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I. INTRODUCTION

Recently there has been a growing interest in pretransitional
2

effects, in hydrodynamic regime transitions . Particular emphasis

is put on the interesting resemblance that these pretransitional

effects bear to those occurring in equilibrium phase transitions.

One of the most striking analogies is the amplification of thermal

fluctuations near the transition point.
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The simplest example of a hydrodynamic instability is the

Rayleigh-Bénard or convective instability which occurs in a hori-

zontal fluid layer heated from below. When the temperature gradient

reaches a certain critical value stationary convection sets on

spontaneously. The fundamental physical process which causes this

instability is the conversion of the energy released by the

buoyancy force into the kinetic energy of the convective motion.

Stationary convection sets on when the rate of energy transfer

from the gravitational field to the convective motion balances the

rate of viscous dissipation of energy of the convective motion.

Following essentially the stochastic treatment of Zaitsev and

Shliomis we first analyze the hydrodynamic fluctuations in the pre-

transitional state. Next we discuss the analogies between pretran-

sitional effects in second-order phase transitions and in hydrody-

namic regime transitions. Finally we suggest the use of light

scattering and Brownian motion to observe experimentally the anoma-

lous fluctuations near the instability point.

II. HYDRODYNAMIC FLUCTUATIONS NEAR THE INSTABILITY POINT

4
The basic equations describing the convective instability are

<2 = /3
-et ' (2.2)

Here W is the vertical component of the velocity, & is the

perturbation in the temperature, — ß is the (vertical) tempera-

ture gradient and CX , ^C and 'O are the thermal expansion
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coefficient , thermal diffusivity and kinematic viscosity, respecti-

vely. For the sake of simplicity we consider a fluid layer with

free boundaries, in which case W and Q can be written as

n-i
,.-»•-*. . ƒ , , . (2.3)

L %.Y ) sin (nrLz/oL) .

Here 1C - (̂ x > ̂ u ) is the horizontal wavevector, X — fXjU)

is the horizontal position vector and d is the thickness of the

fluid layer. Substituting Eq. (2.3) in Eqs. (2.1) and (2.2) one

obtains the following equations for the Fourier amplitudes

o - » . , £ _» /
£L wfn/JCjt) = - ;Jk w (n, K. t) + <x^ ̂

,, , > ,,
,,, ^ (2.5)

-*- Ffo)(n,£,t) ,

where K '- ̂  + (HK/cij. in order to study the hydrodynamic

fluctuations we have introduced fluctuating forces in the hydrody-

namic equations. As usual we assume that these fluctuating forces

are gaussian markoffian 0 -correlated random processes and for the

fluctuation intensities of these forces we use the equilibrium

expressions.



208 H.N.W. LEKKERKERKER AND J.P. BOON

(2.6)

/ -r2' kB l *u
2iizd f Op

The instability sets in as soon as one of the eigenvalues of

the two coupled linear equations (2.4) and (2.5) goes to zero, i.e.

as soon as the determinant of the coefficient matrix becomes equal

to zero

(2.7)

Introducing the Rayleigh number -öó3^C* sOX. t it follows
£ i A. — P

that Eq. (2.7) is satisfied for R^kcL K. .The lowest value of R

for which this is realized is KC - 2.7 n ƒ4 , obtained for n = 1

and 1C - Kc = T^

The two coupled equations (2.4) and (2.5) have two eigenva-
• ̂  \

lues for each wavevector (K;f?H/c£) and correspondingly there are

two eigenmodes. We shall only consider the eigenmodes correspon-

ding to the smallest root and with wavevectors close to the criti-

cal one, i.e. with n = I and % in the vicinity of /K-i. .

Indeed those are the modes that develop anomalous fluctuations near

the instability point. For these modes we can write the equation

1 y/f/,*, t) = - } (/,> K} y (iji, t) + F ( *>(i, *,, t} ,
(2.8)

where A (ly'lb) is the root of the coupled equations (2.4) and

(2.5) that goes to zero for R — K c and 'At = 7CC . The corres-
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ponding mode is a linear combination of ^(/^'TCjt) and

OCh^jt) . For K = RC and K - 7CC one can write

5/3
(2.9)

/ IL I

Similarly the intensity Câ  of the random force F

is a linear combinatie

(2 .9) it follows that

is a linear combination of Q and Q . From Eq .

