
Phys i ca  X V l I ,  no 1 J a n u a r i  1951 

ON 

THE 

T H E  T H E O R Y  O F  B E T A - R A D I O A C T I V I T Y  I I I  

I N F L U E N C E  O F  E L E C T R I C  A N D  M A G N E T I C  F I E L D S  ON 
P O L A R I Z E D  E L E C T R O N  B E A M S  *) 

by H. A. TOLHOEK and S. R. DE GROOT 

Instituut voor theoretische natuurkunde, Universiteit, Utrecht, Nederland 

Synopsis 
The  inf luence of electr ic  and  magne t i c  fields on the  spin  o r i en ta t ion  

(polarizat ion) of e lect rons  in a b e a m  is ca lcu la ted  according  to  t he  P a u I i 
sp in  t h e o r y  and  the  D i r a c theory .  F o r  the  cases, where  t h e  field is per-  
pend icu la r  or  paral le l  to  a polar ized  e lec t ron beam,  t he  fol lowing resul ts  
are  found.  

Transverse electric field. In  t he  non-re la t iv i s t ic  a p p r o x i m a t i o n  the  spin 
o r i en ta t ion  remains  cons t an t  in space, even  if t he  b e a m  is def lec ted;  the  
re la t iv i s t ic  fo rmula  gives for the  ra t io  of the  ro t a t i on  of the  spin o r i en ta t ion  
and  the  angle  of def lect ion of t he  b e a m :  Eki,,/E (ratio of k inet ic  energy  and  
t o t a l  energy,  i.e., inc luding  the  rest  mass). 

Transverse magnetic field. The  spin  o r i en ta t ion  does no t  change  in rela- 
t ion  to  t he  d i rec t ion  of p ropaga t ion .  

Longitudinal electric field. T h o u g h  the  b e a m  is acce lera ted  (or re tarded)  
t he  spin  o r i en ta t ion  remains  cons t an t  in space. 

Longitudinal magnetic ]idd. The  spin  o r ien ta t ion  ro ta tes  abou t  the  direc- 
t ion  of p ropaga t ion .  

I t  is shown t h a t  long i tud ina l  po lar iza t ion  of e lec t ron  beams  (spins paral le l  
or  ant ipara l le l  to  t he  d i rec t ion  of propagat ion)  can  be observed  by  means  of 
an  electr ic  def lec t ion  of the  b e a m  and a sca t t e r ing  expe r imen t  in succession. 

§ 1. Introduction. In this paper and the previous one of this 
series on beta-radioactivity 1) 2) 3) a number of problems con- 
cerning the polarization of electron beams are considered in view 
of application to the problem of polarization of the r-rays emitted 
by aligned nuclei 3). We shall study the influence of transverse and 
longitudinal electric and magnetic fields on the orientation of the 

*) Formulae from the first and second paper of this series 1~ t) will be quoted as, 
say, I (10) or II (12). 
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spin in electron beams (we call a field transverse or longitudinal 
according to its being perpendicular or parallel to the direction of 
propagation of the electron beam). 

We have made the calculations by  taking a plane wave as the star- 
ting-point and by  calculating the deviation from the plane wave 
caused by  the field in a first approximation. We consider only the 
case of homogeneous or slowly varying fields (i.e., the variation of the 
fields over distances of the order of the electron wave length is 
negligible). We shall start (§ 2) with a treatment of the deflection 
and acceleration of particle s without spin, according to the relati- 
vistic wave-equation of Klein-Gordon as an introduction to the 
method of calculation. After that  we treat the problem with the 
Pauli spin theory (§ 3) and the Dirac equation of the spin electron 
(§§ 4-6). 

Generally the behaviour of electron beams in slowly varying fields 
is treated with the classical particle model. However, for the descrip- 
tion of the spin of the electron we have to use wave equations from 
the beginning. By  forming wave packets from our solutions, which 
are approximately plane waves, wave functions could be obtained 
that approximate the particles of the classical model. 

t 

Fig. 1. Deflection of an electron 
beam in an electric field; non- 
relativistic approximation. 
Dotted lines: electric field lines, 
short arrows: spin orientation. 

. lli - 

Fig. 2. Deflection of an electron 
beam in a magnetic field; 
magnetic field perpendicular t o  

the plane of the figure. 
Short arrows: spin orientation. 

