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Abstract 

Unsuitable pH is a major limiting factor for all organisms, and a low pH can lead to organism 

death. Late embryogenesis abundant (LEA) peptides confer tolerance to abiotic stresses 

including salinity, drought, high and low temperature, and ultraviolet radiation same as the LEA 

proteins from which they originate. In this study, LEA peptides derived from group 3 LEA 

proteins of Polypedilum vanderplanki were used to enhance low pH tolerance. Recombinant 

Escherichia coli BL21 (DE3) cells expressing the five designed LEA peptides were grown at pH 

4, 3, and 2. The transformants showed higher growth capacity at low pH as compared to control 

cells. These results indicate that LEA peptide could prevent E. coli cell death under low pH 

conditions. 
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Introduction 

Abiotic or environmental stresses such as high soil salinity, extreme temperature, water 

deficiency, and unsuitable pH are major limiting factors for the growth and productivity of all 

living organisms. In most cases organisms have a well-defined range of pH that is tolerated, 

outside of which death due to osmoregulatory or respiratory failure can occur [1]. pH is a critical 

environmental factor that determines bacterial community composition in both soil [2] and water 

[3, 4]. Acidic soils limit crop production worldwide; approximately 50% of the world’s 

potentially arable soils are acidic, which is associated with toxic levels of aluminum (Al) and 

manganese (Mn) and suboptimal levels of phosphorous (P) [5]. 

Various biochemical and physiological strategies have been developed to help organisms 

better adapt to and tolerate biotic and abiotic stresses [6] including genetic manipulation [7] to 

enhance the accumulation of low-molecular-weight osmolytes and thus increase tolerance to 

water or salt stress [8]. Transcription of peptide- or protein-coding genes is activated as a stress 

response [8, 9]. Several studies have investigated the mechanisms of acid tolerance in plants [10] 

and microorganisms [11]. Late embryogenesis abundant (LEA) proteins were first identified in 

higher plants such as cotton and wheat [12, 13] and play important roles in the response to 

environmental stresses [14, 15], including protecting cellular structures from the effects of water 

loss and desiccation [16, 17] and proteins from stress-induced damage [18, 19]; ion sequestration 

or scavenging [20]; and refolding of denatured proteins [21]. They can also act as chaperones to 

resist cellular damage [22]. 

LEA proteins have been described not only throughout the plant kingdom but also in 

other organisms ranging from invertebrates to prokaryotes [23, 24]. The survival of aquatic 

larvae of Polypedilum vanderplanki in a near-dehydrated state under drought conditions in semi-
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arid areas is attributed to LEA proteins [16]. Although many studies have investigated the 

function of LEA proteins in conferring tolerance to environmental stresses such as salinity, 

drought, temperature, and radiation, there have been no reports on their contribution to low pH 

tolerance, despite the importance of pH for organism survival. Elucidating the role that these 

proteins play in acid tolerance can have applications in crop production, acid mine drainage 

bioremediation, biofuel production, and biofertilization.  

The acid resistance systems in Escherichia coli have been extensively studied, one of which is 

the glutamic acid dependent resistance (GDAR) system, which is the most effective mechanism 

of acid resistance; through this system, one molecule of H+ is consumed via decarboxylation of 

glutamate to γ-aminobutyric acid by glutamic acid decarboxylase (GadA/GadB) [25]. Both 

GadA and GadB are chemically identical isoforms of glutamate decarboxylase encoded by the 

gadA and gadB genes [26]. 

Our previous study showed that LEA peptide derived from LEA protein enhanced cell 

viability under heat, cold, salt stresses [27] and ultraviolet (UV) radiation [28]. In the present 

study, we investigated the contribution of mutated LEA peptides constructed in our earlier study 

[29] to acid tolerance in transformed Escherichia coli BL21 (DE3) in order to clarify their 

mechanism of action and their relationship to other well-known mechanisms of acid tolerance in 

bacteria, especially GDAR system, including their potential role as chaperones that protect 

cellular proteins. 
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Materials and methods 

Peptide design and plasmid construction 

Five different LEA peptides (LEA I, II, E, K, and S) were designed based on the 13-mer peptide 

MDAKDGTKEKAGE corresponding to LEA I in our previous study [29]. LEA II was generated 

by replacing the threonine at position 7 with leucine, while substitution of glycine at positions 6 

and 12 in LEA II with glutamic acid, lysine, and serine yielded LEA E, K, and S, respectively. 

