
Hydrodynamic Correlation Functions in Nematic Liquid Crystals
Propagating Modes

BY DEBRA L. CARLE AND WILLIAM G. LAIDLAW

Department of Chemistry, University of Calgary,
Calgary, Alberta, Canada T2N]1N4

AND

HENDRICK N. W. LEKKERKERKER*
Fakulteit van de Wetenschappen, Vrije Universiteit Brussel,

Pleinlaan 2, Brussels, Belgium

Received 24th August, 1977

The spectral densities of nematic liquid crystals are calculated in the hydrodynamic limit with
particular reference to those spectral densities that play a role in the Brillouin lines of the light scat-
tering spectrum. It is found that the contribution of the mixed pressure-director fluctuations to
the intensity of the Brillouin lines is comparable to that of the pure pressure fluctuations. Exploitation
of this feature allows, in principle, the determination of the flow-director coupling constant from the
angular dependence of the intensity of the Brillouin lines.

Spectral densities of fluctuations in nematic liquid crystals were first presented by
the Orsay Liquid Crystal group,1 then calculated in more detail by Forster 2 whose
results have been re-examined by the present authors.3 Most of this attention has
been directed to the non-propagating modes. There, the director fluctuations (i.e.,
the feature characteristic of the nematic phase) make significant contributions; in
fact they dominate completely the Rayleigh line in the light scattering spectrum.4

In this paper we investigate in detail the propagating (sound) modes. The width
of the Brillouin lines is a valuable source of additional information since it is essentially
determined by a function of all five viscosity coefficients two of which do not appear
in the line-width expression of the Rayleigh line.5 Further, we find that from the
intensity of the Brillouin lines one may extract the flow-director coupling constant A
since the contribution to the intensity by the mixed pressure-director fluctuations,
which is a function of A, is of the same order of magnitude as the contribution of the
pure pressure fluctuations.

The spectral densities are calculated in the hydrodynamic limit and we rely on an
appropriate choice of fluctuation variables to facilitate a perturbation calculation of
the normal modes. Although this procedure has already been outlined in a previous
publication 3 we present again those details which are necessary to carry forward the
argument.

CALCULATION OF SPECTRAL DENSITIES
Let At i — l, 2, . . ., m be the variables specifying the hydrodynamic state of the

system and a((ft, t) the spatial Fourier transforms of the fluctuations in these variables.
In the hydrodynamic limit the dynamics of these fluctuations are given by

- <a(fc, 0>o = -M(fc)<a(fc, 0>o(' > 0). (1)
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Here M(A) is the hydrodynamic matrix and <.. .)0 denotes an average of the variable
between the brackets subject to an initial condition.

Using standard methods one obtains for the spectral densities!

where we have employed sj the signature under time reversal of the variable At.
Here %(k) is the variance matrix of the fluctuations at(k, t).

From the symmetry properties of the spectral density matrix it follows that if
ejejefe* = +1 then £*(/&, co) is real and symmetric under exchange of i and j whereas
if eTeTefe? = — l then Su(k, CD) is imaginary and antisymmetric to the same exchange.6

Here sf is the signature under inversion of the variable At.
Carrying out a normal mode analysis one can particularize eqn (2) to two cases

where

Sji(fe, co) = —5— Re Y -—^— for e^ejefe^ = 4-1 (3a)
71 "A^ + ICO

or
If T 7^

B ' T V U f T T P P ^ / f \ i \-=— i Im 2., .—T- for fijE/efej = — 1. (3b)

Here the AM are eigenvalues of the hydrodynamic matrix M. Further we have em-
ployed a set of statistically independent and normalized fluctuation variables xt(k, t)
which results in the simple expression for the strength factor matrices

Z" = V,W, (4)

where V» and W^ are the right and left eigenvectors of M, respectively and are
normalized such that W^