In the preceding paper it was shown that in scattering experiments 
the transverse polarization is observed. Here we shall show that 
longitudinal polarization can be changed into transverse polarization 
by  means of a transverse electric field (Fig. 1 and 2 show diagrams 
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for beams which are deflected over a right angle by  an electric and 
by  a magnetic field). So the complete determinat ion of an arbi t rary  
s tate  of polarization is possible. 

§ 2. Deflection and acceleration o] particles according to the Klein- 
Gordon equation. We star t  with the Klein-Gordon equation 

[(l/c~) (E - -  ~ ~ )~  - -  Z,.,.= (p,  - -  (e/c) A , )  ~ - -  ,n~c ~] ~ = o ,  (1) 

in which E and p~ are the operators: E = -  (~/i)O/Ot and Px = 
= (hli)O/Ox. We take particles wi th  charge e; if necessary we can 
specialize to negatons by  put t ing e = -  e and to positons by  
put t ing  ~ ~ e. The values for q~, the scalar potential  and A, the vector 
potential ,  will be inserted later for the cases to be studied (we sup- 
pose the fields constant  in time). We look for solutions of (1) of the 
shape (cf. 4)) 

Va = ~o 0 exp (i e [), (2) 

in which ~o satisfies (1) if we put  e = 0, and for which we take a 
plane wave 

~o 0 = exp [(i/D) (p .  x - - E t ) ]  with E 2 = p2c2 + m2c 4. (3) 

/ is a function of x, y, z restricted by  an equation, which is obtained 
from (I) by  the subst i tut ion of (2). I f  we take into account tha t  
~o satisfies (1) if we put  e = 0, and if we neglect the terms with ~2 
(i.e., we calculate only small deviations from the plane wave), the 
following equation for [ is found (in this deduction the relation 
div A = 0 is used) 

2/~p- grad / = - -  2E#/c 2 + 2p . AIc + i~ 2 A/. (4) 

If we take for ~Po a plane wave in the x-direction, we have Px = P, 
py = 0, p. = 0 and (4) reduces to 

a / l a x  = --EaSl~pc~ + Axlt, c + i(~/2p)/tl. (5) 
We shall s tudy  the influence of the following fields (i, j, k are the 
unit  vectors in the x, y and z-direction) 

a) transverse electric field: 

~ ' = ~ j ,  ~ = - - ~ y ,  A = 0 ,  (6) 

b) transverse magnetic field: 

B = ~Bk, q~ ~ 0, A., = - - / S y ,  Ay = 0, A .  = 0, (7) 
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c) longitudinal electric field" 

e = • i ,  ~ - - - - - - d ' x ,  A----0,  (8) 

d) longitudinal magnetic field: 

= ~ i ,  # = 0 ,  A .=0 ,  Ay=- -~z ,  A .=0 .  (9) 
I t  is easily verified that  the following expressions for / satisfy (5) 

for these cases 
a) / -= (Ee/~pc 2) xy, (10) 

b) 1 = - -  (~lt~c) ~y ,  (1 I) 

c) 1 = (E~/2h'P c2) x2 + i(E~/2P 2c2) x, (12) 

d) / ---- 0. (13) 

In this w a y  we find the solutions 

a) ~p=exp {(i/]i) W(px - -  Et) + (c EC/pc 2) xyl}, (14) 

b) ~v=exp ((i/h) [ ( p x -  Et) - (e ~/c) xyJ}, (15) 

c) ~ = e x p  ((i/R) [ (px-Et) + (¢ E~/2pc 2) x21) exp [-(eEce/2p2c2)x], (l 6) 

d) yJ=exp  {(i/h) (px - -  Et)}. (17) 

The influence of the fields exists in a certain change of m o m e n t u m  
if the beam has t raversed a distance x; we calculate the changes in 
(kinetic) momen tum Azcx, Any, A ~  for this case. (In the results 
z~x, Az~ x, etc. are meant  as mean values of the operators nx = 
= (t,/i)OlOx--(e/c,) A ,  . . . .  for the solutions (14)-(17) in a sense 
that  is explaned in the appendix).  For  the transverse fields we define 
the angle A 7 = Az~y/n~, which determines the angle of deflection of 
the beam. For  x ---- 0 : z~ = p, ny = 0, zc: ---- 0. We obtain the results 

a) Agx=O , Ag.-~O, Agy=(eE~/pc  2) x, A?e=(eE~/p2c  2) x, (18) 

b) A u , = 0 ,  Au :=0 ,  A u , = - -  (e ~B/c) x, A T e = - -  (e ~B/pc) x, (19) 

c) Axy=0,  A~ ,=0 ,  Ax,----(e E~/pc 2) x. (20) 

d) A~,=0, Az~y=0, Az~,=0. (21) 
A longitudinal magnetic field has no influence on the beam. In 

case of the magnetic fields, the calculation takes a rather  different 
shape if we take other forms for A, bu t  the final result is of course 
the same, because of the gauge invariance in quan tum mechanics. 

