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Résume. Les fluctuations prétransitionnelles sont obtenues dans le cas d'instabilité Rayleigh-
Bénard pour un mélange binaire. Les résultats sont comparés avec ceux d'un fluide simple. Dans le
système considéré les fluctuations de concentration sont amplifiées et bien que les fluctuations de
vitesse augmentent de façon critique elles sont plus faibles d'un facteur d'ordre D/%. Le comportement
du mode critique est comparé aux fluctuations du paramètre d'ordre obtenu par analyse classique
de transition de phase. La région autour de l'instabilité où le traitement classique des fluctuations
du paramètre d'ordre n'est pas valable est accrue d'un facteur (x/£>)1/2 comparé à un fluide simple.

Abstract. — The pretransitional fluctuations of the Rayleigh-Benard or convective instability
are obtained for a binary mixture and compared to the one component case. There are now enhanced
concentration fluctuations and although the velocity fluctuations are critically enhanced, they are
weaker by a factor of D/%. The behaviour of the critical (soft) mode is compared to the fluctuations
in the order parameter obtained for a classical analysis of a phase transition. The region around the
instability where the classical treatment of the order parameter fluctuations is invalid is increased
in the binary case by a factor of (x/Z>)1/2 over that of the pure fluid Rayleigh-Bénard instability.

1. Introduction. Recently there has been a
growing interest in pretransitional effects near hydro-
dynamic regime transitions [1]. It appears that these
pretransitional effects bear a striking resemblance to
those occurring near second order phase transition
points. Indeed, the hydrodynamic fluctuations near
hydrodynamic instability points show both a drama-
tic enhancement as well as a slowing down, the two
most characteristic features of critical fluctuations near
second order phase transition points.

The simplest example of a hydrodynamic instability
is the Rayleigh-Bénard or convective instability [2]
which occurs in a horizontal fluid layer heated from
below. When the temperature gradient reaches a
certain critical value stationary convection sets in
spontaneously. The fundamental physical process
that lies at the origin of this instability is the conversion
of the energy released by the buoyancy force into the
kinetic energy of the convective motion. Stationary
convection sets in when the rate of energy transfer
from the gravitational field begins to balance the
rate of viscous dissipation of energy by the convective
motion.

The convective instability in one-component systems
has been studied for a long time but it is only during
the last few years that the convective instability in
binary mixtures has received attention [3]. The
Rayleigh-Bénard instability in binary mixtures is of
intrinsic interest because of the significant differences
with the same instability in pure fluids. These diffe-
rences are due to the concentration perturbations that
decay very slowly compared to temperature perturba-
tions. This leads to the possibility that one may have a
convective instability even though the overall density
gradient is not adverse, and under certain conditions,
one may also find overstability rather than a simple
exchange of stability, which is the only possibility
for the convective instability in pure fluids. Perhaps
the simplest situation is the case we study here, where
the more dense component diffuses, due to the Soret
effect, to the cold (upper) plate. In this instance one
has only an exchange of stabilities.

In this paper we study the hydrodynamic fluctua-
tions near the convective instability point in a binary
mixture using stochastic hydrodynamic equations in a
way similar to the study by Zaitsev and Shliomis [4]
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of the pretransitional fluctuations in thé Rayleigh-
Bénard instability of the one component fluid. We
obtain the concentration fluctuations, absent in the
case of a one component fluid, and consider those
features of the velocity fluctuations which are mate-
rially affected by the presence of the additional
component.

In section 2 we present the linearized hydrodynamic
equations describing the convective instability in
binary mixtures, and consider the situation in which
the concentration perturbation dominates.

In section 3 we include Langevin fluctuating
forces in the hydrodynamic equations and derive,
from the resulting set of stochastic differential equa-
tions, an equation for the branch of modes that become
unstable neaf the transition point. The results are
compared to those for the one component Rayleigh-
Bénard problem.

In section 4 we discuss the analogies between
pretransitional effects near second order phase tran-
sition points and near hydrodynamic regime transi-
tion points. We then compare the applicability of the
classical theory to the treatment of the pretransitional
region for the one and two component Rayleigh-
Bénard instability. Finally, we briefly comment on the
possibilities and limitations of the use of light scatter-
ing and Brownian motion to observe the critical
behaviour of the fluid fluctuations near the instability
point.

