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Calculations of the interaction energy between non-bonded hydrogen atoms in the fragments
A—H---H'—A' for selected displacements of the hydrogen atoms enable one to evaluate corrections
to the force field due to the non-bonded interactions and to discuss the changes in the stretching
vibration frequencies of the interacting fragments.

In the previous paper 1 (hereafter referred to as I) the non-bonded interaction
energies between the rigid fragments AH and BH were examined in some detail.
Particular attention was given to the analysis of the various contributions to the
interaction eneregy in the region of large non-bonded overlap.f In those cal-
culations the position of the fragments with respect to one another was varied,
keeping the bond-lengths of the fragments fixed. As a result the " non-bonded "
potential energy of approach of the two fragments was studied. Clearly, in many
physical situations the nuclei A and B may be held at fixed positions within a molecular
framework, and one should enquire as to the effect of the non-bonded interaction
on the energy and equilibrium position of the hydrogen atoms. In particular, one
might consider a linear case A—H---H'—A' where /ÎAA< is held constant and AAH

and ÄA-H- are varied in an appropriate manner, î Such calculations would not only
provide some insight into the magnitude and nature of non-bonded interactions in a
molecular framework, but also yield theoretical values for the corrections to the
force field and consequently allow investigation of the perturbation of stretching
vibration frequencies of the interacting fragments.

THE INTERACTION ENERGY
THE MODEL

Two cases were examined : /?AA- = 7.7 a.u., where the intermolecular overlap
is quite significant, and /?AA- = 10.0 a.u., where the contributions to the interaction
energy, which are dependent on the non-bonded overlap, are small. In each case
the bond-lengths Jf?AH and R\>H' were varied symmetrically and asymmetrically
(see fig. 1) from 1.6 a.u. to 2.6 a.u. about an equilibrium bond-length value of 2.1 a.u.
In order to describe the symmetric and asymmetric bond-length variations, the
variables ds and da are introduced

à. = AKAH+AKA,H,
da = AKAH-ARA,„,

* Part 1 is réf. (1).
t This refers to the overlap between two non-bonded fragments where the fragments may or may

not be part of the same molecule.
Î The notation A'H' for the second fragment is used to indicate that the two interacting fragments

are the same. The orbitals on A'H' will still be denoted by b and b'.
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where AAAH and AAA<H- are the extensions of the AH and A'H' bond-lengths
respectively.

The description of the fragments and the method of calculating the interaction
energies were the same as in I and the parameters were selected to represent, within

A/ÎAH AÄA-H-
A— H— -- > ----- *~ - H'— A'

(i)
AÄAH AAA'H-

A— H— -- * ----- H' -- > - A'

(u)
FIG. 1 . — (i) Symmetric variation of the AH and A'H' bond-lengths, (ii) Asymmetric variation of the

AH and A'H' bond-lengths.

the limitations of the model, two interacting CH fragments. The orbital exponents
were given the Slater values : for hydrogen £H = £H' = 1 -0 and for carbon £A =
C A- = 1.625. In order to assess the effect of changes in bond polarity, calculations
were carried out for three values * of the bond parameter /.

A N A L Y S I S OF THE INTERACTION ENERGY

Results of the calculations for the total interaction energy f £",„,_ (ot = Ecoul +
£exch+-Eind + -Edisp are presented in fig. 1 and 2. Due to both a larger separation
and the concomitant decrease in overlap between the fragments, the interaction
energies for AAA< = 10.0 a.u. (fig. 2 and 3) are smaller than for 7?AA- = 7.7 a.u.
(fig. 2 and 3). Our calculations show that this difference is most notably due to the
sharp decrease in 2Wh- However, the dependence of the various contributions to
the interaction energy on the bond-length variations is essentially the same for both
AA' distances. Since the separation 7.7 a.u. is approximately equal to the observed
Cj — C8 distance in l,8-bisdehydro[14]annulene 2 and should be typical for such
intramolecular interactions, the discussion is presented in terms of the results for this
distance.

From fig. 4 to 7 it can be seen that a variation in ds has a large influence on all
contributions to the interaction energy whereas changes in Ja affect them only slightly.
Since the HH' separation changes on symmetric variation of the bond-lengths but is
constant in the asymmetric variation, it follows that the interaction energy of the
two fragments is a sensitive function of the HH' distance. Also the various contri-
butions to the interaction energy are more sensitive functions of the bond parameter
/ for the symmetric displacement than for the asymmetric displacement.

