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ON THE THEORY OF BETA-RADIOACTIVITY IV

THE POLARIZATION OF BETA-RAYS EMITTED BY ALIGNED
NUCLEI IN ALLOWED TRANSITIONS *)

by H. A. TOLHOEK and S. R. DE GROOT

Instituut voor theoretische natuurkunde, Universiteit, Utrecht, Nederland

Synopsis

The consequences of alignment of nuclei, which show allowed g-transi-
tions, are investigated. A general formula is derived for the transition
probability of an allowed f-transition, in which the direction of emission of
electron and neutrino, the polarization of the electron and the orientation
of the nuclear spin are taken into account. The calculations have been made
for a Hamiltonian for the f-interaction, which is an arbitrary “mixture” of
the five invariants of the Dirac theory. The influence of the nuclear
charge has, however, been neglected. From this formula the following results
are immediately obtained:

The angular distribution of the g-radiation remains spherically symmetric
if the nuclei are aligned, so that the alignment cannot be detected in this
way.

The emitted p-radiation is polarized and the degree of polarization
follows from the general formula. If we take the special case that the inter-
action Hamiltonian is of the tensor or the axial vector type and if the g-rays
are emitted perpendicular to the direction of the nuclear spin of completely
aligned nuclei with nuclear spin j;, the degree of polarization is given by:
@) 1/E, if f; = j; + 1,0) VE(; + 1), itf; = i, €) 5l B + 1), iff; = §y— 1.
(E is the relativistic energy of the electrons, E ~ 1 for small kinetic ener-
gies; j; gives the spin of the final nucleus).

§ 1. Introduction. Recently Gorter? and Rose?®) havein-
dicated a method by which it must be possible with the present
experimental means, to obtain a considerable alignment for certain
nuclei. The nuclei must be contained in paramagnetic ions; the
alignment is obtained with very low temperatures and medium
magnetic fields. In spite of several attempts ?), this alignment has

*) Formulae from preceding papers!), 2}, 3) of this series will be quoted as, say, IT (12).

— 81 —
Physica XVII 6



82 H. A. TOLHOEK AND S. R. DE GROOT

not yet been shown by nuclear physical experiments. If the align-
ment of radioactive nuclei could be detected by methods of nuclear
physics, it might be possible -to measure the nuclear magnetic
moment of very small quantities of these nuclei, by studying the
effect as a function of temperature or by destroying the alignment
with a radiofrequency field.

In this paperwe examine the consequences of such an alignment of
radioactive nuclei which show allowed g-transitions. It will be shown
that the f-rays emitted by aligned nuclei are polarized (§ 7, prelimi-
nary note %)). Concerning the polarization of electron beams certain
notions developed in the two preceding papers are used ?), 3). The
calculations are developed in §§ 2-5. In § 6 we discuss the results of
§ 5 in relation to a symmetry principle fot the Hamiltonian for the
f-interaction ).

§ 2. The method of calculation of the transition probabilities, taking
into account: the dirvection of emission of electron and neutrino, the pola-
rization of the electron and the orientation of the nuclear spin. The
calculation of this transition probability can be made along the same
lines as the calculation of P(E, p, q) in I § 2; we shall keep the same
notations. However, we now take into account the polarization of
the electron. We assume that the spin of the emitted electron has an
arbitrary direction § (determining the polarization according to
II(11) and II (12)). We again take an arbitrary ‘‘mixture’’ of the
five invariants of the Dirac theory for the Hamiltonian for the -
interaction. Further we shall neglect the influence of the nuclear
charge and we shall restrict ourselves to allowed transitions. The
transition probability to a state in which the electron has an energy
between E and E + 4E, the momenta p and q of electron and neu-
trino have directions within dw, and dw, respectively, while the
polarization of the electron is specified by &, is given by

P(E,p,q,) dEdw,dw, = (27)° 3, lHﬁl2 pEF dEdw,dw,. (1)
The difference with I (7) is only, that in this formula the sum for
both states of polarization of the electron had to be taken. The
orientation of the nucleus is contained in the nuclear wave functions,
occurring in |H 5|2 and is not explicitly expressed in P(E, p, q, §).
In the same way as in I § 2 we find the following formula for X, |H. plz
in case of f~-emission .

