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ON THE THEORY OF BETA-RADIOACTIVITY IV 
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Synopsis 
The consequences of alignment of nuclei, which show allowed /~-transi- 

tions, are investigated. A general fdrmula is derived for the transition 
probability of an allowed/~-transition, in which the direction of emission of 
electron and neutrino, the polarization of the electron and the orientation 
of the nuclear spin are taken into account. The calculations have been made 
for a Hamiltonian for the/~-interaction, which is an arbitrary "mixture" of 
the five invariants of the Dirac theory. The influence of the nuclear 
charge has, however, been neglected. From this formula the following results 
are immediately obtained: 

The angular distribution of the/~-radiation remains spherically symmetric 
if the nuclei are aligned, so that the alignment cannot be detected in this 
way. 

The emitted p-radiation is polarized and the degree of polarization 
follows from the general formula. If we take the special case that the inter- 
action Harniltonian is of the tensor or the axial vector type and if the p-rays 
are emitted perpendicular to the direction of the nuclear spin of completely 
aligned nuclei with nuclear spin/'i, the degree of polarization is given by: 
a) I/E, if j i =  i/ + 1, b) l /E(i  i + 1), ifi~ = j/,c) jdE(i~ + l),ifi~ = i / - -  1. 
(E is the relativistic energy of the electrons, E ~ 1 for small kinetic ener- 
gies; jl gives the spin of the final nucleus). 

§ 1. Introduct ion.  Recen t ly  G o r t e r s) and  R o s e 8) have  in- 
dicated a m e t h o d  b y  which it  mus t  be possible wi th  the  present  
exper imenta l  means,  to obta in  a considerable a l ignment  for cer ta in  
nuclei. The  nuclei mus t  be conta ined  in pa r amagne t i c  ions; the 
a l ignment  Js ob ta ined  wi th  ve ry  low t empera tu re s  and  med ium 
magnet ic  fields. In  spite of several  a t t e m p t s  ~), this a l ignment  has  

*) Formulae from preceding papers i), 2), s) of this series will be quoted as, say, II (12). 
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not yet  been shown by  nuclear physical experiments. If the align- 
ment of radioactive nuclei could be detected b y  methods of nuclear 
physics, it might be possible t o  measure the nuclear magnetic 
moment of very small quantities of these nuclei, by  studying the  
effect as a function of temperature or by  destroying the alignment 
with a radiofrequency field. 

In this paperwe examine the consequences of Such an alignment of 
radioactive nuclei which show allowed fi-transitions. I t  will be shown 
that  the fl-rays emitted by  aligned nuclei are polarized (5 7, prelimi- 
nary note 4)). Concerning the polarization of electron beams certain 
notions developed in the two preceding papers are used 3), 3). The 
calculations are developed in 55 2-5. In 5 6 we discuss the results of 
§ 5 in relation to a symmetry principle fo~ the Hamiltonian for the 
~-interaction 1). 

§ 2. The method o~ calculation o t the transition probabilities, taking 
i~to account: the direction O] emission o/ electron and neutrino, the pola- 
rization o/ the electron and the orientation o/ the nuclear spin. The 
calculation of this transition probability can be made along the same 
".lines as the calculation of P(E, p, q) in 1 5 2; we shah keep the same 
notations. However, we now take into account the polarization of 
the electron. We assume that the spin of the emitted electron has an 
arbitrary direction { (determining the polarization according to 
II  (11) and II  (12)). We again take an arbitrary "mixture" of the  
five invariants of the Dirac theory for the Hamiltonian for the fl- 
mteraction. Further  we shall neglect the influence of the nuclear 
charge and w e  shall restrict ourselves to allowed transitions. The 
transition probability to a state in which the electron has an energy 
between E and E + dE, the momenta p and q of electron and neu- 
trino have directions within do), and do),, respectively, while the 
polarization of the electron is specified b y  {, is given by  

P(E, p, q, {) dEdo),do), = (2z~) --s Z~ tHai 2 pEq 2 dEdw,do) v. (1) 

The difference with I (7) is only, that  in this formula the sum for 
both states of polarization of the electron had to be taken. The 
orientation of the nucleus is contained in the nuclear wave functions, 
occurring in [H~[ 2 and is not explicitly expressed in P(E, p, q, ~). 
In the same way as in 1 5 2 we find the following formula for Zv[H~[ z 
in case of/~--emission . 

Z. IHBI u = G 2 Zgk,,= ~ C~C, ( f A  k) (fA~) * Tr [AkD.A*P~(g)], (2) 
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where D v and P,({) are matrices defined by the following equations, 
which give their elements 

(Dv)~V = Z , ~  9~%,,. (3) 

[P,(l;)]~,p = q* ~b~,. (4) 

(2) differs from I (26) only in the respect that  D, was replaced by  
P,({). This means a complication, as it will be seen tha t  the expres- 
sion for P,({) is more complicated than  D~. In the next  section the  
expression for P,  ({) is given. In § 4 we discuss how certain vectors 
and a tensor, which can be formed with the nuclear matr ix elements 
and which appear in the result for P(E, p, q, ~), depend on the 
orientation of the nuclei. After these preparations the complete 
result for P(E, p, .q, ~) can be deduced (in § 5). In case of fl+-emis- 
sion (2) must  be replaced by (cf. I (26) and I (29)) 

Zv IH#[ 2 = G2 zgk,,= ~ (~k(7;z (fAk) * (fA') Tr [AkOvA'P,(~)] (5) 

Except  for this change the calculations are analogous for fl+ and 
ft--emission. 