§ 3. Deflection and acceleration o~ electrons according to the Pauli 
spin theory. In this section, we s tudy  the change of the spin orienta- 
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tion of electrons in a beam in electric and magnetic fields, according 
to the Pauli spin theory. 

We start with the wave equation 

[ ( E - - e  4) - -  (p2/2rn) + (e/mc) (p .  A) + 

+ (e M2mc) ,"  (• + e A p/2mc)] 9 = O, (22) 

in w h i c h ,  is the "vector"' with the Pauli spin matrices as compo- 
nents. We shall investigate solutions of (22) in the same way as in 
§ 2: we again use the substitution 

9 = [exp (i ¢/) ]  90. (23) 

The wave funct ions have now two components ; 9o satisfies (22) i f  we 
put  e = 0; we take for 9o 

( B )  exp [ ( i / h ) ( p ' x - - E t ) ]  with E=p2/2m.  (24) 90 

The funct ion / now becomes a 2 x 2 matr ix ,  which can be ex: 
pressed, e.g., w i th  the aid of the Pauli  spin matrices. Subst i tu t ing 
(23) in (22) we get 

[ - -  2hp- grad [ - -  2mq~ + 2p . A/c + ih2A/ + 

+ (h/c) a .  (~ + e A p/2mc)] [exp (i e/)] 90 = 0. (25) 

(25) is a matrix equation, in which p is no longer an operator, but 
has the value from (24). The two constants A and B of 90 in (25)can 
have an arbitrary ratio as we study waves with arbitrary spin 
orientation. From this it can be derived that the expression between 
brackets in (25) can be put equal to 0 separately. If we again take a 
plane wave in the x-direction for 90, we get 

o/IOx = --mqS/hp + A Jhc + i(h/2p) AI + 

+ (I/2pc) ~ .  (J~ + e /x p/2mc). (26) 

If we again take the cases (6)-(9) for the electromagnetic field it is 
easily verified that the following expressions for / satisfy (26) 

a) / = (mcO/hp) xy - -  (c°/4mc 2) a:~, (27) 

b) 1 = - -  (B/hc) xy + (~B/2pc) ~.x, (28) 
c) / = (mcO/2hp) x 2 + i (mc°/2p 2) x, (29) 

d) [ = ( ~ t 2 p c )  e:,x. (30) 
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Hence we find for ~v 

a) tv = exp [--i(~/4mc 2) a~]  ( A ) e x p  { ( i / ~ ) [ ( p x -  E t ) +  

+ (e me/p)  xyl}, (31) 

[/(e 2}/2pc)a,x] ( A ) e x p  { ( i / h ) [ ( p x -  E t ) -  b)~v exp 

- -  (e 2}/c) xy] } ,  (32) 

c ) ~  = ( B ) e x p  { ( i / I , ) [ ( p x -  E t ) +  (eme/2p)x2]} 
% J 

exp [--  (c m E/2p 2) x], (33) 

d) ~v = exp [i (e 2}/2pc)a, x] ( A ) e x p  { ( i / h ) ( p x -  Et)}. (34) 

We use the same symbols  as in § 2 for ' the change of m o m e n t u m  
and the deflection. As the Paul± spin matrices with the factor 

(i/2) are the operators for the infinitesimal rotat ions (cf. II  (13)), 
it is an immediate  consequence of (3 I)-(34) tha t  we can describe the 
change of the spin orientat ion as a rotat ion the absolute: value of 
which we shall denote as Aa. The results in the four cases are 

a) A~,-----0, A~.. ---- 0, A~y=(e  m~/p) x, A V e =  (¢ mC/p 2) x, (35) 

Aa~x = (e ~/2mc 2) x, rotat ion about  the z-axis, (36) 

Aae i  /,47e = pa/2mac2 = ½(v/c)2; (37) 

b) zl~,=0 ~ , = 0 ,  ~ y = - -  (e 2}/c) x, , ~ r~=- -  (e 2}~pc) x, (38) 
AaBz = - -  (e 2}/pc) x, rotat ion about  the z-axis, (39) 

A a ~ x / A ~  = 1; (40) 

c) A~y = O, ,4~= ~- O, /1~, = (¢mC/p) x, /lael t = 0; (41) 

d) ,4~, ---- 0, /l~y = 0, zl~: = 0, (42) 

Aa~ It ---- - -  (¢ 2}/pc) x, rotat ion about  the x-axis. (43) 

For  the cases of a deflection of the beam by  transverse fields we 
have calculated the quotients  ,4a/A 7 to compare the rotat ion of the 
spin orientation with the deflection of the beam. 