I, |Hpf = G* 3}, GG, (A" (f 4)* Tr [4*D,A'P,(X)],  (2)
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where D, and P,(¥) are matrices defined by the following equations,
which give their elements

(D)yp = Zopin P3P (3)

[P€)p = ¥ Y- {4)
(2) differs from I (26) only in the respect that D, was replaced by
P,(€). This means a complication, as it will be seen that the expres-
sion for P,(§) is more complicated than D,. In the next section the
expression for P, () is given. In § 4 we discuss how certain vectors
and a tensor, which can be formed with the nuclear matrix elements
and which appear in the result for P(E, p, q, {), depend on the
orientation of the nuclei. After these preparations the complete
result for P(E, p, q, §) can be deduced (in § 5). In case of p+-emis-
sion (2) must be replaced by (cf. I (26) and I (29))

Z, | Hpl = G* 5}, GGy (f AN (JA) Tr [A*DA'PE))  (5)

Except for this change the calculations are analogous for g% and
f-emission.

§ 3. Calculation of the mattices P* () and P—(¢). By P*(¢) and
P—(€) we mean the matrices defined by (4) for the positive energy
solution I(12) and the negative energy solution I(14) respectively.
The spin orientation for these solutions is determined by II(11) and
II(12), from which we get

A*4 =% (1 + cosy) =314,

B*B =3} (1 —cosy) =3 (1 —10), (6)
A*B = } sin y exp (iw) =4 (¢, + iL,),

B*4A = }sin yexp (—iw) =4 (., —1(,).

We shall give the results for the matrices P({) by writing them as
linear combinations of the 16 matrices of the Dirac-theory (cf. 1(2);
the matrices of (7) are all hermitian; y; = — ta,a,a,)

B, 1, a, Bo, ifa, 6, ys, ifys. (7}
The expressions can be obtained by calculating explicitly the
elements of the matrices according to (4) and by application of (6).
We obtain for P*(X) (for notations cf. the appendix)
P¥(E) = }{1— (m/E)8 + § - [(m/E)s — fo] + (1/E) [P a—
— y5(P - §)+if%- (P ~ )]+ (1/E(E+m)] [(pP) : (§o)] (B+1)} (8)
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‘We write this resiilt in another form

Pt () = [K*(p)+ K* (1) 1+ K* (a) - o + K¥(fo) - fo +
+ K*(ifa) - (ifa) + K¥(0) -0 + K¥(ys) 5]  (9)

with
E*(f) =— (miE),
K1) =1,
K*(@) =— (p/E),
K*(fo) = —C+ (EE +m)](pp) -8 |  (10)
K*(ifa) = — (1/E) (0 ~ ), |
K*(0) = (m/E)Y + (1/E(E + m)} (pP) - C,
K*(y) =— (1/E) (p- Y.

Analogously we find with the negativesenergy solutions
P=(E) = {14+ (m/E)f — & - [(m/E)o + o] + (/E) [—pP-a+
+ 5P - €) + 6L (P~ a)] +[1/E(E +m)] [(pP) : (Co)](6—1)}. (11)
‘We can write this result also in the form analogous to (9)
P=(5) = { [K=()8 + K~ (1)1 + K~(a) - « + K™(fo) - fo +
+ K7 (i8a) - (ifa) + K (0) - 0 + K™ (y5) 5] (12)

with
K=(p) = (m|E),
K—(1) =1,
K™ (a) =—(p/E),
K=(fe) = —1¢ + [1/E(E + m)] (pP) - &, o (13)
K~ (ifa) = — (1/E) (P ~ T),
K™(0) = —(m/E)E—[1/E(E + m)] (pD) - &,
K= (ys) = (1/E) (p- %)

If we consider the matrices P(¥) in further calculations for electrons,
we can put m = m, = 1 if we use relativistic units (cf. I § 2).