§ 3. Calculation o/the matrices P+({) and P--(g). By P+(g) and 
P- (g)  we mean the matrices defined by (4) for the positive energy 
solution I(12) and the negative energy solution I(I 4) respectively. 
The spi n orientation for these solutions is determined by 11(I 1) and 
II(12), from which we get 

A*A = ½ ( l + c o s x )  
B*B = ½ (1 -- cos ~¢) 
A*B = ½ sin g exp (ico) 
B*A = ½ sin Z exp (--  ioJ) 

- - 3 ( 1  + ¢ , ) ,  
= ½ (1 - -¢ , ) ,  
= ½ (¢, + i¢,), 
= ½ ( ¢ , -  i(,).  

(6) 

We shall give the results for the matrices P(~) by writing them as 
linear combinations of the 16 matrices of the Dirac-theory (cf. I(2); 
the matrices of (7) are all hermitian; 7s = - -  ia, aya.) 

#, 1, ~, #`', i#~, `', rs, i#rs. (7) 

The expressions can be obtained by calculating explicitly the  
elements of the matrices according to (4) and by application of (6). 
We obtain for P+ (~) (for notations cf. the appendix) 

P+(~) = ~ {1--(re~E)# + ~. [(m/E),,--#`'] + (lIE) [ - - p . ~ -  
--~'5(P" ~)+ i#g . (p  ,-~ ~)]+[I/E(E+m)] [(pp):  (g`')] (fl+l)}. (8) 
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We write this resUlt in another form 

P +  (~) = ¼ [K+(/5)/5 + K + (I) 1 +  K + (, ,) .  ~ + K+(fla) • /5 .  + 

+ K+(i/set), (i/5¢t) + K+(.)  • .  + K+(ys) Ys] (9) 
with 

K +  (/5) = - -  ( r e ~ E L  

K+(1) " = 1, 
K+(a)  = - - ( p / E ) ,  
K+(/5,) = - - {  + [I/E(E + m)] (pp).  {, (10) 
K+(i/sa) = -  ( l /E ) (p  / -  ~), 
K + ( . )  = (re~E) ~ + [1/E(E + m)] ( p p ) .  {, 
K+(Vs) = - - ( I / E )  (p-g) .  

Analogously we find with the negative,energy solutions 

P-(~)  = •{1+ (m/E)/5--~. [(m/E). + / 5 . ]  + (I/E) I - - p -  tt + 

+Ys(P " ~) + / f i g .  ( pAa) ]  +[1/E(E+m)] [(pp) : (~e)] (/5--1)}. (11) 

We can write this resUlt also in the form analogous to (9) 

P- ({)  = ¼ [K-(/5)/5 + K-(1)I  + K - ( a ) .  tt + K-(/S.). /50 + 

+ K-(i/5~) • (i/set) + K - ( , )  • a + K -  (Ys) Ys] (12) 
with 

K-(/5) = (m/E), 
K - ( l )  = l, 
K--(Qt) = - -  (p/E), 
K-(/S.) = --~j  + [1/E(E + m)] (pp)-~,  (13) 

= - -  ( l / E )  ( p  A 

K - ( . )  = - -  (m/E) ~- -  [1/E(E + m)] (pp) -  ~, 
K-(ys) = ( l / E ) ( p .  ~). 

If we consider the matrices P(~) in further calcUlations for electrons, 
we can put m = m, = l if we use relativistic units (cf. I § 2). 

§ 4. Expressions containing the nuclear matrix elements and the 
orientation o/ the nuclei. We consider in this section relations 
between nuclear matrix elements and their consequences for vectors 
or tensors that  can be formed with these matrix elements. The 
general expressions for nuclear matrix elements are given by 1(18) 
and 1(19). The wave functions ~ and ~ t o f  the initial and final 
nucleus, occurring in these expressions, are characterized by the 
nuclear spin ~" and the magnetic quantum number m belonging to it; 
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if 7. :# 0 there will be degeneration : m can take 27" + 1 values. For ~/  
we can take wave functions 

~,  (7",, m,) (14) 

with a definite value of m i, or also a linear combination 

• ', = x . ,  c(m,) (£, ,n,). ( is)  

In this section we consider especially the nuclear matrix elements 
with the operators l and a, for which the selection rules are 

I f  112, AT'=0, A m = 0 ,  no change ofparity~ (16) 
I f , l  2, zlT"=0, -4- 1 (no 0-+ 0), Am = 0, ~ l, no change of parityJ 

Otherwise the matrix elements are = 0. The relative magnitude of 
the matrix elements 

fax ,  fay ,  f a r  (17) 

is given in table 1 8). 