In the formulae (35)-(43) p = my; we have used the non-relati- 
vistic appr.oximation for the t ransla tory  motion of the electron; in 
this approximat ion these formulae agree with (I 8)-(21). For  a trans- 
verse magnetic field we see that  the orientat ion of the spin remains 
the same in relation to the direction of the beam (cf. Fig. 2). For a 
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transverse electric field the rotation of the spin orientation is of the 
relativistic order ½(v/c) 2, so that  the spin orientation remains nearly 
constant in space for small kinetic energies, which result could 
be expected (cf. Fig. 1). 

§ 4. Generalities on the treatment with the Dirac equation.  In 
§§ 5 and 6 we Shall treat the same problem as in § 3, but starting from 
the Dirac equation. For this t reatment we shall use some formu- 
lae given in this section. The Dirac equation consists of four 
simultaneous first order equations for the four components of the 
wave functions. We shall show that  we can spit t it up for special 
problems into two pairs of equations with each only tWo functions. 
Further  we give the reduction to one second order differential 
equation for a number of cases (cf.also 5) e) ~)). 

The Dirac equation for an electron in an electromagnetic field 
will be used in the notation 

(~/c + me) 'pt + ( = . - -  i=~) ~o, + ~.~3 = o, 

(./c + me) ~;~ + (=. + i=.) ~3--=.~4 = o, 
(44) 

(~/c - - m e )  ~3 + ( = . -  i=,) ~2 + =.~, = 0, 

( ~ / c -  mc) ~4 + (=. + i=,,) ~ -  = . ~  = 0, 
with 

e = - -  (h/i) O/~t - -  e # ,  ~x ~- (~/i) alex - -  (e/c) A , ,  etc. (45) 

If we treat problems, which are independent of the z-coordinate 
and for which A, ---- 0, (44) is reduced to two pairs of equations 

(e/c + mc) ~ t +  ( ~ , -  i,y) v?4 = 0, } (46) 
( ~ l c -  me) ~ + (=, + i=~) ~, = o, 
(~/c + mc) ~;2 + (~, + i=,) ~3 = o, 

(47) 
(~ lc -  mc) v~ + ( ~ , -  i,,~) v~ = o. J 

I t  is seen that (47) is obtained from (46) by the substitution 

~)I "--)" ~)2' ~,)4 --)" ~D3' ~r~y -+ -- =~,. (48) 

We give a further reduction of the problem for four cases 

a) 8 commutes with n~ and ny, 
r) zcy commutes with ~ and zc., 
7) nx commutes with 8 and ny, 
6) No electric field exists: ~ = 0. 
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I t  is not necessary that  the last two operators of the cases a, fl, ? 
commute. We now give t h e  ways in which the reductions can be 
carried out. 

a) We obtain from (46) 

(~/c + mc) ( ~ / c -  mc) ~'4 = - -  (~lc + ~c) (=, + %) ~, = 
= - -  (=,,+ %) (~/c+mc) v',. 

Hence 
(**],=--m=c =) % -  (=,, + i%,) (~t, - - i % )  ~, = 0. (49) 

fl) Instead of ~t and ~v 4 we can introduce the function ~1 and ~4 

(50) 
J 

From (46) we get by  addition and subtraction 

(,/c + ~x) q~, + (mc + % )  ~4 = o , }  (51) 
(~/c - -  ,t,,) ~4 + (mc - -  %,) q~t = O. 

From (51) a second order equation for ~4.can be deduced 

(~/c + ~,) ( ~ / c -  ~,) q~4-- ( m2c~ + ~,) ~, = o. (52) 
7) We introduce the functions co t and ¢o 4 according to 

~4 = ½(~I -- #4) i~4 = ~t -- ~4 J 

From (46) the following equations for co I and eo 4 are obtained 

(e /c -  :rtx) co t + (mc + i~t,) co 4 = 0, } (54) 
(~/c + =,) ~,  + ( m c -  ix,) ~,  = o. 