§ 4. Expressions containing the nuclear matrix elements and the
orientation of the nuclet. We consider in this section relations
between nuclear matrix elements and their consequences for vectors
or tensors that can be formed with these matrix elements. The
general expressions for nuclear matrix elements are given by I(18)
and I(19). The wave functions ¥; and ¥, of the initial and final
nucleus, occurring in these expressions, are characterized by the
nuclear spin § and the magnetic quantum number # belonging to it;
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if 7 5= O there will be degeneration: m can take 2§ 4 1 values. For ¥
we can take wave functions

¥; (7, m;) (14)
with a definite value of m,, or also a linear combination
¥, = S, o(m,) ¥, (G, m). (15)

In this section we consider especially the nuclear matrix elements
with the operators 1 and o, for which the selection rules are

|/ 112, 4j=0, Am =0, no change of parity (16)
|/ el?, 4j=0, £1 (no 0— 0), Am =0, 41, no change of parity
Otherwise the matrix elements are =0. The relative magnitude of
the matrix elements

Jo.[ay [0, (17)
is given in table I 8).

[We VS Y PFLApY

Relative magnitude of the matrix elements [ 6,, [ 6,, { @,. The matrix elements that do not occur in the table
are 0; a, b and c are constants.

Ji=itt i > 1) fs=1ylji >4, 0—-0 forbidden) | ji=f—1 (j, 2 0)
m=m;+ 1o, +ioy\m)| oV (j—my) Gi—mi—1)| oY (i+mi+1) i—mq) | —cV (i+mi+2) Gitmit 1)
m=mi—lo,—iaylm;)—aV (j;+my) (fi+m—1)| Y (js+mg) Gimmi+1) |, eV (ji—mi+2) (ji—mi+1)
my=m;|G 4 |my) &V (ji+m;) (j—m;) bm; eV (jy+mi+1) (i—mi+ 1)

The expression
|fol? =|/o,? + /o + 1/ af (18)
which is a scalar occurs, e.g., in I(28) and I(30), formulae that give
transition probabilities. (In this expression with the nuclear matrix
elements the sum ., must be taken, cf. 1(32)).

However, in the results for transition probabilities taking the
orientation of the nucleus into account, also other covariant expres-
sions (scalars, vectors, tensors, etc.) occur, which can be formed with
the nuclear matrix elements (17) (We must also take the sum Z,; in
these expressions). According to table I all these expressions can be
characterized by one single parameter depending on the nuclear
wave functions, e.g., the scalar quantity (18). They depend further
only on quantities that describe the orientation of the nucleus, e.g.,
m; without referring directly to the exact form of the wave functions
¥, and ¥,. The covariant, real quantities (of ‘““valence” O, 1 and 2),
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which are independent of an arbitrary phase factor in the wave func-
tions ¥; and ¥, and which can be formed from (17), are

a) the scalar |/ o] according to (18),

b) a vector (antisymmetric tensor) defined by

i j k i
= i(fe)~(fo)*=i| [0, [, E (19)
(fo)* (fo,)* *{
¢) asymmetric tensor defined by
E=}{(/a) (fo)*+c.c)=
| fo.I? H(Se)*(fo,)+cc] i[(fo)* (fo.)+c.c.]
H(fo)* (fo,)+c.c.] | /o, 12 3(fo)* (fo)+c.c]| . (20)

H(fo)* (fo)+ee] 3(fo)* (Jo)+ec] | fo.”

The expressions (18), (19) and (20) must be calculated if the initial
nuclei have a certain “orientation”. If ¥, is given as ¥,(j;, m;) with
a definite m;, a certain direction in space v is related to this m;, as m;
determines the component of the angular momentum in some direc-
tion, which we call . In this case we shall say the nuclei are polarized
with the axis of polarization v. (We take a unit vector for v; often v is
chosen as the z-direction). In general the “orientation” of an
“ensemble” of nuclei cannot be described by a single wave function,
but must be described by a density matrix ¢ with the elements g,,,.
(cf.,e.g.,®)). In this general case we define the axis of polarization as
follows: if the density matrix g is in diagonal form for the fundamen-
tal states ¥(j, m) and if m is related to a direction v, then v is called
the axis of polarization of the nuclei described by ¢. We write in
this case

(Jial =M (21)
With these fundamental states, p has the form
Ommt = P Oy (22)
The P,, are normalized in such a way that
2. P,=1 (23)

The case that the nuclei are described by a single wave function
Y.(1;, m,;) is a special case of (22), for which we can put

1, if m =m,
Py = {0, if m # m,. (24)
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The case of random orientation of the nuclei is described by 19)
P, = P, independent of m. (25)