Relative magni tude  of the matr ix  e lements fax , f f fy , fa  z. The matr ix  elements tha t  do not occur in the table 
are 0; a, b and c are constants .  

[ h=it+l (fi > l) h=it(h>½, o-->o forbidden) [ ]~=]'/--1 (h > 0) 
ra/=mi+ ltcrz+it~y]m,) I aA/(ji--mi)(ii--ml--:l) bV( j i+mi+ 1)(i l--mi) ~ m / + 2 )  (ji+mi+ 1} 

mf=mi--llax---iaylmi) --a~/(ji+mi) ( j i+mt--I)  b3/(ji+mi) (ji--mi+ I) : cV(j i - -mi+ 2) (ji--rai+,!] 

ml=mil°zlm~) I a ~/ (~i + rai) (j,~mi) b m i c ~/ (j, + mi + I) (]i--mi +'l l 

The expression 

I f  a[ = = I f  a,[ 2 + ] f  a, I 2 + I f  a, I 2 (18) 

which is a scalar occurs, e.g., in I(28) and I(30), formulae that give 
transition probabilities. (In this expression with the nuclear matrix 
elements the sum Zm t must be taken, cf. 1(32)). 

However, in the results for transition probabilities taking the 
orientation of the nucleus into account, also other covariant expres- 
sions (scalars, vectors, tensors, etc.) occur, which can be formed with 
the nuclear matrix elements (I 7) (We must also take the sum Era/in 
these expressions). According to table I all these expressions can be 
characterized by one single parameter depending on the nuclear 
wave functions, e.g., the scalar quant i ty  (18). They depend further 
only on quantities that  describe the orientation of the nucleus, e.g., 
m i without referring directly to the exact form of the wave functions 
~i and ~t" The covariant, real quantities (of "valence" 0, 1 and 2), 
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which are independent  of an a rb i t ra ry  phase factor  in the wave  func- 
tions Wi and W! and which can be formed from (17), are 

a) the scalar I f a l  2 according to (18), 
b) a vector  (ant isymmetr ic  tensor) defined by  

i j k 
~.^ ---. i ( f a )  1, (f~)*----i f a  x f a y  f a: , (19) 

(fax)* (fay)* ( f  a,)* 

c) a symmetr ic  tensor  defined by  

~-=½ [ ( f a )  (fa)*+c.c.]---- 

I i faxj2 ½[(fax)*(fay)+c.c.] 
½[(fa,)* (fay)+c.c.] 1.fayl 2 , 
½[(fax)*(fa,)+c.c.  ] ½[(fay)* (fa,)+c.c.] 

The expressions (18), (19) and (20) must  be calculated if the initial 
nuclei have a certain "or ienta t ion" .  If  ~i  is given as Ti(ii, m~) with 
a definite m~, a certain direction in space ~] is related to this mo as m; 
determines the component  of the angular m o m e n t u m  in some direc- 
tion, which we call B. In this case we shall say the nuclei are polarized 
with the axis o/polarization ~. (We take a unit vector  for B ; often ~] is 
chosen as the z-direction). In general the "or ienta t ion"  of an 
"ensemble"  of nuclei cannot  be described by  a single wave function, 
bu t  must  be described b y  a densi ty  matr ix  0 with the elements 0ram' 
(cf., e.g., 9)). In this general case we define the axis o/polarization as 
follows: if the densi ty  matr ix  e is in diagonal form for the fundamen-  
tal  s tates W(I", m) and if m is related to a direction ~], then B is called 
the axis of polarization of the nuclei described by  Q. We write in 
this case 

[J.,~,l = ~l (21) 

With  these fundamenta l  states,  0 has the form 

e..,., = P ,  6,,,,,,. (22) 

The P,, are normalized in such a way  that  

E,. P,.  = I (23) 

T h e  case t h a t  the  nuc le i  are descr ibed b y  a single wave  f unc t i on  
~i(/'i, mi) is a special case of (22), for which we can put  

1, if m = m~. (24) 
P ~ =  0, if m :#m~. 

-~ [(fax)* (fa:)-+-c.c.]] 
½[(fay)* (fa:)+c.c.] . (20) 

lfo, 12 
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The case of r andom orientat ion of the  nuclei is described b y  lo) 

P m =  P,  independent  of m. (25) 

As a measure  for the "a l ignment"  of the nuclei in the direction ~ a 
q u a n t i t y / ~  the "degree o/polarizat ion o[ the nuclei", m a y  be used 
which is defined b y  

[~ = Z m (m/i) P~ (26) 

and  which has the proper ty  

- -1  < h , <  1- (27) 
(Remark: I1.1, if taken for electrons (/" = ½), is the degree of pola- 
rization 11(7)). 

For  the calculation of ~-^ (19) for the  case (24) it is easy to take  a 
special orientat ion of the.coordinate sys tem (e.g., 11 = k) and to use 
the  formula 

2 i [ ( f  a,,)* ( fay) - -c .c . ]  = If(a,, + icr,)l 2 -  [ f (a , , - - /a , , ) l  2. (28) 

In  this w a y  we easily find, using table I 

Y-^ (m,) = A A (m,)I./ 'e I~,l (29) 

m,/i, , if  i ,  = it + 1 (i,  > 1). 
with  A^(m,) : m,/i,(i, + 1), if i, = it (i, > ½). (30) 

- - m , / ( / ' , + l ) ,  if ii = / ' t - -  1 (ii/> 0). 

