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ABSTRACT

We present a thermodynamic analysis of inverted bifurcation
in binary mixtures heated from below. From this analysis it
follows that an inverted bifurcation is caused by the competition
between a stabilizing effect with a long relaxation time and a
destabilizing effect with a short relaxation time. These
conditions are precisely the same as those that give rise to
overstability. This might explain why overstability and inverted
bifurcation occur in the same systems.

INTRODUCTION

The onset of convection in a layer of pure liquid heated from
below, the so-called Bénard-Rayleigh instability, has been
extensively investigated for a long time (for reviews see Refs.
1 and 2). In recent years there has been considerable interest
in thermal convection effects in horizontal layers of binary
mixtures (3) and nematic liquid crystals (4). The Bénard-Rayleigh
instability in these systems exhibits features that are dramatically
different from those observed in pure isotropic liquids. The
most spectacular effects have been observed in binary mixtures
where the Soret effect causes the more dense component to move to
the warm boundary and in homeotropic nematics with a positive heat
conduction anisotropy. These systems become unstable to
stationary convection when heated from above even though the
overall density gradient is not adverse (5,6). Furthermore when
heated from below these systems become unstable to oscillatory
convection (overstability) and finite amplitude convection
(7,9) (inverted bifurcation).
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Previously we pointed out that overstability is due to the
competition between a stabilizing effect with a long relaxation
time and a destabilizing (10,11) effect with a short relaxation
time. The fact that overstability and inverted bifurcation occur
together in such disparate systems as binary mixtures and nematic
liquid crystals suggests that inverted bifurcation is also due to
the difference in time scales between the stabilizing and
destabilizing effect. In this paper we show that this is indeed
the case for a binary mixture.

Overstability and inverted bifurcation in binary mixtures
have been studied numerically by Platten and Chavepeyer (12,13)
and quite recently also by Velarde and Antoranz (14,15). The
aim of the present work is not so much quantitative but rather to
elucidate the basic physical mechanism that gives rise to an
inverted bifurcation.

CLASSIFICATION OF INSTABILITIES

A convenient starting point for the classification of
instabilities is the Landau expansion (16) of the rate of change
of the kinetic energy of a convective disturbance.

E . = a(R-R )v2 + Bv4 + Cv6 + ... (a > 0) (1)
Kin. C

Here v is the amplitude of the convective disturbance, R is a
parameter characterizing the non-equilibrium constraints on the
system (Reynolds number, Rayleigh number, Taylor number ...) and
Rc is the value of this parameter for which the system becomes
unstable (critical value). In the stationary state there is a
balance between the rate of injection of energy into the convective
disturbance and the rate of viscous dissipation of kinetic energy
associated with the convective disturbance

È, . = 0 (2)
kin

In case the coefficient B is negative and large the higher
order terms in the expansion (1) are irrelevant and one obtains
from (2)

v = 0 for R < R
c

1/2
V = const. (R-R ) ' for R > R

c c

This case is commonly referred to as a direct or normal bifurcation
and is analogous to a second order (continuous) phase transition.
The behaviour of v as a function of R is schematically represented
in fig. 1. The above theoretical prediction for the behaviour of
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Fig. 1. Schematic representation of the variation of the amplitude
of the velocity for a direct bifurcation
(s) stable (u) unstable

the amplitude of the convective disturbance, originally due to
Landau, has been experimentally verified for the Bénard-Rayleigh
instability (17) and the Taylor instability (18) using light
scattering techniques.

A different situation arises when B is positive. Now the
coefficient C must be negative to ensure that (2) can be
satisfied. In this case (2) has already solutions v ̂  O for
R > R where

o

R = R

(subcritical finite amplitude instability) and the system
exhibits a hysteresis loop between Ro and Rc (see fig.2). This
case is known as inverted bifurcation and is analogous to a
first order (discontinuous) transition.

The cross over between direct and inverted bifurcation takes
place for B = 0. In this case

v = 0

v = const.(R-R )
c

1/4

for

for

R < R

R > R

This situation is analogous to a tricritical point in equilibrium

phase transitions (19).
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Fig. 2. Schematic representation of the variation of the amplitude
of the velocity and hysteresis loop for an inverted
bifurcation
(s) stable (u) unstable
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Fig. 3. Schematic representation of the velocity perturbation.
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and d is the thickness of the fluid layer. As a preliminary to
the calculation of Ê .̂  for a binary mixture we first consider
a pure fluid. The rate of viscous dissipation of kinetic energy
per unit volume is given by

.. - f 3v. 3v. „

<• = -H" : (T̂  + a-1) dv
kin V 2 J 3x. 3x.

