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Abstract. In this study, the strain rate concentration is considered for high speed tensile test, 
which is now being recognized as a standard testing method. To evaluate the impact strength 
of engineering materials, Izod and Charpy tests are unsuitable since they cannot control the 
impact speeds and therefore the testing results do not coincide with the real failure of real 
products. For smooth specimens, the strain rate can be determined from the tensile speed 𝑢𝑢/𝑡𝑡 
and specimen length 𝑙𝑙 as 𝜀𝜀�̇�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 𝑢𝑢/𝑡𝑡𝑙𝑙. For notched specimens, however, the strain rate at 
the notch root 𝜀𝜀�̇�𝑛𝑠𝑠𝑠𝑠𝑛𝑛ℎ should be analyzed accurately. In this study, therefore, the strain rate 
concentration factor defined as 𝐾𝐾𝑠𝑠�̇�𝜀 = 𝜀𝜀�̇�𝑛𝑠𝑠𝑠𝑠𝑛𝑛ℎ/𝜀𝜀�̇�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ  is studied with varying the notch 
geometry and specimen length for round and flat test specimens. In particular, the relationship 
between the strain rate concentration factor and the stress concentration factor is investigated 
by varying the notch geometry and specimen length. 
Keywords: notch fracture, high speed tensile test, strain rate concentration factor, stress 
concentration factor 
 
 
1. Introduction 
Charpy and Izod tests are widely used to investigate the impact property of structural 
materials [1-4]. The strength of engineering materials varies depending on the temperature 
and impact speed, especially known as the brittle–ductile transition behavior. Charpy impact 
test provides the absorbed energy under different temperature; however, the results are not 
closely related to the tensile properties such as tensile strength, yield strength and fatigue 
strength used in machine design. Moreover, Charpy impact speed does not correspond to the 
real failure of the real products. By considering those disadvantages, the high-speed tensile 
test is now being recognized as the standard impact strength test. Several researchers were 
focusing on high speed deformation [5-8]. In our previous studies, the tensile strength can be 
discussed through notched flat and round bar specimens under different tensile speed and 
temperature [9,10].  

Previous studies suggested that the strain rate at the notch root may control the brittle–
ductile transition behavior [11-16]. In the high speed tensile testing, it is therefore necessary 
to know the strain rate at the notch root accurately. Since it is almost impossible to measure 
the strain rate at the notch root experimentally, the strain rate concentration factor should be 
investigated analytically.  

Previously the authors have proposed that the stress concentration factor formulas 
useful for arbitrary notch dimensions in notched specimens [17-23]. Regarding the strain rate 
concentration factor, however, the notch shape effects have not been clarified yet. In this 
paper, therefore, the strain rate concentration factor will be studied by varying the notch 
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geometry. Then, the effects of notch root radius and notch depth on the strain rate 
concentration factor will be discussed. Finally, the relationship between the strain rate 
concentration factors and the previously studied stress concentration factors [17-23] will be 
clarified to evaluate the impact strength of engineering materials conveniently.  
 
2. Definittion of the strain rate concentration factor 
The strain rates in notched and smooth specimen (Fig. 1 (a),(b))  �̇�𝜀𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛ℎ, 𝜀𝜀�̇�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ increase with 
increasing the tensile speed. However, the ratio 𝐾𝐾𝑠𝑠�̇�𝜀  =  �̇�𝜀𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛ℎ/ 𝜀𝜀�̇�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ  is always constant 
independent of the tensile speed.  
 

Since the strain rate in smooth specimen is expressed in equation (1), the strain rate at 
the notch root can be obtained from the tensile speed 𝑢𝑢(𝑡𝑡)/𝑡𝑡 and the strain rate concentration 
factor 𝐾𝐾𝑠𝑠�̇�𝜀  (see Equation (2)). Here, 𝑢𝑢(𝑡𝑡) is the displacement applied to the specimen end, 
which is assumed to be proportional to the time t. 
𝜀𝜀�̇�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 𝑢𝑢(𝑠𝑠)/𝑙𝑙

𝑠𝑠
. (1) 

𝐾𝐾𝑠𝑠�̇�𝜀 = �̇�𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ
�̇�𝜀𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛ℎ

, 

 �̇�𝜀𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛ℎ = 𝐾𝐾𝑠𝑠�̇�𝜀 ∙ 𝜀𝜀�̇�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 𝐾𝐾𝑠𝑠�̇�𝜀 ∙
𝑢𝑢(𝑠𝑠)/𝑙𝑙
𝑠𝑠

. (2) 
In our recent study, the validity of elastic strain rate concentration was confirmed by 

using the elastic-plastic analysis for polymeric materials [23]. In our previous study [10], the 
relationship between the tensile speed and the strain rate was also considered. Then, it was 
found that the strain rate is proportional to the tensile speed when u(t)/t ≤ 5000mm/s. This is 
related to the fact that stress wave propagation speed is equal to the sonic wave propagation 
speed [10]. The present results may be useful for this range where linear relationship is 
confirmed. In this study, since the strain rate is considered at the u(t)/t=20mm/s much smaller 
than the sonic speed in metals [24], the wave propagation effect can be neglected. 
 