As far as the significance of the changes in the various contributions is concerned,
the (weak) dependence of the total interaction energy on da is almost completely due
to the changes in £coul with da. For symmetric bond-length variation, the charac-
teristic features of the variation in Elati tot are mainly due to Ecoul and £exch ; however,

* The / values selected here were 0.6, 0.7 and 0.8 ; see I, pp. 1840-1841 for a discussion pertaining
to the selection of appropriate / values to represent a CH fragment. Note (hat in this work the bond
parameter is denoted by / rather than k to avoid confusion with the common use of k for the force
constants.

t In this paper the total interaction energy will be denoted by £jnt> tot instead of Etot< the notation
used in I. Further, the total interaction energy for da = 0 will be denoted by £?nt, tot and for ds — 0
by Emt, tot.
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FIG. 2.—Total interaction energy for du = 0. The solid curve gives the values for RA\' = 7.7 a.u.

and the broken curve gives the values for ÄAA- = 10.0 a.u.

the changes in ElnA and £dl9p are by no means insignificant. The above-mentioned
contributions were therefore analyzed in some detail.

In I an attempt was made to analyse ^oui. ^ind an(i Edlsp, using electrostatic
formulae and it was found that for HH' separations less than 6.0 a.u. only the dis-
persion energy is satisfactorily reproduced. Since for AAA- = 7.7 a.u., the HH'
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FIG. 3.—Total interaction energy for cls = 0. The solid curve gives the values for RA\'
and the broken curve gives the values for R\\' = 10.0 a.u.

7.7 a.u.
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FIG. 4.—£coui (—) and £exch (—) for RA\' = 7.7 a.u. and dA = 0.
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Fio. 5.—Eeoui (—) and £̂ 1, (—) for ÄAA- = 7.7 a.u. and rfs = 0.
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FIG. 6.—Eind (—) and Edisp (--) for RA\- = 7.7 a.u. and <4 = 0.

separation is always smaller than 6.0 a.u., the behaviour of Ecoai and £ind can only
be understood from their perturbation theoretic expressions (I, eqn. (1) and (3)
respectively).

0.000 -

-0.002-

^ -0.004-

§ -0.006-

-0.008-

-0.010-

-1=0.6
_^ il = 0.8

I I
0.0 0.4 0.8

(/a (ii.li.)

FIG. 7.—J?ind (—) and Edisp (—) for J?AA- = 7.7 .au. and dt = 0.
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The dependence of Ecoul on ds and / is best understood in terms of the relative
magnitude of proton-proton repulsion terms in the expression for ECO}1\. For
increasing values of / the proton attraction terms become more important, e.g., in
the case of / = 0.8 and small values of ds they outweigh the increase in proton-proton
repulsion with increasing ds. For very large values of ds the proton-proton repulsion
contribution of course becomes dominant for all / values. Although the behaviour
of £coul is characteristic of the change in £ lnt> tot for a variation of ds, it was not possible
to identify in the perturbation theoretic expression those terms which dominate the
behaviour of Ecmi as a function of da.

The behaviour of Eind as a function of ds and / can again be understood as the
balance of two contributions, that is (aa' \ FA/H') depends on the relative magnitude
of the proton attraction term (aa' \ H~"A

!') and the electron repulsion term 2(aa' \ b2).
For small values of ds and large / values the latter term is larger than the former
with the result that (aa' \ KA'H') is repulsive. For increasing values of Js the proton
attraction term increases faster than the electron repulsion term with the result that
(aa' | FA'H') becomes increasingly attractive with increasing bond-length, especially
for small / values. From fig. 6 it can be seen that for specific values of ds and /,
Eina is zero. These of course are the points where (aa' \ KA/H') changes sign.

As mentioned above, the results for Ealsp can be reproduced by an electrostatic
expression (I, p. 1835). Thus in this case the increase in the dispersion energy
(fig. 6) can be attributed to the increase in the polarizabilities of the bonds and the
decrease in effective distance, R, with increasing ds.

