
Geometry of the roots of matrices with Onsager-Casimir
symmetry

E. van Oost and H. N. W. Lekkerkerker
Faculteit van de Wetenschappen, Vrije Universiteit Brussel, 1050 Brussels, Belgium
(Received 28 September 1977)

The condition under which a matrix with Onsager-Casimir symmetry describing the coupling between m
variables that are even (odd) under time reversal and 1 variable that is odd (even) has a pair of complex
eigenvalues are analyzed, both graphically as well as algebraically.

I- INTRODUCTION
The problem of the maximum number of complex ei-

ßenvalues of matrices with Onsager-Casimir symmetry has
been studied by Lekkerkerker and Laidlaw,1'2 McLennan,3

and Grmela and Iscoe.4 Using the Onsager-Casimir symme-
try relations it has been shown that the maximum number of
complex roots of a hydrodynamic matrix describing the cou-
pling between n variables that are even under time reversal
and m variables that are odd is In or 2m, whichever is small-
er- In addition Lekkerkerker and Van Oost' have shown that
in the dissipation-free limit there are 2n or 2m (whichever is
smaller ) purely imaginary roots and |n -m\ roots that are zero.

Further in the purely dissipative limit the hydrodynam-
!c matrix is Hermitian and has only real roots. Knowing the
limit situations (dissipation-free limit and purely dissipative
limit) there remains the problem to determine the threshold
conditions at which a pair of complex roots changes into real
roots. In this paper we treat this problem for the simplest
case, i.e., that of m even (odd) variables coupled to 1 odd
(even) variable. In Sec. II we present a graphical analysis of
this problem and in Sec. Ill we give an algebraic treatment.

H. GRAPHICAL ANALYSIS
The analysis presented in this section is closely related

to the graphical determination of the changes of the eigen-
values caused by adding a single state to the Hamiltonian
matrix in quantum mechanics.6 It can be shown1 that the

hydrodynamic matrix describing the coupling of m variables
that are even ( odd ) under time reversal and 1 variable that is
odd (even) without loss of generality can be written in the
form
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where a„ a2—am and c are real and if we assume the system to
be stable they are in addition positive. The eigenvalue
equation

Mv=av
can be written as

(2)

(3)

(4)

Substituting the values of V j that follow from (3) in (4)
gives the equation

Graphical determination of values of c for which M has complex eigenvalues. In this example a! = 2, a2 = 32, a3 = 65, a<= 100, | b, |= 1, | b21=3, | b31=2,
=4. One obtains c'" = - .51. c'2' = 3.46, <ca' = 25.70, c<4> = 37.65, c<!> = 60.87.C1" = 68.79 c"'=92.28, c'" = 108.24.

2223 J. Math. Phys. 19(10), October 1978 0022-2488/78/1910-2223S1.00 © 1978 American Institute of Physics 2223



ff «, &
FIG. 2. Gersgorin's disks for the example treated in Sec. II (See caption Fig. 1 ).

y -^I—=(C-À)
ft *-aj

which is equivalent to the characteristic equation

|AI-M|=0.

In Fig. 1 the heavy curves represent the function

(5)

for the example noted and the light lines represent the lines
ƒ (A)=c—A for values of c such that/(A) is tangent tog(A). It
is clear that for values of c situated in the union of open
intervals ]c(2*-°, e(2k)[ (k =1 ,-,4), ƒ(>!) intersects g(A)
only three times [or in the general case (m — 1) times]. Thus
for values of c situated in these intervals there are (m — 1) real
roots and two complex roots whereas for all other c values
there are (m +1) real roots.

III. ALGEBRAIC ANALYSIS

In addition to a graphical analysis of the problem it is
worthwhile to have an algebraic method at one's disposal to
determine the values of the parameters for which the matrix
M given by ( 1 ) has two complex eigenvalues. Using
Gersgorin's theorem7 it is possible to write down sufficient
(but not necessary) conditions for which M has no complex
eigenvalues. From the graphical analysis presented in the
previous section it follows that the union of the m

Gersgorin's disk

\z —a j | < | b j ; I (/= 1,2,—, m ) contains at least m —

1 real eigenvalues if the Gersgorin disk

has no points in common with this union. Of the remaining
two roots one is located in the isolated Gersgorin disk

7=1

and the other in the union of the remaining disks. This means
that these roots are real since complex roots would appear in
the same Gersgorin disk. Thus a sufficient condition for the
absence of complex eigenvalues is

\c-aJ\>\bj\+Z\bj\ (6)

This condition is illustrated in Fig. 2 for the same example as
was treated in Sec. II.