3. Effect of specimen length on the strain rate concentration factor 
It is known that the net stress concentration factor 𝐾𝐾𝑠𝑠 is independent of the specimen length l 
if l/D≧1 in Fig.1 (a). However, different from the net stress concentration factor  𝐾𝐾𝑠𝑠, the strain 
rate concentration factor 𝐾𝐾𝑠𝑠�̇�𝜀 is depending on the specimen length 𝑙𝑙/𝐷𝐷. 
 

 
(a) Notched specimen (b) Smooth specimen  

Fig. 1. Geometry of specimens (Dimensions: mm) 
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(a) 𝐾𝐾𝑠𝑠�̇�𝜀 and 𝐾𝐾𝑠𝑠∗ for specimen which t=1           (b) 𝐾𝐾𝑠𝑠�̇�𝜀 and 𝐾𝐾𝑠𝑠∗ for specimen which t=2 

Fig. 2. Strain rate concentration factor 𝐾𝐾𝑠𝑠�̇�𝜀  and gross stress concentration factor 
  𝐾𝐾𝑠𝑠∗ (𝐾𝐾𝑠𝑠∗ = 𝐾𝐾𝑠𝑠 ∙ (𝐷𝐷 𝑑𝑑⁄ )2) under different length in Fig. 1(a) 

 
Table 1. Stress concentration factor under different length ( D=8mm in Fig.1(a)) 

 
Under fixed maximum specimen diameter D=8mm, the strain rate concentration factor 

𝐾𝐾𝑠𝑠�̇�𝜀 is calculated by varying the specimen length l. Figure 2 shows the results for the relative 
notch radius 2ρ/D = 0.0625, 2ρ/D = 0.5 and the relative notch depth 2t/D = 0.25, 2t/D = 0.5 
by varying the relative specimen length l/D = 1 ~ 2560.  

Figure 2 compares the strain rate concentration factor 𝐾𝐾𝑠𝑠�̇�𝜀  and the gross stress 
concentration factor 𝐾𝐾𝑠𝑠∗   by varying the relative specimen length l/D. Table 1 shows the net 
stress concentration factor 𝐾𝐾𝑠𝑠  and the gross stress concentration factor  
𝐾𝐾𝑠𝑠∗ = 𝐾𝐾𝑠𝑠 ∙ (𝐷𝐷/𝑑𝑑)2 under different specimen length. The net stress concentration factor 𝐾𝐾𝑠𝑠 is 
usually defined as 𝐾𝐾𝑠𝑠 = 𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚/𝜎𝜎𝑛𝑛𝑛𝑛𝑠𝑠 as shown in equation (3) based on the net nominal stress 
𝜎𝜎𝑛𝑛𝑛𝑛𝑠𝑠 = 4𝑃𝑃/𝜋𝜋𝑑𝑑2. The gross stress concentration factor 𝐾𝐾𝑠𝑠∗ is defined as shown in equation (4) 
based on the gross tensile stress  𝜎𝜎𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 = 4𝑃𝑃/𝜋𝜋𝐷𝐷2. 
𝐾𝐾𝑠𝑠 = 𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚

𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛
. (3) 

𝐾𝐾𝑠𝑠∗ = 𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚
𝜎𝜎𝑔𝑔𝑔𝑔𝑛𝑛𝑠𝑠𝑠𝑠

 = 𝐾𝐾𝑠𝑠 ∙ (𝐷𝐷
𝑑𝑑

)2，𝜎𝜎𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜎𝜎𝑛𝑛𝑛𝑛𝑠𝑠 ∙ (𝑑𝑑
𝐷𝐷

)2. (4) 

In Figure 2, it is seen the results for 2ρ/D = 0.0625 is always larger than the results for 
2ρ/D = 0.5 and varies depending on 2t/D similar to the gross stress concentration factor 𝐾𝐾𝑠𝑠∗. 
Although the gross stress concentration factor 𝐾𝐾𝑠𝑠∗ is constant independent of the specimen 

 
l/D 

 
l(mm) 

t=0.0625mm 
(2t/D=0.015625) 

t=0.25mm 
(2t/D=0.0625) 

t=1mm 
(2t/D=0.25) 

t=2mm 
(2t/D=0.5) 