J i

= - 2 n q2 v2 (4)

where

and n is the shear viscosity. The rate of production of kinetic
energy by the buoyancy force per unit volume is given by

= - i J g 6p v dV (5)

where g is the gravitation constant and op is the perturbation
in the mean steady-state density distribution. For a pure
fluid we can write

<5p = - p a ST (6)

where 6T is the perturbation in the mean steady-state temperature
distribution and a is the thermal expansivity. The perturbation
<5T is determined by

v = 2
z dz

where x is the thermal diffusivity and <T> is the mean steady-state
temperature distribution (<...> denotes an average over the
horizontal plane) . Following the work of Chandrasekhar (22) one
obtains to order v for the mean steady-state temperature
distribution

INVERTED BIFURCATION IN BINARY MIXTURES

The fundamental physical process that lies at the origin of
the Bénard-Rayleigh instability is the conversion of energy released
by the buoyancy force into kinetic energy of the convective motion
(20). Stationary convection sets in when the rate of injection
of energy by the buoyancy force acting on the fluid (Eĝ n)
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begins to balance the rate of viscous dissipation of energy
(ÊV. )
kin

* "v * f?
E, . = E. . + Ef . = 0
kin kin kin

when the convective disturbance has a finite amplitude, convective
transport causes a modification of the mean (horizontally-
averaged) temperature and concentration distribution. This in turn
modifies the rate of liberation of thermodynamically available
energy by the buoyance force acting on the fluid (21,22).

For the sake of simplicity we consider a convective
disturbance in the form of a circular roll pattern (see Fig. 3).

v = - 2v sin q x cos q z
x ^x z

vy = 0 (3)

v = 2v cos q x sin q z
z ^x nz

Here

IT
a = o = —qx q

Z d

2 q z} (8)-
dz 2 ? z

x q
where

ß = (T(z=0) - T(z=d) } /d

The second term on the r.h.s. of (8) represents the modification
of the temperature gradient due to convective heat transport.
Substituting the temperature distribution (8) in (7) one obtains

ß v >
6T = - 2v {cos q x sin q z - - (-=- cos q x sin q z +

2 X Z o 2 5 X Ẑxq x q
2 3
-r cos q x sin q z)} (9)
•J X Z

Using (9) in (6) one obtains for the rate of production of
kinetic energy by the buoyancy force

= g P (
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where oc is the perturbation in the mean steady-state concentration
distribution and a' is the solutal expansivity. The perturbation
oc is determined by

v
z dz

v2 6c (13)

where D is the mass diffusion coefficient and <c> is the mean
steady-state temperature distribution. Using the same line of
reasoning as used in the calculation of the mean temperature
distribution one obtains

d<0 T , 2v2 . 2 f .— -, — = -=- U - - sinz q z} (14)
D2q2

where k̂ , is the thermal diffusion ratio. The first term on the
r.h.s. of (14) represents the Soret driven concentration gradient
and the second term represents the modification of this concentr-
ation gradient due to convective mass transport. Substituting

Combining (4) and (10) one obtains for the rate of change of
the kinetic energy of the convective disturbance (3)

É. . = a(R-R )v2 + Bv4 (11)
kin c

where

R = g a ß d (Rayleigh number)

R = 2qltdt* (critical Rayleigh number)

Here v is kinematic viscosity. We see that B is negative and
thus at R = Rc the system will undergo a continuous transition
to the convective state (direct bifurcation) .

In the case of a binary mixture the perturbation in the mean

steady-state density distribution can be written as

op =- p a <ST + p a' oc (12)
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the concentration distribution (14) in (13) one obtains

* T O ; • v2 , 6oc = zv {cos q x sin q z (-=- cos q x sin q z
Dq2 D2q2 5

2
+ -r cos q x sin3 q z) } (15)

J X Z

Using (9) and (15) in (12) one now obtains for the rate of
production of kinetic energy by the buoyancy force

'g gpctg ,1 S, 2 gpa3 fl , 3S, k

\in ~2~ (x D;V ~~^ C"7 Ĵ;

