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ON THE THEORY OF BETA-RADIOACTIVITY III

THE INFLUENCE OF ELECTRIC AND MAGNETIC FIELDS ON
POLARIZED ELECTRON BEAMS *)

by H. A. TOLHOEK and S. R. DE GROOT

Instituut voor theoretische natuurkunde, Universiteit, Utrecht, Nederland

Synopsis

The influence of electric and magnetic fields on the spin orientation
(polarization) of electrons in a beam is calculated according to the Pauli
spin theory and the Dirac theory. For the cases, where the field is per-
pendicular or parallel to a polarized electron beam, the following results
are found.

Transverse electric field. In the non-relativistic approximation the spin
orientation remains constant in space, even if the beam is deflected; the
relativistic formula gives for the ratio of the rotation of the spin orientation
and the angle of deflection of the beam: E,,/E (ratio of kmetlc energy and
total energy, i.e., including the rest mass).

Transverse magnetic field. The spin orientation does not change in rela-
tion to the direction of propagation.

Longitudinal electric field. Though the beam is accelerated (or retarded)
the spin orientation remains constant in space.

Longitudinal magnetic field. The spin orientation rotates about the direc-
tion of propagation. »

It is shown that longitudinal polarization of electron beams (spins parallel
or antiparallel to the direction of propagation) can be observed by means of
an electric deflection of the beam and a scattering experiment in succession,

§ 1. Introduction. In this paper and the previous one of this
series on beta-radioactivity 1) 2) 3) a number of problems con-
cerning the polarization of electron beams are considered in view
of application to the problem of polarization of the f-rays emitted
by aligned nuclei 3). We shall study the influence of transverse and
longitudinal electric and magnetic fields on the orientation of the

*) Formulae from the first and second paper of this series ') *) will be quoted as,
say, I(10) or II (12).
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18 H. A. TOLHOEK AND 8. R. DE GROOT

spin in electron beams (we call a field transverse or longitudinal
according to its being perpendicular or parallel to the direction of
propagation of the electron beam).

We have made the calculations by taking a plane wave as the star-
ting-point and by calculating the deviation from the plane wave
caused by the field in a first approximation. We consider only the
case of homogeneous or slowly varying fields (i.e., the variation of the
fields over distances of the order of the electron wave length is
negligible). We shall start (§ 2) with a treatment of the deflection
and acceleration of particles without spin, according to the relati-
vistic wave-equation of Klein-Gordon as an introduction to the
method of calculation. After that we treat the problem with the
Pauli spin theory (§ 3) and the Dirac equation of the spin electron
(86 4-6). |

Generally the behaviour of electron beams in slowly varying fields
is treated with the classical particle model. However, for the descrip-
tion of the spin of the electron we have to use wave equations from
the beginning. By forming wave packets from our solutions, which
are approximately plane waves, wave functions could be obtained
that approximate the particles of the classical model.

Fig. 1. Deflection of an electron Fig. 2. Deflection of an electron
beam in an electric field; non- beam in a magnetic field;
relativistic approximation. magnetic field perpendicular to
Dotted lines: electric field lines, the plane of the figure.

short arrows: spin orientation. Short arrows: spin orientation.

In the preceding paper it was shown that in scattering experiments
the transverse polarization is observed. Here we shall show that
longitudinal polarization can be changed into transverse polarization
by means of a transverse electric field (Fig. 1 and 2 show diagrams
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for beams which are deflected over a right angle by an electric and
by a magnetic field). So the complete determination of an arbitrary
state of polarization is possible.

§ 2. Deflection and acceleration of particles according to the Klein-
Gordon equation. We start with the Klein-Gordon equation

[(1/62) (E —€ ¢)2 - Zx,y,z (ﬁx - (G/C) Ax)2 — mzch Y= O» (l)

in which E and ¢, are the operators: E = — (%/i)8/ot and p, =
= (%ji)o/ox. We take particles with charge e; if necessary we can
specialize to negatons by putting e = —e¢ and to positons by

putting e = e. The values for @, the scalar potential and A, the vector
potential, will be inserted later for the cases to be studied (we sup-
pose the fields constant in time). We look for solutions of (1) of the
shape (cf. %))

