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ABSTRACT

A spectral analysis is presented of the fluctuations in a
horizontal fluid layer subject to a downward directed temperature
gradient, which, for a critical value, drives the system in a
convective instability state. It is found that the external
force resulting from the combination of the temperature gradient
and the gravitation force gives rise to a coupling between the
heat diffusion mode and a shear mode. As a result of this mode
coupling the damping constant of the heat diffusion mode goes to
zero when the temperature gradient increases towards its critical
value, i.e. the heat diffusion mode behaves like a "soft mode".
The implications of the mode coupling and of the ensuing softening
of the heat diffusion mode on the light scattering spectrum are
discussed.

INTRODUCTION

In a horizontal fluid layer heated from below a stationary
convection mode appears spontaneously for a critical value of the
downward directed temperature gradient. This is one of the
simplest examples of a hydrodynamic instability, (well known in
classical physics as the Benard problem (2)).

One of the prime objects of investigations in hydrodynamic
stability has been the determination of the values of the state
parameters at which the transition from the stability regime to
the instability domain occurs. So far little attention has been
given to the process of initiation of non-equilibrium instabil!-
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ties (see however references 3 and 4). The reason for this may
be the difficulty to observe pretransitional phenomena in classi-
cal hydrodynamic experiments. However, it appears that modern
experimental methods allow the investigation of the pretransi-
tional states. Indeed, since instabilities are triggered by
thermal fluctuations, light scattering spectroscopy which probes
these fluctuations, appears as anappropriate tool to investigate
the pretransitional fluctuations (5,6).

The Benard problem, because of its simplicity, was chosen
here to investigate pretransitional phenomena. Using hydrodynamic
fluctuation theory, we show how the spectral features of the light
scattering spectrum are modified when the fluid departs from equi-
librium towards the instability critical point. The spectral
changes are found to be most important for the central line. An
additional Lorentzian component arises because the entropy fluctu-
ations, which in an equilibrium one-component fluid decay in a
single heat diffusion mode, decay into two non-propagating modes
in the presence of the external force. When the system approaches
the instability critical point the damping of one of these modes
goes to zero indicating a "soft mode" type of behavior which
suggests an analogy between hydrodynamic instability phenomena
and structural phase transitions (7).

SPECTRAL ANALYSIS OF THE FLUCTUATIONS

As is well known, the spectral intensity distribution of the
polarized component of scattered light is proportional to Se(k,uu)
the spectral density of the kth spatial Fourier component of the
fluctuation 6e in the optical dielectric constant. Here k is
the change in wave vector and uo the change in frequency upon
scattering. The dielectric constant can be considered as a
function of the thermodynamic state of the system, so that oe
can be expressed in terms of the fluctuations a^_ in the thermo-
dynamic state variables A^. Consequently

se (k.»)-s (f )(f )sa>a- (k,.). (i)
i > J J i J

The spectral densities of the fluctuations in the thermodynamic
state variables occuring on the right hand side of equation (1)
will be calculated here by assuming that also in non-equilibrium
systems do the fluctuations on the average decay according to the
appropriate hydrodynamic equations, i.e. the linearized equations
for the fluctuations in the steady state variables. In the Benard
problem the steady state can be described as follows : an adverse
linear temperature gradient is maintained steadily; there is no
convective motion; and the gravitational force is balanced by
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the pressure gradient. Labeling the steady state variables with

the superscript s one has

TS(z) v3 = O (z) = -i (2)

where the subscript o denotes the value of a variable at the
reference position, which for the sake of convenience is taken at
the lower boundary (see figure 1). For the purpose of obtaining
the linearized equations for=the fluctuations in the steady state

z]variables the equation for p
S

and p~(z) needonot be solved
explicitly as long as |p°(z) - p | « P and |p (z) - PQ| « pQ
which conditions are usually satisfied for normal fluids and for
actual experimental conditions (layer tickness ~ 0.1 - 1 cm).