2. The Rayleigh-Bénard instability in binary mix-
tures. 2 .1 LINEARIZED HYDRODYNAMIC EQUA-
TIONS. — The steady state of the fluid in the stability
region is characterized as follows : a linear down-
ward directed temperature gradient is maintained
steadily, the macroscopic fluid velocity is zero, the
gravitational force is balanced by the hydrostatic
pressure gradient and the thermal diffusion flow that
results from the imposed temperature gradient is
balanced by a concentration gradient. Labeling the
steady state variables with a superscript s one has

T* = T0 - ßz

vs = 0

v = - gps n

(la)
(Ib)
(le)

(Id)

Here T0 denotes the value of the temperature at the
reference position (taken here at the lower boundary
z = 0), ß is the value of the temperature gradient,
g is the gravitational constant, n is a unit vector
pointing in the positive z-direction and kT is the
thermal diffusion ratio for which we neglect the
variation with temperature. On the right hand side
of eq. (Id) we have neglected the term that arises
from barodiffusion, which, however, is small compared
to the term arising from thermal diffusion.

Due to the imposed temperature gradient the
fluid has uniaxial symmetry. In that case it is conve-
nient [5] to use the following variables to describe
the velocity field.

div v, (curl curl v)z, (curl v)z .

For symmetry reasons (curl v)z is not coupled to any
of the other hydrodynamic variables. The remaining
five hydrodynamic variables (two velocity and three
thermodynamic variables) are coupled. These coupled
equations lead to two sound modes and three diffusive
modes. However, it can be argued [5] that the sound
modes do not play a role in the convective instability
and thus we may omit the variables corresponding
to the sound modes i.e. div v and pressure. Since
curl curl = grad div — V2, it follows that if one
omits div v the variable (curl curl v)z becomes — V2w
where w is the vertical component of the velocity.
We then end up with the following coupled set of
linearized equations [6]

V2w
~dT

= v V4w -
dx2 + dy2

d2B d20

_

ôt
— ßw + DV2

(2b)

(2c)

Here 0 is the perturbation in the steady state tempera-
ture, y is the perturbation in the steady state concen-
tration,

a =
- 1 _

(IT a« * r -ar
P WP.P.T

X is the heat diffusion constant, v is the kinematic
viscosity and D is the diffusion coefficient. In writing
down eqs. (2a)-(2c) we have neglected the variation
in the thermodynamic derivatives and transport
coefficients due to the imposed temperature gradient.
We have also neglected coupling, due to the Soret
and Dufour effects, between concentration and tem-
perature perturbations and retained only the coupling
due to the imposed temperature gradient and the
gravitational force between concentration and tem-
perature perturbations on the one hand, and the
velocity field on the other hand. Although only the
vertical component w of the velocity appears in the
equations, the horizontal components can be
calculated easily from w [7]. Here we choose c to
describe the concentration of the more dense compo-
nent (i.e., ac > 0). As mentioned in the introduction,
we restrict ourselves to the case where the more dense
component diffuses to the cold plate, i.e. we consider
mixtures for which the thermal diffusion ratio is
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positive. For the sake of simplicity, we consider a
fluid layer with hypothetical boundary conditions
such that w, 8 and y can be written as

[>(r, t), 0(r, 0, y(r, 0] =
CO f

= £ dK[w(n, K, 0,
n=l J

(«, *, 0] x

nn:
x exp(/K.x) sin ( —^ I . (3)

Here K = (xx, xy) is the horizontal wave vector,
x = (x, y) is the horizontal position vector and d
is the thickness of the fluid layer. Substituting eq. (3)
in eqs. (2a)-(2c) one obtains the following equations
for the Fourier components

dt

w(n, K, f)
8(n, K, t) = - M

w(n, K, t)

0(n, K, t)

_y(n, K, t) J
(4)

_y(n, K, O _

Here the hydrodynamic matrix, M, is given by

M =

vk2 — ga.x +

- 'O

k2

0

Dk2

(5)

where

2.2 STABILITY ANALYSIS. - - We now review the
stability analysis of the set of coupled linear equations
given in eq. (4) with the hydrodynamic matrix given
by eq. (5). One can easily show that the only possibility
for M_ to have a negative root arises when the deter-
minant of M_ becomes smaller than zero. This means
that the instability is reached when det M_ = 0, i.e.