Details on plasmid construction for expression of the peptides in E. coli BL21 (DE3) can be 

found in our previous report [30]. Details of LEA peptide amino acid sequences are shown in 

Table 1. 

 

Cell culture 

E. coli BL21 (DE3) were transformed with pRSF plasmid containing the different types of LEA 

peptides (I, II, E, K, and S) or an empty plasmid (negative control) by the heat-shock method. 

Transformants were plated on a Luria-Bertani (LB) agar plate supplemented with 50 µg/ml 

kanamycin and incubated overnight at 37°C and recombinants were subcultured at 37°C for 14 h 

in LB broth containing 50 µg/ml kanamycin. The cultures were diluted 100-fold with fresh LB 

medium and incubated at 37°C for 2–3 h until the optical density at 600 nm (OD600) was 0.5 

(mid-log phase). Peptide expression was induced by adding isopropylthio-D-galactoside (IPTG) 

to a final concentration of 0 and 0.1 mM, and the cultures were incubated at 37°C (120 rpm) for 

4 h. 

 

Tolerance and growth capacity of E. coli under low pH stress 
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After 4 h, E. coli cells were harvested by centrifugation for 10 min at 4000 rpm. The supernatant 

was discarded, and the cell pellet was resuspended in phosphate-buffered saline (PBS; 10-fold 

dilution). A 2-ml volume of each resuspended pellet was inoculated into 50 ml LB medium with 

different pH (4 and 7 as controls), followed by incubation at 37°C and 160 rpm for 2 h. The 

cultures were serially diluted and 100 µl of the last two dilutions were used to inoculate LB agar 

plates supplemented with kanamycin 50 µg/ml. The plates were incubated at 37°C for 14 h and 

the number of colony-forming units (CFU) was recorded, with the mean value for each culture 

calculated to identify the most effective LEA peptide for further study. M9 minimal medium 

with different pH (4 and 7) was also used instead of LB medium, where 50 ml of M9 medium 

supplemented with 50 µg/ml kanamycin was inoculated with 2 ml of each resuspended pellet 

followed by incubation at 37°C and 160 rpm for 2 h. 

 

Maximum acid tolerance capacity 

The effect of the selected LEA on the growth capacity of E. coli BL21 (DE3) was investigated at 

different pH values (2, 3, and 4) in addition to pH 7 (control). Other factors including the type of 

LEA peptide (LEA K), IPTG concentration (0.1 mM), and culture medium (LB) were fixed. The 

number of CFU at each pH was recorded and the mean number was calculated. 

 

Effect of IPTG concentration on acid tolerance 

IPTG at different concentrations (0.0, 0.01, 0.1, 0.5, and 1 mM) was added to the cultures at mid-

log phase (OD600 = 0.5). Other factors including the type of LEA peptide (LEA K), pH (4), and 

medium (LB) were fixed. The number of CFU at each pH was recorded and the mean number 

was calculated. 
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Cell viability assay 

Cell viability was evaluated with a colorimetric assay using 96-well clear flat-bottomed plates 

(Nunclon; Thermo Fisher Scientific, Waltham, MA, USA), water-soluble tetrazolium (WST) 

reagent, and dimethyl sulfoxide (DMSO) (Microbial Viability Assay Kit-WST; Dojindo 

Laboratories, Kumamoto, Japan). Each plate included blanks, controls, or acid-treated 

recombinant E. coli expressing LEA K induced with different concentrations of IPTG (0, 0.01, 

0.1, 0.5, and 1 mM). The cells were cultured in LB broth at pH 4 for 2 h, with samples prepared 

in triplicate. The cell suspension (180 µl) was added to the plate; 20 µl WST (9:1 WST 

reagent:DMSO) was then added, followed by incubation for 1 h. The absorbance at 450 nm was 

measured on a microplate reader (PerkinElmer, Waltham, MA, USA), with filters at a maximum 

wavelength of 460 nm. Cytotoxicity was determined as percent cell viability (relative to the 

WST-DMSO reduction) compared to the control. 