In I it was found that EexA is a sensitive function of the non-bonded overlap and
the distance, and it can be seen that in the present situation these trends are maintained
— that is, £,,xch increases with increasing values of ds and /.

In summary then, the sensitivity of the interaction energy to the HH' distance
for the symmetric bond-length variation is mainly due to those terms in Emul, Eexch,
Ealsp and Elna which involve the protons and the electron density about the protons.

REPRESENTATION OF THE I N T E R A C T I O N E N E R G Y

To facilitate applications of the results for £fnt, tot and E*nt, tat, a functional
representation of these quantities in terms of, respectively, ds and da was attempted.
Specifically a least squares fit of the total interaction energy in terms of a power
series was carried out. In order to obtain a satisfactory representation for £?nti tot,
terms to third order in ds were required as

£?„,,,ot = a0 + a\dt + atâ + a\dl (1)

Since ^„i.tot is an even function of da only even powers of d„ need be included in the
expansion. It was found that E\ot can be represented quite accurately by the sum
of a constant and a quadratic term as

(2)

TABLE 1.— CONSTANTS IN EQN* (1) AND (2). VALUES IN ATOMIC UNITS
10 «f of «3 n"

0.6 0.00288 0.00559 0.00442 0.00137 -0.00201
0.7 0.00229 0.00408 0.00393 0.00132 -0.00154
0.8 0.00248 0.00324 0.00372 0.00137 -0.00111

* In the fitting procedure the values of Efnt, tot at rfs = - 1 .0, - 0.6, - 0.4, - 0.2, 0.0, 0.2,
0.4, 0.6 and 1.0 a.u. were used. The standard deviation was less than 5.10~5 a.u. In the
fitting of £fnt> tot the values at rfa = 0.0, 0.2, 0.4, 0.6 and 1.0 a.u. were used. The standard
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The constant term a0 in eqn (1) and (2) has the same value, as it represents the inter-
action energy for the case ds = da = 0. The results of the fitting are given in table I .

APPLICATION OF THE E V A L U A T I O N OF CORRECTIONS TO THE
FORCE FIELD AND VIBRATION FREQUENCIES

CORRECTIONS TO THE FORCE FIELD

Molecular force fields are commonly evaluated by means of a comparison between
calculated and observed frequencies (see for example réf. (3) and (4)). However,
it is not always clear whether the force field constants so generated are physically
meaningful. This is particularly true with regard to the interaction constants. For
interaction constants which are principally due to non-bonded interactions, perturba-
tion calculations could be useful in determining the approximate magnitude of these
constants. For example, the calculations discussed in the preceding section indicate
that the non-bonded interaction in this case gives rise to interaction constants of the
order of 0.1 md/Â. While not bearing a one to one relation, these values might be
compared to the values obtained for the force field constants from fitting the spectro-
scopie data. For example, in propane four CH bonds of the terminal methyl groups
are in close proximity and in their calculations Gayles et al.5 found that inclusion of
a bending interaction constant for the eclipsed CH bonds of 0.06 md/Â and one for
the CH bonds on opposite sides of the CCC plane of 0.05 md/Â improved the fit. In
the case of H2S and H^S^ it was found that intramolecular S — H---H — S stretching
and bending interaction constants of 0.01 md/Â had to be included in the force
field in order to reproduce the splitting observed for the SH stretching and bending
vibrations.6

Direct comparison of the interaction constants obtained in the preceding section
is of course only possible within the context of the normal coordinate analysis of the
entire system. As an illustration we have analyzed the simple C — H--- H — C
system with fixed Rcc for both the interaction force constant and the correction to
the diagonal force constant when the non-bonded interaction is taken into account.

The total potential energy for the motion of the hydrogen atoms can be considered
as the sum of the vibrational potential energy of the isolated fragment and the inter-
action energy between them. If cubic and higher terms are neglected, the vibrational
potential energy of the isolated fragments can be written in the form

Fvib =

^a2) (3)

where k is the bond stretching force constant. Using the same approximation as for
Fvib, the total potential energy for constant AA' distance can be expressed as

= «o + *(ƒ+ / 'K2 +!(ƒ- ƒ X- (4)