Dxvk6 - goiß)(2(D + Sx) = 0 , (6)

where

is referred to as the Soret number. In the case we are
considering S > 0. Introducing the Rayleigh number

R = , it follows [8] that eq. (6) is satisfied for

6 J4

R =
k6d

x2 1 +
D

The lowest value of R is

obtained for n = 1 and | K | = | KC | = n/^/2 d. This
/?c, for the binary system, differs from that for the
pure fluid by a factor (1 + Sx/D) where Sx/D is the
contribution of perturbations in concentration rela-
tive to those of temperature. (The Soret number S
provides the relative density, whereas %/D is a reflec-
tion of the relative efficiency of the concentration
and temperature perturbations in utilizing the gravity
field.) The critical Rayleigh number of eq. (7) is
dependent on the fluid considered and to remove
this a more appropriate form for R, for the system
we are considering (i.e. S > 0, ß > 0), would be

R g«ß H , s
K = 1- --̂lD\'

Since, for a normal fluid, 5" is ~ 5 x 10 * and
X/D ^ 102 we find Sx/D ~ 5 x 10 ; and for our pur-
poses we will consider that we may write Sx/D J> 1.

3. Fluctuations near the instability point -
3.1 STOCHASTIC HYDRODYNAMIC EQUATIONS. - In
order to study the fluid fluctuations we use a set of
stochastic hydrodynamic equations that are obtained
by adding fluctuating forces to the hydrodynamic
equations describing the instability. We have

w(n,K, t)'

0(n, K, O

y(n, K, t)_

= - M

'w(n, K, t)

0(n, K, t)

_y(n, K, ;

+

+

~F(w\n, K, /)"

F(0\n, K, 0 («)

where

<F(a)(«, K, t ) F l a ' } ( n ' , K ' , t ' ) * > =
= 2 Q("^ 6„.„. O(K - K') o(t - t') ; (a, a' = w, y, 0) .

In this paper we assume that the intensities Q("'x">
of the fluctuating forces remain regular near the
instability point [we comment on this further in
section 4]. Following the argument of Zaitsev and
Shliomis [4], that the fluid remains locally in equili-
brium and that therefore one can employ the equili-
brium expressions for the intensities of the fluctuating
forces, one obtains, using the fluctuation-dissipation
theorem,

<*!

Q(y,

2n2 d
1

y)

2n2d

pk2

k T"
/o/A

Dk• 2

(9a)

(96)

(7)
)<0,0) _

1
2 7t2 d pc



JOURNAL DE PHYSIQUE N° 1

where &B is Boltzmann's constant,

P.T

with Hi and /J2 the chemical potentials per unit mass
of species 1 (the more dense component) and species 2
and Cp is the specific heat at constant pressure.

3.2 THE UNSTABLE MODE. - The set of three
coupled equations (8) have three eigen values A((«, K),

( = 1 , 2 , 3 for each wave vector I K, —r \. To each
V dJ

of these eigen-values there corresponds an eigen
mode ut(n, K, t), i = 1, 2, 3. Let A:(«, K) [for a given
wave vector (K, nn/d)] be the smallest eigen value.
Then for R -> Rc, Aj ( l , xc) -» 0 and we refer to the
eigen modes u^(\, K, t), corresponding to the branch
of eigen values /^(l, x), as the branch of unstable
modes, we denote w^l, K, t) by ^(K, t) and A^l, x)
by A0(x). For I^(K, t) one can write the following
equation

i WK, O + /*(«, 0 (10)

and thus the contribution of the random force asso-
ciated with the heat equation can be neglected ; in
general

P.T

will also be smaller than 1. Thus, to a good approxima-
tion, we may set- Q* = Q(w-w\ i.e. the dominant
random force as far as the critical fluctuations are
concerned is the random force associated with the
velocity equation.