APPLICATION TO NEMATIC LIQUID CRYSTALS

The required eigenvalues and eigenvectors are obtained for the hydrodynamic
matrix M which describes the dynamics of the following statistically independent and
normalized fluctuation variables

{«i(*. 0} = {#1 P(k, t), N2 a(k, t), N3 s(k, t), NJ(k, t), N5 Mk, 0} (5)
where Nt, i — 1, . . . 5 are normalization factors. Here d(k, t), \j/(k, t) and f(k, t) are
fourier transforms of div», (curl curl »)z and (ônx/dx+ôny/dy), respectively. The
thermodynamic state is specified by pressure p and entropy s, v is the velocity field and
nx and ny describe the fluctuations in the director. For this set of xt(k, t) the signa-
tures under time reversal are {1, — 1 , 1 , 1 , -1} and under inversion {1, 1, 1, — 1, -1}.
The explicit form of the hydrodynamic matrix M for these variables is given in réf. (3).

Using standard perturbation theory the eigenvalues correct to order k2 may be
obtained from the hydrodynamic matrix and the result for the sound modes can be
written as

AI, 2 = ±\kc+yrk2. (6)
Here c = (p#s)~* is the adiabatic sound speed and

(c, \r = - -1 )DTW»)+AWO- (7)

t Throughout this paper Boltzmann's constant is represented by &B, to avoid confusion with the
wavevector k.
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The form of the damping factor F is the same as for an isotropic one-component fluid
with the notable exception that it now depends on the angle 4> between the direction
of propagation of the sound wave and the director n° as in

cppZ)T(0) = KJ. sin2 0 + K|| cos2 </>

= (2v!+v2-v4 cos v2+v4) sin2 <£-• Hvi+v2-2v3) sin2 20.

The coefficients Vj . . . vs are the five independent viscosités characteristic of the
uniaxial nematic phase and K H and KJ_ are the heat conductivities parallel and per-
pendicular to «°. The damping constant associated with the heat mode is just
A 3 = D-[(<f>)k2. The eigenvalues 14 and A5 specifying the relaxation times of the
longitudinal shear-director modes are

<• -
[1+1 cos 20]

(8)

(9)

Here £ is the director relaxation constant,, A is the flow-director coupling constant and
and K(0) are denned by

= v3 cos sin2

sn cos

with ATj ! and -ST33 the Frank elasticity constants for splay and bend deformations of
the nematic. In writing down A4 and A5 we have made use of the fact 1 that for
nematics, typically, [^(0)p/v2(</>)] < 1.

In the hydrodynamic limit the eigenvector matrix corresponding to eigenvalues
which are correct to order k2 is

V =

Here
' 1
72"

i

72
0

0

0

1
75
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0
0
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0

0
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0
0

0

0

0

1

0

0

0
r

(10)

where

1 —

"'t ,2 i

P

. As-A-4,

** — qp
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V, 2

P

- ^5-^ ^
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and in r the upper sign applies when (l+/lcos2(£) < 0 and the lower when
(l +1 cos 2(j>) > 0. We write V(1) as

where

472 472

z*i zi1
472

72 72

O

-b2

^ O

i(qb4-rb3)

O

^34 '35

72 72
—164. ib4

L ~72~ 72 C45»1

(H)

-e-l

««

Here v(</>) = Kv4~vs~vi) sin2^+i(2v3-v1-v2) sin4</> and the cff^ in eqn (11) are
the undetermined coefficients referred to in réf. (3). Given these expressions for V<0>

and V(1) one can calculate the required left eigenvector matrices W(0) = V(0~^ and
W(1) = - W(0)V(1)W(0;. The strength factor matrices can now be obtained to order
k from

Z = V^W^+klV^W^+V^W^]. (12)

The spectral densities now follow on utilizing eqn (3).