Fo r  the general case (22), (19) becomes 

Z A = Zmi P,,,i ZA(mi) = A ^ l f o l  2 ~q (31) 

wi th  A ^ = Z m P,.~A ^ (mi). (32) 

I t  is easily shown that  

IA^I < 1. (33) 

For  random orientat ion (25) we get 

Y-  ̂ = 0 (A A = 0). (34) 

Analogously we calculate Y- (20) for the case (24). We again take  
a special orientat ion of the coordinate system, ~l = k. We further  
use the e lementary  formula 

2i[(f~x)* (f~y) + c.c.] = 
= [ f (a , , - - i%)]*  [ f (ax  + ia~)] - -  [f(a,, + i%)]*[ f (a , - - i%)] .  (35) 

If  we make  use of table I, it is clear tha t  the expression (35) is equal 
to  0 for  every k~(/" i, ms), because for a certain rn~ and m t either 
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f (a x . - i % ) ,  either f (a~ + i%), either bo th  are equal to O. We also 
have [(fa~)* ( fa , )  + c.c.] ---- 0 and [(fax)* ( fa,)  + c.c.] = 0 for 
every  Ws(1"s, ms), because we see direct ly from table I tha t  for a 
definite ms and m t, again at least one factor  is 0. Hence  all off-dia- 
gonal elements of ~- are 0. This is not  t rue for any  position of the  
coordinate system, namely  not, if the direction to which m s is 
related, is not  an axis of the  coordinate system. For  the posit i6n 
*i = k, ~- takes  the  shape 

[ I/axl 2 o o [ 
Z(m~) = 0 Ifa~,l = 0 = ½ I/,,I = [1 + A, (m,) N] (36} 

0 0 If~,l = ['0 o!] 
with  N = .~ . (37} 

0 0 
For  A,(ms) we have 

A,(ms) = {2 I f  a,[ 2 - -  [ [ fax[  2 + [fay[2J}/[f a [2 = 
= {2 [ fa , [2 - -½[[ f (ax  + ia~)[ 2 + [f(ax--iay)[2]}/[fg[ 2. (38) 

Hence,  with the aid of table  I we find 

[/'s(/'s+l)--3m~]//'s(2/'s--l) , i f i ~ = i l + l ( i s >  1). 

A,(ms)= --[is(is+l)--3m~]/i,(i,+l) , i f / ' s = f i ( i ~ > ½ ) .  (39) 
[/'s(/'~+l)--3m~]/(/'s+ 1) (2/'~+3), if i~=/'r--1 (/'s> 0). 

For the general case (22), we get for 

Z---- Y.sP.sZ (ms) = ½ I/al 2 [I + A. N] (40) 

with As = Z,,sP,,,sAs(~s). (41) 

From (39) and (41), it can be concluded tha t  

- -  i < A, < 2. (52) 
For random orientat ion (25) we get 

r. = ½ I f a l  2 (A, = 0). (43) 

In (37) N has been given in the coordinate sys tem in which Yi = k. 
For a different direction of ~, N of course gets a shape different from 
(37). For  an arbi t rary  ~1 we can write  

N = ½ [3(~) -- ~] (44) 

Two further real covariant quantities can be formed with the 
matrix elements (17), if we consider them together  with the ma t r ix  
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e l emen t f l .  We can then form the following real vectors ( independent 
of an arb i t rary  phase factor  in the wave functions), which can be 
considered as the real and imaginary  par t  of a complex vector  
( f a )  ( f  1)*, formed as a "cross t e rm"  

y3' = ½[(fa)*  ( f  1) + c.c.], (45) 
y.a i 

= ~ [ ( f , ) *  ( f  1) - -  c.c.]. (46) 

From (16) it follows immedia te ly  tha t  

~ . c , = 0  and ~ . a = 0 ,  if ~ ' ~ = h 4 -  1 or f ~ = h = 0 .  (47) 

Hence we consider fur ther  only the case j~ = it (/'i > ½)- Using table 
I we see tha t  we can write for the case (24) 

~.~" (mi) = A c (ml) M~, ~ (48) 

and ~u (mi) = A c (mi) Me, ~i (49) 

with A, (mi) = mi/Vf~(i~ + 1) (/', = Jl, i, 7> ½). (50) 

M,, and Ma are real quantities,  which  must  be calculated from the 
nuclear wave functions. They  cannot  be deduced directly from ]f~]2 
and J f l  ix. However,  the following relations exist 

M~, + M~, = I f~[  2 [ f l l  2, (51) 

hence M~ 2, < I f  it[ 2 [ f  l[ 2 / (S2) 
and m,~ ~< I f  a[ 2 [ f l [  2. t 
For  the general case (22) y c, and y u become 

r/" = A~M~,n, (53) 

y..a = A~Ma~q, (54) 

with Ac = Z,, i PmiAc(m~). (55) 