' v = yyexp (sef), 2
in which y, satisfies (1) if we put e = 0, and for which we take a
plane wave

w, = exp [(¢/A) (p - x — Et)] with E? = p%? 4+ m?%*. (3)

f is a function of x, y, z restricted by an equation, which is obtained
from (1) by the substitution of (2). If we take into account that
y, satisfies (1) if we put e = 0, and if we neglect the terms with e?
(i.e., we calculate only small deviations from the plane wave), the
following equation for f is found (in this deduction the relation
div A = 0is used)
2hp - grad f = — 2E®/c® + 2p - Afc + 4% Af. (4)
If we take for y, a plane wave in the x-direction, we have p, = 2,
p, = 0, p, = O and (4) reduces to
ofjox = — E®[hipc* + A [hc + i(h/2p) Af. (5)
We shall study the influence of the following fields (i, j, k are the
unit vectors in the x, y and z-direction)
a) transverse electric field:
E=CEj, 0=—Ey, A=0, (6)
b) transverse magnetic field: ,
B=Bk, 6=0 4,=—By, 4,=0, 4,=0, (7)
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¢) longitudinal electric field:

E=FCi, d=—Ex, A=0, (8)
d) longitudinal magnetic field:
B=3Bi, ®=0,4,=0,4,=—3B8Bz, 4,=0. (9)

It is easily verified that the following expressions for f satisfy (5)
for these cases

a) | = (EE[npc) xy, (10)
b) f = — (Blhc) xy, (11)
c) f = (EE[2hpc®) x* + i(EE[2p%P) x, (12)
d) f=0. (13)
In this way we find the solutions

a) y=exp {(ifh) [(px — EX) + (e EE[pc?) xy1}, (14)
b) y=exp {(i/%) [(px — Et) — (e Bfc) xy1}, (15)
c) wy=exp {(1/h) [(px—Et)+ (e EE[2pc?) x*]} exp [~(e EE[2p%c*) %], (16)
d) y=exp {(/h) (px — Et)}. (17)

The influence of the fields exists in a certain change of momentum
if the beam has traversed a distance x; we calculate the changes in
(kinetic) momentum 4=x,, An,, Az, for this case. (In the results
7, An,, etc. are meant as mean values of the operators =z, =
= (hfi)o/ox — (e/c,) A,, ... for the solutions (14)—(17) in a sense
that is explaned in the appendix). For the transverse fields we define
the angle 4y = Am,/z,, which determines the angle of deflection of
the beam. Forx = 0:n, = p,n, = 0,n, = 0. We obtain the results

a) An,=0, A=, =0, An,=(c EE[pc?) x, Ay=(e EE[p*c?) x, (18)
b) An,=0, An.=0, Am,=— (e BJc) x, Ayg=— (e B/pc) x, (19)
¢) An,=0, An,=0, An,=(c EE/pc®) x. (20)
d) An,=O0, An,=0, An,=0. (21)
A longitudinal magnetic field has no influence on the beam. In
case of the magnetic fields, the calculation takes a rather different

shape if we take other forms for A, but the final result is of course
the same, because of the gauge invariance in quantum mechanics.

§ 3. Deflection and acceleration of electrons according to the Pauli
spin theory. In this section, we study the change of the spin orienta-
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tion of electrons in a beam in electric and magnetic fields, according
to the Pauli spin theory.
We start with the wave equation

(E—e®) — (p°/2m) + (e/mc) (p - A) +
+ (e B2mc)a - (B + E~p[2mc)] y = 0, (22)

in which ¢ is the “vector” with the Pauli spin matrices as compo-
nents. We shall investigate solutions of (22) in the same way as in
§ 2: we again use the substitution

y = [exp (ze )] yo. (23)

The wave functions have now two components; y, satisfies (22) if we
put e = 0; we take for y,

Yo = <g> exp [(4/B) (p - x — Et)] with E=p*2m. (24)

The function f now becomes a 2 X 2 matrix, which can be ex-
pressed, e.g., with the aid of the Pauli spin matrices. Substituting
(23) in (22) we get

[— 2%p - grad f — 2m® + 2p - Ajc + i#2Af +
+ (Bfe) o - (B + € ~ p/2me)] [exp (ie fll yo = 0. (25)