In the present case, we choose to write the thermodynamic
equations for the following set of variables:

53 = s - s op = p - p ; = ô v +
x x

o v
y y

v ; (̂ v) .
& •'•>

The above description of the velocity field is a consequence of
the symmetry of the system under consideration. It can be shown
that cp and vz have the same transformation properties as 6s
and 6p under the symmetry operations of the system, whereas
(Vxv) does not and will therefore not couple to 6s and 6p.
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Figure 1. Representation of the geometry of a fluid layer subject
to an adverse temperature gradient.
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One then obtains the following set of coupled linearized equations

(ot - 0̂ )68 - (a/p)DTV
26p - (Cp/T)ßvz = 0,

( à - (y-l)D V 2 )6P - (p/a)(y-l)D V2 6S

u i i

( a _ ( v f v ' ) V 2 + v 'o 2 )cp - v ' ( v 2 - o 2 ) ö v

+ p-1(v3-ôpôP = o,

(ö t -vV 2 -v l £P)v z - v'ôzcp + (gXg + p"1ô z)ôP

- (s*T/Cp)6s = O. (4)

Here is ot the thermal expansitivity, Xs "the adiabatic compressi-
bility, y the ratio of the specific heats at constant pressure
(Cp) and at constant volume (Cv), Dip the thermal diffusivity, v
the kinematic viscosity and v' = ( § + V3)/P where T) is the
shear viscosity and § the bulk viscosity.

As the system is supposed to be infinite in the x and y
directions (i.e. the actual geometry of the system is such that
the thickness of the fluid layer is much smaller than its dimen-
sions in the x,y plane) a spatial Fourier transformation can be
performed in these coordinates. For the sake of mathematical
simplicity we consider hypothetical boundary conditions at the
lower and upper plates such that the variables 6s, 6P, 9 and
vz can also be Fourier transformed in the z direction. Further
the set of equations (4) is Laplace transformed in the time
variable. Considering the terms due to the presence of the
temperature gradient and of the gravitation force as small, one
can treat the dispersion equation of the Fourier-Laplace transfor-
med coupled equations (4) by perturbation theory. To zeroth order
one retrieves the usual modes for the system at equilibrium.
From the higher order terms it is found that the non-propagating
modes are weakly affected by it. Therefore the latter can safely
be neglected here and one then obtains for the damping factors of
the non-propagating modes

s, = - f- (vfDj ± f- [(v-Dj3 + 4vDm ̂ VT F, (5)i — P *"*'m/ O L x T T R

with
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k2 - k2

Here R is the Rayleigh number and Rc(k) its critical value for the
mode with wave vector k. Indeed, note that R/Rc(k) depends strongly
on the wavelength of the fluctuation under consideration. This
fact has important consequences for probing pretransitional pheno-
mena with light scattering spectroscopy and will be discussed in
the next section. Por most liquids v > Drp and it is easily seen
from equation (5) that in that case the external force induces a
coupling such that the heat diffusion mode (S ) behaves like a
"soft mode" simultaneously with the broadening of the shear mode
(S ). When considering only the non-propagating modes, the set
of equations (4) reduces to two coupled equations. These can
easily be solved for 6s(k,s)(the Fourier-Laplace transform of 6s),
from which the appropriate correlation function is constructed to
yield the spectral distribution of scattered light. One obtains

...central / oe \ 2 /. / , \ i ? \ / '+' \ -\ . .I œ ( < ös(k) >(A - + A - , (7)
'

with
(vk2 - s J2

A+ = 1 - A =
(vk2 - s+)

2 + vDTk
4R/Rc(k)

One thus observes that the central peak for a system subject to an
adverse temperature gradient consists of two Lorentzians (Note
that in the limit R -• 0, i.e. ß -• 0 one retrieves the single heat
diffusion line as expected for a fluid at equilibrium). The
spectrum as given by equation (7) is illustrated in figure 2.

DISCUSSION

The most interesting result is undoubtedly the fact that the
damping factor of one of the non-propagating modes goes to zero
when the instability critical point is approached. Prom the
expression of R/R (k) given by equation (6), it is clear that
for a given temperature gradient the effect of the external force
will be most important for small values of k. This means that the
most dramatic spectral changes are to be observed at small
scattering angles. Indeed, the wavelength of the mode which is
the first to become unstable is of the order of the vertical
dimension of the system.



402

Heat Diffusion Mode

Shear Mode

Figure 2. Representation of the central spectral components of a
fluid subject to an adverse temperature gradient. The
arrows indicate the modification of the width of the
spectral components when the temperature gradient
increases towards its critical value.

Presently available techniques used in light scattering spec-
troscopy should allow to probe modes which are expected to be
affected in a fluid subject to an external force.
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