For  random orientation of the nuclei (25) we get 

~.~' = 0 and Ig a ~ 0 (A~ = 0). (56) 

§ 5. The calculation o/ the transition probabilities; the results. 
P(E, p, q, ~) is calculated according to (1). For  r - -emiss ion  (2) must  
be used, while for D v and P,(g) the expressions DU~-½[I - -  , , .  q]gv] 
according to I(17) and P+({) according to (9) with (10) must  be in- 
serted. We have made the calculations by  first expressing the matr ix  

R ~ 9 Zh.~=, Ck C~ ( f  A k) ( f  A~) * (A k DU, A ~) (57) 
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in terms of Dirac-matrices. After this Z~IH~I  2 is obtained as 

Z, IH~I 2 = G = Tr JR_ P+ (~)]. (58) 
For f+-emission (5) must be used instead of (2). For D, and P,(~) 

the expressions D ~ =  ½[1 - -  a .  q/E,] according to I(]6) and P~-~ (~) 
according to (12) with (13) muSt be inserted. After calculating the 
matrix 

R+ Z 9 " Ck C, ( fAk)  * ( fA ' )  (A k D + A'), (59) = k,l=l 

Z.[H~[ 2 is obtained according to 
Z. [HoJ 2 = G 2 Tr [R+ P;-(g)]. (60) 

We give the results of the calculations in a combined form for 
f+:  and f--emission. The quantities Y-~, II, y.c,, lla introduced in 
§ 4, are used to write the expressions in an invariant way. 

We obtain for R .  and R 
R+ = ½C~ If l [2[1  + (1/E.) q . a ]  + 

+ ½C~ I f l l  2 [1 - - (1 /E . )  q .  a] + 
+ ½ C2 [ I f o [  2 :F  ~ ^ "  a - -  (1/E.) ] f a l 2 q  • a -]- 

+ (2/E,) ~ : (qa) 4- (1/E,) (~,^. q) rs] + 
+ ½C~ [ [ f a l  2 =F 21^. a + (1/E,) Ifa[2q • a - -  

--(2/Ev) ~ : (qa) =F (I/E.) (Y-^. q) 7s] + 
+½C~ [ff),s[2 [1 + ('l/g~) q .  a] - -  
~CiC2 [f1[2 f + 
+C,C 3 [YY' • a 4- (I/E,) (Y.c' ~ q ) . a  + (1/E,) (Y-". q) rs] + 
+ C, C 4 [ - -  Ig ~. B e - -  (1/E.) (Z ~" A q).  (ira) 4- ( 1 [E.) (~.#" q) (ifys) ] + 
+ C2C 3 [ - -  ~.~'. f a  + ( 1 [E,,) (Z ~" A q). (/riOt) T (1/E,) (F~ ~'" q) (/firs) ] + 
+ C2C ,[l[l ~'. a ::F (1/E~) (Y.~' A q) .  a - -  (1/E,) (Y.". q) rs] + 
+C3C4 [ - -  l fa l  2 f 4- fa]. (61) 

With the aid of (61) P+(E, p, ql g) and P_(E,  p, q, ~), valid 
respectively for f+ and E--emission, are found to be given by 

P± (E, p, q, g) = ½[G 2 l(2n)5]pEq 2 × 
x {C~ I f  I I ~ [1 - -  p -  q/EE,] + 
+ C~lfl]2 [1 + p . q / E E . ]  + 
+ [ I f . I  2 + (I/E) (Z^. + (Y.^ g) : [pp/E(E + 1)] + 

. +  I f a  ]2 (p .  q/EE, ) - -2~ ' .  : (pq/EE,) + (If^{) : (pq/EE~)] + 
+ C] [ ] f a  ]2 + (I/E) (Z^ • t;) + (~-^g) : [pp/E(E + 1)] - -  

- -  I f  a ] 2 (p-  q/EEl) + 2,~ : (pq/EE~) - -  (~.^ ~) : (pq/EE~)] + 
+ C~ Iffr~12 [1 - - p .  q/EE.] ::F 

9 c,c  If ] l  2 (I/E) :F: 
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T 2CtC3 [ ( l /E) (ig ~. I~) + (Z ~' I~) : [pp /E(E  + l)] + (Z ~ A q) .  (p/EE~) - -  

__ (~..c, ~) : (pq/EE~)] + 

+ 2CtC4 [(y.c,. ~ ) _  (y c, ~) : [pp/E(E + i ) ]  @ 

+ (1/EEv)(lg*'Aq).  ( g A p ) ]  + 

+ 2C2C3 [( ~-*r- ~) - -  (Z~'{) : [pp/E(E + I)] - -  
- -  ( I /EE~)  ( Z c ' / .  q). ({A p)] :]: 

=t= 2C2C4[ (1/E) (~..~'. ~) + (~.~" ~) : [pp/E(E+ I)] - -  (~.a A q ) .  (p/EEv) + 

+ (Y..~" ~) : (pq/EEv)] =t= 

T 2C3C4[ ] f a [  2 (I/E) + (E^ .  g) - - ( • ^  ~) : [pp/E(E +1)]]}.  (62) 

To get results from this general formula, which describe certain 
exper imental  situations, it will generally be necessary to take avera- 
ges or to integrate over some variables. We mention the following 
cases: 

1) We take  random orientat ion of the nucleus; according to (34), 
(43) and (56) we have 

Z ^ = 0 ,  Z = ½ 1 / . I  2, Z* '=0 ,  Z " = 0 .  (63) 

We fur ther  take  the sum for two orthogonal s tates of polarization. 
The result  found is given b y  1(28) and I(30), which are thus special 
cases of (62). 