Close to the transition point the fluctuations in ^
are anomalously large and one can neglect all other
fluctuations and mixed terms in comparison with
the fluctuations in \j/. From eq. (10) one obtains

K, 0)
o*

< ' > 0 * > = T7-re-A<><** 0(K - K') . (14)

Expressing y ( l , K , t ) in terms of I/T(K, 0 one finds,
close to the instability point, that

where

= 2

(11)

The mode I/>(K , t) is a linear combination of w( 1 , K, t),
9(1, K, 0 and y(l, K, 0- For R = Rc and x = xc
the expansion coefficients (which can be expressed
in terms of the eigen vectors of M) are given by simple
expressions and since the eigen vectors of M are
smoothly varying functions of | K — KC | and (R — Rc)
we may use these expansion coefficients in the vici-
nity of that point as well and then we obtain

I/>(K, 0 = W(\,K, t) + 0(1, K, 0

7(1, K , 0 . (12)Dk*

Similarly the intensity ß* of the random force F*
can be written as a linear combination of Q(w'w\
Q(e-e} and Q(y'y). Using eq. (12) one obtains

Q* = ß(«.» (0,8)

(w,w)
= 0

c

1 +- +

_|_
,2 \2

DK

"I I
(13)

(15)

We thus see that the concentration fluctuations show
critical behaviour. Turning to the velocity fluctuations
one obtains

_ K')

where
r>\2
_

V
(17)

In order to compare this expression with the velocity
fluctuations in the one component Benard we expand
A0(x) in e = (Rc - R)/RC and K — KC. One obtains,
for the limit S//D $> 1 and x ^ v>

where
a = Dkl

(18)

(19)

The expressions for the velocity fluctuations and
for the A0(x) obtained in the neighbourhood of the
Rayleigh-Bénard instability for the one component
fluid are the same form as those of eqs. (16) and (18)
where now, in the limit x < v, one has [9]

For typical liquids

4~io- and

)(W,W) (20)

(21)
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Since both C(w) and a are different here we see that
the velocity fluctuations for the same values of £
and (K — KC) are, in the binary mixture, weaker by
a factor of D/% ~ 10~2.

4. Discussion. - - 4.1 ANALOGY TO SECOND ORDER
PHASE TRANSITIONS (cf. Réf. [la]). - The pretran-
sitional region of a second order phase transition
of the instability type [10] is characterized by two
well known effects : the fluctuations in the order
parameter become large ; and they decay slowly.
The free energy takes the familiar Landau-Ginzburg
form [11]

F = F0 + dr[o' e (22)

where r\ is the order parameter and e = (T — TC)/TC.
For the susceptibility

X, = or,

one obtains for the kth spatial fourier component,
the result

i i
(2 7i)3 a' E + Ok2 (23)

which diverges as T -» Tc and the wave vector k
goes to zero. Employing the free energy of eq. (22)
in the Einstein formulation for the equilibrium
distribution function one finds the mean square
fluctuation as

Since ^,(k) diverges as e and k go to zero the mean
square fluctuation becomes large at the approach
to the phase transition.

The relaxation time, I/A,,, of the order parameter
fluctuations can be extracted from these equilibrium
results by employing the well known Van Hove
result [12]

(24)

where L is the so-called kinetic coefficient. Then
using eq. (23) one obtains, directly, that

A, = L(2 7t)3 [a' £ + ok2] . (25)

Assuming L is regular it is clear the as c and k go to
zero at the phase transition, the decay constant
A, -> 0, a result referred to as critical slowing down.

Turning now to the hydrodynamic transition of
the Benard instability we begin by recalling that, as
the instability is approached, the critical eigenvalue A0

(eq. (18)) goes to zero so the decay of fluctuations in the
critical (soft) mode is certainly slowed (i.e. we have

critical slowing down). Further the mean square
fluctuation in the critical mode can be obtained from
eq. (14) as

Hence, assuming Q* is regular [12], as A0(x) -» 0
the mean square fluctuations of the critical mode will
diverge as the instability is approached. In view of
the very clear analogy between the behaviour of
the critical mode at the instability and the order
parameter at the phase transition we equate the critical
mode to the order parameter for the hydrodynamic
regime transition.

In addition, the form of the critical eigenvalue A0(x),
in the neighbourhood of the instability, is exactly
the same, in terms of c and K — KC as that of the
damping factor of the order parameter in the neigh-
bourhood of the phase transition.

4.2 LIMITATION TO THE CLASSICAL TREATMENT OF
CRITICAL FLUCTUATIONS. The use of a linear
Langevin equation or its compliment [13], the distri-
bution function employing the Landau-Ginzburg
form (Eq. 22) of the free energy, assumes that higher
order terms do not play a significant role in the
description of the pretransitional fluctuations of
phase transitions. Ginzburg [14] provided a bound
for this classical critical region by requiring, for the
ordered regime, that the mean square fluctuations in
the order parameter be much less than the square
of the order parameter itself. A similar bound is
obtained in the disordered regime by comparing
fluctuations of second and higher orders [15].