From (54) we get as asecond order equation 

(~lc --,,,) (~lc + %) ~ '4 - -  (m =e + =,~) % = o. (55) 
- I f  the 4-components have been obtained from the second order 

equation, the l-components must be calculated from a first order 
differential expression according to (47), (51) or (54). The 2- and 
3-components can be treated analogously to the 1- and 4-compo- 
nents, using the substitution (48). 

8) An analogous reduction of the problem is possible in the case 
that  there is no electric ]idd: ¢ = 0, A constant, ~ = E. Then the 
iterated Dirac equation contains only two wave functions; it 
follows directly from (44) (here the problem may contain the z-coor- 
dinate) 

[E2/c 2 -  (~ + ~ -I- a'~2)- =2c2] ( ' a )  + (e l~/c) B ' o  (~Pa~ = O. (56) 
~4 \v;4/ 
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After determination of ~03 and ~04, ~l and ~02 can b e  derived from 
the first two equations of (44). 

§ 5. The in/luence o/electric ]ields on electron beams according to the 
Dirac theory. In this section we s tudy the influence of transverse 
and longitudinal electric fields on the spin electron with the aid of 
the Dirac equation. We take a plane wave moving in the x-direc- 
tion in case there would be no field. We use such fields that  the 
z-coordinate does not enter. Then we can apply the considerations 
of§4. 

~_L Transverse electric/ield 
= ~j,  • = - - ~ y ,  A = o. (57) 

e = - -  (hli) a/at + ~ ey  = E + e ~y, ~ = p. (58) 

We have the case y of § 4; using (58) equation (55) becomes 

(E~/~-m~c ~) o , + h  ~ (~ /0 ,~+0~/&)o4-~  ~" (h/ic-2~y/c ~) 0 4 = 0  (59) 

(terms of the order e 2 are neglected). We put 

04 : 040 exp (ie]) (60) 
with 

040 = B exp [(i/h) (px  - -  S t ) ] .  (61) 

From (59), (60) and (61) an equation for / is obtained 

OtlOx-- i (hl2p)  (~t lOx~+ e~ll~y ~ ) -  (~/2~c) i - - ( ~ E / h ~ c  ~) y = 0 .  (62) 

It  is easily verified that we have the solution 

/ = (~E/tvpc ~) xy + i(8/2~c) x. (63) 

We get as solution for 04 

o 4 = B  exp {(i/h) [(px-Et)+(e ~E]pc 2) xy]} exp[--(e e]2pc) x]. (64) 

co ! is calculated according to (54) 

o ~ = - -  [ l / (mc - -  ip)] [ (E/c )+(~  ~ E /pc  ~) x + ~  uy+es ]  o4 (65) 

with 
s = h~(mc + ip)/2pE, I (66) 
u = imP~#. I 

(The values of s and u have no influence on our result (74)). 
Analogously it is calculated for co 3 and o 2 

03 = .4 exp {(//h) [(px--Et)+(e BE/pc 2) xy]} exp [(e ~.]2pc) x], (67) 

(o~ = - -  O l(mc - - / / , ) ]  [(E/c) - -  (~ g EIPc~) x + ~ uy - -  ~s) o~. (Ca 
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According to (48) and (53) we have 

i (~°3) = (°32) - -  (°)3). (69) 

~4 wl °J4 
From (69), (64), (65), (67) and (68) we obtain the following expres- 

Sion by a straightforward though rather lengthy calculation (in 
which terms of order e 2 are neglected) 

I ~03) -- (~v3) K(x, y, t) (70) , ~4 ,,,-- (1 + Mx) ~v4 ,=o'=° 
with (A) 

x=o-- = { [ - - p c  + i(E + mc2)]/E} (1 - -e  Csa,) , (71) 
~04 t=o 
K(x, y, t)----(l+e Cuy) exp {(i//0 [(px--~Et)+(e E ~/pc 2) xy]}, (72) 
C = [ ( E / c ) + m c -  ip]- l=c(E+mc2+ipc)  [2E(E+mc2)] - t ,  (73) 

while we find for the matrix M 
M = - -  (i/2) ~,[e ~/(E + mcZ)]. (74) 