 

Total RNA extraction 

Total RNA was extracted from five samples which included LEA K that was induced with 

different concentrations of IPTG (0.01, 0.1, 0.5, 1 mM) and LEA K without induction utilized 

the control (0 mM IPTG) grown for 2 h in 50 ml LB broth (pH 4) using RNAprotect Bacteria 

Reagent (Qiagen, USA) for stabilization of cultures, then purification of RNA was performed 

using RNeasy Mini column (Qiagen, USA) following the manufacturer's instructions. After 

extraction, the purified RNA was quantified spectrophotometrically using Nano-drop (Thermo 

Scientific, USA), and analyzed on 1% agarose gel. 
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Quantification of LEA K expression levels after induction with different concentrations of IPTG 

at pH4 using real-time PCR 

The total RNA extracted from the samples that were induced with different concentrations of 

IPTG (0, 0.01, 0.1, 0.5, 1 mM) were used as a template in performing the One Step Reaction, 

where both reverse transcription and real-time PCR were performed in one step using One Step 

TB Green PrimeScript PLUS RT-PCR Kit (Takara, Japan). The reaction was performed in 20 µl 

scale, containing 10 µl (2x One Step TB Green RT-PCR Buffer 4), 1.2 µl (Takara Ex Taq HS 

Mix), 0.4 µl (PrimeScript PLUS RTase Mix), 0.8 µl of 10 µM of each primer, 0.4 µl (ROX 

Reference Dye 50x), 2 µl of template RNA, and 4.4 µl RNase free dH2O. The reaction was 

performed using the Step One real-time PCR system (Applied Biosystems). The sequence of 

specific primers designed for LEA K was F-LEA K, R-T7 ter and F-16s and R-16s for 16S 

rRNA as endogenous control are depicted in Table 2. The threshold cycle (Ct) for unknown 

samples were determined by using the Step One software (Applied Biosystems), and the fold-

change levels were calculated based on the 2-ΔΔCt method [31, 32].  

 

Quantification of gad A/B gene expression using real-time PCR 

The extracted total RNA from two samples (0 mM and 0.1 mM) were used as a template for the 

One Step Reaction as discussed before. The sequences of primers sets for F-GAD A/B, R-Gad 

A/B, for quantification of gad a/b mRNA, and the same primer set with 16srRNA was used as 

the endogenous control (Table 2). The 2-ΔΔCt method was used, as mentioned above. 

Statistical analysis 

All data obtained were evaluated by statistical analysis with the CoStat computer program V 

6.303 (2004) [33]. Tukey-HSD LSR at a significance level of 5% was used to differentiate 
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between the means, in case of comparing between more than two groups, otherwise significance 

evaluation was assessed based on the t-test. 

 

Results and Discussion  

LEA peptide has been widely studied for its role in conferring tolerance to abiotic stresses 

including heat [27, 34], cold [35–37], drought [38, 39], osmosis [40, 41], heavy metal [34], 

desiccation [42], and UV radiation [28]. In the present study, we evaluated the capacity of five 

13-mer LEA peptides derived from group 3 LEA proteins of P. vanderplanki to confer tolerance 

to low pH stress. We previously reported that LEA I maintains its function under salt, heat, cold 

[27], and UV radiation [28] and can enhance the expression of target proteins [30]. 

 

Effect of LEA peptide expression in E. coli on acidic pH tolerance 

E.coli cells expressing the five types of LEA peptides grown at pH4 for 2h, where the expression 

was induced with 0.1 mM IPTG, showed enhancement in growth in the rank order of LEA K > 

LEA S > LEA E > LEA II > LEA I (Fig. 1). 