As ameasure for the “alignment” of the nuclei in the direction v a
quantity f, the “degree of polarization of the nuclei”’, may be used
which is defined by

fy = Zn (m]]) P, (26)
and which has the property
— 1< <L (27)
(Remark: |fy|, if taken for electrons (j = 3), is the degree of pola-
rization I1(7)).
For the calculation of Z, (19) for the case (24) it is easy to take a

special orientation of the coordinate system (e.g., § = k) and to use
the formula

2[(fo)* ([o,) —ecc]=1/(o, + io)*— 1|/ (0. —is,)%. (28)
In this way we easily find, using table I

Z, (m)=A4,(m)|fe’n (29)
myff; i =1+ 1 (7; > 1).
with A ,(m) = ym/j;(; + 1), if §; =7 (7: > 3). (30)

—m+1), i =1, —1 (;> 0).
For the general case (22), (19) becomes

Z, = Zm; Pu; Z,(m;) = A,|[o]* (31)
with A, = Zp; Pmd \(m;). (32)
It is easily shown that
A, < 1. (33)
For random orientation (25) we get
Z,=0(4,=0). (34)

Analogously we calculate Z (20) for the case (24). We again take
a  special orientation of the coordinate system, n = k. We further
use the elementary formula

2[(fo)* (fo,) +cel= | ,

= [/(o,—10,)]* [/ (0. + 10,)] — [/ (0, + i0,)]*[/ (0, —c,)]. (35)
If we make use of table I, it is clear that the expression (35) is equal
to O for. every Y.(j;,, m;), because for a certain m; and m; either
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[ (e, —10,), either f (o, + t0,), either both are equal to 0. We also
have [(fo,)* (fo,) +cc]=0 and [(fo)*(f0,) + c.c.] =0 for
every ¥(j;, m;), because we see directly from table I that for a
definite m; and m;, again at least one factor is 0. Hence all off-dia-
gonal elements of £ are 0. This is not true for any position of the
coordinate system, namely not, if the direction to which m; is
related, is not an axis of the coordinate system. For the position
7n = k, T takes the shape

: [fo, 2 O 0
Z(m,) = 0 [fo,# O [=3%|fcl[l+ 4 (m)N] (36)
0 0 |fel
3 00
with N=| 0 —3 0 (37)
0 0 1

For A (m,) we have

Afm) =2 [of — /ol + | [o,' B/ [a? =
={21faP—1[1/ (0. + i0,)* + | [ (o, —10,)*}/| f&l>. (38)
Hence, with the aid of table I we find
i+ )—3mfi2—1) i f=i 16> ).
Agm)=§ —7:(5:+ 1)—3m) [i;(;+ 1) i =50:>%. (39)
[+ 1)—3m3) (i +1) (2;+3),  if f;i=7—~1(;>0).
For the general case (22), we get for

Z=Zm PmZ(m)=1%|[c[1 + A4, N] (40)
with A, = Zn;Pm;A(m;). (41)
From (39) and (41), it can be concluded that
—1 <4, <2 (52)
For random orientation (25) we get
Z=1%[/o (4,=0). (43)

In (37) N has been given in the coordinate system in which n = k.
For a different direction of 5, N of course gets a shape different from
(37). For an arbitrary n we can write

N = 4 [3(qm) —1]. (44)
Two further real covariant quantities can be formed with the
matrix elements (17), if we consider them together with the matrix
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element /1. We can then form the following real vectors (independent
of an arbitrary phase factor in the wave functions), which can be
considered as the real and smaginary part of a complex vector
(fo) (f1)*, formed as a “‘cross term”

27 = 3{(fo)* (/1) + cel, (45)
== Z[(fa)* (/) —eel. (46)

From (16) it follows immediately that
Z¥=0 and =0, if §;=5,+1 or j;=4=0. (47)

Hence we consider further only the case j; = 7, (j; > 4). Using table
I we see that we can write for the case (24)

Z (m) = A, (m) M., (48)
and Z% (m) = A, (m;) M n (49)
with A, (m) = myf \/7.4'(7'; +1) = f/, i = 3. (50)

M., and M, are real quantities, which must be calculated from the
nuclear wave functions. They cannot be deduced directly from | fof?
and | /1|2 However, the following relations exist