These formulae contain the results for the influence of the electric 
field on the beam. For the deflection of the beam we again find the 
relativistic formula (18). From (74) we obtain the formula for the 
rotation of the spill or ientat ion 

Aae,  L = [e ~/(E + mc2)] x, rotation about the z-axis. (75) 

This is the relativistic generalization of (36). From (75) and (18)it 
follows immediately that 

Aae_L /AYe = p2c2/E(E + mc 2) 
or Aae,  L/Aye = Eki,,/E with E~i,,= E - -  mc ~ (76) 

It is clear that  (37) is a first approximation of (76). 

ell Longitudinal electric [ield. 
d" = ei ,  • = - - ~ x ,  A ---- 0. (77) 

e = - -  ( ~ / i )  a / a t  + e Ex  = E + ~ e x, ~ = p ,  (78) 

We have the case/~ of § 4; using (78) equation (52) becomes 

(E2/c2-mzcz) 94+ hg(O2/OxZ+OZ/OY 2) ~4 "~-e e (h/ic + 2Ex/c 2) ~04=0. (79) 

We put 
94 = 94o exp (i e/) (80) 

with 
940 = B exp [(i/h) (px - -  gt)]. (81) 
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From (79), (80) and (81) we obtain as equat ion for / 

o//ax--i(~/2p) (a2l/ax 2 + ~//ay 2) + (e/2pc) i--(EE/~pc2)x= o. (82) 
From this equat ion we find a solution 

l = (~E/2~P c2) x2 + i[E~/2P 2c2 - -  ~/2pc] x. (83) 

This gives for 94 

94 = 2~ exp {(i/h) [(px - -  Et) + (e Ee/2pZc 2) x2]} 
exp [ - -  (E/pc--1) (e 8/2pc) x]. (84) 

91 is calculated according to (51) 

~, = (1/mc) EE/c - -  p + (~ e/c) x - -  (~ E ~/p2c=) x + 
+ (tz/i)(E/pc--l)(e 8/2pc)] *4. (85) 

92 and ~3 can be calculated in an analogous way ;  from the general 
equat ions (51) and (52) it is a l ready clear tha t  their values are exact ly  
the same as for 91 and 9g (cf. (48)) except,for a constant  factor. Hence,  
according to (48) and (50) ~oJW 4 is independent  of x, in other  words : 
The spin orientation is not changed by a .longitudinal electric ]ield, by 
which the beam is accelerated. 

This is the same result tha t  was expressed in (41) b y  Aael I = 0, 
which thus remains valid for the relativistic theory.  This result can 
al ready be deduced from the general form of the equations, wi thout  
calculating explicitly the solution, as we have done. From this solu- 
tion it is easy to establish again the relativistic formula (20) for the 
change of momentum.  

§ 6. The in/luence o/magnetic ]idds on electron beams according go 
the Dirac theory. For the t rea tment  of the influence of magnetic 
fields on a beam we again take  a plane wave in the x-direction in case 
there is no field. We choose the magnetic field in such a w a y  that  we 
can apply  § 4. 

•_L Transverse magnetic [ield. 

B = B k  , ~ = 0 ,  A , = l B y  , A ~ = 0 , A , = 0 [ (86) 

,=-(~/i) o/at, ~,=p,-(~/c) A , =  (~li) alax + e  ~ylc, ,,y=p~, ~,=p:. (87) 
We can proceed according to the cases a or ¢1 of § 4. From the equa- 

tions (49) or (56) we obtain the same equat ion for ~o 4, if we take a 
s i tuat ion tha t  no dependence on the z-coordinate exists ((87) is used). 

(e2 /C2 - -  m2c2) W4 "Jr- ~2 (a21Ox 2 _~_ ~2/~2)  ~04 _ _  (• ~ e / c )  W4 - -  

- -  (2  ~ ~By/ic) a~,/ox = o .  ( 8 8 )  
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We put 
~4 = ~4o exp (i e 1) (89) 

with 
~04o = B exp [(i]n) ( p x -  Et)]. (90) 

From (88), (89) and (90) we get an equation for / 

o//ox--i(n/2p) ( ~ t / o / +  ~t/&) + (B/2pc) + (.B/nc)y = o. (91) 
From this equation a solution for / can be obtained 

] = - -  ( .B /nc)  x y -  (.B/2pc) x. (92) 

Hence we have for ~04 

~24----B exp {(i/n) [ ( p x - - E t )  - -  (e .B/c) xy]} exp [ - -  i (e ~J/2pc) x]. (93) 