2) We again take  the sum for two states of polarization.We further  
integrate over all directions of emission of electron and neutrino. The 
result found has the shape I(31), bu t  averaging over the orientat ion 
of the  nucleus has not  been performed~ so tha t  this formula is also 
val id  for an aligned nucleus. We most ly  take  the sum over m t in our 
results. In the deduct ion of (62) this summat ion  over m t need not  be 
made;  it is then valid for the transit ion probabili t ies towards  a 
definite m# We can calculate in this way  "par t ia l"  transit ion proba-  
bilities. The part ial  t ransit ion probabili t ies can be used to calculate 
the  angular  distr ibution of a 7-radiation tha t  succeeds the/~-transi- 
tion. We shall come back  to this point later. Only if we insert the 
values of ~'A, ~', ~"', ~.ci, which were obta ined in § 4, the sum over 
m t is taken. 

3) If  we take  the sum for two states  of polarization and if we inte- 
grate  over the directions of emission of the neutrino, we obtain the 
formula for the transit ion probabi l i ty  of a nucleus with a definite 
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orientation, t ak ing  into account the direction of emission of the 
electron. The remllt can h~ written n~ 

P+ (E, p) ---- P+ (E)/4ze (64) 
This means: 
The angular distribution o] ~5-rays emitted ]row aligned nuclei has 

spherical symmetry, i] we have an allowed ~5-transition. 
4) If we are interested in the polarization of/5-rays emitted from 

aligned nuclei, we must integrate over the directions of emission of 
the neutrino. This will be discussed in § 7. 

§ 6. Consequences o] a symmetry principle compared with the results 
o] § 5. In I § 6 we have proposed a symmetry  principle, concerning 
the complete symmetry  of the processes of/5+ and r--emission. It  
has a consequence that  only two types of combinations for the/5- 
interaction can exist: a) combinations of the" invariants S, A and P, 
b) combinations of the invariants V and T. 

Hence the following products of two constants C k must be zero 

CtC 2, CtC 3, C2C 4, C2C 5, C3C 4, C3C ~ = 0. (65) 

In I(28) and 1(30) this results in the dropping out of the (1 ]E)-term, 
which .is the only difference between the formula I (28) and I(30) for 
¢t- and/5+-emission. Analogously it is seen that  as a consequence of 
(65) all the terms in (62) that  are different for/5-- and/5+-emission 
drop out, as is of course demanded by the symmetry  principle of I § 6. 
We see further that  the cross-terms with CIC2, CICa, C2C 4 and C3C 4, 
which drop out if (65) is satisfied, have different signs for/5 + and 
~--emission. I t  is easy to establish this property of these cross-terms 
without the explicit calculations of §§ 2--5, with the aid of the for- 
mulae I (65)--(69) and I (78), which occurred in the deduction of the 
consequences of the symmetry  principle of I § 6. If we could devise 
experiments, which can decide the existence of the phenomena 
corresponding to these cross terms, a check of the symmetry prin- 
ciple could be made. 

§ 7. The polarization o/B-rays emitted by aligned nuclei. We con- 
sider in this section the polarization of/5-rays that  can result if the 
nuclei are aligned. Before considering the quantitative results, we 
give some elementary considerations on the conservation of angular 
momentum, which .lead to the conclusion that  the/5-rays of alignecI 
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nuclei can be polarized. Fo r  non-relat ivist ic  energies we can consider 
the orbi ta l  and spin angular  m o m e n t u m  of the electron separately.  
We know fur the r  t ha t  for allowed transit ions,  the  electron is emi t ted  
wi thou t  orbi tal  angular  momen tum,  while the  neutr ino takes the  
angular  m o m e n t u m  ½. F r o m  the diagrams (Fig. l) it is clear, which 

(a) Jr=j,+1 

(@ j =J, 

(c) j r= j , -*  

Ji, 

t°,=J, 
J, & 
lm,.=J,. I m'=J' 

or j f - I  

f or J,-a 

t total 
e v polarizatiorc 

t ~ f t partial 
t polarization. 

ev e• eli 

p rtzation. 
e v  e%/ e'~ e~  

Fig. 1. Polarization of electrons emitted by aligned nuclei. The arrows indi- 
cate the possible values of the z-components of the angular momenta of the 
initial nucleus, the final nucleus, the electron (e) and the neutrino (v), for the 
three cases a) Jl = 1I -l- 1, b) ii = 1I, c) ?'i = 1! - -  1, if one assumes .m i = j~. 