Since the characteristic polynomial of M is real and has
at most two complex roots it appears logical to try to estab-
lish an extension of the relation A —A '?—4A '2 <0 which
indicates that the real second degree polynomial p2 (A ) = ̂
+A\A +A'2 has complex eigenvalues. Indeed it is possible to
obtain such a generalization using determinant sequences.'

FIG. 3. Schematic illustration of the behavior of A (5,5) for the example of Sec. II. The values of c'* ' for A:= 1....8 are the same as in Fig. 1.
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FIG. 4. Graphical determination
of the values of c for which a hy-
drodynamic matrix with a two-
fold degenerate root has complex
eigenvalues. In this example
a, = 32 = 83=4, a4 = 40, | b, =1,
bj |= |b j =2, | b, |=3. One ob-

tains c'"=-2.23, c'!'= 9.73,
cm = 34.27, and c""=46.23.

Consider the «th degree polynomial

. dp„(4)

(7)

where p „(A ) is the characteristic polynomial of M. Let the
coefficients off(A ) be written in the form A k =A ' k +iA " k

where A 'k and A "k are real. Let A(n,k) (k = 1,—,«) denote
the maxtrix formed from the first (2k — 1) elements in the
first (2k — 1) rows of the matrix.
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Urther let A(n,k) denote the determinant of the matrix
(n>k ). It is possible to prove the following theorem.

Theorem I: Let/) „ (A ) be a real polynomial with at most
*wo complex roots. Then p „ (A ) has (n - / ) distinct roots iff
4 («,«) = ...=4 («,«-/+1)=0 and A (n,n-l)=£Q. Further
vv° of these are complex iff sign A («,« — /)= sign
— 1) «-/+1 ^phe proof of this theorem is given in the

Let us apply Theorem I to the example analyzed in Sec.
• The behavior of A ( 5,5 ) is schematically illustrated in Fig.

• As a further illustration of the application of Theorem I,
e consider a hydrodynamic matrix with a twofold degener-

ate root. In Fig. 4 we first give a graphical analysis of such a
case. For c values situated in the open intervals ]c' ", c'2 ' [ and
] c< 3 ) , c < 4 > [ there are complex eigenvalues.

The determinant A ( 5,5 ) for the example considered is
zero for all real c and the behavior of A ( 5,4 ) is schematically
illustrated in Fig. 5.

We hope that the simple examples treated here suffi-
ciently demonstrate the usefulness of theorem I. An exten-
sion of theorem I to deal with the general case of« variables
that are even under time reversal coupled to m variables that
are odd would be desirable but so far we have not been able to
find such an extension.
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FIG. 5. Schematic illustration of
the behavior of A ( 5,4 ) for the ex-
ample given in Fig. 4. The values
of c"1, c"', c'" are the same as in
Fig. 4.
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APPENDIX

Let the real polynomial
pn(A)=A"-\-A \A "-'•••+ A '„ be written in the form

1=1

where the roots are ordered such that the first y roots have
multiplicity higher than one.

Lemma 1 : If p n(Â) has n — 1 different roots then
A(n,n)=A(n,n-l) = -=A(n,n-s+l)=Q.

Proof: Consider the real functions y and K of the integer
i j fory> 1

k-l

*('/)= ,«*" " -2+'*-/ fc-A 1

/*-/*_, / J
(n-/oH',0

where A ',n=0 for ƒ„ > « and A '0 = 1.

After some algebra we find that

Pn(A) ^

-a.
and

(/• M '"'-'
-a .

Further one can show that for any /t>0

y(r+k + \)

1 d(m'~2)

and

x(r+k

A * - .

From the last two relations it is clear that

K(r+k)=0, fork>0.

(A2)

(A.3)

If p „(A ) has n —s different roots, we use relation ( A.2) and
(A.3) to construct a linear combination of the columns of
the matrices A(«,«),—, A(«,«— s+ 1), which is zero.