Analogously a solution for ~s can be calculated 

~0 s = A exp {(i/n) [(px - -  Et) - -  (e .B/c) xy]} exp [i(e .B/2pc) x]. (94) 

~, and w~ can be calculated according to (46i and (47). 
We can write (93) and (94) together as 

- K(-, y, (95) 

with (,4)~__o-- ( A ) (96, 

K(x ,  y, t) ---- exp {(i]n) [ ( p x - - E t )  - -  (e .B/c)xy]}, (97) 

while we find for the matrix M 

m = (i/2) o, (e.B/pc). (98) 

From these formulae we find again the relativistic formula (19) for 
the deflection of the beam. From (98) we obtain the relativistic 
formula for the rotation of the spin orientation. 

AaB. L = ~ (e .B/pc) x,  rotation about the z-axis. (99) 
(19) and (99) have as their quotient 

A a B ± / A y z  = 1. (100) 

Hence the non-relativistic formula (40) remains vali 

.BII Longitudinal  magnetic field. 

.B = . B i ,  • = 0, A ,  = 0, Ay = - - .Bz ,  A,  = 0. (101) 

• = - -  (Mi)  o/or -= E ,  ~x --- Px, :~, = P, ,  ~y = P~ ~ (e/c) A y  ---- 

= (n/i) O/Oy + e .BZ/C. (102) 
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We proceed according to ~ § 4; from (56) and (102) we obtain 

. * h o , ]  - -  

- ( 2  = o . , , . .  ( o3) 

We proceed in a way analogous to § 3 by put t ing 

~4 \~4oI 

with (~ao~ ( A ) e x p  [ ( i / h ) (px - -  Et)]. (105) 
\~4oI 

From (I03), (104) and (105) we get by an analogous argument as in 
§ 3 an equation for / 

O//Ox - -  i (h/2p) (02110x a + 02110y 2 + o~//oz ~) - -  (B/2pc)  ~.  = o. (1 oe) 

From this equation we find a solution 

t = CBI2pc) ~3¢. (107) 
Hence we can write for the wave functions 

- ( i o 8 )  (~4),,, - (1 + M x ) ~ : 3  \~4/ ,  :o t), 

~a 
with (~04)~,_oO= ( A )  , (109, 

K(x ,  t) = exp [(i/h) (px - -  Et)], (110) 

while we have for the matr ix M 

M = (i/2) a, ( ~ / p c ) .  (111) 

Hence we find that  the beam is not deflected or accelerated, as is 
described by (21) and that  the relativistic formula for the rotation of 
the soin orientation becomes 

daBll = - -  (e ~/pc)  x, rotation about the x-axis. (112) 

The results on the influence of magnetic fields on the electron spin 
are essentially already contained in 5) and ~). 

§ 7. Discussion.  From the investigations in §§ 2-6 on the influence 
of electric and magnetic fields on the polarization of electron beams, 
we can draw the following conclusions: A transverse magnetic field 
does not change the spin orientation relative to the direction of 
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propagation but a transverse electric field performs this change. I t  
follows from this result that  longitudinal polarization can be changed 
into transverse polarization with the aid of a transverse electric field 
(not with atransversemagnetic field). After this change by  an electric 
deflection the t ranswrse polarization can be observed with the aid of 
a scattering experiment according to II, § 3. If a transverse electric 
field is used according to Fig. 1 to make a circular beam, the beam 
must traverse an angle 

(z~/2)](1 - -  Eko,/E ) (113) 
t o  change longitudinal polarization into transverse polarization. 
Hence the angle is'z~]2 for low energies, but might be rather big for 
energies which are high compared with the rest mass. 

It  thus appears that  the use of electric fields in combination with 
scattering experiments 2) offers experimental methods which can be 
realized and are sufficient to make a complete investigation of the 
polarization of electron beams. 

I t  fonows from II  § 4 that  the asymmetries in scattering experi- 
ments become smaller for low ( <  30 keV) and high ( >  1 MeV) kine- 
tic energies of the electrons. According to §§ 3 and 5 the polarization 
does not change if a beam is accelerated (or retarded) by a longitudi- 
nal electric field. Hence it  will be useful to accelerate (retard) a beam 
wi th too  small (too big) energy before measuring the polarization by 
means of scattering. 