LEA K was selected for further studies. The results obtained were statistically evaluated via 

conducting a factorial experiment investigating the effect of different types of LEA peptides as 

the main factor, the absence or presence of the IPTG inducer as the second factor, and the 

interaction between both factors. Results showed that there was a significant difference between 

LEA K and LEA (E, II, I) respectively. While no significant difference was found for LEA S, 

there was a significant difference between the absence and presence of induction. The presence 

of five basic amino acids (lysine) in the structure of LEA K may play a vital role in tolerating 

acid, which is reflected by the higher growth capacity of E. coli BL21 (DE3) transformed with 
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LEA K compared with other tested LEA peptides at pH4. We used the empty vector pRSF-duet 

1 as the negative control in this experiment, which uses a T7 promoter. By comparing the growth 

capacity of negative control and positive control cultures (containing LEA peptides but without 

IPTG induction), the positive controls showed higher growth capacities, although positive 

controls showed variable growth capacities which may be attributed to leaky expression from T7 

promoter in pRSF vector through a phenomenon known as leakage [43], where there is a low 

level of recombinant protein expression from the T7 promoter in the pRSF-duet 1 plasmid even 

before induction.  

 

Effect of LEA K expression in E. coli on acidic pH tolerance 

LEA K expression was induced by adding 0.1 mM IPTG, and after harvesting cells were 

inoculated in LB broth with different pH (2, 3, 4, and 7) with and without IPTG. The CFU counts 

showed that cultures grown at pH 7 had the highest growth capacity, while LEA K expression 

enhanced the growth of E. coli BL21 at lower pH values (pH 4 and 3) compared to cultures 

without IPTG induction. No growth was observed at pH 2 regardless of IPTG induction (Fig. 

2A). To determine whether the nutrient content of the medium influenced the low pH tolerance 

of LEA K-expressing cells, we performed experiments using M9 minimal medium at pH 4 and 7, 

similar results were obtained using M9 minimal medium at pH 4, but at pH 7 LEA K expression 

enhanced growth capacity as compared to cultures without IPTG induction (Fig. 2B), however 

cells grown in LB at pH 7 without induction had higher growth than those with induction 

suggesting that M9 medium does not support optimal E. coli BL21 (DE3) growth as was 

mentioned by others [44]. LEA K was an effective tool in preventing the cell death at low pH, 
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but only above the threshold level (pH 3), as it may prevent the aggregation of cellular proteins 

at low pH and thus prevent cell death; however, only above a threshold pH of 3. 

 

Effect of IPTG concentration on LEA K expression and acid tolerance 

LEA K expression was induced at different concentrations of IPTG (0.0, 0.01, 0.1, 0.5, and 1 

mM) using LB broth at pH 4 stress. Results showed that the rank order of IPTG concentration 

yielding the highest CFU counts was 0.1 > 0.01 > 0.5 > 1 > 0.0 mM (Fig. 2C).  There was a 

significant difference between all of the induced samples compared to those without induction (0 

mM). Furthermore, there was no significance found between samples induced with different 

concentrations of IPTG. We previously observed that E. coli growth and viability increased in an 

IPTG concentration-dependent manner (0–1 mM) [27, 28]; however, here we found that 

tolerance to low pH was not enhanced by increasing IPTG concentration, with maximal CFU and 

viability observed at 0.1 mM IPTG. Higher IPTG concentrations may increase LEA K 

expression to toxic levels and may also be directly lethal to E. coli BL21 (DE3) [45]. LEA K 

contain five basic amino acids (lysine) with positive charges and the increases observed in the 

LEA K expression levels corresponded to elevation of the IPTG concentration (from 0.1 mM to 

1 mM) could have affected and disrupted the cell membrane due to attachment between the 

positively charged amino acids and the negatively charged cell membrane (phospholipid) as 

mentioned by Ginsberg et al., who stated the role of  the synthetic poly-basic amino acids was to 

damage the cell membrane leading to bacterial cell death [46]. 