M, + M5 =|[ol*| /1P, (51)
hence M2 <|fel?|f1F?

and SRy My 2

For the general case (22) Z“ and Z* become
=AM, (53)
= =AM, (54)
with A, = Zm; PmiA (m;). (55)

For random orientation of the nuclei (25) we get

=0 and Z* =0 (4, = 0). (56)

§5. The calculation of the tramsition probabilities; the resulls.
P(E, p, q, §) is calculated according to (1). For §-emission (2) must
be used, while for D, and P,(¥) the expressions D, =4[l —a - q/E,]
according to I(17) and P} (§) according to (9) with (10) must be in-
serted. We have made the calculations by first expressing the matrix

R_=13},_,CC (/4% (f4)* (4* D 4)) (57)
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in terms of Dirac-matrices. After this % |H, p|2 is obtained as
z, |H plz G*Tr [R_P} (¥)]. (58)
For ,3+-e1mssmn (5) must be used instead of (2). For D, and P, (%)
the expressions D} = 3[1 — « - q/E,] according to I(16) a.nd P (D)

according to (12) w1th (13) must be inserted. After calculating the
matrix

R, =33,.1C,C, ([ AY* (/ 4') (4* D) 4)), (59)
Z,|Hg|? is obtained according to
S, |Hyf = G* Tr [R, Pr(5)]. (60)

We give the results of the calculations in a combined form for
B*- and B-emission. The quantities = a S 7, =% introduced in
§ 4, are used to write the expressions in an invariant way.

We obtain for R, and R.

R, =1CY|/1P[1 4 (1/E,) q - a] +
+3CGI/1P[1—(1/E) q - a] +
+3CG[1 /el F Z,-0—(1/E,) | [ol’q - a +
+ (2/E) Z: (qu) £ (1/E,) (B, - @) ¥s] +
+3C [/ F 2, -0+ (1E) |fol’q - a—
, ~ —(2/E)Z: (qa) F (1/E,) (Z,- Q) vs] +
+3C3 1/ Bysl* [1 + (1/E,) q - a] —
—C,G /1P B+ .
+C\G[E7 -0 £ (1/E,) (E% ~ q) - a + (1E,) (B7- Q) y5] +
+C,C,[—Z7-fo—(1/E,) (B ~q) - (ife) £ (1/E,) (B - q) (sfys)] +
+C.C3 [— 27 - o+ (1/E,) (B7 ~ q) - (iBa) F (1/E,) (B q) (iBys)] +
+CC 27 e F (1E) (B ~ q) - a— (1/E,) (Z7- q) 5] +
+CCi[—1/e* B £+ Z, - fa]. (61)
With the aid of (61) P, (E,p,q,%) and P_(E, p, q, %), valid
respectively for §* and f~-emission, are found to be given by

P, (E, p, q, %) = 3[G* |(2n)°*]pEG* X
x {C}|f1[1 —p-q/EE,] +
+ C3|f1*[1 + p-q/EE,] +
+ G| felP + (1/E) (B, - 8) + (2, %) : [PP/E(E + 1)] +
4+ 1/e?(p-q/EE,) —2Z : (Pq/EE,) + (Z,¥) : (Pa/EE,)] +
+CilIfeP+ (1/E)(B, - 8) + (2,5) : [PP/E(E + 1)] —
— |fo*(p-q/EE,) + 2= : (pq/EE,) — (£, %) : (Pa/EE,)] +
+ C2|/BysP[1 —p- a/EE,) F
F2CGI 1P (1E)F
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F 2C,G5[(1/E) (B7-§)+(Z7T) : [pP/E(E+1)]+(Z" ~q) - (P/EE,) —
— (27Y) : (pq/EE)] +

+ 2C,C,[(E" -8 — (=7Y) : [PP/E(E +1)] +
+ (1/EE,) &7 ~q) - €~ P)] +

+ 2C,G5[(Z7 - 8) — (Z7Y) : [pP/E(E + 1)] —
— (I/EE) &7 ~q) - E~P)] F
F 2C,C[(1/E) (& 8)+ (&7 8): [PP/E(E+1)] — (&% ~q) - (P/EE,)+
+ (Z7%) : (pa/EE,)] F
F 2C,C,[ 1 /o (1E) + (B, - ) — (B, 8) : [PP/E(E +1)]]}.  (62)

To get results from this general formula, which describe certain
experimental situations, it will generally be necessary to take avera-
ges or to integrate over some variables. We mention the following
cases:

1) We take random orientation of the nucleus; according to (34),
(43) and (56) we have

£,=0, E=1}|foff, =0, Z=0. (63)

We further take the sum for two orthogonal states of polarization.
The result found is given by 1(28) and I(30), which are thus special
cases of (62).