𝜌𝜌 = 
0.25mm 
(2𝜌𝜌/D= 
0.0625) 

𝜌𝜌 = 
2mm 

(2𝜌𝜌/D= 
0.25) 

𝜌𝜌 = 
0.25mm 
(2𝜌𝜌/D= 
0.0625) 

𝜌𝜌 = 
2mm 

(2𝜌𝜌/D= 
0.25) 

𝜌𝜌 = 
0.25mm 
(2𝜌𝜌/D= 
0.0625) 

𝜌𝜌 =2mm 
(2𝜌𝜌/D= 
0.25) 

𝜌𝜌 = 
0.25mm 
(2𝜌𝜌/D= 
0.0625) 

𝜌𝜌 = 
2mm 

(2𝜌𝜌/D= 
0.25) 

𝐾𝐾𝑠𝑠 
all 1.944 1.295 2.697 1.518 3.553 1.615 3.185 1.420 

𝐾𝐾𝑠𝑠∗=𝐾𝐾𝑠𝑠 ∙ (𝐷𝐷/𝑑𝑑)2 
all 2.006 1.336 3.069 1.727 6.316 2.871 12.740 5.680 

𝐾𝐾𝑠𝑠�̇�𝜀 𝐾𝐾𝑠𝑠⁄  
5 40 0.992 1.012 1.105 1.092 1.569 1.581 2.992 2.921 

𝐾𝐾𝑠𝑠�̇�𝜀 𝐾𝐾𝑠𝑠∗⁄  
5 40 0.962 0.980 0.971 0.960 0.883 0.889 0.748 0.730 
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length, the strain rate concentration factor 𝐾𝐾𝑠𝑠�̇�𝜀 increases with the increasing specimen length l, 
and becomes constant. 
 
4. Relationship between the strain rate concentration factor and the stress concentration 
factor 
The specimen length l=40mm and the diameter D=8mm are assumed in this chapter. The 
results of the strain rate concentration factor 𝐾𝐾𝑠𝑠�̇�𝜀 are shown in Fig. 3 by varying the relative 
notch depth  2𝑡𝑡 𝐷𝐷⁄  for fixed relative notch radius 2ρ/D = 0.0625 and 2ρ/D = 0.5. Here,  
2ρ/D = 0.0625 corresponds to the notch radius ρ=0.25mm of the specimen used in the Charpy 
impact test. Also, ρ=2mm with D=8mm corresponds to the sharpest case of the notch root 
radius when high Si ductile cast iron is used as structural components [9]. As shown in 
Fig. 3(a), the strain rate concentration factor increases with increasing the relative notch depth. 
The same results are also indicated in Fig. 3(b). 

The net stress concentration factor 𝐾𝐾𝑠𝑠 is usually defined as 𝐾𝐾𝑠𝑠 = 𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚/𝜎𝜎𝑛𝑛𝑛𝑛𝑠𝑠 based on the 
net nominal stress 𝜎𝜎𝑛𝑛𝑛𝑛𝑠𝑠 = 4𝑃𝑃/𝜋𝜋𝑑𝑑2 . Since 𝜎𝜎𝑛𝑛𝑛𝑛𝑠𝑠 → ∞  as 2𝑡𝑡 𝐷𝐷⁄ → 1, 𝐾𝐾𝑠𝑠 → 1  as 2𝑡𝑡 𝐷𝐷⁄ → 1 . 
Under a fixed value of 2𝜌𝜌 𝐷𝐷⁄ , the results of 2𝑡𝑡 𝐷𝐷⁄ ＝0 correspond to the smooth specimen 
without notch.  