 

 Effect of LEA K expression on the viability of E. coli at pH 4 
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LEA K expression was induced with different concentrations of IPTG (0–1 mM), in LB medium 

at pH 4. Cell viability was evaluated with the WST assay for 2 × 104 cells/well with a 2%–5% 

coefficient of variation among replicate wells. Cell viability was increased as a function of IPTG 

concentration, with maximal growth observed at 0.1 mM IPTG (Fig. 3). Cells expressing LEA K 

showed increased viability at pH 4, indicating that LEA peptides and specifically, LEA K confer 

low pH tolerance to E. coli. Increasing IPTG concentration from 0.1 to 1 mM did not further 

enhance cell viability. 

 

Quantification of LEA K expression levels after induction with different concentrations of IPTG 

at pH4 using real-time PCR 

The expression level of LEA K in samples induced by different concentrations of IPTG (0–1 

mM) were quantified using Real-Time PCR, 0 mM represented the control, and the endogenous 

control used is 16S rRNA as shown in Table 3. Where the expression levels of LEA K showed 

that the elevated levels were directly correlated to increases in the IPTG concentration. However, 

differences in the expression levels between each IPTG concentration were exiguous, which 

might have resulted from the short lifetime, small size, and instability of the transcribed mRNA. 

  

Quantification of gad A/B gene expression using real-time PCR 

The change in gad A/B gene (glutamic acid decarboxylase) expression levels were determined in 

both LEA K induced with 0.1 mM IPTG and LEA K without induction as control in pH 4, to 

determine whether the acid tolerance obtained using LEA K is related to GDAR system or not. 

As shown in Table 4 expression levels of gad A/B in comparison with endogenous control (16S 

rRNA) did not change in both the samples. This result indicates that the low pH tolerance 
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through expression of LEA K was not related with the GDAR system. These results are in 

agreement with those of Woo et al [47] who stated that GDAR system is not active in E. coli 

BL21 but active in E. coli K-12 MG1655. DNA sequence of the genes encoding the key enzymes 

of GDAR system (i.e. GadA/B, GadC) were not different in these strains; however, E.coli BL21 

lacks RcsB (an essential component in GDAR regulation through forming heterodimer with 

GadE) and some small RNAs such as DsrA that are involved in stimulation of translation of 

RpoS, which is involved in activation of GadE using the GadXW circuit [48, 49]. 

 

E. coli BL21 (DE3) is widely used as a host strain for protein expression and purification 

[50]. Various strains of microorganisms have been developed that exhibit increased tolerance to 

fermentation conditions [51]; low pH is one of the most restrictive of these conditions that must 

be overcome for large-scale microbial bioprocessing. Moreover, acidification leads to a decrease 

in metabolic enzymes activity [52] and protein unfolding [53]. The results of our study provide a 

new method for improving tolerance to low pH stressor during fermentation, however this effect 

is not related to GDAR system. Given that LEA proteins can stabilize enzyme complexes and 

cell membrane structure [54, 55] by stimulating protein production [29], we speculate that LEA 

peptides can function as molecular shields or chaperones that prevent cellular protein 

aggregation and damage, and our hypothesis is supported by results of a previous study [56], 

which showed that specific periplasmic chaperones, HdeA and HdeB, play an important role in 

protection of periplasmic and membrane proteins from damage caused by low pH. 

 

Conclusions 
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LEA peptides especially LEA K confer acid tolerance in E.coli BL21 (DE3) but only 

above the threshold level (pH3), however the tolerance was not enhanced by increasing the 

expression level of LEA K in correspondence to IPTG concentration elevation with maximal 

tolerance capacity at 0.1 mM IPTG. The mechanism of low pH tolerance via LEA K expression 

is unclear however we hypothesized that LEA peptides can function as molecular shields or 

chaperones preventing cellular proteins from damage, hence further studies should be conducted 

to detect the mechanism involved in the acquired tolerance.  
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Figure legends 

 

Figure 1  Growth capacity of transformed E. coli BL21 (DE3) expressing LEA peptides (I, II, 

K, E, and S) in LB medium at pH 4. Expression was induced with 0.1 mM IPTG. Factorial 

experiment included Two Way ANOVA with completely Randomized (F-test), followed by 

multiple comparisons based on the Tukey-HSD at the 5% level, values followed by the same 

letter are not significantly different from each other; small letters represent the main factor 

(different types of LEA peptides) comparisons, there was a significant difference between the 

absence and presence of induction (second factor) data not shown. 