Lemma 2: Let a , be a root of p n(A) with multiplicity
m , and let A (n —g,n —g) denote the determinant associated
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with the polynomial

then

A(n,n-g+\)

Proo/: Let S and T be 2(n -g+1) -1 dimensional up-
per triangular square matrices

S=

'l g -a i 0
0 1 0 -a, 0
O O U £-, -a, 0-

0
_ - -0

0

1 J

(A5)

andT=(th i k) with thtk = 0 i f h > k .

For h <k

and

(A6)

The matrix S-A(«,« —^+1). T has the form

S.A(n,H-g+l)T=

where 0 is a (2n — Ig— 1) X 2 dimensional zeroblock

/l= a,

g rftevn(^:

Taking into account that det ( S ) = det ( T ) = 1 it follows that

det(S-A(n,n-g+l)T)

=A (n,n-g+l)=A (n-g,n-i

( l d^p„(Ä) V
= ~#l~r—777^— ]-A(n-g,n-

W! rfA^ A = a , XW

which was to be proved.

Lemma 3: If p n(A) has « —s different roots and
denote by A ( n — m k , n — m k ) the matrix of the polyn°

E. van Oost and H.N.W. Lekkerkerker
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where a k is a m k — fold degenerate root of p „ (A ) then, and A (n —s— l,n —s— 1) is associated with

~—m kA (n—mk,n—s—\)

X A V J-
Then

A (n,n—s)

: The proof follows the same lines as that of
Lemma 2. We introduce the matrices S„_s and Tn_s formed
from the last 2(n -s)—\ elements from the last 2(n —s) — l
rows of S and T as denned by (A5) and (A6).

Then

(A(n—mk,n—s—l)
= ;)•

where C consists of the last two elements of the first
2(n — s) — 3 rows of A(«— m k,n— s).

From Lemma 1 it follows that A(n — m k ,n —s) = 0.
Using the structure of the matrices A(n,k ) for 1 <&<«, this
relation implies that there exists linear combinations of the
columns of S„_sA(n,n —s) T„_s which transform C into a
zeroblock. Let B' be the result of this transformation applied
to B, then

•A (n—m^n—s— 1) (Lemma 3)

— m/Af _ ^2 _ )| VWA Vnf=1(,i-aI.)'».-'/L=ai;
•m2—mrA (n—s—l,n—s—l)

r
= fj w jA (n —s,n —s) (Lemma 2 ) .

(A9)

Proof of Theorem I: We first prove the theorem for the
case that 1=0 by induction on n, the degree of the polynomi-
al p „ (À ). For n = 2, the proof is trivial since
A(2,2)=A1'

2 — 4AÏ'. Let us assume that the theorem is valid
for any real (n — l)th degree polynomial with a maximum of
two complex roots. From Lemma 1 it follows that

pnV) \
r m _ J

Ilf=1(A — a,)m' > l=a

J
which leads to the relation that we had to prove.

Lemma 4: If p „ (A ) has n —s different roots and
^(n~s,n —s) denotes the matrices associated to the
Polynomial

where x is any root of p „ (A ) and A (n — 1,« — 1 ) the determi-
nant associated top „ (A )/(A — x). From ( A7 ) it follows that
A (n,ri)=Ë O iff

dp „(4)

=1
then

A (n,n—s)= JJw,-4 (n—s,n—s). (A7)

/Voo/: Consider first the case that/? „ (A ) has one degen-
erate root a} with multiplicity m, and thus s = m! — 1. Using
Lemma 2 and the relation

(A -a,.)*

j . , where m, is the multiplicity of the root a, of
P «(A ), we obtain ( A7) for s=mt — 1. Let us now assume
that ( A7) is valid for any polynomial with at mosty'— 1 de-
generate roots

This implies that

à (n—mi,n—s—l)=m2—mr A (n—s—l,n—s—l),
(A8)

Where.d (n—mltn —s— 1) is the determinant associated with
the polynomial

and A (n — l,n — 1)̂ 0, which is equivalent to say that/? „ (A )
has n different roots.

If moreover we assumed that x is real (which is always
possible for n>3) it follows from (A7) that A (n,n) and
A (n — 1 ,« — 1) have opposite signs, and since/» „ has complex
roots iff p „(A )/(A — x) has complex roots, the theorem is
proved for /=0.