Figure 4 shows the ratio 𝐾𝐾𝑠𝑠�̇�𝜀/𝐾𝐾𝑠𝑠  vs. the relative notch depth 2𝑡𝑡 𝐷𝐷⁄ . When the relative 
notch depth 2𝑡𝑡 𝐷𝐷⁄ →1, the ratio 𝐾𝐾𝑠𝑠�̇�𝜀/𝐾𝐾𝑠𝑠 → ∞. Here, the net stress concentration factor 𝐾𝐾𝑠𝑠 is 
defined as equation (3) from the maximum stress 𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚 and the net nominal stress 𝜎𝜎𝑛𝑛𝑛𝑛𝑠𝑠 at the 
minimum cross section. When the relative notch depth 2𝑡𝑡 𝐷𝐷⁄ →1, the strain rate concentration 
factor 𝐾𝐾𝑠𝑠�̇�𝜀 → ∞  but the net stress concentration factor 𝐾𝐾𝑠𝑠 →1. Therefore, the gross stress 
concentration factor 𝐾𝐾𝑠𝑠∗  is defined as equation (4) from the maximum stress 𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚  and the 
gross tensile stress  𝜎𝜎𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 . When the relative notch depth 2𝑡𝑡 𝐷𝐷⁄ → 1, the strain rate 
concentration factor 𝐾𝐾𝑠𝑠∗ → ∞. 

Then, the relationship between the strain rate concentration factor 𝐾𝐾𝑠𝑠�̇�𝜀  and the gross 
stress concentration factor  𝐾𝐾𝑠𝑠∗ investigated. 

 

 
(a) Relationship between 𝐾𝐾𝑠𝑠�̇�𝜀 and .2t/D when 

l/D=5 (l=40mm, D=8mm) 
(b) Relationship between 𝐾𝐾𝑠𝑠 and .2t/D when 

l/D=5 (l=40mm, D=8mm) 
Fig. 3. 𝐾𝐾𝑠𝑠�̇�𝜀 vs.2t/D and 𝐾𝐾𝑠𝑠 vs.2t/D when l/D=5 (l=40mm, D=8mm) 

 
Figure 5 shows the relationship between the ratio 𝐾𝐾𝑠𝑠�̇�𝜀 /𝐾𝐾𝑠𝑠∗  and the relative notch 

depth 2𝑡𝑡 𝐷𝐷⁄ . It is found that the value of 𝐾𝐾𝑠𝑠�̇�𝜀/𝐾𝐾𝑠𝑠∗ is almost the same for 2𝜌𝜌 𝐷𝐷⁄  = 0.0625 and 
2𝜌𝜌 𝐷𝐷⁄  = 0.5 when the relative notch depth 2𝑡𝑡 𝐷𝐷⁄ ≤0.5. From Fig. 5, it is found that the value 
of 𝐾𝐾𝑠𝑠�̇�𝜀/𝐾𝐾𝑠𝑠∗ is insensitive to the notch root radius in the range of 2𝑡𝑡 𝐷𝐷⁄ ≤0.5. By using this fact, 
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the strain rate concentration factor 𝐾𝐾𝑠𝑠�̇�𝜀 can be estimated from the gross stress concentration 
factor  𝐾𝐾𝑠𝑠∗. 
 

            
Fig.4. Relationship between 𝐾𝐾𝑠𝑠�̇�𝜀 𝐾𝐾𝑠𝑠⁄  and 
 2𝑡𝑡 𝐷𝐷⁄  when l/D=5 (l=40mm, D=8mm) 

Fig.5. Relationship between 𝐾𝐾𝑠𝑠�̇�𝜀/𝐾𝐾𝑠𝑠∗ and  
2𝑡𝑡 𝐷𝐷⁄  when l/D=5 (l=40mm, D=8mm) 

 
5. Conclusions 
In this paper, the strain rate concentration at the notch root is considered in the high speed 
tensile test which is now replacing Charpy impact test. In particular, the relationship between 
the strain rate concentration factor and the stress concentration factor was investigated by 
varying the notch geometry and specimen length. After summarizing the results in Tables and 
Figures, the following conclusions were obtained. 
(1) The strain rate concentration factor 𝐾𝐾𝑠𝑠�̇�𝜀  was defined as the ratio of the strain rate in 

notched specimen to the strain rate in smooth specimen. Then, the maximum strain rate 𝜀𝜀̇ 
at the notch root can be obtained easily from the strain rate concentration factor. 

(2) Different from the stress concentration factor 𝐾𝐾𝑠𝑠 independent of the specimen length, the 
strain rate concentration factor 𝐾𝐾𝑠𝑠�̇�𝜀 increases with increasing the specimen length and then 
become constant as shown in Fig. 2.  

(3) It is found that the value of 𝐾𝐾𝑠𝑠�̇�𝜀/𝐾𝐾𝑠𝑠∗ is almost the same independent of the notch root 
radius when the relative notch depth 2𝑡𝑡 𝐷𝐷⁄ ≦0.5. By using this relationship, the strain rate 
concentration factor 𝐾𝐾𝑠𝑠�̇�𝜀  can be determined from the stress concentration factor 𝐾𝐾𝑠𝑠. 
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