RESULTS AND DISCUSSION
Since, as mentioned in the introduction, we are primarily interested in the

Brillouin lines, then in selecting the spectral density elements we consider fluctuation
variables which contribute to the sound modes and which contribute to the fluctuation
in the dielectric constant. Further we shall only be concerned with contributions to
the spectral densities which are of hydrodynamic order (i.e., up to order k). Hence
we shall be concerned with Spp(k, (a), Sps(k, co) and Spni(k, (u) which can be obtained
readily using the methods and results presented in the previous section. We obtain

- b
ar/c2)2+(o)-/cc)2 j (13)
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— b2k(co + kc)/2 b2k(co — kc)l2

+(oT+fee)2 ' arfe2)2+(<o - fee) (14)

Spni(k, co) =
(irfc2)2+(o) + fee)2 (iFfe2)2+(co - fee)2

—-+- (15)

Here we have reverted to the commonly used variable »i which is related to our
original variable ƒ by ƒ = (—ife sin <£)«]..

FIG. 1.—The scattering geometry.

The form of Spp(k, co) and Sfs(k, co) is exactly the same as in the ordinary one
component fluid although, as mentioned earlier, F does reflect the uniaxiallity of the
system. The additional term Spni(k, co) is a distinct contribution of the nematic
phase. It should be noted that the sum of the strength factors of the four lorentizian
contributions is however zero [as it must be since </>(&)«i(ft)*> = 0]. The fact that
the contributions to the mixed spectral density Spni(k, co) are lorentzian, whereas
those which contribute to the mixed term Sp„(k, co) are non-lorentzian, can be traced
to the fact that the coupling which gives rise to the mixed term is, in the case of
Spni(k, co), to the odd variable div v whereas in the case of Sfs(k, co) it is to be the
even variable p.

Although the contributions of Spni(k, co) to the Rayleigh line are of minor im-
portance (they are smaller by a factor of k2 than the contribution of SB1Bl) their
contribution to the Brillouin line is of the same order in k as that of the pure pressure
fluctuations. This makes the contribution of Spni(k, co) to the Brillouin line of some
interest and we shall consider it in the context of the scattering configuration utilized
by the Orsay Group to study the Rayleigh line 7 (see fig. 1). In this configuration
the polarization vectors / and ƒ of the incident and scattered wave and n° lie in the
scattering plane defined by the wave vectors ft/ and kf of the incident and scattered
wave.
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The spectrum of scattered light is proportional to the spectral density of
ÔËft(k, t) = f.ôs.(k, t). i which in this case is just

OSftk, 0 = (cos 0)p(k, t) + (cos 6)s(k, 0+e.(sin 0K(fc, t). (16)
\°P/S \OS/P

Here ea = EH — £1 where e y and ej. are the components of the dielectric tensor parallel
and perpendicular to the director n°. Neglecting the non-lorentzian contributions,
which are smaller by a factor k, we obtain for the intensity of the Brillouin line

/B(fc, co) = C I — l p cos2 ö+eal cos 0 sin 0 sin 2è ——-
L\ ^P /s JL(2r/c

)-/cc)2}
(17)

Here C is a collection of constants which need not concern us for the moment.
Since (ds\\jdp)sp is of the same order of magnitude as ea for nematics 4 the contribution
to the intensity by the mixed pressure director fluctuation is of the same order of
magnitude as that from the pure pressure fluctuation. Thus by measuring the angular
dependency of the intensity of the Brillouin lines it is, in principle, possible to extract
a value for the flow director coupling constant L In contrast to the determination
of A from measurements on the width of the Rayleigh line 7 this procedure would not
require prior knowledge of the elastic constants.
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APPENDIX

List of symbols that enter the " Harvard presentation " of nematodynamics 2- 5- 8

n : director
KII, K22, K33 : elasticity constants for splay, twist and bend formations
A 6 : flow-director coupling constant
vu v2, v3, v4, v5 : independent viscosity coefficients
K n, KI. : heat conductivities parallel and perpendicular to «.
£ : director relaxation constant.
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