We now consider the case that

Let us first assume that/? „ (A ) has (n — /) distinct roots.
From Lemma 1 it follows then that

A (n,n) = -A («,«-/ + 1)=0. Further the (n-/)th de-
gree polynomial

has (n—l) distinct roots and thus statisfies the conditions of
the first part of the proof. This means that A(n—l,n—l
and sign 4 («—/,«—/)=sign (—1)"~' + 1 iff

has complex roots. Using Lemma 4 the above means that
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has complex roots. Finally we Still have to show that if 2H.N.W. Lekkerkerker and W.G. Laidlaw, Phys. Rev. A 9, 431 (1974).
A (n,n) = -A (n,n-l + 1) = 0 and A (n,n-l)=£0 that p „(Ä ) 'JA- McLennan, Phys. Rev. 10, 1272 (1974).
, v . , . , . . _ ' .... f,. . y "^ J 'M. Grmelaandl. Iscoe, Ann. Inst. H. Poincaré Sec. A (to be published).
has (n-/) distinct roots. Indeed if the number of distinct roots ,H N w Lekkerkerker and E. Van Oost, Physica A 84,628 (1976).
of p „ (/I ) is different from («—/) , this leads immediately to 'E.U. Condon and G.H. Shortley, The Theory of Atomic Spectra (Cam-
contradictions. I I bridge University, Cambridge, 1967), Sec. II. 11.

'P. Lancaster, Theory of Matrices (Academic, New York, 1969), Chap. 7.2.
'M. Marden, The Geometry of the Zeros of a Polynomial in a Complex

'H.N.W. Lekkerkerker and W.G. Laidlaw, Phys. Rev. A 5, 1604 (1972). Variable (American Mathematical Society, New York, 1949), Chap. IX.
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Fibre bundle analysis of topological charges in
spontaneously broken gauge theories
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We study the topological properties of spontaneously broken gauge theories in the context of fibre bundle
theory. In particular, we discuss the conditions under which the topological charges of gauge and Higgs
fields are the same.

I- INTRODUCTION

The aim of the present paper is to study topological
Properties of spontaneously broken gauge theories,
giving an explicit geometrical description in terms of
connections and cross sections in a principal and as-
sociated fibre bundles.

As it was noted by Popov, ' this approach not only
enables one to "calculate" but renders calculations more
transparent.

In Sec. II we study the simple case of an Abelian
Higgs theory in c /=2 (Euclidean) dimensions and show
how the geometrical interpretation leads naturally to
we identification of the topological charges of both
gauge fields and Higgs field.

The discussion of the general case is done in Sec.
Ü1: for a compact Lie group G, conditions under which
a single AT-uple of integers labels the topological
charges of gauge and Higgs fields are obtained. These
conditions, already obtained by Woo2 for the case <7 = 4
(Euclidean) dimensions, using rather different techni-
ques, arises in a transparent manner in the context of
'he fibre bundle theory. Several examples are discus-
sed at the end of this section.

"•THE ABELIAN CASE

We will consider in this section the Abelian Higgs
an Abelian gauge field Aß coupled to a complex

scalar field 0, with dynamics determined by the La-
density

(2.1)L=-

Where

(2.3)

his Lagrangian density is invariant under the local

•Laboratoire associé au Centre National de la Recherche
?°ientifique. Postal address: Bat. 211, Université de Paris

b,?1- 91405 Orsay, France,
financially supported by CONICET, Argentina.

gauge transformations generated by the group G =/y(l);
we are interested in the case ß2 ï O, that is, when the
symmetry is spontaneously broken. It was noted by
Nielsen and Olesen3 that this model allows for vortex
solutions- static, cylindrically symmetric field con-
figurations of finite energy per unit length. The
Nielsen— Olesen solution depends only on two variables.
Then, the vortex field can be considered as a pseudo-
particle configuration (with finite action) in the
Euclidean version of the two-dimensional theory. If
the action is to be finite, then, at Euclidean infinity
(that is, on the sphere S»)

(2.4)

(2.5)

(2.6)

lim (3,,- 7^)0 = 0,

lim<V(0) = 0,

where r2 =x\ +

These conditions can be interpreted geometrically
in terms of the theory of fibre bundles. To this end, we
consider Si as the base space of a principal fibre bun-
dle P(Sl,U(D) with structure group U ( l ) . If we call
J the associated vector bundle with fibre <E — the group
L/(l) acts on the left on (E by usual multiplication — then
the scalar field 0 can be considered as a global cross
section onj4 .