2) We again take the sum for two states of polarization. We further
integrate over all directions of emission of electron and neutrino. The
result found has the shape I(31), but averaging over the orientation
of the nucleus has not been performed; so that this formula is also
valid for an aligned nucleus. We mostly take the sum over #, in our
results. In the deduction of (62) this summation over m, need not be
made; it is then valid for the transition probabilities towards a
definite m,. We can calculate in this way “‘partial”’ transition proba-
bilities. The partial transition probabilities can be used to calculate
the angular distribution of a y-radiation that succeeds the f-transi-
tion. We shall come back to this point later. Only if we insert the
values of Z,, Z, Z7, Z¢ which were obtained in § 4, the sum over
my is taken.

3) If we take the sum for two states of polarization and if we inte-
grate over the directions of emission of the neutrino, we obtain the
formula for the transition probability of a nucleus with a definite
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orientation, taking into account the direction of emission of the
electron. The resnlt can he written as

P,(E, p) = P,(E)/4n (64)
This means:
The angular distribution of B-rays emitted from aligned nuclei has
spherical symmetry, if we have an allowed f-transition.
4) If we are interested in the polarization of f-rays emitted from
aligned nuclei, we must integrate over the directions of emission of
the neutrino. This will be discussed in § 7.

§ 6. Consequences of a symmetry principle compared with the results
of § 5. In I § 6 we have proposed a symmetry principle, concerning
the complete symmetry of the processes of g+ and f—-emission. It
has a consequence that only two types of combinations for the g-
interaction can exist: @) combinations of the invariants S, A and P,
b) combinations of the invariants V and T.

- Hence the following products of two constants C, must be zero

C1C2,.C1C3, C2C4, C2C5, C3C4, C3C5 = 0. (65)

In I(28) and I(30) this results in the dropping out of the (1/E)-term,
which is the only difference between the formula 1(28) and 1(30) for
f~ and B*-emission. Analogously it is seen that as a consequence of
(65) all the terms in (62) that are different for ~ and f*+-emission
drop out, asis of course demanded by the symmetry principle of I § 6.
We see further that the cross-terms with C,C,, C,C;, C,C, and C,C,,
which drop out if (65) is satisfied, have different signs for f* and
p-emission. It is easy to establish this property of these cross-terms
without the explicit calculations of §§ 2—S5, with the aid of the for-
mulae I (65)—(69) and I (78), which occurred in the deduction of the
consequences of the symmetry principle of I § 6. If we could devise
experiments, which can decide the existence of the phenomena
cortesponding to these cross terms, a check of the symmetry prin-
ciple could be made. ’

§ 7. The polarization of f-rays emitted by aligned nucles. We con-
sider in this section the polarization of f-rays that can result if the
nuclei are aligned. Before considering the quantitative results, we
give some elementary considerations on the consérvation of angular
momentum, which lead to the conclusion that the f-rays of aligned
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nuclei can be polarized. For non-relativistic energies we can consider
the orbital and spin angular momentum of the electron separately.
We know further that for allowed transitions, the electron is emitted
without orbital angular momentum, while the neutrino takes the
angular momentum %. From the diagrams (Fig. 1) it is clear, which

J
Tl‘l'h,:,ji, J’m .