As a consequence of the law of conservation of angular momentum, only 
one possibility for the orientation of the spin of the electron exists in case a), 
so that total polarization results. 

or ienta t ions  of the electron and neutr ino angular  momen ta  are 
possible in case of a l ignment  of the nuclear  spin. Hence we see tha t  
in case a) the emi t ted  fl-rays are to ta l ly  polarized. In  order  to see 
tha t  we still have  a par t ia l  polarizat ion in cases b) and c) the quanti-  
t a t ive  t r ea tmen t  is necessary. We shall see tha t  even in case a) the 
polar izat ion is no longer complete,  if the  electron has a relativistic 
velocity.  The simple scheme of the diagram is then not  valid because 
orbi tal  and spin angular  m o m e n t u m  can no longer be separated.  

We now pass on to the quan t i t a t ive  t r ea tmen t  of the polarization. 
If  we consider the polarizat ion of fl-rays emi t ted  from aligned nuclei, 
the  direction of emission of the neutr ino will not  interest  us in gener- 
al. Hence we integrate  (62) for all directions of emission of the neu- 
t r ino and obtain 
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P± (~,p. ~)=(G*/~6~ *) p ~  {(c~+c~) If  ~ I~+(c~+c~) I /~ t~+ 
+ C~ Iff17512 T (2/E) [C,C 2 If  1[ 2 -]- CaC4 I f a l  2] + 
--b (C~ + C]) [(I/E) (Y..^. g) -F [lIE(E-k-I)] (~.^.~) : (pp)] z[z 
T2(CIC3+C2C4) [(I /E)(y.c , .  i~)+[I/E(E+I)] (Y..c" g) • ( p p ) ] +  (66) 

+ 2(clc,+Gc3) [(z " .  g) - -  [ l IE (E+  1)] (Z ~" g) : ( p p ) ] T  

z}z 2c3c 4 [(lg a . g) _ [ I IE(E -{- 1)] (If^ g) : (pp)]}. 

In  order to make  the  physical implications of this still ra ther  com- 
plicated formula clearer, we consider some special cases: 

1) We first take  the  ease of the pure invariant  T for the fl-inter- 
action, so tha t  C 3 = 1 and  C~ = C 2 = C 4 = C s = 0. The general  
formula (66) becomes; using the  value (31) for II^ 

P~ (E, p, g, [a..~,] = n) = 
(G2/16z~ 4) pEq2[ fa[2{1 + (A A/E) (v 1 • g) + [A ̂ /E(E + 1)] (~lg) : (PP)}. (67) 

We specialize (67) for two cases, namely  tha t  the  direction of 
emission tx o t t h e  electron is perpendicular  and parallel to ~1, the axis 
of polarization of the nuclei (for which we take the z-direction). 
We get 

P+ (E;p=pi, g, [a. .a]  = k ) =  (G2/16= 4) pEq 2 [fa[2{1 +(A^/E) ¢.}, (68) 

and  P+ (E,p=pk, ~, [J . .a]  = k )  = (G2/16z~4)pEq ~ ]f a[2{l + A  ^~.}. (69) 

F rom the  formulae for the  transit ion probabilities like (67), (68) and  
(69) we mus t  conclude to the s tate  of polarization of the emi t ted  
electrons. As explaned in I I  this polarization can be described by  a 
"degree of polarization" and a specification of the polarized part ,  
which can be given by  the  "axis  of polarization" g according to 
I I  (11) and  II  (12). If  we have a beam of electrons with degree o f  pola- 
rization P and  axis of polarization go, then  the  probabil i ty for f inding 
a direction of oolarization ~ is ~iven by  

K1 + P(go" ~)]. (70) 

Now the expression between brackets  in (67) can be put  in this form 
(apart f rom the factor  Jr), if we set 

= ~ .  [1 + pp / (E  + I)], ] 
go = g/Igl, I (71) 
P = (A^/E)[El. 
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For the cases (68) and (69) we get in particular 

p ± ~ ,  ~ o = ~ ( = k ) ,  / 
P = A ^ /E,  . (72) 

p II,~, ~o = ,q (=  k), / (73) 
P = A ^ .  

Hence To = ~ for these special cases, though we see that  for an arbi- 
t rary  direction of emission the axis of polarization of electrons and 
nuclei need not be the same according to (71). For p _L ~ the elec- 
trons have transverse polarization, for p / / ~  there is longitudinal 
polarization. How polarization of electron beams can in principle be 
completely determined by scattering experiments was discussed in 
II and III. 

We give the result for the case p A_ ~, which may be the most 
important, still in another form, namely as the ratio of the intensities 
of the electrons with spin parallel and antiparallel to ~, the axis of 
the nuclear polarization. We insert the value (30) for A A and write 
the result as 

"{I + ( ! I E) ('~,li,) } I{ 1-- (1 i s )  ('~,/i,) }, 
if i i=it+ I. 

~(g =~)/p(g=_~) = {1+ (i/E) [,~,/i,(i,+ 1)]}/{1-(1/E)Em,/i,(i,+ 1)]}, (74) 
if i ,=il. 