The dimensionless parameter

S - ̂  «I
T a

is negative in case the heavy component moves to the warm
boundary. Combining (4) and (16) one obtains for the rate of
change of the kinetic energy of the convective disturbance (3)
in a binary mixture

Ê, . =• a(R-R )v + Bv^
kin c

where

a =

dV

R = £-

1 + -
D

B = -
2q4 x3 D3
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It is clear that for binary mixture heated from below where the
more dense component moves to the warm boundary (S < 0) the
Soret effect to lowest order in v has a stabilizing influence
i.e. it leads to an increase of Rc . Let us now consider the
coefficient B, the sign of which determines whether we are
dealing with a direct bifurcation (B < 0) . The coefficient B
contains two distinct contributions of opposite sign. The
negative contribution

_ gpag

is due to the fact that convection changes the mean temperature
distribution in such a way that the rate of transfer of energy
from the gravitational field to the convective disturbance is
lowered. The positive contribution

is due to the fact that convection stirs up the Soret driven
concentration gradient there by lowering its stabilizing effect.
Since for liquid mixtures D * x the effect of convection on the
stabilizing concentration gradient is much larger than on the
destabilizing temperature gradient. The result is that for values
of S smaller than 1 ̂  the positive term in B dominates and thus

3 X 3

for these values of S the system will exhibit an inverted
bifurcation.

CONCLUSION

The inverted bifurcation in a binary mixture heated from
below where the more dense component moves to the warm boundary
is due to the competition of a stabilizing effect with a long
relaxation time and a destabilizing effect with a short
relaxation time. Precisely the same conditions give rise to
overstability. Actually oscillatory convection and finite amplitude
convection lead in different ways to the same result i.e. both
effectively eliminate the slow stabilizing effect while retaining
the fast destabilizing effect.

It would be of interest to study the cross over between direct
and inverted bifurcation experimentally. In binary liquids D/x
is typically 10~̂  and thus the cross over takes place for
S - - 10~6 which is experimentally hard to realize. A system that
may offer better chances to perform the appropriate experiments
is a homeotropic nematic with positive heat conduction anisotropy
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heated from below. Here it is possible to change the ratio of the
relevant relaxation times with a stabilizing magnetic field (9)
which could induce the cross over between direct and inverted
bifurcation.
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We present a thermodynamic analysis of inverted bifurcation
in binary mixtures heated from below. From this analysis it
follows that an inverted bifurcation is caused by the competition
between a stabilizing effect with a long relaxation time and a
destabilizing effect with a short relaxation time. These
conditions are precisely the same as those that give rise to
overstability. This might explain why overstability and inverted
bifurcation occur in the same systems.

INTRODUCTION

The onset of convection in a layer of pure liquid heated from
below, the so-called Bénard-Rayleigh instability, has been
extensively investigated for a long time (for reviews see Refs.
1 and 2). In recent years there has been considerable interest
in thermal convection effects in horizontal layers of binary
mixtures (3) and nematic liquid crystals (4). The Bénard-Rayleigh
instability in these systems exhibits features that are dramatically
different from those observed in pure isotropic liquids. The
most spectacular effects have been observed in binary mixtures
where the Soret effect causes the more dense component to move to
the warm boundary and in homeotropic nematics with a positive heat
conduction anisotropy. These systems become unstable to
stationary convection when heated from above even though the
overall density gradient is not adverse (5,6). Furthermore when
heated from below these systems become unstable to oscillatory
convection (overstability) and finite amplitude convection
(7,9) (inverted bifurcation).
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Previously we pointed out that overstability is due to the
competition between a stabilizing effect with a long relaxation
time and a destabilizing (10,11) effect with a short relaxation
time. The fact that overstability and inverted bifurcation occur
together in such disparate systems as binary mixtures and nematic
liquid crystals suggests that inverted bifurcation is also due to
the difference in time scales between the stabilizing and
destabilizing effect. In this paper we show that this is indeed
the case for a binary mixture.

Overstability and inverted bifurcation in binary mixtures
have been studied numerically by Platten and Chavepeyer (12,13)
and quite recently also by Velarde and Antoranz (14,15). The
aim of the present work is not so much quantitative but rather to
elucidate the basic physical mechanism that gives rise to an
inverted bifurcation.

CLASSIFICATION OF INSTABILITIES

A convenient starting point for the classification of
instabilities is the Landau expansion (16) of the rate of change
of the kinetic energy of a convective disturbance.