(@) Ji=J2 fle=de total
d Je . ev polarization.
m;:J; mf=\_.|f

®) Ji=Je TR panta

. polarization.
J' ev ev ev

Ji mf=Jf
mi=j; 407 Je-1

(c) di=Jds-t or Je-2 | \

oot ' po'l’aaﬁggltion.

ev ev ev ev

Fig. 1. Polarization of electrons emitted by aligned nuclei. The arrows indi-
cate the possible values of the z-components of the angular momenta of the
initial nucleus, the final nucleus, the electron (¢) and the neutrino (»), for the
three cases a) §; = j, + 1, B) §; = §j, ¢) j; = §; — 1, if one assumes m; = j,.
As a consequence of the law of conservation of angular momentum, only
one possibility for the orientation of the spin of the electron exists in case a),
so that total polarization results.

orientations of the electron and neutrino angular momenta are
possible in case of alignment of the nuclear spin. Hence we see that
in case @) the emitted f-rays are totally polarized. In order to see
that we still have a partial polarization in cases b) and ¢) the quanti-
tative treatment is necessary. We shall see that even in case a) the
polarization is no longer complete, if the electron has a relativistic
velocity. The simple scheme of the diagram is then not valid because
orbital and spin angular momentum can no longer be separated.

We now pass on to the quantitative treatment of the polarization.
If we consider the polarization of f-rays emitted from aligned nuclei,
the direction of emission of the neutrino will not interest us in gener-
al. Hence we integrate (62) for all directions of emission of the neu-
trino and obtain
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P, (E,p, Y)=(G*/16x") pEq* {(C1+C)) | [ 1P+ (C3+C)) | [ o+ ]
+ C31/Brsl* F QIE) [C,C 1/ 12 + CoCy | S o) +

+ (€3 + CH [(1/E) &, - §) + [I/EE+D] (B,T) : (pP)] F
F-2(C,Cs+CCy) [(1/E) (B - Q)+[1/EEF1] (& F) : (pp)]+ |
+ 2(C\C+C,Co) [(Z7 - §) — [I/E(E+1)] (B7E) : (pP)]F
F 2C,C, [(B4 - §) — [/E(E + D] (B, 8) : (pP)]}-

In order to make the physical implications of this still rather com-
plicated formula clearer, we consider some special cases:

1) We first take the case of the pure invariant T for the g-inter-
action, so that C; =1 and C, = C, = C, = C; = 0. The general
formula (66) becomes, using the value (31) for Z,

P:t (E: P, C: [Juud] = "l) =
(G*162*) pEg?| [0 {1+ (A4 \/E) (n-E)+([4 ,/E(E+1)] () : (PP)}- (67)

We specialize (67) for two cases, namely that the direction of
emission p.of the electron is perpendicular and parallel to 7, the axis
of polarization of the nuclei (for which we take the z-direction).
We get

Py (E;p=p1,%, [J,.]=k)=(G*/16x") pEq* | [a*{1+(4,/E) L.}, (68)
and P, (E,p=pk, §, [J,..]=K)=(G*/16a*)pE*| [ a*{1+4,L,}. (69)

From the formulae for the transition probabilities like (67), (68) and
(69) we must conclude to the state of polarization of the emitted
electrons. As explaned in II this polarization can be described by a
““degree of polarization” and a specification of the polarized part,
which can be given by the “axis of polarization” ¥ according to
II(11) and I1(12). If we have a beam of electrons with degree of pola-
rization P and axis of polarization &, then the probability for finding
a direction of polarization  is given by

1+ PG - &) (70)

Now the expression between brackets in (67) can be put in this form
(apart from the factor }), if we set

E=n-[14pp/(E+ 1),
G = E/[El, (71)
P = (4,/E) |g|.
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For the cases (68) and (69) we get in particular

PLlm LH=n(=k),
P w2
p//, % z 2/(\= k), } (73)

Hence €, = v for these special cases, though we see that for an arbi-
trary direction of emission the axis of polarization of electrons and
nuclei need not be the same according to (71). For p | 7 the elec-
trons have #ransverse polarization, for p // v there is longitudinal
polarization. How polarization of electron beams can in principle be
completely determined by scattering experiments was discussed in
IT and III.

We give the result for the case p | ¥, which may be the most
important, still in another form, namely as the ratio of the intensities
of the electrons with spin parallel and antiparallel to ¥, the axis of
the nuclear polarization. We insert the value (30) for 4, and write
the result as

[ {1+ (1/E) (m.}i)} {1— (1/E) (mifi.)},
. _ o OB I DI -0 B) Imifii+ D3},
D =n)/P(f=—n)= it i, (74)
{1—(1/E) [m;/ (i, + DIH{1 4+ (1/E) e G+ 1)1},
if 7}:7.1_"1-

According to Fig. 1 case a), we drew the qualitative conclusion that
there is complete polarization, if the initial nuclei are fully aligned
(m; = §;) and if we have non-relativistic energies for the electrons
(E =~ 1). We see that this is confirmed by (74).