Q

as for typical liquids 0<^T/Cfß ~ IO

From (2.8) one obtains

(2.10)

-6

( 2 . 1 1 )

This result clearly shows that for R close to R c

and for % close to ?C/C. , i.e. where *(!•>&•} —*• 0 >

the fluctuations in ^ (/.> 'î^j £) decay very slowly

(critical slowing down) and have a very large intensity

("critical opalescence"). Expressing VS ( I, '70_,tJ and
..A. ^

0(i>Kjt) in terms of Ij, ( tj *k, 3 C ) one

finds, close to the instability point,
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( 2 . 1 2 )

J A('JK) ( 2 .13 )

III. ANALOGIES WITH PRETRANSITIONAL EFFECTS IN SECOND ORDER PHASE

TRANSITIONS

In second-order phase transitions there are two well-known

pretransitional effects : near the critical point the fluctua-

tions in the order parameter become very large and they decay

very slowly. These effects can be explained from the behavior

of the suceptibility associated with the order parameter near the

transition point. Starting from the Landau expression for the

free energy

where -"J7 is the order parameter and £ = T/TC ~l one obtains

for the K - th. spatial Fourier component of the susceptibility
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associated with 'M

a. e + b k* (3 .1)

which diverges for T-+TC and K -> O . From the well-known

connection between fluctuations and susceptibility

( 3-2 )

it follows that the fluctuations in the order parameter become very

large for 7"—* Tc . Further according to irreversible thermody-

rtamics the decay rate of small deviations from equilibrium can be

written as

A- i- ,
X.

where L is an Onsager kinetic coefficient and % is the suscepti-

bility associated with the considered variable. According to the

conventional theory of critical slowing down^the kinetic coefficient

associated with the order parameter behaves regularly near T

and since % becomes large near T t ^ becomes small

> = L = (Zn)* L (a.6. t bk&) .
(3 '3)

As seen in the previous section, near the convective insta-

bility point, the fluctuations in the eigenmodes that become

unstable, are very large and decay very slowly. In view of the

analogy with the order parameter behavior in a second-order phase
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transition , we will call IL/ the order parameter for the hydrody-

namic regime transition. The analogy in the pretransitional

behavior of Tt and y becomes even more explicit upon analyzing

the behavior of A ( / } f o ) . For R just below R and for '~K/

close to K>c one can write

(3. A)

where in this case £ = / — °l^c , and the expansion coefficients

are a.' = [# 4/(% + VJ] (fc ƒ> tl % 2 j and b ' = ^ 'Z *>/ (*. f V) •

Substituting Eq. (3.4) in ( 2 . 1 1 ) and taking t = 0 one obtains

<l f — i f f - •» y

*v) (3.5)

Notice the striking analogy between Eqs. (3.2) and (3.5) i.e.

for the order parameter fluctuations in a second-order phase

transition and in a hydrodynamic regime transition, respectively.

IV. EXPERIMENTAL POSSIBILITIES OF OBSERVATION

In this section we briefly consider the possibilities to

observe experimentally the anomalous pretransitional fluctuations

near the convective instability. In view of the great success of

light scattering studies of critical phenomena near second-order

phase transitions and because hydrodynamic instabilities are

triggered by thermal fluctuations which can be probed by light

scattering,it seems logical to f irst consider this tool for the

investigation of pretransitional effects near hydrodynamic insta-

bility points. Since this topic has been reviewed recently by one

of us ( J .P .B. ) we shall restrict ourselves to a few comments.
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The fluctuations in the order parameter -TL ( / , - î b j ^ )

are only strongly amplified for % close to '&c. - T~- / tf? d

Since the thickness of the fluid layer in which the instability

takes place is typically of the order of 0.1 - 1 cm it follows that

in order to observe the large fluctuations in the order parameter
-3 -4one has to use scattering angles as small as 10 -10 radian.

This certainly represents a non trivial experimental problem and

so far no experimental evidence for anomalous fluctuations near

the convective instability point has been produced.

Fluid fluctuations can also be probed through the Brownian

motion of suspended particles. Using Faxen's theorem it can be

shown that the diffusion coefficient of a spherical Brownian parti-
Q

cle can be written as

J> =

where IT (à) is the average of V, ( f j t) j the fluctua-
d d

ting fluid velocity field, over the surface of the Brownian parti-

cle. Using Eq. (<2./2) for the fluctuating fluid velocity field it

can be shown that the diffusion coefficient in addition to its

regular Stokes-Einstein part contains a critical part such that

(4.2)i>

r\crit A'«VAs can be seen from Eq. (4.2) the ratio of D to U J

/•• •• 3̂ i? / ̂
is determined by c OtjCL . Consider £L 'N/ //-*'r' and

_2
d ~ / mm. ; then at C = 10 , D becomes about 50%

larger than its regular value. Given that the instability occurs

at a temperature difference of about 10°C between the lower and
c- -4upper boundary, values of c down to 10 are in experimental
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reach without great difficulty. Photon correlation spectroscopy

is an appropriate method to probe the dynamics of Brownian motion

and by this method, diffusion coefficients can be determined very

accurately. Consequently there should be no problem to observe the

increase in the diffusion coefficient. With sufficient experimen-

tal accuracy it might even be possible to extract the value of the

critical exponent.
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