Because 0* 0 on Si [from Eq. (2. 3) and condition
(2. 6)] 7 is trivial and so is P.

The one form Audx* defines a connection on P. We
can then consider on J the covariant derivative D in-
duced by the connection [its explicit expression is

Let y be a given curve in
(2.2) (#„,£•) e P and

, from -Y0 to x. If

C,,IP*A) is the fibre of
J(P) over -v0], we will call (.v, Trg) e_Px the parallel
displacement o£(#0, g) along y, given by the connection
A^dx", and (x, Trv) e}x the parallel displacement of
(x, v) along y given by D Since D is induced by the
connection,

(2.7)

and

Lemma: for any curve /_in sL from .
= Trg V g t U (D and f f v = TrvM u e (C .

to x,
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Proof: From Eq. (2.5), = fr0(*oK then for any

)/g. (2.8)

But Eq. (2. 5) also implies that 4>(x) = f'r(j)(x0). Hence,
<t>(x) = (rr'tf) <M*0)/tf- Since 0(x0) * 0,_it follows Trg=Tlg.
Now, from (2.7) it is evident that 7> = fyV. That is,
the parallel displacement from #0 to x is independent
of the particular choice of y in SL •

Hence, if we fix a point .VOF Si, the given connection
Audx* can be identified with a well-defined mapping

( 2-9 )

where / is the identity of £/(!) and y is any curve from
x0 to x in S1«. We note that the explicit form of A(x)
reads

Taking g=I in Eq. (2.7), we have

Now, condition (2. 6) shows that (p defines a mapping
<t>:S\,-Sl. Because Ü ( l ) = Sl, Ä can be also considered
as a mapping A :SL-*S1. Then, relation (2. 10) implies
that 4> and A belong to the same class in I1(S1)=Z.
Hence, the same integer characterizes topologically
the gauge field A ß and the scalar field 4>.

This integer, the topological charge"«" is related
to the quantization of the magnetic flux of the vortex.
In terms of the gauge field Aß it is given by the expres-
sion

that, according to Stokes theorem, can be written as

1

Our derivation of the topological equivalence between
Higgs and gauge fields can be understood intuitively
as follows: The principal fibre bundle P can be visual-
ized as a torus (A) (see Fig. 1). Then the topological
charge, associated with the gauge field counts the num-

FIG. 1. We represent at the bottom the base space Si of the
principal fiber bundle P (torus A). Taking on each fibre C of
the vector bundle J? the circles I Z\ =<z0 l we obtain another
torus (B).

ber of times that the curve 7 joining the points (x,A(X)>
in P winds around the torus. On the other hand, we can
take on each fibre <C of the vector bundle J the circle
Izl=f l 0 ( f l 0 =(/ j . 2 /2x) 1 / 2 ) , that is, all the possible values
of 0 on S\. We thus obtain another torus (B) and we can
take on it the curve ? joining the points (x, <p(x)). The
topological charge associated with the Higgs field cor-
responds to the number of times the curve ? winds
around this torus. Relation (2.10) states the equality
between both numbers.

III. HIGHER-DIMENSIONAL CASES

In this section, we consider the general case of a
spontaneously broken gauge theory in a Euclidean d-
dimensiorial space (rf > 2). Let G be a compact Lie
group and

(3-D

a Yang-Mills Lagrangian density for G. The field 0
transforms in accordance with an ^-dimensional unitary
irreducible representation of G, and the fields v4w

- (A*, . . ., A£) assume values in the algebra of the
Lie Group G. Fuv = ̂ Av _ s„Av -z'K,Aj, Dß is the
covariant derivative, and U($) is a G-invariant function
which has a minimum (this minimum is assumed to be
equal to zero). As in the Abelian case, finiteness of
the action imposes the following conditions on A" :

(3'3'

where r2 =x\ + . . . +x\. This situation corresponds to
the following geometrical description: a flat connection
A^dx* [condition (3. 2)] on a principal fibre bundle
P(Sf1, G) with base manifold Si"1 and structure group
G.