2) After considering the polarization of the f-rays emitted in an
arbitrary direction if the f-interaction is given by the invariant T,
we now take the case of f-rays emitted perpendicular to v the axis
of the polarization of the nuclei with a f-interaction given by an
arbitrary “mixture’ of invariants. By specialization we get from
(66) using (31) and (54)

P:l; (E’ p =|75i c: [Jnucl] = k) -
= (G*16a*) pEGH{(CIH-CY) | [1P+(C3+CY) | [ o>+ CE1 / Bysl*F
F (2/E) [C\C, I /1P + CCy | [ o] +
+ [(C3 + CDIE F 2C,C) A+
+2[(C\CHCCs) F (CiC3 + CLHEVA M, L} (75)
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From (75) we can calculate the same ratio as in (74) for the more
general case. If j; = f; 4 1 the result is the same as in (74) (for then
| f1>?= 0and Z,, = 0). We give the result for j; = §;, assuming that
CC,=0,CC,=0,C,C, =0, C,C, =0 (this would be the case if
the symmetry principle of I § 6 is valid, cf. § 6) and that the nucleus
does not change its parity so that | f fy;|>= 0 (otherwise we would
have |f1?=0 and |fo|* = 0).

P, (E=n)/P, (&=—m) ={(C}HCD) |/ 1P+(C3+CD | /ol +

+mfii6:+1)] [(C3+CY) | fo|*/E+2(C,C4+C.Ca) Mu\/m)]}/
{(C3+CY | [ 1P+(C3+CD) | f o> —

— [miffilii+1)] [(C3+CD| JoP E+2(C,Cot-C,Co) M, Vi (4 1)1} (76)

The formulae (74) and (76) are given on the assumption that the
orientation of the nuclei can be described by one single wave function
(24). It is, however, easy to deduce from the general formulae (66),
(67), (71) and (75), that for the general case (22) the resulting degree
of polarization P can directly be expressed with f, the ‘“degree of
polarization of the nuclei”, and the maximum polarization P(m,=7))
occurring if fy = 1

P = fy P(m; = 1,). (77)

Asto the experimental possibilities, the polarization of §-rays seems
not to be the phenomenon of polarization of nuclei that is easiest
for observation. Itisfavourablein therespect that it depends linearly
on [y, whilé for example the departure from spherical symmetry of
y-radiation emitted by aligned nuclei depends on fZ, which would be
important if fy israther small compared with unity. The difficulty
is that the f-rays cannot leave the cryostate so that they must be
measured in its interior. Further the f-radioactive source must be
near the surface of the cooled material, where it may be heated up
rather soon. If polarization is measured by scattering experiments?)3),
very strong sources (several mC) would be nearly indispensable.
Other methods of measuring the polarization of g-rays with feebler
sources (e.g. transmission by magnetized Fe-foils 1!),12)) can be
imagined, but no successfull experiments have as yet been made
along these lines.

A nucleus that can possibly be used in experiments is %Cu (half
life 12,8 h, maximum energy of negatons 0,571 MeV, allowed $-tran-
sition, about 359, -emission, further 8*-emission and K-capture),
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which can be aligned according to the method indicated above 5), 8),
if it has a nuclear spin (probably j;=1). A complication is that *Cu
emits both g+ and f-rays, of which one wishes to separate the
effects.

Appendix. Vector and tensor notations.” We have used the following
notations for vectors, tensors and their products (the same as, e.g.,
in13)):

Vectors: clarendon type, e.g., a.

Tensors (dyads): sanserif type, e.g., A.

Scalar product of two vectors a - b.

Vector product of two vectorsa ~ b.

Tensor product of two vectorsab =T, if T;, = a,.

T - ais the vector with components (T - a); = Z, T;,4,.

By the product S : T we mean the scalar 2,5, T,;,=S : T=T:S.

We have (ab) : (pq) = (a- q) (b p) = (pq) : (ab),
and $: (pq) = (pq) : S=q-S-p.
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