 

Figure 2  (A) Growth capacity of E. coli BL21 (DE3) expressing LEA K in LB medium at 

different pH (2, 3, 4, and 7). Expression was induced with 0.1 mM IPTG. (B) Growth capacity of 

E. coli BL21 (DE3) expressing LEA K at different pH (4 and 7) in M9 minimal medium with 0.1 

mM IPTG used as an inducer. For (A) and (B) *P < 0.05 vs. control (0 mM IPTG); †not 

significant (t test). (C) Effect of IPTG concentration on acid tolerance was conferred by LEA K 

at pH 4 in LB medium. (One Way ANOVA Completely Randomized (F-test) was followed by 

multiple comparisons based on Tukey-HSD at 5% level, values followed by the same letter do 

not significantly differ from each other. 

 

Figure 3  Viability of E. coli BL21 (DE3) expressing LEA K peptide induced with different 

concentrations of IPTG and cultured for 2 h in LB medium at pH 4. (One Way ANOVA 

Completely Randomized (F-test) followed by multiple comparisons based on Tukey-HSD at the 

5% level, values followed by the same letter do not significantly differ from each other. 
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Table 1 Amino acid sequences of designed LEA peptides used in this study 

 

LEA peptide Amino acid sequence 

LEA I MDAKDGTKEKAGE 

LEA II MDAKDGLKEKAGE 

LEA E MDAKDELKEKAEE 

LEA K MDAKDKLKEKAKE 

LEA S MDAKDSLKEKASE 
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Table 2 Sequences of primer sets designed for QPCR 

Primer code Sequence 

(1) F-LEA K 5ʹ –ATGGATGCGAAAGACAAACTG- 3ʹ 

(2) R-T7 ter 5ʹ – TGCTAGTTATTGCTCAGCGG- 3ʹ 

(3) F-GAD A/B 5ʹ- CTCGTCAGAACCTAGCCA- 3ʹ 

(4) R-Gad A/B 5ʹ –TCGGCAACCATATTTACGCA- 3ʹ 

(5) F-16s 5ʹ –TGGATCAGAATGCCACGG- 3ʹ 

(6) R-16s 5ʹ –ACCTTGTTACGACTTCACC- 3ʹ 
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Table 3 LEA K expression level after induction with different concentrations of IPTG in pH4 using 

real-time PCR 

Sample 
Ct LEA K 

Average 

Ct 16S rRNA 

Average 
ΔCt ΔΔCt 

LEA K expression 

fold change  

2ˆ- ΔΔCt 

(Control) 

LEA K  

0 mM IPTG 

18.62±0.18 8.01±0.08 10.61 - 2ˆ0 = 1.00 

LEA K  

0.01 mM IPTG 

 

14.90±0.21 

 

8.36±0.11 6.54 -4.07 2ˆ4.07 = 16.80 

LEA K  

0.1 mM IPTG 
15.30±0.24 9.02±0.10 6.27 -4.34 2ˆ4.34 = 20.25 

LEA K  

0.5 mM IPTG 
13.78±0.32 8.03±0.16 5.75 -4.86 2ˆ4.86 = 29.04 

LEA K  

1 mM IPTG 
13.55±0.20 7.94±0.19 5.61 -5.00 2ˆ5.00 = 32.00 
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Table 4 gad A/B gene expression fold change 

Sample 
Ct gad a/b 

Average 

Ct 16S rRNA 

Average 
ΔCt ΔΔCt 

gad a/b expression 

fold change  

2ˆ- ΔΔCt 

(Control) 

LEA K  

0 mM IPTG 

29.35±0.40 12.93±2.32 16.42 - 2ˆ0 = 1.00 

LEA K  

0.1 mM IPTG 

 

31.66±0.31 

 

14.47±0.05 17.17 0.75 2ˆ-0.75= 0.59 
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