(25) is a matrix equation, in which p is no longer an operator, but
has the value from (24). The two constants A and B of y, in (25) can
have an arbitrary ratio as we study waves with arbitrary spin
orientation. From this it can be derived that the expression between
brackets in (25) can be put equal to O separately. If we again take a
plane wave in the x-direction for y,, we get

oflox = — m®[hp + A Jhc + i(h/2p) Af +
+ (1/2p0) o - (B + € ~ p/2mo). (26)

If we again take the cases (6)—(9) for the electromagnetic field it is
easily verified that the following expressions for f satisfy (26)

a) [= (mEnp) xy — (E/4mc?) o x, (27)
b) | =— (Bfhc) xy + (B[2pc) o.x, (28)
o) f= (mE[2hp) x* + i (mE[2p) x, (29)
d) f= (B/2pc) o (30)
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Hence we find for ¢

o) y = exp [— i(e€Jame) o.5)((g ) exp (H) (b — BY) +

& emEip) . @)
b) = exp life Bl2pe) 0] ) exp M) [lp — BY) —
— (eBjo) ]} @2
O v =(3) ex 1611) [(px— B8 + (e mEN2p) 47
exp [— (e mEJ24%) 2], @)

d) p = exp i (¢ BJ2pc) o, 7] (;;) exp ((ifF) (px — Ef).  (34)

We use the same symbols as in § 2 for the change of momentum
and the deflection. As the Pauli spin matrices with the factor
— (4/2) are the operators for the infinitesimal rotations (cf. I (13)),
it is an immediate consequence of (31)—(34) that we can describe the
change of the spin orientation as a rotation the absolute value of
which we shall denote as Aa. The results in the four cases are

a) An,=0, An, =0, An,=(e mE[p) x, Ayp= (e mE[p*) x, (35)
da, = (e E/2mc?) x, rotation about the z-axis, (36)
Aag, [Aye = p*[2m?c® = 3(v[c)?; (37)

b) An,=0, An,=0, Am,=— (e B/c) x, Adyg=— (e B/pc) x, (38)
dag, = — (e B/pc) x, rotation about the z-axis, (39)
dag, [Ayg = 1; (40)

¢) An,=0, 4z, =0, 4=, = (e mE/p) x, dag, = O; (41)

d) An, =0, Ax, =0, 4=, = O, (42)
Aag, = — (e B/pc) x, rotation about the x-axis. (43)

For the cases of a deflection of the beam by transverse fields we
have calculated the quotients Aa/4dy to compare the rotation of the
spin orientation with the deflection of the beam.

In the formulae (35)—(43) p = mv; we have used the non-relati-
vistic approximation for the translatory motion of the electron; in
this approximation these formulae agree with (18)—(21). For a trans-
verse magnetic field we see that the orientation of the spin remains
the same in relation to the direction of the beam (cf. Fig. 2). For a
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transverse electric field the rotation of the spin orientation is of the
relativistic order }(v/c)?, so that the spin orientation remains nearly
constant in space for small kinetic energies, which result could
be expected (cf. Fig. 1).

§ 4. Generalities- on the treatment with the Dirac equation. In
§§ 5 and 6 we shall treat the same problem as in § 3, but starting from
the Dirac equation. For this treatment we shall use some formu-
lae given in this section. The Dirac equation consists of four
simultaneous first order equations for the four components of the
wave functions. We shall show that we can split it up for special
problems into two pairs of equations with each only two functions.
Further we give the reduction to one second order differential
equation for a number of cases (cf.also 5) §) 7)).