E . = a(R-R )v2 + Bv4 + Cv6 + ... (a > 0) (1)
Kin. C

Here v is the amplitude of the convective disturbance, R is a
parameter characterizing the non-equilibrium constraints on the
system (Reynolds number, Rayleigh number, Taylor number ...) and
Rc is the value of this parameter for which the system becomes
unstable (critical value). In the stationary state there is a
balance between the rate of injection of energy into the convective
disturbance and the rate of viscous dissipation of kinetic energy
associated with the convective disturbance

È, . = 0 (2)
kin

In case the coefficient B is negative and large the higher
order terms in the expansion (1) are irrelevant and one obtains
from (2)

v = 0 for R < R
c

1/2
V = const. (R-R ) ' for R > R

c c

This case is commonly referred to as a direct or normal bifurcation
and is analogous to a second order (continuous) phase transition.
The behaviour of v as a function of R is schematically represented
in fig. 1. The above theoretical prediction for the behaviour of
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Fig. 1. Schematic representation of the variation of the amplitude
of the velocity for a direct bifurcation
(s) stable (u) unstable

the amplitude of the convective disturbance, originally due to
Landau, has been experimentally verified for the Bénard-Rayleigh
instability (17) and the Taylor instability (18) using light
scattering techniques.

A different situation arises when B is positive. Now the
coefficient C must be negative to ensure that (2) can be
satisfied. In this case (2) has already solutions v ̂  O for
R > R where

o

R = R

(subcritical finite amplitude instability) and the system
exhibits a hysteresis loop between Ro and Rc (see fig.2). This
case is known as inverted bifurcation and is analogous to a
first order (discontinuous) transition.

The cross over between direct and inverted bifurcation takes
place for B = 0. In this case

v = 0

v = const.(R-R )
c

1/4

for

for

R < R

R > R

This situation is analogous to a tricritical point in equilibrium

phase transitions (19).
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Fig. 2. Schematic representation of the variation of the amplitude
of the velocity and hysteresis loop for an inverted
bifurcation
(s) stable (u) unstable
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Fig. 3. Schematic representation of the velocity perturbation.
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and d is the thickness of the fluid layer. As a preliminary to
the calculation of Ê .̂  for a binary mixture we first consider
a pure fluid. The rate of viscous dissipation of kinetic energy
per unit volume is given by

.. - f 3v. 3v. „

<• = -H" : (T̂  + a-1) dv
kin V 2 J 3x. 3x.

J i

= - 2 n q2 v2 (4)

where

and n is the shear viscosity. The rate of production of kinetic
energy by the buoyancy force per unit volume is given by

= - i J g 6p v dV (5)

where g is the gravitation constant and op is the perturbation
in the mean steady-state density distribution. For a pure
fluid we can write

<5p = - p a ST (6)

where 6T is the perturbation in the mean steady-state temperature
distribution and a is the thermal expansivity. The perturbation
<5T is determined by

v = 2
z dz

where x is the thermal diffusivity and <T> is the mean steady-state
temperature distribution (<...> denotes an average over the
horizontal plane) . Following the work of Chandrasekhar (22) one
obtains to order v for the mean steady-state temperature
distribution

INVERTED BIFURCATION IN BINARY MIXTURES

The fundamental physical process that lies at the origin of
the Bénard-Rayleigh instability is the conversion of energy released
by the buoyancy force into kinetic energy of the convective motion
(20). Stationary convection sets in when the rate of injection
of energy by the buoyancy force acting on the fluid (Eĝ n)
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begins to balance the rate of viscous dissipation of energy
(ÊV. )
kin

* "v * f?
E, . = E. . + Ef . = 0
kin kin kin

when the convective disturbance has a finite amplitude, convective
transport causes a modification of the mean (horizontally-
averaged) temperature and concentration distribution. This in turn
modifies the rate of liberation of thermodynamically available
energy by the buoyance force acting on the fluid (21,22).

