Production in High Mobility Environment

Although STC-RS is virtually built on a VANET to locally
maintain all the functions of STC management provided by
the GHEN, the VANET has significantly different properties
compared with the GHEN. For example, vehicles inherently
have high mobility and their density is time dependent. As a
result, the topology of the VANET envisioned in this system
becomes dynamic. Thus, the availability of the functions
for data analysis and/or processing for STC production will
also be time-varying. Therefore, how to produce the STC
by using the available functions at any point of time should
be considered.

4.3.2 STC Distribution in High Mobility Environment

As discussed in Sects. 3.4 and 4.1, to guarantee the GHEN’s
fault-tolerance and achieve physical location-based delivery
of STCs, we proposed the STC-RS using vehicles where
users in the certain area can receive STC from a vehicle
spreading a data uniformly. However, since the STCs can
be produced over the VANET, the STC retention will be-
come extremely difficult due to the vehicles’ high mobility
and time-varying VANET topology. Therefore, we proposed
the data transmission control method (DTCM) for achieving
that each vehicle periodically distributes STCs by wireless
communication within its specific area (defined as the tar-
get area) whose geographical size is to be determined by
the mesh structure of the GHEN [34]. We defined the cov-
erage rate (CR) as a target metric. The CR is represented
by Total area S TC can be received

Total area . Furthermore, the reduction of
number of data transmissions is also our objective for the
effective use of wireless resources for the STC-RS.

The process of the DTCM begins when the vehicle re-
ceives the STC from the STC producer (e.g. DF server(s)
on GHEN). Each vehicle sets data transmission interval d,
which is notified by the STC producer whenever receiving
initial data (STC)†. Here, the subscript i indicates a unique
vehicle ID, i ∈ V , where V is the set of all vehicles, and the
subscript t indicates the sequence number of data transmis-
sion cycles (i.e., the number of d) after the first data recep-
tion. First, the vehicle sets a random backoff time s (< d)
to avoid packet collisions. After s has elapsed, the vehicle
sets the transmission probability in the following procedure
to control the number of packet transmissions while main-
taining coverage. Each vehicle in the target area estimates
the number of neighboring vehicles n(i,t−1) from the beacons
transmitted by vehicles every cycle t, which has to be set
smaller than d. Next, when the number of neighboring vehi-
cles is four or more, the vehicle’s transmission range has the
potential to be completely covered by that of all neighboring
vehicles. For example, when the neighboring four vehicles
are located to a vehicle’s north, south, west, and east (the
ideal arrangement), the vehicle’s transmission coverage area
is already completely enclosed by the neighboring vehicles.
Therefore, if n(i,t−1) < 4, the vehicles set transmission prob-
ability p(i,t) = 1 and always send the STC packet since it is
difficult to cover the entire target area with just the neighbor-
ing vehicles. On the other hand, if n(i,t−1) ≥ 4, the vehicle
determines the transmission probability based on the num-
ber of STC packet transmissions by neighboring vehicles to
avoid packet collisions. In order to calculate the estimated
number of STC packet transmissions m(i,t) by the neighbor-
ing vehicles in the t-th cycle, the vehicle uses the number of
received STC packets l(i,t−1) from the neighboring vehicles
in the last (t−1-th) cycle. m(i,t) is calculated by the following
equation:

†Note that we here assume a STC can be included in one
packet.
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m(i,t) = α ∗ l(i,t−1) + (1 − α) ∗ m(i,t−1) (1)

where α indicates the moving average coefficient. Finally,
the vehicle determines p(i,t) based on the m(i,t) as follows:

p(i,t) =


p(i,t−1) +

β−l(i,t−1)

n(i,t−1)+1 (0 < m(i,t) < β)

p(i,t−1) (m(i,t) = β)
p(i,t−1) −

l(i,t−1)−β

n(i,t−1)+1 (m(i,t) > β)
(2)

where β is the target number of data transmissions around a
vehicle.

By determining the transmission probability of STC by
the DTCM, high delivery rate can be achieved while avoid-
ing waste of wireless resources. Moreover, we have made
several extensions for simultaneous multiple STCs reten-
tion [35] and secure communication with other vehicles [36]
[37]. Especially, in high mobility environment, since the ve-
hicles move out of the target area and move into the new
target area, we have proposed a method for quick STC dis-
tribution and deletion [38] to limit the retention area of STC.
However, a new deletion method of the STC needs to be de-
veloped in the consideration of vehicle’s movement and the
STC’s target area.

5. Experiments

In this section, we have conducted the experiments to show
the efficacy of (i) STC production on the GHEN and (ii)
STC distribution over the VANET.

5.1 STC Production on the GHEN.

The preliminary experiments were conducted on real cam-
pus IPv6 network [39]. In this experiment, we examined
whether the GHEN can collect the IoT data by exploiting
PLAC method, even when the data are generated in adjacent
proximity but transmitted from different 10th level meshes
(i.e., different subnets/prefixes). As shown in Fig. 5, each
of 10th level mesh networks has corresponding mesh router
(R10 0 and R10 1) and an access network. Five end devices
(D1 1, D1 2, D1 3, D2 1, D2 2) are developed by using
Raspberry Pi and equipped with different types of sensors.
These end devices are connected via Ethernet and transmit
sensed data periodically (every 5 minutes) throughout the
experiment.