‘The Dirac equation for an electron in an electromagnetic field
will be used in the notation

(¢fe + me) i + (7, — im)) y, + 7y =0,
(e/c + me) p, + (=, + im) py— 7y, =0, (44)
(efc — me) py + (m, —im)) , + 7wy, =0,
(g/c — mc) py + (7, + i) vy — 7y, =0,

with
e = — (hfi) ojot — e D, =, = (h[i) 8/ox — (e/c) 4,, etc. (45)
If we treat problems, which are independent of the z-coordinate
and for which 4, = 0, (44) is reduced to two pairs of equations

(fe + ) p; + (my— i) g = O,
ROARE A S
(8/0 + mc) ¥y + ( + 1’ny) Y3 = 0, |

et ImwZe }

It is seen that (47) is obtained from (46) by the substitution
Y= Yo Yy Py Ty —> — T, (48)
We give a further reduction of the problem for four cases

a) & commutes with z, and 7,
f) =, commutes with ¢ and x,,
) #, commutes with ¢ and =,
d) No electric field exists: € = 0.
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It is not necessary that the last two operators of the cases a, 5, ¥
commute. We now give the ways in which the reductions can be
carried out.

a) We obtain from (46)

(efc + mc) (e/c — me) p, = — (gfc + mo) (=, + im,) p, =
= — (n,+ in,)) (e/c+mc) y,.

Hence
(€%)c* — m*c?) i, — (m, + im,) (m, — im,) 9y = O. (49)

p) Instead of y, and y, we can introduce the function ¢, and g,
¢ =3y + v) } Y=o+ %} (50)
¢ = 3y — ) YVia=@1— @4

From (46) we get by addition and subtgaction
(£/c+nx) 141 + (mc—i—ll:”y) Py = Oy} (51)
(e/c — =) 4 + (mc —im,) @, = 0.

From (51) a second order equation for ¢, can be deduced

(e/c + 7.) (/e — 7,) @y — (M + 7)) @, = 0. (52)
y) We introduce the functions w, and w, according to
o, =}y, + z:%) } Y=o + w4} (53)
@y = 3y, — 1y, Wy = 0 — 0y

From (46) the following equations for w, and w, are obtained
(e/c — 7)) 0y + (mc + im,) 0, = 0, } (54)
(e/c + =) 0y 4 (mc —im,) 0, = 0.
From (54) we get as a second order equation
(efc —m,) (efc + 7)) 0y — (M? + 22) w, = 0. (55)
"If the 4-components have been obtained from the second order
equation, the l-components must be calculated from a first order
differential expression according to (47), (51) or (54). The 2- and
3-components can be treated analogously to the 1- and 4-compo-
nents, using the substitution (48).

d) An analogous reduction of the problem is possible in the case
that there is no electric field: ® = 0, A constant, e = E. Then the
iterated Dirac equation contains only two wave functions; it
follows directly from (44) (here the problem may contain the z-coor-
dinate)

(B — (x2 + 2 + ) —me) (%) + (i) B- 0 (%) = 0. (56)
4

4
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After determination of ¢, and o,, v, and y, can be derived from
the first two equations of (44).

§ 5. The influence of electric fields on electron beams according to the
Dirac theory. In this section we study the influence of transverse
and longitudinal electric fields on the spin electron with the aid of
the Dirac equation. We take a plane wave moving in the x-direc-
tion in case there would be no field. We use such fields that the
z-coordinate does not enter. Then we can apply the considerations
of § 4.

&, Transverse electric field

E=Cj, d=—Ey, A=0. (57)
e=—(hli)ojot +eEy =E +efy, n=p. (58)

We have the case y of § 4; using (58) equation (55) becomes
(E%c—m?c?) w,+1? (8%/0x2+&*|oyY)w —e E (Blic—2Ey[c®) w,=0 (59)
(terms of the order e? are neglected). We put

w, = Wy exp (i¢f) (60)
with _
weo = B exp [(ifA) (px — EY)). (61)

From (59), (60) and (61) an equation for f is obtained
offox—1i(h/2p) (Pf/ox+ Pf[oy*) — (E[2pc) i— (EE[hpe?) y=0. (62)

It is easily verified that we have the solution

I = (CE[mpc?) xy + i(E[2pc) x. (63)

We get as solution for w, - '

w,=B exp {(ifi) [(p2-Et)+ (e EE[pc?) xy]} exp[- (e €/2p0) x]. (64)
w, is calculated according to (54)
wy=— [1/(mc — )] [(E[c)+(e € E[pc®) x+euy+tes] 0, (65)
with
s = w€(mc + ip)[|2pE, } (66)
u = im&/p.
(The values of s and # have no influence on our result (74)).
Analogously it is calculated for w; and w,

wy= A exp {(if#) [(px—Et)+(e € E/pc?) zy}} exp [(¢ €/20) 2], (67)
(= — [1/(me — ip)] [(Efc) — (e EEJpe?) 5 + euy —es) w5 (68
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According to (48) and (53) we have