Urn ̂ 0 =

Since S "̂1 is simply connected and the connec-
tion is flat, then it follows that P is trivial and also that
the parallel displacement along a curve y in S*«,"1 frorn
#0 to x, induced by the connection is independent of the
particular choice of the curve y, (These results folio"
from the general theory of flat connections, see, for
example, Ref. 4).

As we did in Sec. II, let us fix a point #0e Si"1. The
connection A^dx* determines a well defined mapping

where / is the identity of G and (x, 7\,/)e Px is the
parallel displacement of (x0, 1) e PX(i along any curve
in S*«,'1 from #0 to x.

Let J be the associated bundle with fibre K, where
K is a vector space-tensor space — according to the
choice of 0. (The group G acts on the left on K in the
usual way).

Let us call D the covariant derivative induced on J
by the connection given on P. From Eq. (3. 3) the
field (f> can be considered as a global cross section
the bundle } with
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(3.7)

Where (x, Tr0(x0)) ejx is the parallel displacement of
'*o> 0(*0)) ejm along any curve y from #0 to x, induced
by D.

(3.8)

Now Eq. (3. 7) implies that

<t>(x)=A(x)<t>(Xl)).

Let us call a0 e K a fixed element of A" satisfying U (a0)
= 0 on Sir1. Because ^/(0) is G-invariant, ^a0 also
satisfies condition (3.4) for every g&G. We will assume
that all the zeros of U on S4«,"1 are of this form. 5 Hence,
the set of zeros of U can be identified with the left
coset space G/H where H ={he G/fea0 = a0}, the isotropy
group of a0, is called the unbroken group. Then <p can
be regarded as a mapping 0 -^

From this and relation (3. 8) the mapping 0 can be
identified with the mapping Pr -A where Pr is the pro-
jection

Pr:G-G/#.

The element of n^
Pr*[J4] where

represented by 0 is then

(3.9)

is the mapping induced by the projection Pr and [A] is
the class of A in Udml(G).

n^.^G) is an Abelian group, then [A] is re-
Presented by a fe-uple of integers (nlt . . . , nh) (the signs
and ordering depending on the choice of the generators;
note that if n^G) is not free, some of these integers
ni are elements of Zti). Then, the equivalence between
topological charges of Higgs and gauge fields can be
characterized in the following way: One can choose the
generators of tt^G/H) in order to have the class of <f>
represented by the same k-uple (MI, . . . , nk) if and only
tfPr*is an isomorphism.

We wish to stress at this point that the interpretation
of Yang— Mills fields in terms of connection in the
Principal fibre bundle and the Higgs field as a global
Cross section in the associated fibre bundle leads
Naturally to a condition for the equivalence between
"iggs fields and gauge fields topological charges, [in
the Abelian case (with d = 2) studied in Sec. II, ff ={/},
and the precedent discussion was not necessary. ] From
the exact sequence of homotopy

it can be deduced that Pr* is an isomorphism if

IWA) = 0, (3.10a)

n,_2(tf) = o. O.lOb)
For the case rf = 4, Eq. (3. lOb) is always verified since
H is compact (H is closed in G), and Eq. (3. lOa) re-
duces to the condition derived by Woo2: R3(H) = Q. This
is the case when the gauge group is broken (i) entirely,
(ii) down to a subgroup of Abelian factors. Then, the
topological charges of the gauge and Higgs fields are
the same.

We consider lastly the example of the group G = SO(3)
and a scalar field forming an isovector (j>, with the
usual potential (7(0) = iM 10 l 2 - D 2 , that is, the Gerogi-
Glashow model without fermions. The group G can be
identified in this case with P3 (the three-dimensional
projective space) and H = ( j ( \ } .

If d=3, then II2(G) = 0. On the other hand, the Higgs
field topological charge is characterized by U2(G/H) = Z.
What happens in this example is that, although condition
(3. lOa) is satisfied, (3.10b) is not, since ni(H) = Z.
Then, our analysis does not apply. If d = 4, then II3(G)
= Z, and E3(G/H) = Z, that is, a single integer labels the
Higgs field topological charge. Note that A: Si — P3

while 0:S3„-G/ff=S2.
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