For the sake of simplicity we consider a convective
disturbance in the form of a circular roll pattern (see Fig. 3).

v = - 2v sin q x cos q z
x ^x z

vy = 0 (3)

v = 2v cos q x sin q z
z ^x nz

Here

IT
a = o = —qx q

Z d

2 q z} (8)-
dz 2 ? z

x q
where

ß = (T(z=0) - T(z=d) } /d

The second term on the r.h.s. of (8) represents the modification
of the temperature gradient due to convective heat transport.
Substituting the temperature distribution (8) in (7) one obtains

ß v >
6T = - 2v {cos q x sin q z - - (-=- cos q x sin q z +

2 X Z o 2 5 X Ẑxq x q
2 3
-r cos q x sin q z)} (9)
•J X Z

Using (9) in (6) one obtains for the rate of production of
kinetic energy by the buoyancy force

= g P (
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where oc is the perturbation in the mean steady-state concentration
distribution and a' is the solutal expansivity. The perturbation
oc is determined by

v
z dz

v2 6c (13)

where D is the mass diffusion coefficient and <c> is the mean
steady-state temperature distribution. Using the same line of
reasoning as used in the calculation of the mean temperature
distribution one obtains

d<0 T , 2v2 . 2 f .— -, — = -=- U - - sinz q z} (14)
D2q2

where k̂ , is the thermal diffusion ratio. The first term on the
r.h.s. of (14) represents the Soret driven concentration gradient
and the second term represents the modification of this concentr-
ation gradient due to convective mass transport. Substituting

Combining (4) and (10) one obtains for the rate of change of
the kinetic energy of the convective disturbance (3)

É. . = a(R-R )v2 + Bv4 (11)
kin c

where

R = g a ß d (Rayleigh number)

R = 2qltdt* (critical Rayleigh number)

Here v is kinematic viscosity. We see that B is negative and
thus at R = Rc the system will undergo a continuous transition
to the convective state (direct bifurcation) .

In the case of a binary mixture the perturbation in the mean

steady-state density distribution can be written as

op =- p a <ST + p a' oc (12)
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the concentration distribution (14) in (13) one obtains

* T O ; • v2 , 6oc = zv {cos q x sin q z (-=- cos q x sin q z
Dq2 D2q2 5

2
+ -r cos q x sin3 q z) } (15)

J X Z

Using (9) and (15) in (12) one now obtains for the rate of
production of kinetic energy by the buoyancy force

'g gpctg ,1 S, 2 gpa3 fl , 3S, k

\in ~2~ (x D;V ~~^ C"7 Ĵ;

The dimensionless parameter

S - ̂  «I
T a

is negative in case the heavy component moves to the warm
boundary. Combining (4) and (16) one obtains for the rate of
change of the kinetic energy of the convective disturbance (3)
in a binary mixture

Ê, . =• a(R-R )v + Bv^
kin c

where

a =

dV

R = £-

1 + -
D

B = -
2q4 x3 D3
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It is clear that for binary mixture heated from below where the
more dense component moves to the warm boundary (S < 0) the
Soret effect to lowest order in v has a stabilizing influence
i.e. it leads to an increase of Rc . Let us now consider the
coefficient B, the sign of which determines whether we are
dealing with a direct bifurcation (B < 0) . The coefficient B
contains two distinct contributions of opposite sign. The
negative contribution

_ gpag

is due to the fact that convection changes the mean temperature
distribution in such a way that the rate of transfer of energy
from the gravitational field to the convective disturbance is
lowered. The positive contribution

is due to the fact that convection stirs up the Soret driven
concentration gradient there by lowering its stabilizing effect.
Since for liquid mixtures D * x the effect of convection on the
stabilizing concentration gradient is much larger than on the
destabilizing temperature gradient. The result is that for values
of S smaller than 1 ̂  the positive term in B dominates and thus

3 X 3

for these values of S the system will exhibit an inverted
bifurcation.

CONCLUSION

The inverted bifurcation in a binary mixture heated from
below where the more dense component moves to the warm boundary
is due to the competition of a stabilizing effect with a long
relaxation time and a destabilizing effect with a short
relaxation time. Precisely the same conditions give rise to
overstability. Actually oscillatory convection and finite amplitude
convection lead in different ways to the same result i.e. both
effectively eliminate the slow stabilizing effect while retaining
the fast destabilizing effect.

It would be of interest to study the cross over between direct
and inverted bifurcation experimentally. In binary liquids D/x
is typically 10~̂  and thus the cross over takes place for
S - - 10~6 which is experimentally hard to realize. A system that
may offer better chances to perform the appropriate experiments
is a homeotropic nematic with positive heat conduction anisotropy
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heated from below. Here it is possible to change the ratio of the
relevant relaxation times with a stabilizing magnetic field (9)
which could induce the cross over between direct and inverted
bifurcation.
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