()= (@)~ () ©
‘ Vs w, W) ,
From (69), (64), (65), (67) and (68) we obtain the following expres-

sion by a straightforward though rather lengthy calculation (in
which terms of order e? are neglected)

(7). o= () =0 + B + meyEy 1— e Cs0) (5). ()

4/t =0
K(x,y, )=(1+e Cuy) exp {(i/h) [(px—~Et)+ (e E E[pc’) xy1}, (72)
C = [(E[c)+mc — ip) ' =c(E +mcP+ipc) [2E(E+mc?)]~!,  (73)
while we find for the matrix M
M = — (i12) o[ E/(E + md?)). (74)
‘ These formulae contain the results for the influence of the electric
field on the beam. For the deflection of the beam we again find the

relativistic formula (18). From (74) we obtain the formula for the
rotation of the spin orientation

dap, = [e E/(E + mc?)] x, rotation about the z-axis. (75)
This is the relativistic generalization of (36). From (75) and (18) it
follows immediately that
dag, |[Aye = p*C|E(E + mc?)
or dag, [Aye = EyJE  with E,, = E —md (76)
It is clear that (37) is a first approximation of (76).
&, Longitudinal electric field.
E=Ei, d=—Ex, A=0. (77)
e=—(hli)ofot +eEx=FE+e€x n=0p, (78)
We have the case § of § 4; using (78) equation (52) becomes
(E?|c?-mPc?) o+ B (8 [ox>+ &2 [oy?) g, +e E (Bfic+2Ex/c?) ¢,=0. (79)
We put
Py = Py €Xp (i€ ]) (80)
with

P40 = B exp [(i/h) (px — Et)). (81)
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From (79), (80) and (81) we obtain as equation for f
of ox—i(h/2p) (8%f/0x* + &%[0y®) + (E[2pc) i — (EE[hpc®)x=0. (82)

From this equation we find a solution

f = (EE|2kpc?) x? + i[EE[2p%c® — E[2pc] «. (83)
This gives for ¢, A
¢, = Bexp {(i/h) [(px — Et) + (e EE[2p%c?) 5]}
exp [— (E/pc —1) (e E/2pc) ). (84)

@, is calculated according to (51)
g = (1/mc) [Efc — p + (e E]c) x — (e EEJp*®) x +
+ (/i) (E[pc—1) (e E[2¢c)] @5 (85)

@, and @, can be calculated in an analogous way; from the general
equations (51) and (52) it is already clear that their values are exactly
the same as for ¢, and ¢, (cf. (48)) exceptfor a constant factor. Hence,
according to (48) and (50) y,/y, is independent of %, in other words:
The spin orientation is not changed by a longitudinal electric field, by
which the beam is accelerated.

This is the same result that was expressed in (41) by dag; =0,
which thus remains valid for the relativistic theory. This result can
already be deduced from the general form of the equations, without
calculating explicitly the solution, as we have done. From this solu-
tion it is easy to establish again the relativistic formula (20) for the
change of momentum.

§ 6. The influence of magnetic fields on electron beams according to
the Divac theory. For the treatment of the influence of magnetic
fields on a beam we again take a plane wave in the z-direction in case
there is no field. We choose the magnetic field in such a way that we

canapply §4.
B, Transverse magnetic field.

B=Bk, #=0,4,=—By, 4,=0, 4,=0. (86)
e=-(hfi) 8/ot, m,=p —(e/c) A,=(R[i) 8/ox+e By/c, m,=p,, m,=p,. (87)
We can proceed according to the cases a or d of § 4. From the equa-

tions (49) or (56) we obtain the same equation for y,, if we take a
situation that no dependence on the z-coordinate exists ((87) is used).