We extend the Ginzburg criteria to hydrodynamic
transitions and calculate a bound for the classical
regime by requiring that in the ordered phase the
mean square fluctuation in the critical mode be much
less than the square of the critical mode. We assume
that in the ordered regime the amplified mode, just
past the instability, is the critical mode obtained
from the linear treatment of the pretransitional
region.

Following Chandrasekhar [16] one calculates the
amplitude of the mode in the ordered phase by recourse
to the non-linear hydrodynamic equations. Thus one
obtains, for the one component Benard, that the
modulus squared of w(l, KC), the leading term in the
critical mode, goes as

(27)

A similar procedure for the ordered phase in the
binary Benard, again assuming the y.SjD ^> 1, gives

(28)

where C is a constant of order 102 whose specific
value depends on the geometry of the system.



JOURNAL DE PHYSIQUE N" 1

The mean square fluctuation for the ordered phase
may be related, simply (a factor of |) to that for the
disordered, i.e. pretransitional, phase, and we have

C(M>)

(29)

where C<w) and AO(K) are defined, for the two and one
component cases, by eqs. (17) to (21). Taking the
Q (w-w) appearing in eqs. ( 17) and (20) to be for a volume
d3 (i.e. Q(w-w) is given by 16 n2/d2 times Q(w<w) of
eq. (9a)) we find, for the Ginzburg criteria for the
one component case

1/2

(30)

and for the binary mixture

1/2

(31)

Since % J> D it is clear that the lower bound for e
is larger in the two component case. Inserting values
of p, D, v, etc., appropriate to a normal fluid, into
eqs. (30) and (31) and taking d ~ 1 cm one finds,
for the one component case the bound £ ^> 10~4

and for the binary mixture £ ^> 10~3. Although the
non-linear region in both cases is rather small non-
classical effects could be more accessible in the binary
mixture.

4.3 EXPERIMENTAL CONSIDERATIONS. - - Two fun-
damental methods to probe fluid fluctuations are
light scattering and Brownian motion. In fact these
two methods are complementary in that light scatter-
ing probes, principally, fluctuations in the thermo-
dynamic variables whereas Brownian motion samples
the fluctuations in the fluid velocity field.

The growth of fluctuations in the thermodynamic
variables has been utilized successfully in light scatter-
ing studies of second order phase transitions. The
extension of these methods to the study of the enhance-
ment of fluctuations in hydrodynamic regime transi-
tions has been reviewed recently [17]. Unfortunately,
because the correlation length is very large (of order

de 1/2, i.e. much longer than that for phase transi-
tions), of the fluctuations, only the fourier components
with wave vectors quite close to the critical value are
significantly enhanced. Since the critical wave vector
is of order d ~ 1 it is apparent, taking d = 1 cm, that
large fluctuations can be expected only for observa-
tions at scattering angles of 10" 3 to 10" 4 radians.
Intensity measurements at such angles present a
non-trivial technical problem and so far no experi-
mental evidence for enhanced fluctuations near the
convective instability have been produced [18].

Using Faxen's theorem the diffusion coefficient
of Brownian particles can be related to the fluctuations
in the fluid velocity field [19]. Due to the enhancement
of the fluid velocity fluctuations near the hydrodyna-
mic instability point the diffusion coefficient consists
of a critical contribution that within the framework
of linear fluctuation theory increases as e~3 / 2 as well
as the regular contribution given by the Stokes-
Einstein expression. We write the diffusion coefficient
of the Brownian particles as

D = A<;

where the factor A can be calculated from the fluid
velocity fluctuation correlation function and is pro-
portional to C(w)/a2 where C(w) and a are defined
by eqs. (17) and (19) for the binary mixture and by
eqs. (20) and (21) for the one component fluid. It
follows that this ratio A is in fact formally the same
for the one and two component Rayleigh-Bénard
instability. As pointed out in earlier work [19] the
enhancement of D is significant. For example for the
case where d = 1 cm and the radius of the Brownian
particle is It)3 A then for e = 10~3, the critical part
of D is of the order of 10 % of Z)reg and for e = 10~4

the critical part of D is of the order of 10 times £>reg.
Thus the study of Brownian motion could provide a
real opportunity to probe the pretransitional region.
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