The influence of a longitudinal magnetic field consists in a rotation 
of the spin direction about the direction of propagation, which is 
analogous to the influence of a quartz-plate on polarized light. 
Although an experimental confirmation of this effect would of course 
be interesting, it seems not especially useful for the observation of 
polarization. 

Our results were calculated for homogeneous fields. After this it is 
easy to obtain the effect of arbitrary fields. Locally the fields can be 
taken as homogeneous, as 10ng as the electron wave length is 
small in comparison with the distances over which the fields vary 
appreciably. For the influence of an arbitrary non-homogeneous 
field on electron beams it is important that  we can calculate electron 
trajectories without taking an influence of the electron magnetic 
moment into account (cf. the considerations of B o h r on this 
subject s)). This is different from the influence of inhomogeneous 
magnetic fields on beams of neutral particles with a magnetic moment 
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in the S t e r n-G e r 1 a c h experiment where the beam is separated 
into different parts. After calculating the trajectory the change of the 
spin orientation along the trajectory can be obtained by using the 
results of §§ 5 and 6 as differential equations determining the change 
of the spin direction. 

We wish to point out a possible way of measuring directly the 
magnetic moment of the electron #, (or the g-factor of the electron). 
In the double scattering experiment for electrons apply a homo- 
geneous magnetic field B, with direction perpendicular to the plane 
of the electron beams beyond the first scattering (cf. II Fig. 2). We 
assume that  the electrons are scattered at right angles at the two 
places even if the beam is deflected by the magnetic field. We know 
that  the directions of the spin, which are perpendicular to the plane 
of the beams are not changed by this magnetic field. Let AE = 21~ ~ 
be the energy difference for electrons at rest for the two afore-men- 
tioned spin directions in the magnetic field JB. The electron beam in 
the magnetic field could be depolarized by applying a radiofrequency 
field with a frequency v, which is determined by AE = h~ (in a way 
analogous to the resonance method of G o r t e r and R a b i for 
the determination of atomic magnetic moments with atomic beams). 
In this way the asymmetry after the second scattering would dis- 
appear. Hence one could obtain a direct measurement o f / ~  by 
measuring the frequency for which this asymmetry disappears. 

In §§ 2-6 we exclusively discussed phenomena on a macroscopic 
scale in slowly varying fields; they are essentially different from, e.g., 
scattering at a nucleus (M o t t 8), g)). 

Appendix. The use o/wave packets and the calculation o/ An x and 
An~.. In the foregoing sections we have calculated solutions for 
charged particles in electric and magnetic fields, which are approxi- 
mately plane waves. From these solutions we obtained the changes 
in kinetic momentum/Inx and Any by calculating the result of the 
operators n~ = (~/c) O / O x -  (e/c) A~, ny . . . . .  acting on the wave 
function ~o. In this connection we will call attention to the following 
point that  otherwise might give rise to confusion. In the foregoing 
sections the calculations give often results of the shape (nk, k th 
component of ,t) 

z~,W = (a + bx) W, (114) 

where a and b do not depend on x, y, z or t (cf., ¢:.g., the results for n~W 
according to the formulae (16), (31), (33), (84), (85) and for ny~o in 
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(70) with (72)). a may  be a (spin) matrix, b is a number. The result for 
the  changes in kinetic momentum A~r k has then been given as 

z]~ k = bx, (115) 
The expression for the momentum density for particles without 

spin is 
½ (v,* ~ + c.c.). (116) 

For particles with spin there is still an additional term while in 
(116) the sum over the spin variables must be taken. The expression 
for the total momentum of a system, which is obtained by  integra- 
tion of the expression for the momentum density, is for particles 
with or without spin (cf. e.g. 10)) 

f~o* :*k ~o dr. (117) 
We need not use the expression for th~ momentum density and we 

can start  directly from (117). However, we cannot form this integral 
for (approximately) plane wave solutions, for it does not converge. 
But we can form solutions ~(x, y, z, 0 of the wave equation repre- 
senting wave packets, that  correspond to (approximately) plane 
wave solutions ~0(x, y, z, t). If we form the mean value ~k = 
= f ~* ~r k ~dr (117) for the solutions ~ and if we use (114), it can be 
shown that  only the term bx (but not the term a) in (114) gives rise 
to a change in ~k if the wave packet changes its place. If x gives 
approximately the place of the wave packet the change A:r k of ~k 
is found to be determined by (115). Wave packets have mainly been 
considered for particles without spin; for particles with spin some 
calculations are given in 11) and 1~). 
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