(B2 — m2c) p, + 2 (2052 + #1057y, — (e WBIc) v, —
— (2e hBylic) oy,jox = 0. (88)
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We put
Vo= Yy exp (te]) (89)
with
vio = B exp [(ifh) (px — E¥)]. (90)
From (88), (89) and (90) we get an equation for f
oflox — i(h|2p) (Pf[ox® + Pfloy*) + (B[2pe) + (Bfic)y=0. (91)
From this equation a solution for f can be obtained
f = — (BJhc) xy — (B[2pc) x (92)
Hence we have for yp,
v,=B exp {(i/h) [(px— Et)— (e Bfc) xy]} exp [— 4 (e BJ2pc) #]. (93)
Analogously a solution for y, can be calculated
vs = A exp {(ifh) [(px — Et) — (e Bfc) xy]} exp [i(e B2pc) x]. (94)
v, and w. can be calculated according to (46) and (47).
We can write (93) and (94) together as
Y3\ _ ¥3
=0 M Clgenn 9
. Vs y: |
wit (e~ (5) s
K(x,y,t) = exp {(¢/h) [(px— Et) — (e BJc) xy]}, (97)
while we find for the matrix M
= (5/2) o, (e B/pc). (98)

From these formulae we find again the relativistic formula (19) for
the deflection of the beam. From (98) we obtain the relativistic

formula for the rotation of the spin orientation.

dag, = — (e B/pc) %, rotation about the z-axis.
(19) and (99) have as their quotient
Aaﬁ n /A‘}'ﬂ = 1.

Hence the non-relativistic formula (40) remains vali
B, Longitudinal magnetic field.
B=3Bi, #=0,4,=0,4,=—Bz, A,=0.
— () ojet =E, n, = p,, n, = p,, m, = p,— (efc) A
= (h/i) /ey + e Bzc.

(99)

(100)

(101)

(102)
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We proceed according to é § 4; from (56) and (102) we obtain
Y Y
R e
— (2 e B Bzfic) (2]ay) ( "’3) =0. (103)

an.

We proceed in a way analogous to § 3 by putting
Y3 : Y30
= [exp (tef , 104
(%) =texp e (%) (104

with (m) _ (‘1‘;) exp [(i/h) (px — Ef)]. (105)

From (103), (104) and (105) we get by an analogous argument as in
§ 3 an equation for f

of fox — i(]2p) (8%f/0x? + f[oy? + &*foc®) — (B[2pe) o, = 0. (106)

From this equation we find a solution

f = (B/2pc) ox. (107)
Hence we can write for the wave functions
Y3\ _ Y3 K 10
(o), = 1+ 289 (1), g0, (1%
. P (4
(e ()
K(x, 1) = exp [(i/#) (px — E¥)], (110)
while we have for the matrix M
M = (i/2) o, (e B/pc). (111)

Hence we find that the beam is not deflected or accelerated, as is
described by (21) and that the relativistic formula for the rotation of
the spin orientation becomes

Aag = — (e B/pc) x, rotation about the x-axis. (112)

The results on the influence of magnetic fields on the electron spin
are essentially already contained in 5) and 7).

§ 7. Discussion. From the investigations in §§ 2-6 on the influence
of electric and magnetic fields on the polarization of electron beams,
we can draw the following conclusions: A transverse magnetic field
does not change the spin orientation relative to the direction of
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propagation but a transverse electric field performs this change. It
follows from this result that longitudinal polarization can be changed
into transverse polarization with the aid of a transverse electric field
(not witha transverse magnetic field). After this change by an electric
deflection the transverse polarization can be observed with the aid of
a scattering experiment according to II, § 3. If a transverse electric
field is used according to Fig. 1 to make a circular beam, the beam
must traverse an angle :
(#/2)/(1 — E}./E) (113)
to.change longitudinal polarization into transverse polarization.
Hence the angle is'n/2 for low energies, but might be rather big for
energies which are high compared with the rest mass.

It thus appears that the use of electric fields in combination with
scattering experiments?2) offers experimental methods which can be
realized and are sufficient to make a complete investigation of the
polarization of electron beams.

It follows from II § 4 that the asymmetries in scattering experi-
ments become smaller for low (< 30 keV) and high (> 1 MeV) kine-
tic energies of the electrons. According to §§ 3 and 5 the polarization
does not change if a beam is accelerated (or retarded) by a longitudi-
nal electric field. Hence it will be useful to accelerate (retard) a beam
with too small (too big) energy before measuring the polarization by
means of scattering.