But Fto, = Fvib + Ejn,, [Ot and if we consider V\ol only (i.e., rf, = 0) then

P."ot = «o + a\ ds + (ifc + fl'zK2 + a\dl (5)

which we wish to identify with

(6)
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The minimum in the potential given by eqn (5) is shifted slightly (Js
min ~ —all

2(\k + a|)). However, this value of d™'" is small and consequently the representation
in terms of ds as in eqn (6) is reasonable. Furthermore non-quadratic terms will
only affect the energy in the second order perturbation. Since a0 will be the same
in both equations one can identify

K/-/') = ifc + «2. (7)

For ds = 0 there was in addition to the constant only a quadratic term in da, con-
sequently one obtains

*(ƒ+ƒ') = i/c + aa
2. (8)

Eqn (7) and (8) yield

/ = k + 2(a'2 + a'2) (9)

ƒ' = 2(a2-a2). (10)

The results for the correction to the bond stretching force constant and the interaction
constant are given in table 2. Keeping in mind that the bond stretching force
constant for a CH bond is roughly 4.7-5.9 md/Â it can be seen that the corrections
to this constant are of the order of 1.5 % and that the interaction constant is of the
order of 4 % of the bond stretching force constant.

TABLE 2.—CORRECTIONS TO THE FORCE FIELD. VALUES IN md/Â
/ 2(a|+a?) 2(af-a|)

0.6 0.075 0.200
0.7 0.067 0.178
0.8 0.076 0.156

PERTURBED V I B R A T I O N FREQUENCIES

In order to use these results in the calculation of the stretching vibration frequencies
of the fragments, the vibrational motions of the system have to be analyzed in terms
of normal modes and characteristic frequencies. In the following this will be done
under the restrictions that the system as a whole remains linear and the AA' distance
is constant. This last equirement is made for convenience and is of course an approxi-
mation to the molecular situation.

The system described above has two vibrational degrees of freedom, and from
symmetry considerations it is clear that dsandda correspond to the normal coordinates.
In order to find the characteristic frequencies of the normal modes, not only the
vibrational potential energy must be known but also the vibrational kinetic energy.
The vibrational kinetic energy is obtained by subtracting from the total kinetic
energy the kinetic energy of the centre of mass motion. One obtains

Tvib = W2+W2 (11)
where mH is the atomic mass of hydrogen and /i is the reduced mass of CH. From
the expressions for Viot and rvlb, as given by eqn (4) and (11) it follows that the
characteristic frequencies of the symmetric and asymmetric vibrations are given by

(13)
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The difference in mass effect can be understood from the fact that the symmetric
motion of the hydrogen atoms leaves the centre of mass at its place, whereas in the
asymmetric motion this is not the case. It should also be emphasized that this is a
result of the analysis of the normal modes for a case where RAA, is held constant.

In table 3 some results for o>s and o>a are given, for the case that the interacting
fragments are CH bonds and the unperturbed CH bond-stretching vibration frequency
is 3000cm-1. The calculations show that both cos and o>a are lower than the un-

TABLE 3.—PERTURBED VIBRATION FREQUENCIES. VALUES IN cm-1

/ (Os (ua

0.6 2962 2961
0.7 2954 2966
0.8 2950 2976

perturbed frequency, the shift being of the order of 25-50 cm.-1. It might also be
noted that only for / = 0.6 is caa higher than wa. Both this effect as well as the fact
that the splitting increases with decreasing interaction constant is of course due to
the mass effect mentioned above.

SUMMARY

The results of the calculations presented in this paper show that the interaction
energy of the linear system A—H—H'—A' is a sensitive function of the HH' separa-
tion. Further, the variation in the total interaction eneigy, both for the symmetric
motion of the hydrogen atoms as well as for the asymmetric motion, is the strongest
for small / values, i.e., for a bond polarity in the sense A~H+. The result is that the
interaction constant increases with increasing polarity in the sense A~H+. Therefore
it is expected that the interaction constant will increase in going from interacting
CH bonds to NH, OH and FH bonds.

As far as the calculation of the perturbed vibrational frequencies is concerned,
the different mass factors that were found for the symmetric and asymmetric vibration
play a very important role in the shift and splitting of the frequencies of the vibra-
tions. However, the restrictions placed upon the motion of the A and A' atoms is
the source of the mass effect and may not represent the mass effect obtained from
the vibrational analysis in the appropriate molecular situation.
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