{ 1 --(  1/E) [m,/(i, + 1 )] )/{ 1 + (1/E) [md (i, + 1 )] ), 
if j~-=h-71. 

According to Fig. case a), we drew the qualitative conclusion that  
there is complete polarization, if the initial nuclei are fully aligned 
(m~ = ]i) and if we have non-relativistic energies for the electrons 
(E ~ I). We see that  this is confirmed by (74). 

2) After considering the polarization of the ~-rays emitted in an 
arbitrary direction if the/~-interaction is given by the invariant T, 
we now take the case of ~-rays emitted perpendicular to ~ the axis 
of the polarization of the nuclei with a ~-interaction given by an 
arbitrary "mixture" of invariants. By specialization we get from 
(66) using (31) and (54) 

.P± (E, p = ' p i  {, [J,,,a] = k) = 

= [fo[ Cs[fflTs[ :T (G2116:~r 4) pEq2{(C~+C2~)[fl [2+(Cg+C]) 2+ 2 2 

T (2/E)[C,C 2 [f I ]2+  C3C 4 ] fa[  2] + 
+ [(C] + C])/E T 2C3C,] A^¢,+ 

+ 2 [(C1C4+C2C3) ~2 (CIC 3 + C2C¢)/E ] A~ M~ ~,} (75) 



9 6  H . A .  TOLHOEK AND S. R. DE GROOT 

From (75) we can calculate the same ratio as in (74) for the more 
general case. If/.~ --/.! 4- 1 the result is the same as in (74) (for then 
J f l[ 2 = 0 and ~-~ = 0). We give theresu l t  for/.~ =/'1, assuming tha t  
C~C 2 i~ 0, C3C 4 ~ 0, CIC 3 = O, C2C 4 = 0 (this would be the case if 
the  symmetry  principle of I § 6 is valid, cf. § 6) and that  the nucleus 
does not change its pari ty so tha t  ] fpTs[2= 0 (otherwise we would 
have Jf 1]2~ 0 and ]f.a[2--- - 0). 

P .  (~=~)/P. (~=--  ~) = {(C~+C~) If  l l2+(C]+C~) I/-12 + 

+Era, I~.,(~.,+ ~)] [(c]+c~) I f:I2/E.+2(C,C4+C2C.) M,~,Vi,(/.,+ 1)]}/ 
2 2 {(c,+c.) I /~12+(c~+c~) I /a l  ~ -  

- -  [m,li,(/.,+ 1)] [(c] +c:)I/oI"IE--F 2(Qco+c.c. )  M . V ' ~ ) ] }  (76) 
The formulae (74) and (76) are given on the assumption that  the 

orientation of the nuclei can be described by one single wave function 
(24). I t  is, however, easy to deduce from the general formulae (66), 
(67), (71) and (75), tha t  for the general case (22) the resulting degree 
of polarization P can directly be expressed wi th /N the "degree of 
polarization of the nuclei", and the maximum polarization P ( m i = j ~  ) 

occurring if IN = 1 
P = IN P ( m ,  = i,). (77) 

As to the experimental possibilities, the polarization of fi-rays seems 
not  to be the phenomenon of polarization of nuclei that  is easiest 
for observation. I t  is favourable in the respect that  it depends linearly 
on [N, while for example the departure from spherical symmetry  of 
7-radiation emit ted by aligned nuclei depends on [~, which would be 
important  if [~ is rather small compared with unity. The difficulty 
is that  the fi-rays cannot leave the cryostate so that  they must  be 
measured in its interior. Fur ther  the r-radioactive source must  be 
near the surface of the cooled material, where it may be heated up 
rather  soon. If polarization is measured by scattering experiments2)8), 
very strong sources (several mC)would  be nearly indispensable. 
Other methods of measuring the polarization of r-rays with feebler 
sources (e.g. transmission by magnetized Fe-foils 11),12)) can be 
imagined, but  no successfuU experiments have as yet been made 
along these lines. 

A nucleus that  can possibly be used in experiments is S4Cu (half 
h'fe 12,8 h, maximum energy of negatons 0,571 MeV, allowed ~-tran- 
sition, about 35% ~--emission, further fi+-emission and K-capture), 
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which can  be aligned according to the method  indicated above 6), s), 
if it has a nuclear spin (probably ~'~= 1). A complication is tha t  64Cu 
emits both  fl+ and if--rays,  of which one wishes to separate the 
effects. 

Appendix. Vector and tensor notations. We have used'the following 
notat ions for vectors, tensors and their  products (the same as, e.g., 
in 13)) : 

Vectors: clarendon type, e.g., a. 
Tensors (dyads): sanserif type,  e.g., A. 
Scalar product  of two vectors a • b. 
Vector product  of two vectors a A b. 
Tensor product  of two vectors ab  = T, if Tik = a~bk. 
T • a is the vector wi th  components (T • a)~ = Zk Tikak. 
By the product  S : T we mean the scalar Z~kS~kTk~ = S : T = T :  S. 
We have (ab) : (pq) = (a .  q ) ( b .  p) = (pq) : (ab), 

and S : (pq)----- (pq) : S = q . S . p .  

Received 5-2-1951. 
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