For the second experiment, we examined the feasibility
of STC production on the GHEN by fusing the sensed data
collected in the geographical proximity. We consider the
discomfort index (DI) as a simple example of the STC. Here,
we assume that some of sensors in the geographical prox-
imity send the temperature information to a specific cloud
server for work smart, while other sensors send the humid-
ity data to a different cloud server for smart cities. Then,
the DI is calculated from these two cross-domain data as
“T − (0.55 − 0.0055RH) × (T − 14.5)” [40]. Note that T
indicates the mean value of air temperature and RH indi-
cates the 5 minutes average of relative humidity because the

Fig. 5 Demonstration for IoT data collection.

sensor devices transmit their average data every 5 minutes.
The PLAC method allows three sensor devices (D1 1,

D1 2, D1 3) deployed in the mesh with ID 50303410 to for-
ward their sensed data to R9 1 via their mesh router (R10 0).
Similarly, sensed data from D2 1 and D2 2 in a mesh with
ID 50303411 are forwarded to R9 1 via their mesh router
(R10 1). Note that these 10th level meshes have different
network prefixes, i.e., different subnets. However, since the
R9 1 is located at the same (9th) mesh network, if the data
storage (DS) and data fusion (DF) servers are also located
at the same 9th mesh network, all of the sensed data can
be collected from the mesh router. We here use Apache
Kafka, which provides publish-subscribe based messaging
system [41], for communication between end devices and
DF servers managing STCs. Since a broker is necessary for
mediation between producers and consumers, we deployed
a broker on the 9th mesh network. For simplicity, the broker
functions as the DS server and the DF servers, and typical
Web API is used for indicating the STC produced in the bro-
ker.

Figure 5 also shows the STC generated at the broker.
Fig. 5 illustrates not only a geographical area where the STC
was produced but also a time series variation of DI value.
Since the GIP address includes a mesh ID, the broker can
roughly identify the geographical area of end devices by an-
alyzing the IPv6 header of the packets received from the
end devices. Moreover, the broker can store the published
data, and thus the change in the DI value can naturally be
shown. Through these experiments, we demonstrated that
the proposed GHEN can produce STCs by using the PLAC
method.

5.2 STC Distribution over the VANET (STC-RS)

We evaluated our proposed method using the Veins com-
bined network simulator OMNeT++ and the road traffic
simulator SUMO. As shown in Fig. 6, a road model on a
grid of 2 km square with 200 m distance between each road
is used as the simulation area, and vehicles drive randomly
on this road at a 40 km/h. The communication range of vehi-
cles, the beacon transmission interval, the data transmission
interval d, α, and β are set to 300 m, 1 s, 5 s, 0.5, and 4,



TSUKAMOTO et al.: GEOLOCATION-CENTRIC INFORMATION PLATFORM FOR RESILIENT SPATIO-TEMPORAL CONTENT MANAGEMENT
207

Fig. 6 Simulation topology.

respectively. These parameters were set to appropriate val-
ues for proposed method based on the evaluation of previous
works [34]. One STC is transmitted from the center of the
target area (STC origin) at the start of the simulation and is
retained by the vehicle for 100 s within a 750 m radius of
the target area. Note that we here set the radius of the tar-
get area to approximately three times (hops) of that of the
communication range in order to show the effectiveness of
the proposed retention method on relatively large area. Fur-
thermore, to examine how the change in the node density
impacts on the retention performance, the number of vehi-
cles is varied from 75 to 300.

We compared the proposed method with the naive
method (always with p(i,t) of 1), which can maintain high
coverage but not taking into account the consumption of
wireless resource. Figures 7 and 8 show the CR and the
transmission reduction rate (TRR), when the number of
vehicles is varied. Note that, the TRR is calculated by
“(1 − Total T X num. o f the proposed method

Total T X num. o f the naive method ) × 100”. In terms of
CR, the proposed method achieves more than 99% but is
slightly lower than the naive method. On the other hand, we
confirmed that the TRR of the proposed method is approx-
imately 70% lower than that of the naive method in high
node density. The results show that the proposed method can
maintain a high CR while significantly reducing the number
of data transmissions.

6. Conclusion

In this paper, we advocate that “local production for local
consumption (LPLC) paradigm” is an innovative approach
in cross-domain data fusion and propose the geolocation-
centric information platform (GCIP) that can produce,
maintain, and deliver new/diverse spatio-temporal content
(STC).

In the GCIP, we assumed that local governments (LGs)
are responsible for collecting and managing data, and con-
tents providers (CPs) contracted with the LGs are respon-
sible for producing STCs by fusing the cross-domain data
obtained from LGs. CPs are also responsible for the de-
velopment of the required functions for resilient STC man-

Fig. 7 The CR vs. the total number of nodes (vehicles).

Fig. 8 The TRR vs. the total number of nodes (vehicles).

agement in edge cloud. By integrating VANET-based STC-
RS with the infrastructure-based GHEN, we provide much
needed resilience to the GCIP.

Technical issues of GCIP have been discussed with
its two cooperating components: GHEN, the geolocation-
based hierarchical mesh and resilient VANET-based STC-
RS. Then, we showed the feasibility of the proposed GHEN
via a POC system, which implemented and demonstrated
effective data fusion of raw data obtained from different net-
works within GHEN by using the PLAC method. Practi-
cal experiments have been conducted on campus IPv6 net-
work. Furthermore, we also showed the effectiveness of the
STC distribution by the proposed STC-RS through simula-
tion experiments. Although the POCs demonstrated in this
paper were very limited, we have already started several re-
searches on other technical issues described in Sect. 5, such
as Publish/Subscribe-based networked data preprocessing,
User/CP requirement matching-based STC search, STC pro-
duction/distribution in high mobility environment, and the
way of GHEN and STC-RS interplay. We plan to report
performance of the proposed GCIP in the near future.
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