The influence of a longitudinal magnetic field consists in a rotation
of the spin direction about the direction of propagation, which is
analogous to the influence of a quartz-plate on polarized light.
Although an experimental confirmation of this effect would of course
be interesting, it seems not especially useful for the observation of
polarization.

Our results were calculated for homogeneous fields. After this it is
easy to obtain the effect of arbitrary fields. Locally the fields can be
taken as homogeneous, as long as the electron wave length is
small in comparison with the distances over which the fields vary
appreciably. For the influence of an arbitrary non-homogeneous
field on electron beams it is important that we can calculate electron
trajectories without taking an influence of the electron magnetic
moment into account (cf. the considerations of Bohr on this
subject 8)). This is different from the influence of inhomogeneous
magnetic fields on beams of neutral particles with a magnetic moment
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inthe Stern-Gerlach experiment where the beam is separated
into different parts. After calculating the trajectory the change of the
spin orientation along the trajectory can be obtained by using the
results of §§ 5 and 6 as differential equations determining the change
of the spin direction.

We wish to point out a possible way of measuring directly the
magnetic moment of the electron y, (or the g-factor of the electron).
In the double scattering experiment for electrons apply a homo-
geneous magnetic field B, with direction perpendicular to the plane
of the electron beams beyond the first scattering (cf. II Fig. 2). We
assume that the electrons are scattered at right angles at the two
places even if the beam is deflected by the magnetic field. We know
that the directions of the spin, which are perpendicular to the plane
of the beams are not changed by this magnetic field. Let AE = 2u,B
be the energy difference for electrons at rest for the two afore-men-
tioned spin directions in the magnetic field B. The electron beam in
the magnetic field could be depolarized by applying a radiofrequency
field with a frequency », which is determined by 4E = A» (in a way
analogous to the resonance method of Gorter and Rabi for
the determination of atomic magnetic moments with atomic beams).
In this way the asymmetry after the second scattering would dis-
appear. Hence one could obtain a direct measurement of ux, by
measuring the frequency for which this asymmetry disappears.

In §§ 2-6 we exclusively discussed phenomena on a macroscopic
scale in slowly varying fields; they are essentially different from, e.g.,
scattering at a nucleus (M ott?$),?).

Appendix. The use of wave packets and the calculation of An, and
dm,. In the foregoing sections we have calculated solutions for
charged particles in electric and magnetic fields, which are approxi-
mately plane waves. From these solutions we obtained the changes
in kinetic momentum A=, and Az, by calculating the result of the
operators n, = (%/c) 9/ox — (e/c) A,, m, = .... acting on the wave
function y. In this connection we will call attention to the following
point that otherwise might give rise to confusion. In the foregoing
sections the calculations give often results of the shape (7, R
component of )

my = (@ + bx) p, (114)
where a and b do not depend on x,y, 2 or ¢ (cf.,e.g., the results for 7,y
according to the formulae (16), (31), (33), (84), (85) and for z,p in
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(70) with (72)). @ may be a (spin) matrix,  is a number. The result for
the changes in kinetic momentum A=, has then been given as
Am, = bx. (115)
The expression for the momentum density for particles without
spin is
3 (y* my + c.c). (116)
. For particles with spin there is still an additional term while in
(116) the sum over the spin variables must be taken. The expression
for the total momentum of a system, which is obtained by integra-
tion of the expression for the momentum density, is for particles
with or without spin (cf. e.g. 19))
Syp* =, pdr. (117)
We need not use the expression for thé momentum density and we
can start directly from (117). However, we cannot form this integral
for (approximately) plane wave solutions, for it does not converge.
But we can form solutions (%, v, 2, {) of the wave equation repre-
senting wave packets, that correspond to (approximately) plane
wave solutions o(x, y, z, ¢). If we form the mean value 7, =
= [9* m, pdz (117) for the solutions p and if we use (114), it can be
shown that only the term bx (but not the term a) in (114) gives rise
to a change in =, if the wave packet changes its place. If x gives
approximately the place of the wave packet the change A=, of 7,
is found to be determined by (115). Wave packets have mainly been
considered for particles without spin; for particles with spin some
calculations are given in ') and 12).
Received 22-12-50.
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